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bust point forecasts are generated from a set of quantile forecasts, using both �xed

and time-varying weighting schemes, thus exploiting the entire distributional infor-

mation associated with each predictor. Further gains are achieved by incorporating

the forecast combination methodology in our quantile regression setting. Our ap-
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1 Introduction

Equity premium predictability has attracted the attention of both academics and prac-

titioners in �nance. Results are mixed, since di¤erent techniques, variables and time

periods are employed in the related research. The list of predictors is quite exhaustive

and typically contains valuation ratios, various interest rates and spreads, distress indi-

cators, in�ation rates along with other macroeconomic variables, indicators of corporate

activity, etc.1 The early contributions to equity premium predictability mainly focused

on the in-sample predictive ability of the potential predictors and the development of

proper econometric techniques for valid inference.2 Lately, interest has turned to the

out-of-sample performance of the candidate variables. Goyal and Welch (2008) show that

their long list of predictors can not deliver consistently superior out-of-sample perfor-

mance. The authors employ a variety of predictive regression models ranging from single

variable ones to their �kitchen sink�model that contains all their predictors simultane-

ously. Campbell and Thompson (2008) show that when imposing simple restrictions,

suggested by economic theory, on predictive regressions�coe¢ cients, the out-of-sample

performance improves and market timing strategies can deliver pro�ts to investors (see

also Ferreira and Santa-Clara (2011)). More recently, Rapach, Strauss and Zhou (2010)

consider another approach for improving equity premium forecasts based on forecast

combinations. The authors �nd that combinations of individual single variable predictive

regression forecasts, which help reducing model uncertainty/parameter instability, signif-

icantly beat the historical average forecast. Finally, Ludvigson and Ng (2007) and Neely,

1Commonly used valuation ratios are the dividend price/dividend yield ratio (see for example, Fama
and French (1988), (1989)), the earnings price ratio (Campbell and Shiller (1988), (1998)), and the book-
to-market ratio (Kothari and Shanken (1997)). Another strand of the literature includes macroeconomic/
�nancial variables such as in�ation rates, short-term and long-term interest rates along with term and
corporate bond spreads in the set of predictors (see e.g. Fama and Schwert (1977), Campbell and
Vuolteenaho (2004), Campbell (1987), Fama and French (1989), Ang and Bekaert (2007)). Lettau and
Ludvigson (2001) �nds that the consumption to wealth ratio helps equity premium predictability, while
corporate �nancing activity is exploited in Baker and Wurgler (2000). A comprehensive list of variables
that serve as predictors can be found in Goyal and Welch (2008).

2Rapach and Zhou (2012) o¤er a detailed review on the issue of equity return predictability.
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Rapach, Tu and Zhou (2011) adopt a di¤usion index approach, which can conveniently

track the key movements in a large set of predictors, and they �nd evidence of improved

equity premium forecasting ability.

It still remains an open question whether there is clear evidence for predictability

of the equity premium. Note that all the above regression speci�cations for the equity

premium prediction can only model the conditional expectation of returns. That is,

standard regression models describe only the average relationship of returns with the

set of predictors. However, this approach might not be adequate for exploring equity

premium predictability, since it can not reveal the predictive ability of various predictors

at forecasting the entire distribution of returns. Looking at just the conditional mean

of the return series may �hide�interesting characteristics. For example, it can lead us to

conclude that a predictor has poor predictive performance, while it is actually valuable

for predicting the lower or/and the upper conditional quantiles of returns. To explore

this possibility, we consider predictive quantile regression models for equity premium

forecasting.

Since the seminal paper of Koenker and Bassett (1978) quantile regression models

have attracted a vast amount of attention. Both theoretical and empirical research has

been conducted in the area of quantile regression, including model extensions, new in-

ferential procedures and numerous empirical applications; see, for example, Buchinsky

(1994, 1995, 1998) and Yu, Lu and Stander (2003) among others. Applications in the

�eld of �nance include work on risk measures (Taylor (1999), Chernozhukov and Umant-

sev (2001), Engle and Manganelli (2004)), asset management (Feng, Chen and Basset

(2008), Ma and Pohlman (2008)) and the analysis of the cross section of stock market

returns (Barnes and Hughes (2002)). Bassett and Chen (2001) propose the quantile re-

gression method as an appropriate way for the classi�cation of mutual fund investment

styles and Meligkotsidou, Vrontos and Vrontos (2009) consider quantile regression models
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for hedge fund pricing allowing for model uncertainty. Chuang, Kuan and Lin (2009) ex-

amine the dynamic relationship of the quantiles of stock returns and trading volume and

�nd an heterogeneous causal e¤ect of volume across quantiles. Recently, Baur, Dimp�

and Jung (2012) provide a comprehensive description of the dependence pattern of stock

returns by studying a range of quantiles of the conditional return distribution and �nd

that lower quantiles exhibit positive dependence on past returns while upper quantiles

are marked by negative dependence.

The paper more closely related to the present paper is Cenesizoglu and Timmermann

(2008) who employ a quantile regression approach to capture the predictive ability of a

list of state variables for the distribution of stock returns. The authors �nd quantile-

varying predictability both in-sample and out-of-sample which can be exploited in an

asset allocation framework. In a follow-up paper, Cenesizoglu and Timmermann (2012)

point out that return prediction models that allow for a time-varying return distribution

lead to better estimates of the tails of the returns� distribution and su¤er less from

unanticipated outliers. Their empirical �ndings suggest that time-varying distribution

forecasts can lead to an annual risk-adjusted return performance of 2% higher than a

constant mean and volatility model. Similar conclusions are reached by Pedersen (2010)

who employs both univariate and multivariate quantile regressions to jointly model the

distribution of stocks and bonds.

The aim of our paper is to produce robust and accurate point forecasts of the equity

premium, using both a �xed and a time-varying weighting scheme, based on the quantile

forecasts obtained from a set of predictive quantile regressions. To this end, we utilize two

di¤erent sources of information; distribution information, regarding how the relationship

between the equity premium and a given predictive variable varies across the conditional

quantiles of returns, as well as predictor information, regarding the di¤erent models

that can be used for predictive inference. To take both sources of information into
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account we propose a two-stage approach. One stage is designed to construct single

point forecasts of the equity premium from a set of quantile forecasts. At the other

stage the forecasts obtained from di¤erent model speci�cations are combined in order to

reduce uncertainty risk associated with a single predictive variable. Finally, we examine

whether the order of applying the above two stages a¤ects the performance of the proposed

forecasting approach. For comparison purposes, we employ the updated Goyal and Welch

(2008) dataset along with the standard linear regression predictive framework as well as

existing methods of combining individual forecasts from single predictor linear models.

All di¤erent forecasts are evaluated against the benchmark constant equity premium

using both statistical and economic evaluation criteria.

To anticipate our key results, we �nd considerable heterogeneity among the candidate

variables as far as their ability to predict the return distribution is considered. More im-

portantly, no single predictor proves successful in capturing the entire return distribution

with the right tail being easier to predict in contrast to the left tail. Overall, superior pre-

dictive performance, both in statistical and economic evaluation terms, is achieved under

the quantile regression approach as follows. First, various quantiles of the conditional

distribution of returns are optimally predicted by combining information from di¤erent

predictors using one of the existing forecast combination methods. Next, robust point

forecasts of the equity premium are produced using time-varying weighting schemes.

The remainder of the paper is organized as follows. Section 2 describes the economet-

ric models considered in this study, including standard conditional mean and quantile

regression models. Section 3 outlines our proposed methodology for robust estimation of

the central location of the distribution of returns. Section 4 discusses various methods of

combining forecasts from di¤erent regression speci�cations, as well as from di¤erent con-

ditional quantiles. Our dataset and the framework for forecast evaluation is presented in

Section 5, while our empirical results are reported in Section 6. Section 7 outlines the eco-
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nomic evaluation framework and presents the associated �ndings. Section 8 summarizes

and concludes.

2 Predictive Regressions

In this section we present the predictive regression models we use to forecast the equity

premium, denoted by rt, using a set of N candidate predictor variables.

2.1 Quantile Regression Models

First we consider all possible conditional mean predictive regression models with a single

predictor of the form

rt+1 = �i + �ixit + "t+1; i = 1; : : : ; N; (1)

where rt+1 is the observed excess return on a stock market index in excess of the risk-free

interest rate at time t+1, xit are the N observed predictors at time t, and the error terms

"t+1 are assumed to be independent with mean zero and variance �2. Equation (1) is the

standard equity premium prediction model (see, for example, Rapach, Strauss and Zhou,

2010), which suggests that the conditional mean of the random variable rt+1 given xit is

E(rt+1 j xit) = �i + �ixit.

The above regression speci�cations can only model the conditional expectation and

not the entire conditional distribution of returns. However, it is reasonable to believe

that the e¤ects of the predictors di¤er across quantiles of returns, especially if the return

distribution deviates from normality. Equity premium returns exhibit a high degree

of non-normality, fat-tails and skewness and, therefore, a more sophisticated approach

to predictive inference on the return distribution should be useful. For this reason,

we propose using quantile regression models (Koenker and Bassett (1978), Buchinsky
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(1998), Yu, Lu and Stander (2003)) to predict the entire distribution of equity premium

via modeling a set of conditional quantiles. It is well known that quantile regression

estimators are more e¢ cient and more robust than conditional mean regression estimators

in cases that there exist deviations from normality. Information from di¤erent predictive

quantile regression can be utilized with the aim to construct a robust and more accurate

point forecast.

We consider quantile regression models with a single predictor of the form

rt+1 = �
(�)
i + �

(�)
i xit + "t+1; i = 1; : : : ; N; (2)

where � 2 (0; 1) denotes the �th quantile of rt+1, and the errors "t+1 are assumed indepen-

dent from an error distribution g� (") with the �th quantile equal to 0, i.e.
R 0
�1 g� (")d" =

� . Model (2) suggests that the �th conditional quantile of rt+1 given xit is Q� (rt+1jxit) =

�
(�)
i +�

(�)
i xit, where the intercept and the regression coe¢ cients depend on � . The coe¢ -

cient �(�)i shows how the ith variable predicts the equity premium at the level of the �th

quantile. The �(�)i �s are likely to be di¤erent for di¤erent ��s, revealing a larger amount

of information about returns than conditional mean regression, especially if the error

distribution is not symmetric.

2.2 Inference on Predictive Regression Models

In this subsection we brie�y present the problem of estimating the above predictive regres-

sion models. The conditional mean regression model can be estimated using the ordinary

least squares method without making any particular assumptions for the error distrib-

ution. Least squares estimation is based on the fact that the expectation of a random

variable r with distribution function F arises as the point estimate of r corresponding

to the quadratic loss function �(u) = u2, that is as the value of �r which minimizes the
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expected loss

E�(r � �r) =
Z
�(r � �r)dF (r):

Therefore, the ordinary least squares (OLS) estimators �̂i; �̂i of the parameters in the

conditional mean regression models in (1) can be estimated by minimizing the sample

estimate of the quadratic expected loss T�1
PT�1

t=0 � (rt+1 � ai � �ixit), with respect to

�i; �i, or equivalently by minimizing the sum of squares3

T�1X
t=0

(rt+1 � �i � �ixit)
2 :

A parametric approach to inference on the regression parameters can be followed if the

functional form of the error distribution is speci�ed. Most commonly the errors are

assumed to follow the normal distribution with zero mean and variance �2, in which case

the maximum likelihood estimates (MLEs) of the regression parameters are identical to

the OLS estimates, �̂i; �̂i. Then, the point forecast of the equity premium at time t+ 1,

based on the ith model speci�cation, is obtained as

r̂i;t+1 = �̂i + �̂ixit:

Similarly to the expectation of the random variable r, its �th quantile arises as the

solution to a decision theoretic problem; that of obtaining the point estimate of r corre-

sponding to the asymmetric linear loss function, usually referred to as the check function,

�� (u) = u (� � I(u < 0)) =
1

2
[juj+ (2� � 1)u] : (3)

3The sample size T denotes any estimation sample employed in our recursive forecasting experiment.
Details on the forecasting design are given in Section 4.
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More in detail, minimization of the expected loss

E�� (r � �r(�)) =
Z
�� (r � �r(�))dF (r);

with respect to �r(�) leads to the �th quantile. In the symmetric case of the absolute loss

function (� = 1=2) we obtain the median. If a sample, r1; :::; rT ; is drawn from F , an

estimate of the �th quantile of r is obtained by minimizing the sample estimate of the

expected loss, i.e. the function T�1
PT

t=1 ��
�
rt � �r(�)

�
: The above idea can be used to

estimate the parameters, �i(�); �
(�)
i , of the linear quantile regression models in (2). This

can be done by minimizing the sum

T�1X
t=0

��

�
rt+1 � �i

(�) � �
(�)
i xit

�
; (4)

where the check function �� (u) has been given in (3).

A parametric approach to inference on the quantile regression parameters arises if

the error distribution g� (") is speci�ed. The error distribution that has been widely used

for parametric inference in the quantile regression literature is the asymmetric Laplace

distribution (for details, see Yu and Moyeed (2001) and Yu and Zhang (2005)). The

advantage of this assumption is that the respective MLEs are identical to the estimates

obtained by minimizing (4) and, therefore, inherit their asymptotic properties (for details

on these properties see Koenker (2005)). Once the model parameters have been estimated,

the forecast of the �th conditional quantile of the distribution of the equity premium at

time t+ 1, based on the ith model speci�cation, is obtained as

r̂i;t+1(�) = �̂i
(�) + �̂

(�)

i xit:

In the subsequent sections we outline our methodology for producing robust and ac-
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curate point forecasts of the equity premium based on the above quantile forecasts. In

this respect, we utilize two di¤erent sources of information; distribution information, re-

garding how the relationship between the equity premium and a given predictive variable

varies across the conditional quantiles of returns, as well as predictor information, re-

garding the di¤erent models that can be used for predictive inference. To take account

of both sources of information we propose a two-stage approach. One stage is designed

to construct single point forecasts of the equity premium from a set of quantile forecasts.

This is done by developing a �xed and a time-varying weighting scheme presented in Sec-

tion 3. At the other stage the forecasts obtained from di¤erent model speci�cations are

combined in order to reduce uncertainty risk associated with a single predictive variable

(see Section 4). Finally, we examine possible impacts of the order of applying the above

two stages to the performance of the proposed forecasting approach.

3 Robust Point Forecasts based on Regression Quan-

tiles

In this section we consider the problem of �nding robust point forecasts of the equity

premium as an alternative to the standard approach which produces forecasts based on

the conditional expectation model. As already mentioned, the special characteristics

of the data, i.e. high volatility, fat tails, skewness and deviation from normality, ren-

der the standard conditional expectation approach inadequate for prediction of �nancial

series. These special characteristics of �nancial series motivate the development of al-

ternative forecasting methods that are robust to the distributional assumptions of asset

returns. In such cases it seems reasonable to choose estimators/predictors which modify

the conditional expectation prediction approach by putting reduced weight on extreme

observations.
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The need for robust alternatives to the conditional expectation approach has been

apparent in the literature. The median, the trimmed mean and linear combinations

of functions of a few quantiles (L-estimators) often provide e¢ cient and robust, but

simple, alternative ways of estimating or forecasting the location of a random variable.

Gastwirth (1966) introduced a class of robust estimators of the location using a few

sample quantiles (�quick estimators�), which do not weight the extreme quantiles too

heavily. This type of estimators turns out to have good e¢ ciency properties for a wide

variety of distributions. Judge, Hill, Gri¢ ths, Lutkepohl and Lee (1988) suggested an

alternative �ve-quantile estimator attaching weight on extreme positive and negative

events. Koenker and Basset (1978) suggest that robust point estimates of the central

location of a distribution can be constructed as weighted averages of quantile estimators.

In this spirit, several quantile forecasts r̂i;t+1(�) can be combined to produce a single

robust point forecast. All these approaches use a constant/�xed weighting scheme of

di¤erent quantile forecasts to construct robust point forecasts.

Relaxing the assumption of a constant weighting scheme in the generation of point

forecasts seems to be a natural extension. A number of factors such as changes in regu-

latory conditions, market sentiment, monetary policies, institutional framework or even

changes in macroeconomic interrelations (see also Dangl and Halling (2012)) can motivate

the employment of time-varying schemes in the generation of robust point forecasts. In

general, models with time-varying coe¢ cients generate return predictions that are consis-

tent with business cycle related patterns implied by asset pricing theory (e.g., Campbell

and Cochrane (1999), Menzly, Santos, and Veronesi (2004)). The empirical evidence sug-

gests that on average, predicted equity risk premia increase during a recession and peak

around the trough. During expansions, predicted risk premia decrease and reach their

lowest levels around the peak of the business cycle. Finally, an investor who relies on

these predictions times the market very well, reducing her exposure around the peak of
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the business cycle and moving back into the market before the trough. Intuitively, in our

setup, allowing for time-varying weights coincides with changing investors�expectations

on the relative future outcome.

3.1 Point Forecasts based on a �xed weighting scheme

Point forecasts of the equity premium can be constructed as weighted averages of a set of

quantile forecasts. First we employ standard estimators with �xed, prespeci�ed, weights

of the form

r̂i;t+1 =
X
�2S

p� r̂i;t+1(�);
X
�2S

p� = 1;

where S denotes the set of quantiles that will be used. Here the weights represent proba-

bilities attached to di¤erent quantile forecasts, suggesting how likely to predict the return

at the next period each regression quantile is. The above point forecasts incorporate

information about how the e¤ects of predictors vary across the distribution of returns.

Therefore, they are robust and can be more accurate than the conditional mean forecasts,

especially in cases that the return distribution clearly deviates from normality.

We consider Tukey�s (1977) trimean and the Gastwirth (1966) three-quantile estima-

tors given, respectively, by the following formulas

FW1: bri;t+1 = 0:25r̂i;t+1(0:25) + 0:50r̂i;t+1(0:5) + 0:25r̂i;t+1(0:75) (5)

FW2: bri;t+1 = 0:3r̂i;t+1(1=3) + 0:4r̂i;t+1(0:5) + 0:3r̂i;t+1(2=3) (6)

Furthermore, we use the alternative �ve-quantile estimator, suggested by Judge, Hill,

Gri¢ ths, Lutkepohl and Lee (1988), which attaches more weight on extreme positive and
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negative events as follows

FW3: bri;t+1 = 0:05r̂i;t+1(0:10) + 0:25r̂i;t+1(0:25) + 0:40r̂i;t+1(0:5) (7)

+ 0:25r̂i;t+1(0:75) + 0:05r̂i;t+1(0:90)

Additionally to the above three estimators, we consider a fourth one which combines in-

formation from a larger set of conditional quantiles. Speci�cally, we consider the following

formula

FW4: bri;t+1 = 0:05r̂i;t+1(0:50) + 0:05X
�2S

r̂i;t+1(�); (8)

where S = f0:05; 0:10; :::; 0:95g. All the above �xed-weights point forecasts (FW1-FW4)

are estimators of the expected value of the return at time t+1, constructed using informa-

tion from di¤erent parts of the return distribution. A subset of the above speci�cations

has been employed by Taylor (2007) and Ma and Pohlman (2008) among others.

3.2 Point Forecasts based on a time-varying weighting scheme

Apart from generating forecasts based on �xed weights, we consider point forecasts based

on time-varying weighting schemes. These weights are derived by some optimization

procedure aiming at producing an empirical model that allows for economic changes over

time and that is also capable of determining the �right�parameter values in time to help

investors (Spiegel (2008)). Our approach produces time-varying weighting schemes which

combine di¤erent conditional quantiles of returns based on minimizing the mean square

forecast error under reasonable constraints.

The variable of interest bri;t+1 is predicted using an optimal linear combination

pt=[p�;t]�2S of the quantile forecasts r̂i;t+1(�) given by

r̂i;t+1 =
X
�2S

p�;tr̂i;t+1(�);
X
�2S

p�;t = 1:
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The weights, pt, are estimated recursively using a holdout out-of-sample period con-

tinuously updated by one observation at each step. Optimal estimates of the weights

are obtained by minimizing the mean square forecast errors, E(rt+1 � r̂i;t+1)
2; under an

appropriate set of constraints.4 Our optimization procedure is the analogue of the con-

strained Granger - Ramanathan method for quantile regression forecasts (Timmermann

(2006), Granger and Ramanathan (1984), Hansen (2008) and Hsiao and Wan (2012)).

These time-varying weights of the quantile estimates bear an interesting relationship to

the portfolio weight constraints in �nance (see Timmermann (2006)). In this sense the

weights of the quantile estimates are constrained to be non-negative, sum to one and not

to exceed certain lower and upper bounds in order to reduce the weights�volatility and

stabilize forecasts.

In our empirical application, we employ three time-varying speci�cations which may

be viewed as the time-varying counterparts of our FW1-FW3 schemes. Since our method-

ology requires a holdout out-of-sample period during which the optimal linear combina-

tion pt is estimated, a fourth speci�cation based on FW4 is not employed due to the

increased parameter space. More speci�cally, FW1 with time-varying coe¢ cients be-

comes

TVW1: bri;t+1 = p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:5) + p0:75;tr̂i;t+1(0:75) (9)

where p�;t; � 2 S = f0:25; 0:50; 0:75g are estimated by the following optimization proce-
4Alternative loss functions can be also considered within our optimization procedure.
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dure

pt = argmin
pt

E[rt+1 � (p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:5) + p0:75;tr̂i;t+1(0:75))]
2

s:t: p0:25;t + p0:50;t + p0:75;t = 1

0:20 � p0:25;t � 0:40

0:40 � p0:50;t � 0:60

0:20 � p0:75;t � 0:40

Similarly, the FW2 model with time-varying coe¢ cients becomes

TVW2: bri;t+1 = p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:5) + p2=3;tr̂i;t+1(2=3) (10)

where p�;t; � 2 S = f1=3; 0:5; 2=3g are estimated by the following optimization procedure

pt = argmin
pt

E[rt+1 � (p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:5) + p2=3;tr̂i;t+1(2=3))]2

s:t: p1=3;t + p0:50;t + p2=3;t = 1

0:15 � p1=3;t � 0:45

0:30 � p0:5;t � 0:50

0:15 � p2=3;t � 0:45

Finally, the FW3 model with time-varying coe¢ cients becomes

TVW3: bri;t+1 = p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25) + p0:5;tr̂i;t+1(0:5) (11)

+ p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90)

where p�;t; � 2 S = f0:10; 0:25; 0:5; 0:75; 0:90g are estimated by the following optimization
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procedure

pt = argmin
pt

E[rt+1 � (p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25)+

+p0:5;tr̂i;t+1(0:5) + p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90))]
2

s:t: p0:10;t + p0:25;t + p0:50;t + p0:75;t + p0:90;t = 1

0:00 � p0:10;t � 0:10

0:15 � p0:25;t � 0:35

0:40 � p0:50;t � 0:60

0:15 � p0:75;t � 0:35

0:00 � p0:90;t � 0:10

4 Forecast Combination

Since Bates and Granger�s (1969) seminal contribution, it has been known that combining

individual models�forecasts can reduce uncertainty risk associated with a single predictive

model and display superior predictive ability (see Rapach, Strauss and Zhou (2010),

Hendry and Clements (2004)). Timmermann (2006) suggests that forecast combination

can be thought of as a diversi�cation strategy that improves forecasting performance in

the same way as asset diversi�cation improves portfolio performance. In the context of

equity premium predictability, Rapach, Strauss and Zhou (2010) show that combination

foreacsts of individual predictive models can consistently beat the benchmark. Following

Rapach, Strauss and Zhou (2010), we also consider various combining methods, ranging

from simple averaging schemes to more advanced ones, based on both the single predictor

model speci�cations (conditional mean and quantile forecasts) of Section 2 and the robust

point forecasts of Section 3. Below we discuss the design of our forecast experiment, which

is identical to the one employed by Goyal and Welch (2008) and Rapach, Strauss and
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Zhou (2010), and outline the combining methods employed.

We generate out-of-sample forecasts of the equity premium using a recursive (expand-

ing) window. More speci�cally, we divide the total sample of T observations into an

in-sample portion of the �rst K observations and an out-of-sample portion of P = T �K

observations, used for forecasting. The estimation window is continuously updated follow-

ing a recursive scheme, by adding one observation to the estimation sample at each step.

As such, the coe¢ cients in any predictive model employed are re-estimated after each step

of the recursion. Proceeding in this way through the end of the out-of-sample period, we

generate a series of P out-of-sample forecasts for the equity premium fr̂i;t+1gT�1t=K . This

experiment simulates the situation of a forecaster in real time, since she employs data as

soon as they become available.

The combination forecasts of rt+1, denoted by r̂
(C)
t+1, are weighted averages of the N

single predictor individual forecasts, r̂i;t+1, i = 1; : : : ; N , of the form

r̂
(C)
t+1 =

NX
i=1

w
(C)
i;t r̂i;t+1;

where w(C)i;t ; i = 1; :::; N are the a priori combining weights at time t. Some of the com-

bining methods described below require a holdout out-of-sample period during which the

combining weights are estimated. The �rst P0 out-of-sample observations are employed

as the initial holdout period. In this respect, we compute combination forecasts over the

post-holdout out-of-sample period, leaving us with a total of T � (K + P0) = P � P0

forecasts available for evaluation.

The simplest combining scheme is the one that attaches equal weights to all individual

models, i.e. w
(C)
i;t = 1=N , for i = 1; :::; N , called the mean combining scheme. The

next schemes we employ are the trimmed mean and median ones. The trimmed mean

combination forecast sets w(C)i;t = 1=(N � 2) and w(C)i;t = 0 for the smallest and largest
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forecasts, while the median combination scheme is the median of fr̂i;t+1gNi=1 forecasts.

The second class of combining methods we consider, proposed by Stock and Watson

(2004), suggests forming weights based on the historical performance of the individ-

ual models over the holdout out-of-sample period. Speci�cally, their discount MSFE

(DMSFE) combining method suggests forming weights as follows

w
(C)
i;t = m�1

i;t =
NX
j=1

m�1
j;t

where

mi;t =
t�1X
s=K

 t�1�s(rs+1 � bri;s+1)2;
where  is a discount factor which attaches more weight on the recent forecasting accuracy

of the individual models in the cases where  < 1. The values of  we consider are

1:0 and 0:9. When  equals one, there is no discounting and the combination scheme

coincides with the optimal combination forecast of Bates and Granger (1969) in the case

of uncorrelated forecasts.

The third class of combining methods, namely the cluster combining method, was

introduced by Aiol� and Timmermann (2006). In order to create the cluster combining

forecasts, we form L clusters of forecasts of equal size based on the MSFE performance.

Each combination forecast is the average of the individual model forecasts in the best

performing cluster. This procedure begins over the initial holdout out-of-sample period

and goes through the end of the available out-of-sample period using a rolling window.

In our analysis, we consider L = 2; 3.

Next, the principal component combining methods of Chan, Stock and Watson (1999)

and Stock and Watson (2004) are considered. In this case, a combination forecast is

based on the �tted n principal components of the uncentered second moment matrix of

the individual model forecasts, bF1;s+1, ..., bFn;s+1 for s = K; :::; t� 1. The OLS estimates
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of '1; :::; 'n of the following regression

rs+1 = '1 bF1;s+1 + :::+ 'n bFn;s+1 + �s+1

can be thought of as the individual combining weights of the principal components. In

order to select the number n of principal components we employ the ICp3 information

criterion developed by Bai and Ng (2002) and set the maximum number of factors to 5.

Finally, we employ the Bayesian model averaging (BMA) approach in order to produce

combined forecasts. According to this approach, the weights w(C)i;t are the posterior model

probabilities obtained from a Bayesian model comparison exercise which compares the

single predictor model speci�cations. The BMAmethod requires a parametric, likelihood-

based, approach to inference. The posterior probabilities of the competing models are

calculated as follows

w
(C)
i;t = P (mi j r1; : : : ; rt) =

P (mi)f(r1; : : : ; rt j mi)PN
j=1 P (mj)f(r1; : : : ; rt j mj)

;

where mi denotes the ith single predictor model, P (mi), i = 1; : : : ; N , are prior model

probabilities and f(r1; : : : ; rt j mi) is the marginal likelihood of the data given by a speci�c

model mi, obtained by integrating the model parameters out of the likelihood function.

Calculating the marginal likelihood of standard conditional mean regression models is

straightforward (see, for example, O�Hagan and Forster, 2004), while for quantile regres-

sion models we adopt the Laplace approximation method of Meligkotsidou, Vrontos and

Vrontos (2009) for estimating the marginal likelihood of the competing model speci�ca-

tions. The BMA approach is designed to assign large weights to the individual forecasts

obtained by those predictors that provide better in-sample model �t.
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5 Data and forecast evaluation

The data we employ are from Goyal and Welch (2008) who provide a detailed description

of transformations and datasources.5 The equity premium is calculated as the di¤erence

of the continuously compounded S&P500 returns, including dividends, and the Treasury

Bill rate. As already mentioned, following the line of work of Goyal and Welch (2008),

Rapach, Strauss and Zhou (2010) and Ferreira and Santa-Clara (2011), out-of-sample

forecasts of the equity premium are generated by continuously updating the estimation

window, i.e. following a recursive (expanding) window. Our forecasting experiment

is conducted on a quarterly basis and data span 1947:1 to 2010:4. Our out-of-sample

forecast evaluation period corresponds to the �long�one analyzed by Goyal and Welch

(2008) and Rapach, Strauss and Zhou (2010) covering 1965:1-2010:4.6 The 15 economic

variables employed in our analysis are related to stock-market characteristics, interest

rates and broad macroeconomic indicators. With respect to stock market characteristics,

we employ the following variables.

� Dividend�price ratio (log), D/P: Di¤erence between the log of dividends paid on

the S&P 500 index and the log of stock prices (S&P 500 index), where dividends

are measured using a one-year moving sum.

� Dividend yield (log), D/Y : Di¤erence between the log of dividends and the log of

lagged stock prices.

� Earnings�price ratio (log), E/P: Di¤erence between the log of earnings on the S&P

500 index and the log of stock prices, where earnings are measured using a one-year

moving sum.
5The data are available at http://www.hec.unil.ch/agoyal/. We thank Prof. Goyal for making them

available to us.
6Please note that the out-of-sample period refer to the period used to evaluate the out-of-sample

foreacts. We use the ten years (40 quarters) before the start of the out-of-sample evaluation period as
the initial holdout out-of-sample period, required for both constructing our time-varying robust forecasts
and for several forecast combination schemes.

20



� Dividend�payout ratio (log), D/E: Di¤erence between the log of dividends and the

log of earnings.

� Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

� Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones

Industrial Average.

� Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by

NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

Turning to interest-rate related variables, we employ six variables ranging from short-

term government rates to long-term government and corporate bond yields and returns

along with their spreads as follows.

� Treasury bill rate, TBL: Interest rate on a three-month Treasury bill (secondary

market).

� Long-term yield, LTY: Long-term government bond yield.

� Long-term return, LTR: Return on long-term government bonds.

� Term spread, TMS: Di¤erence between the long-term yield and the Treasury bill

rate.

� Default yield spread, DFY: Di¤erence between BAA- and AAA-rated corporate

bond yields.

� Default return spread, DFR: Di¤erence between long-term corporate bond and

long-term government bond returns.

To capture the overall macroeconomic environment, we employ the in�ation rate and

the investment-to-capital ratio de�ned as follows.
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� In�ation, INFL: Calculated from the CPI (all urban consumers).

� Investment-to-capital ratio, I/K: Ratio of aggregate (private nonresidential �xed)

investment to aggregate capital for the entire economy (Cochrane, 1991).

In our application, the natural benchmark forecasting model is the constant expected

equity premium or prevailing mean (PM) model, which coincides with the estimate b�i in
the linear regression model (1) when none of the predictive variables are included in the

model. As a measure of forecast accuracy we employ the out-of-sample R-square (R2OS);

which is de�ned as

R2OS = 1�
MSFEi
MSFEPM

(12)

whereMSFEi is the Mean Square Forecast Error (MSFE) de�ned as the average squared

forecast error over the out-of-sample period of any of our competing models and speci�-

cations and MSFEPM is the respective value for the prevailing mean (PM) or historical

mean model. Positive values of the out-of-sample R-square are associated with superior

forecasting ability of our proposed model/speci�cation and vice-versa.

Given that point estimates of the R2OS are sample dependent, we need to evaluate the

statistical signi�cance of our forecasts. A disclaimer is in order here. Di¤erent evaluation

techniques should be employed depending on whether the competing models are nested

or not. Speci�cally, the PM model or constant equity premium model, which serves as

the benchmark, is nested in the linear prediction models (Equation 1). The same holds

for the alternative combining schemes developed under this setting. On the other hand,

when it comes to the quantile predictive models and the estimators stemming from them,

PM no longer belongs to this set of models. In such a setting, only the Prevailing Quantile

(PQ) and the models speci�ed by equation (2) could lead to a nested environment for

forecast evaluation. To this end, we employ the Clark and West (2007) approximate

normal test to compare nested models and the encompassing test of Harvey, Leybourne
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and Newbold (1998) for non-nested models. Next, we provide a brief description of these

approaches.

Clark and West (2007) develop an adjusted version of the Diebold and Mariano (1995)

andWest (1996) statistic, namely the MSFE-adjusted statistic, which in conjunction with

the standard normal distribution generates asymptotically valid inferences when compar-

ing forecasts from nested linear models. Suppose that we want to evaluate the forecasts

of a parsimonious model A relative to a larger model B. Under the null hypothesis of

equal MSFE, model B should generate larger MSFE than model A, due to the estimation

of additional parameters that introduces noise into the forecasts while these do not im-

prove predictions. A smaller MSFE should not be considered as evidence of superiority of

model A over B. In this respect, the testing procedure of Clark and West (2007) aims at

correcting for the in�ation in the MSFE of the larger model before evaluating the relative

forecasting accuracy of the two models. Let r̂A;t+1 and r̂B;t+1 denote the one-step ahead

forecasts for rt obtained from models A and B respectively. We de�ne

ft+1 = (rt+1 � r̂A;t+1)
2 � [(rt+1 � r̂B;t+1)

2 � (r̂A;t+1 � r̂B;t+1)
2]

The test statistic of Clark and West, denoted as MSFE � adjusted, is given by the

standard t� statistic of the regression of ffs+1gT�1s=K+P0
on a constant. Given that under

the alternative hypothesis of the test, model B has lower MSFE than model A, this is

an one-sided test. Clark and West (2007) recommend using 1.282, 1.645 and 2.326 as

critical values for a 0.10, 0.05 and 0.01 test, respectively. Extensive simulations per-

formed by them, which consider a variety of di¤erent processes and settings show that

the aforementioned critical values provide reliable results.

As already mentioned, we employ the encompassing test of Harvey, Leybourne and

Newbold (1998) to compare non-nested models. The notion of forecast encompassing
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was developed in Granger and Newbold (1973) and Chong and Hendry (1986).7 Consider

forming a composite forecast r̂c;t+1 as a convex combination of the out-of-sample forecasts

from a parsimonious model A, r̂A;t+1 and a larger model B, r̂B;t+1 in an optimal way so

that r̂c;t+1 = �r̂A;t+1 + (1� �)r̂B;t+1; 0 � � � 1. If the optimal weight attached to model

A forecast is zero, � = 0, then model B forecasts encompass the competing forecasts

from model A. Harvey, Leybourne and Newbold (1998) developed the encompassing test,

denoted as ENC �T , based on the approach of Diebold and Mariano (1995) to test the

null hypothesis that � = 0; against the one-sided (upper tail) alternative hypothesis that

� > 0: Let uA;t+1 = rt+1 � r̂A;t+1; uB;t+1 = rt+1 � r̂B;t+1 denote the forecast errors of the

competing models A and B, respectively and de�ne

dt+1 = (uA;t+1 � uB;t+1)uA;t+1:

The ENC � T statistic is given by

ENC � T =
p
(P � P0)

dqdV ar(d) (13)

where d is the sample mean, dV ar(d) is the sample-variance of fds+1gT�1s=K+P0
and P �

P0 is the length of the out-of-sample evaluation window.8 The ENC � T statistic is

asymptotically distributed as a standard normal variate under the null hypothesis. To

improve �nite sample performance Harvey, Leybourne and Newbold (1998) recommend

employing the student�s t distribution with P �P0�1 degrees of freedom. As previously,

this test is a one-sided test.
7See also Clements and Hendry (1998).
8For forecast horizons greater than one, an estimate of the long-run variance should be employed.
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6 Empirical Results

6.1 A motivating illustration

Before presenting our empirical results, we provide an illustration on the sources of po-

tential bene�ts of our proposed methodology. Our motivation stems from the empirical

�nding that a single mean curve can rarely provide an adequate summary of the evolution

of the equity premium over time. For example, the most popular variables in the returns

prediction literature, namely the dividend-price ratio and the term spread may capture

di¤erent aspects of economic conditions. Furthermore, not only �uctuations of the busi-

ness cycle induce a time-varying nature on mean predictive relationships, but also across

quantiles, since there is no compeling theoretical reason slope coe¢ cients are constant

across quantiles. To the extent that candidate predictor variables contain signi�cant in-

formation for some parts of the return distribution, but not for the whole, a methodology

that properly integrates this information will lead to additional bene�ts. Our method-

ology bears a resemblance to combination forecasts that are employed to produce less

volatile forecasts, stabilize individual forecasts, reduce forecast risk and improve forecast

performance (Rapach, Strauss and Zhou (2010)).

As a �rst step, we generate forecasts employing Equation (2) with a single predictor at

a time and calculate the MSFE associated with each speci�cation. Then we calculate the

MSFE associated with the prevailing quantile and estimated by the model that contains

only a constant. This prevailing quantile serves as a benchmark in the same fashion as

the historical average (prevailing mean) serves as a benchmark in typical mean predictive

regressions. Table 1, Panel A illustrates our �ndings with highlighted (in grey) cells

suggesting superior predictive ability. Overall, we observe considerable heterogeneity

among the candidate variables as far as their ability to predict the return distribution

is concerned. More importantly, no single predictor proves successful in capturing the
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distribution of the returns. As is apparent, the right tail seems to be more easily predicted

in contrast to the left tail. Such a �nding is well documented in the literature as return

prediction models perform better during expansions. More in detail, D/P, D/Y, E/P,

D/E, TBL, LTY, DFR, INFL and I/K mainly help in predicting quantiles greater than

the 40th quantile, while B/M, LTR, NTIS and TMS are more helpful when predicting

quantiles lower than the 35th one. Notably, DFY contains no predictive ability for any

part of the return distribution. The question we seek to answer is whether we can

either �horizontically�or �vertically� combine the information content in the respective

quantiles to provide robust point forecasts that improve on the mean predictive models.

As already mentioned in Section 3, the �horizontal�combination is done via the robust

point forecasts. With respect to the �vertical�combination of information, we employ a

variety of combination methods. Their potential predictive ability is outlined in Table 1,

Panel B. Our results suggest that combination methods contain signi�cant information

for a wider portion of the return distribution, albeit skewed towards the right tail. The

two cluster combining methods are the only ones that cover the full range, while the

principal components are successful in all parts of the distribution with the exception of

the 35th to 45th quantile. The method that seems able to forecast the smallest fraction

of the distribution is the BMA method that helps predicting the 45th to 85th quantile of

the distribution.

[TABLE 1 AROUND HERE]

6.2 Out-of-sample performance of predictive regressions

In this subsection, we conduct an out-of-sample forecasting exercise with the aim to

present and discuss the results of the proposed modeling approaches and the appropri-

ateness of the forecasts obtained from the robust techniques described in Section 3. Table

2 reports the out-of-sample performance of the conditional expectation (mean) predictive
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regression model and combining methods. In particular, Table 2 presents the R2OS statis-

tics of each of the individual predictive regression models relative to the historical average

benchmark model for the out-of-sample period 1965:1-2010:4; the statistical signi�cance

of the corresponding forecasts is assessed by using the Clark and West (2007) MSFE-

adjusted statistic. Positive values of R2OS indicate superior forecasting performance of

the predictive models with respect to the historical average forecast. We observe that

only four out of the 15 individual predictors have a positive R2OS value, while three predic-

tors, namely D/P (0.72%), D/Y (1.00%) and I/K (2.31%), have statistically signi�cant

positive values of R2OS. Among them the I/K predictor provides superior forecasting

ability. Looking at the R2OS generated by the di¤erent combining techniques, we ob-

serve that almost all of them produce positive values of R2OS, with the exception of the

principal components and the BMA method. Most of the combining methods have statis-

tically signi�cant positive R2OS values, while �ve of them, i.e. the mean, trimmed mean,

DMSFE(1), DMSFE(0.9) and cluster 2, provide higher values of R2OS than that of the

best I/K predictor. The results of Table 2 in general con�rm the �ndings of Rapach,

Strauss and Zhou (2010) who found that the D/P, D/Y and I/K predictors have signif-

icant forecasting ability, and that the combination methods outperform the individual

predictive regression models.

[TABLE 2 AROUND HERE]

Next we present and discuss the out-of-sample performance of the robust point fore-

casts obtained by using �xed weights (FW) and time-varying weights (TVW) based on

single predictor quantile regression models, as well as on their corresponding combining

methods. Table 3 reports the R2OS statistics of the individual quantile regression mod-

els and of the combining methods, relative to the historical average benchmark model.

Based on Panel A (left hand side) of Table 3, which reports the performance of the robust

point forecasts formed by a �xed weighting scheme based on individual quantile predic-
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tive models, we observe that only three predictors (namely, D/P, D/Y and I/K) have

positive and statistical signi�cant values of R2OS, while among them the I/K predictor

provides superior forecasting ability. These results are similar in spirit with those of the

individual mean predictive regression model, and indicate a forecasting ability of these

three predictors over the historical average using di¤erent weighting schemes for the cor-

responding quantiles. Note, however, that the values of R2OS of the robust point forecasts

are larger than those of the individual mean regression of D/P and D/Y for all weighting

schemes FW1-FW4, and of I/K for FW1, FW2 and FW4, indicating some improvement

over the mean regression approach. Turning to the results of the combined forecasts of

the individual predictive models with �xed weights in Panel B (left hand side) of Table

3, we observe that almost all the combining methods, except cluster 3 and principal com-

ponents, provide positive and statistically signi�cant R2OS values, indicating forecasting

ability over the historical average. A comparison of the di¤erent combination techniques

suggests that the DMSFE methods rank �rst followed by the mean combination method,

since they generally provide higher positive R2OS values. Among the four �xed weighting

schemes, the FW4 scheme produces in most of the cases higher R2OS values indicating an

improved predictive performance, probably due to the fact that it utilizes distribution

information obtained by a �ner grid of conditional quantiles of returns.

[TABLE 3 AROUND HERE]

The results presented in Table 3 (right hand side) concern the out-of-sample per-

formance of robust point forecasts with time-varying weights (TVW1-TVW3) based on

quantile predictive regression models. The positive R2OS values of Panel A (right hand

side) of Table 3 indicate that four predictors, namely the D/P, D/Y, DFR, and I/K,

have signi�cant forecasting ability with respect to the historical average. This approach,

which uses time-varying weights, reveals that an additional predictor, the DFR, may

have signi�cant out-of-sample predictability, compared to the �xed weighting approach
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and the conditional mean predictive regression model which identi�ed the DFR to have

positive but not signi�cant R2OS. The improved out-of-sample performance of the robust

point forecasts using time-varying weights over the mean predictive regression model is

also apparent since most of the negative R2OS values for the individual predictors (Panel

A, right hand side) are smaller in terms of absolute value from the corresponding R2OS of

the mean predictive models of Table 2.

The most striking result can be drawn from panel B (right hand side) of Table 3; the

R2OS generated by the combining methods of the individual quantile predictive models

with time-varying weights (TVW1-TVW3) are all positive and statistically signi�cant,

ranging from 2.40% for the median combination method using TVW2 to 3.67% for the

mean combination method using TVW3.9 Moreover, all the R2OS values for the combina-

tion forecasts are greater than the corresponding R2OS values of the combination methods

based on mean predictive models (see Table 2) as well as based on �xed weights. These

results indicate superior predictive ability of forecasts obtained by �rst using robust

techniques that take into account the distribution information regarding how di¤erent

conditional quantiles of equity premium are a¤ected by individual predictors, and then

incorporating predictor information in order to produce combined forecasts from di¤erent

individual models.

[TABLE 4 AROUND HERE]

Next, we present our empirical �ndings with respect to the investigation of the pre-

dictive ability of forecasts which are obtained by �rst utilizing the predictor information

to produce combined quantile forecasts from di¤erent individual models and then synthe-

sizing this distributional information through robust forecasting weighting schemes. This

procedure aims at providing optimal forecasts of each part of the conditional distribution

9Since the time varying weighting schemes require a holdout out-of-sample period, they can only be
used together with combining methods that do not require a holdout period.
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of the equity premium, by appropriately, combining individual quantile forecasts, before

using these quantiles to construct robust point forecasts. In Table 4, we present the

out-of-sample performance of these robust point forecasts using a �xed (FW1-FW4) and

a time-varying weighting scheme (TVW1-TVW3) based on the combined information.

The results of Table 4 (left hand side) suggest that the forecasts of the �xed weighting

schemes based on di¤erent combination methods provide positive and statistically signi�-

cant R2OS in all cases except for the principal component combination method, indicating

a superior performance relative to the historical average benchmark. It is interesting to

observe that more promising results in favor of our robust quantile regression approach

arise from the use of time-varying weighting schemes (TVW1-TVW3). Looking at the

right hand side of Table 4 one may observe that all of the R2OS values are positive and

statistically signi�cant and in many cases we obtain the largest R2OS values among the

di¤erent modeling approaches that have been used in our analysis. The results of Table

4 suggest that the best out-of-sample performance is obtained by applying the robust

point forecasts which use time-varying weights based on the mean combination method.

To conclude, the results of our analysis indicate that superior predictive performance

is achieved under the quantile regression approach as follows. First, various quantiles of

the conditional distribution of returns are optimally predicted by combining information

from di¤erent predictors using some forecast combination method. Next, robust point

forecasts of the equity premium are produced using time-varying weighting schemes.

In what follows, we evaluate the economic signi�cance of our proposed speci�cations

against the benchmark historical average.

7 Economic evaluation

As Campbell and Thompson (2008) and Rapach, Strauss and Zhou (2010) suggest, even

small values of R2OS can give an economically meaningful degree of return predictability
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that could result in increased portfolio returns for a mean-variance investor that maxi-

mizes expected utility. Within this stylized asset allocation framework, this utility-based

approach, initiated by West, Edison and Cho (1993), has been extensively employed in

the literature as a measure for ranking the performance of competing models in a way

that captures the trade-o¤ between risk and return (Fleming, Kirby and Ostdiek (2001),

Marquering and Verbeek (2004), Della Corte, Sarno, and Tsiakas (2009), Della Corte,

Sarno and Valente (2010), Wachter and Warusawitharana (2009)).

7.1 The framework for measuring economic value

Consider a risk-averse investor who constructs a dynamically rebalanced portfolio con-

sisting of the risk-free asset and one risky asset. Her portfolio choice problem is how to

allocate wealth between the safe (risk-free Treasury Bill) and the risky asset (stock mar-

ket), while the only source of risk stems from the uncertainty over the future path of the

stock market. Since only one risky asset is involved, this approach could be thought of as

a standard exercise of market timing in the stock market. In a mean-variance framework,

the solution to the maximization problem of the investor yields the following weight (wt)

on the risky asset

wt =
Et(rt+1)


V art(rt+1)
(14)

where Et and V art denote the conditional expectation and variance operators, rt+1 is

the equity premium and 
 is the Relative Risk Aversion (RRA) coe¢ cient that controls

the investor�s appetite for risk (Campbell and Viceira (2002), Campbell and Thompson

(2008), Rapach, Strauss and Zhou (2010)). The conditional variance of the portfolio is

approximated by the historical variance of the stock market return and is estimated using

a ten-year rolling window of quarterly returns.10 In this way, the optimal weights vary

with the degree the conditional mean varies, i.e. the forecast each model/ speci�cation

10See Campbell and Thomson (2008) and Rapach, Strauss and Zhou (2010).
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gives.11 Under this setting the optimally constructed portfolio gross return over the

out-of-sample period, Rp;t+1; is equal to

Rp;t+1 = wt � rt+1 +Rf;t

where Rf;t = 1+rf;t denotes the gross return on the risk-free asset from period t to t+1:12

Assuming quadratic utility, over the forecast evaluation period the investor with initial

wealth of Wo realizes an average utility of

U =
Wo

(P � P0)

P�P0�1X
t=0

(Rp;t+1 �



2(1 + 
)
R2p;t+1) (15)

where Rp;t+1 is the gross return on her portfolio at time t+1:13 At any point in time, the

investor prefers the model for conditional returns that yields the highest average realized

utility. The �rst measure of economic signi�cance we employ is the utility gain calculated

by the di¤erence between the average realized utilities of competing models.14 The utility

gain is given by the following formula

�U = (
U i � UPM

UPM
) � 400 (16)

where U i is the average realized utility over the out-of-sample period of any of our com-

peting models/ speci�cations (i) and UPM is the respective value for the prevailing mean

(PM) or historical mean model. We multiply this ratio by 400 to express it to average

annualized percentage return (basis points, bps).

11Alternatively, one could make use of information about the entire distribution provided by the
quantile regression predictive models.
12We constrain the portfolio weight on the risky asset to lie between 0% and 150% each month, i.e.

0 � wt � 1:5:
13One could instead employ other utility functions that belong to the constant relative risk aversion

(CRAA) family such as power or log utility. However, quadratic utility allows for nonormality in the
return distribution while remaining in the mean-variance framework.
14We standardize the investor problem by assuming Wo = 1:
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Furthermore, given that a better model requires less wealth to attain a given level of

U than an alternative model, a risk-averse investor will be willing to pay to have access to

this superior model which would be subject to management fees as opposed to the simple

PM model. In the event that the superior model is one of our proposed i speci�cations,

the investor would pay a performance fee to switch from the portfolio constructed based

on the historical average to the i speci�cation. This performance fee, denoted by �, is

the fraction of the wealth which when subtracted from the i proposed portfolio returns

equates the average utilities of the competing models. In our set-up the performance fee

is calculated as the di¤erence between the realized utilities as follows:

1

(P � P0)

P�P0�1X
t=0

�
(Rip;t+1 � �)�




2(1 + 
)
(Rip;t+1 � �)2

�
= (17)

1

(P � P0)

P�P0�1X
t=0

�
RPMp;t+1 �




2(1 + 
)
(RPMp;t+1)

2

�
:

If our proposed model does not contain any economic value, the performance fee is neg-

ative (� � 0); while positive values of the performance fee suggest superior predictive

ability against the PM benchmark.

As a complement to the performance fee measure, we also employ the manipulation-

proof performance measure proposed by Goetzmann, Ingersoll, Spiegel and Welch (2007).

This measure can be interpreted as a portfolio�s premium return after adjusting for risk

and it remedies potential caveats associated with the popular Sharpe ratio such as the

e¤ect of non-normality (Jondeau and Rockinger (2006)), the underestimation of the per-

formance of dynamic strategies (Marquering and Verbeek (2004), Han (2006)) and the

choice of utility function (Della Corte, Sarno and Sestieri (2012)). This measure is

de�ned as

M(Rp) =
1

1� 

ln

(
1

(P � P0)

P�P0�1X
t=0

�
Rp;t+1
rf;t

�1�
)
:

The di¤erence, �; between the M(Rp)s of competing models calculated as follows is
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employed to assess the most valuable model

� =M(Rp)
i �M(Rp)

PM : (18)

Both � and � are reported in annualized basis points.

7.2 Empirical evidence on the economic value of predictive re-

gressions

We assume that the investor dynamically rebalances her portfolio (updates the weights)

quarterly over the out-of-sample period employing the respective recursive forecasts for

all the models/speci�cations under consideration. Her precision of estimates/ forecasts

normally increases as more information (data) become available. Similarly to Section

6.1, the out-of-sample period of evaluation is 1965:1-2010:4 and the benchmark strategy

against which we evaluate our forecasts is the constant expected risk premium. For

every model/speci�cation we calculate the average annualized utility gain (Equation 16),

the performance fee associated with each strategy calculated from Equation (17) and

the manipulation-proof performance measure (Equation 18). Following Campbell and

Thompson (2008) and Rapach, Strauss and Zhou (2010) we set RRA (
) equal to 3.15

We begin our analysis with the economic evaluation of the mean predictive regression

models. Table 5 reports the respective �gures for both the single-variable models and the

models employing combination forecasts. Contrary to the statistical evaluation results,

utility losses are associated with only four single-variable models, namely the models

formed on the basis of SVAR, B/M, NTIS and DFY. The remaining speci�cations yield

utility gains (�U) that range from 0.168% (D/E) to 1.488% (TMS). Furthermore, our

results suggest that an investor would be willing to pay sizable annual performance fees

15The utility function we employ di¤ers from the one in Rapach, Strauss and Zhou (2010) and Campbell
and Thompson (2008), so our �gures are not directly comparable.

34



(�) that exceed 200 basis points (bp) to switch from the constant expected risk premium

strategy to a strategy that times the market conditioning on one of the following variables:

D/P, D/Y, TBL, LTY, TMS, INFL and I/K. Overall, the manipulation-free performance

fee measure (�) paints a qualitatively similar picture suggesting that the best performing

model is the one based on D/Y closely followed by I/K.

[TABLE 5 AROUND HERE]

Turning to the economic value of combination forecasts, our results suggest that,

irrespective of the method employed, an investor enjoys utility gains ranging from 0.616%

(BMA) to 1.508% (Principal Components). Quite interestingly, while both BMA and

principal components are associated with a negative R2OS suggesting poor forecasting

performance, their employment can generate pro�ts to an investor. The superiority of the

principal components combining method may seem quite puzzling. However, unreported

results show that its performance comes from its ability to forecast the direction of change

of the market in more than 80% of the cases.16 This ability to time the market is depicted

in a remarkable performance fee of 394 bps, followed by the DMSFE and mean combining

methods. The ranking of our combining methods slightly changes when we employ the

manipulation-free performance fee measure (�). Speci�cally, the DMSFE methods rank

�rst followed by the mean and the principal components methods, while the median and

the BMA methods achieve the worst performance.

So far, our results con�rm the �ndings of Rapach, Strauss and Zhou (2010) on the

economic bene�ts of combining. Next, we turn our attention to the economic performance

of robust point forecasts formed by a �xed weighting scheme given by equations (5) to

(8). Our results, reported in Table 6 (Panels A and B for the single predictor models and

their combinations, respectively), may be summarized as follows:

16These results are not reported for brevity but are available from the authors upon request.

35



� The economic performance of robust point forecasts is nearly as good as the per-

formance of the mean predictive models. Overall, similarly to the mean forecasts,

utility losses are associated with SVAR, B/M, NTIS and DFY irrespective of the

weighting scheme, while TMS, IK, TBL, LTY and D/Y emerge as the most powerful

predictors with utility gains exceeding 0.8% in most cases.

� A comparison of the four weighting schemes in a univariate environment suggests

that FW4 that aggregates information of quantiles over a �ner grid provides the

investor with more utility gains. However, the higher performance fee of 383 bps

is achieved when the investor conditions on TMS and employs FW2 to aggregate

information from quantile predictions.

� Turning to Panel B and the combination methods, our results suggest that an

investor that approximates the distribution of returns by combining quantile infor-

mation and then creates the respective point forecast will always generate positive

abnormal returns. Utility gains, with the exception of median combinations, range

from 1.104% for the Cluster 2 method and FW4 to 1.664% for the Principal com-

ponents method and FW2. In order to switch from the constant expected risk

premium strategy to the �rst case, the investor would be willing to pay an annual

performance fee of 289 bps while for the latter one a fee of 436 bps.

� While our methods for producing robust point forecasts yield quite similar results,

FW2 and FW4 seem to generate superior forecasts relative to FW1 and FW3.

� Overall, the risk-adjusted abnormal return � is fully-consistent (size and sign) with

the results obtained from the performance fees for both the single predictor variable

model (Panel A) and the combining methods (Panel B).

[TABLE 6 AROUND HERE]
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Our statistical evaluation tests (Section 6.2) have shown that allowing for a time-

varying weighting scheme in the generation process of robust point forecasts can lead to

out-of-sample bene�ts. Next, we repeat this analysis in an economic evaluation framework

in order to show whether these bene�ts are economically signi�cant. Table 7 reports the

respective results for both the univariate models (Panel A) and the combining methods

(Panel B). As already mentioned, in the current setting our combination methods are

limited to the three simpler ones since they do not require an extra holdout out-of-sample

period.

[TABLE 7 AROUND HERE]

The robust point forecasts based on a time-varying weighting scheme o¤er positive

utility gains on the basis of 11 out of 15 variables for TVW1 and 12 out of 15 variables for

TVW2 and TVW3 speci�cations. Quite interestingly, while the predictive ability of DP

is well established in a statistical context and in an economic context when �xed weights

are employed, this time-varying environment leads to utility losses in all three speci�ca-

tions. On the other hand, variables such as TMS and TBL which are countercyclical by

nature are associated with sizable utility gains of around 2%. Our estimates suggest that

an investor would pay up to 553 bps to switch from the constant expected risk premium

to robust point forecasts conditioned on TMS in a time varying nature. Sizable bene�ts

are also depicted when LTY, LTR, INFL and I/K are employed with utility gains ex-

ceeding 1%. Attempting to evaluate the alternative time-varying procedures, our results

suggest that they are broadly equivalent. Furthermore, our results in panel B verify the

e¤ectiveness of combining methods at this time-varying framework as well. Speci�cally,

employing the mean combining method works quite well and beats the historical average

by signi�cant margins. Similar performance is obtained by the trimmed mean combining

method while the median one ranks third. However, even with this combining method,

an investor can enjoy bene�ts of up to 325 bps.

37



Finally, Table 8 addresses the issue of forming robust point forecasts, either in a �xed

or time-varying manner, based on combined information. To this end, as already men-

tioned, each quantile forecast is constructed based on the information contained in the

single predictor variables and then these composite quantile forecasts form the robust

point forecasts.17 The overall picture that emerges con�rms the robustness of our pro-

posed methodology. The performance fee that an investor would be willing to pay to

utilize our proposed models ranges from 141 bps for FW1 and the median combining

method to 478 bps for TVW1 and the mean combining method. When considering the

�xed weighting schemes, the best performance is achieved by FW2. Within this setting

the BMA combining method yields the superior performance closely followed by the Prin-

cipal Components method and the DMSFE (0.9). With respect to time-varying schemes,

TVW1 achieves the best performance when mean and trimmed mean combination fore-

casts are employed. Finally, forecasts associated with the time-varying scheme are in

general superior to the �xed weighting scheme.

[TABLE 8 AROUND HERE]

8 Conclusions

In this study we investigate whether there is evidence of out-of-sample predictive ability of

various economic variables for the equity premium. We develop an alternative modeling

approach which is based on quantile predictive regression models and produces robust

and accurate point forecasts of the equity premium, based on the quantile forecasts, by

using �xed and time-varying weighting schemes. To take into account the �ndings of

recent academic studies which suggest that forecast combinations improve the out-of-

sample equity premium prediction, we propose to utilize di¤erent combination methods

17This issue does not apply to forecasts formed on the basis of mean combination forecasts and �xed
weighting schemes.
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based on the robust quantile forecasts. Thus, in our analysis, the crucial issue under

consideration is to examine whether the framework that adopts two di¤erent sources of

information, i.e. distribution information and predictor information, is able to deliver

more accurate out-of-sample forecasts of the equity premium.

The results of our analysis suggest that there is evidence of equity premium pre-

dictability. Speci�cally, we �nd that the alternative predictive approach based on quan-

tile regressions using a time-varying weighting scheme outperforms the historical average

benchmark and the combined mean predictive regression modeling approach. Moreover,

our study contributes to the growing empirical literature on equity premium predictabil-

ity by proposing to use a two stage forecasting approach. First, we recommend combining

individual forecasts from di¤erent single predictor quantile regressions, thus incorporat-

ing information from various economic variables in order to produce accurate quantile

predictions. Then, at a second stage, we propose to construct robust point forecasts of

the equity premium by adopting a time-varying weighting scheme which combines a set

of quantile forecasts, thus incorporating information from the conditional distribution of

returns. We also show that the predictive ability of the proposed approach has substantial

statistical and economic value over the standard predictive modeling approaches.

The usefulness of the proposed modeling approach stems from the highly complex and

dynamic nature of equity returns. Our model is able to capture di¤erent characteristics of

the return series (such as deviation from normality, fat tails and skewness) and to identify

potential di¤erences in predictors across quantiles of returns. For example, our analysis

suggests that there exist predictors that have superior predictive ability for lower or/and

upper conditional quantiles of returns. Thus, the quantile regression approach is able to

uncover interesting distributional information, and also from an economic perspective to

incorporate meaningful business conditions information.

Our study extends previous work on equity premium predictability by proposing to use
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a quantile predictive regression modeling approach and a two stage weighting scheme of

constructing robust point forecasts. We believe that there exist several potential applica-

tions (for example, to other asset classes such as mutual fund and hedge fund investments)

and extensions of our modeling approach in the area of empirical �nance. Interesting ex-

tensions of the proposed model can be the development of break-point quantile regression

models that take into account the empirical evidence of structural instability in macroeco-

nomic relations using individual predictive models. Another possible extension could be

to restrict the sign and/or the magnitude of the quantile regression coe¢ cients motivated

by economic theory. Clearly, many interesting questions remain open and various topics

for future research arise in this context by using more complex and �exible modeling

approaches.
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   Table 1. Conditional Quantile Predictive Ability 

Panel A: Individual predictive models 

Predictor Q5 Q10 Q15 Q20 Q25 Q30 Q35 Q40 Q45 Q50 Q55 Q60 Q65 Q70 Q75 Q80 Q85 Q90 Q95 

D/P                    

D/Y                    

E/P                    

D/E                    

SVAR                    

B/M                    

NTIS                    

TBL                    

LTY                    

LTR                    

TMS                    

DFY                    

DFR                    

INFL                    

I/K                    

Panel B: Combining Methods 

Mean                     

Median                    
Trimmed 

Mean      
 

             

DMSFE(1)                    

DMSFE(0.9)                    

Cluster 2                    

Cluster 3                    
Principal 

Components 
     

 
             

BMA                    

Notes: Q5- Q95 denote the 5% to 95% quantiles of the return distribution. Grey cells denote superior predictive ability (lower MSFE) of the respective i specification (1st 

column) over the prevailing quantile (PQ) model.



 

Table 2. Out-of-sample performance of mean predictive regression models and combining methods  

Individual predictive models Combination forecasts  

D/P 0.72** Mean  2.97*** 

D/Y 1.00** Median 2.19*** 

E/P -1.09 Trimmed Mean 2.64*** 

D/E -1.60 DMSFE(1) 2.96*** 

SVAR -6.65 DMSFE(0.9) 2.98*** 

B/M -1.80 Cluster 2 2.34** 

NTIS -2.11 Cluster 3 1.22* 

TBL -2.43 Principal Components -1.69 

LTY -2.59 BMA -2.02 

LTR -1.15   

TMS -2.65   

DFY -2.71   

DFR 0.90   

INFL -0.76   

I/K 2.31***   

Notes: The table reports the out-of-sample R2 statistic of Campbell and Thompson (2008).  Positive values indicate that the model given in Column (1) and (3) outperforms 

the historical average benchmark model. Statistical significance of the out-of-sample R2 statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-

adjusted statistic. *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. 

 



 

Table 3. Out-of-sample performance of robust point forecasts and combining methods  

Panel A: Individual Predictive Models 

 FW1 FW2 FW3 FW4 TVW1 TVW2 TVW3 

D/P 1.59* 1.61* 1.58** 1.01** 1.21* 1.48* 0.95* 

D/Y 2.14** 2.47** 2.11** 1.63** 1.24* 2.14** 1.18* 

E/P -1.65 -1.90 -1.43 -1.56 -0.62 -0.75 -1.11 

D/E -0.15 -0.48 -0.62 -1.31 -0.35 -0.27 -0.46 

SVAR -9.96 -10.43 -9.27 -9.04 -3.99 -6.43 -1.46 

B/M -3.70 -4.11 -3.10 -2.31 -0.64 -1.45 -0.20 

NTIS -4.76 -5.43 -4.05 -3.17 -0.44 -1.68 0.73* 

TBL -1.31 -2.04 -1.31 -2.39 -1.00 -1.58 -1.98 

LTY -1.38 -2.08 -1.56 -2.43 -1.40 -2.22 -1.68 

LTR -5.23 -5.58 -4.26 -2.51 -2.30 -2.56 -1.40 

TMS -6.42 -6.38 -5.76 -4.33 -1.98 -3.14 -0.85 

DFY -7.18 -6.55 -5.81 -3.44 -2.61 -2.52 -1.48 

DFR -0.57 -0.26 -0.55 0.42 1.80* 2.39* 1.35* 

INFL -0.67 -1.03 -0.71 -0.83 0.40 -0.83 0.03 

I/K 2.34*** 2.37*** 2.26*** 2.58*** 1.79** 1.73** 1.35** 

Panel B: Combination forecasts 

Mean  2.39** 2.32** 2.59*** 2.80*** 3.65*** 3.46*** 3.67*** 

Median 1.35* 1.07* 1.52** 2.06*** 2.82*** 2.40*** 3.31*** 

Trimmed Mean 1.90** 1.81** 2.09** 2.37*** 3.27*** 2.98*** 3.17** 

DMSFE(1) 2.45** 2.37** 2.63*** 2.81*** --- --- --- 

DMSFE(0.9) 2.53** 2.40** 2.69*** 2.84*** --- --- --- 

Cluster 2 2.74** 2.22** 2.56** 2.31** --- --- --- 

Cluster 3 -0.59 0.09 -0.17 1.39** --- --- --- 

Principal 

Components 
-2.89 -2.56 -2.84 -2.87 --- --- --- 

Notes: The table reports the out-of-sample R2 statistic of Campbell and Thompson (2008).  Positive values indicate that the model given in Columns (2) to (8) outperforms 

the historical average benchmark model. Statistical significance of the out-of-sample R2 statistic is based on the p-value of the Harvey, Leybourne and Newbold (1998) out-

of-sample ENC-T  statistic. *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. FW1-FW4 correspond to the fixed weighting schemes 

given by equations (5)-(8) of Section 3.1, while TVW1-TVW2 denote the time-varying weighting schemes given by equations (9)-(11) of Section 3.2. 



 

 

Table 4. Out-of-sample performance of robust point forecasts based on combined information 

 FW1 FW2 FW3 FW4 TVW1 TVW2 TVW3 

Mean  2.39** 2.32** 2.59*** 2.80*** 4.06*** 3.81*** 3.23** 

Median 1.14* 0.97* 1.34** 1.70*** 3.31*** 2.83*** 2.55** 

Trimmed Mean 1.82** 1.76** 2.02** 2.27*** 3.61*** 3.30*** 2.81** 

DMSFE(1) 2.46** 2.37** 2.66*** 2.85*** --- --- --- 

DMSFE(0.9) 2.57** 2.44** 2.76*** 2.86*** --- --- --- 

Cluster 2 2.78** 2.42** 2.78** 2.57** --- --- --- 

Cluster 3 1.73* 1.75* 1.87* 2.24** --- --- --- 

Principal Components -2.24 -1.42 -1.60 -1.33 --- --- --- 

BMA 2.46** 1.58** 2.87** 2.12** 1.78** 2.06** 1.84** 

Notes: See Table 3. 

 



 

Table 5. Economic evaluation of mean predictive regression models and combining methods  

Model ΔU Φ Θ Combining Method ΔU Φ Θ 

D/P 0.796 202.57 212.35 Mean  1.356 352.43 432.83 

D/Y 1.316 336.10 417.10 Median 0.840 219.20 281.46 

E/P 0.604 154.22 142.64 Trimmed Mean 1.272 330.33 411.38 

D/E 0.168 43.47 54.77 DMSFE(1) 1.388 360.59 441.45 

SVAR -0.412 -106.56 -180.89 DMSFE(0.9) 1.460 380.18 461.25 

B/M -0.040 -10.65 -31.90 Cluster 2 1.220 317.20 363.15 

NTIS -0.344 -88.84 -161.97 Cluster 3 1.132 295.83 326.34 

TBL 0.828 211.59 252.36 Principal Components 1.508 394.21 422.12 

LTY 0.984 250.60 319.30 BMA 0.616 155.29 210.62 

LTR 0.368 95.38 133.76     

TMS 1.488 389.33 388.03     

DFY -0.432 -111.46 -136.51     

DFR 0.432 111.48 127.63     

INFL 0.860 221.64 276.54     

I/K 1.400 359.20 401.13     

Notes: The utility gain U is calculated by 400*
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Table 6. Economic evaluation of robust point forecasts and combining methods (Fixed weights) 

 FW1 FW2 FW3 FW4 

Panel A: Univariate 

Models 
ΔU Φ Θ ΔU Φ Θ ΔU Φ Θ ΔU Φ Θ 

D/P 0.460 118.31 98.44 0.428 109.99 96.44 0.596 153.04 134.23 0.528 134.78 127.51 

D/Y 0.728 186.77 196.79 0.824 210.85 240.39 0.812 209.69 208.00 1.004 256.55 311.73 

E/P 0.472 122.92 96.68 0.472 121.87 96.09 0.568 147.47 125.65 0.440 113.04 90.44 

D/E 0.332 86.00 69.03 0.272 70.00 53.82 0.136 34.75 16.58 0.148 38.26 30.87 

SVAR -0.428 -112.45 -223.69 -0.396 -103.24 -207.98 -0.476 -124.32 -234.53 -0.580 -150.67 -244.33 

B/M -0.108 -27.68 -54.53 -0.004 -1.06 -23.31 -0.236 -61.88 -98.86 0.008 2.17 -18.37 

NTIS -0.208 -54.83 -153.66 -0.276 -71.76 -174.16 -0.284 -74.78 -175.48 -0.384 -100.19 -196.10 

TBL 0.884 227.86 251.33 0.876 225.54 249.17 0.880 226.22 252.14 0.860 220.63 252.82 

LTY 0.972 248.54 304.26 0.996 254.84 313.79 0.876 224.22 276.48 0.980 250.56 311.88 

LTR 0.220 57.08 82.19 0.292 76.29 105.55 0.044 11.70 15.98 0.376 97.76 132.57 

TMS 1.416 373.67 359.60 1.448 382.53 368.90 1.328 349.67 334.63 1.436 378.23 364.23 

DFY -0.884 -231.11 -346.23 -0.876 -228.08 -330.02 -0.748 -195.84 -307.72 -0.552 -143.22 -208.32 

DFR 0.484 125.76 128.86 0.412 106.57 104.37 0.452 117.30 122.86 0.384 98.93 102.70 

INFL 0.648 168.31 194.66 0.672 174.35 202.80 0.616 159.81 180.28 0.692 179.23 211.90 

I/K 1.296 334.47 351.27 1.296 334.23 352.63 1.276 330.04 336.30 1.344 346.10 363.83 

Panel B: Combining Method          

Mean  1.252 331.29 393.73 1.292 342.18 404.80 1.268 334.31 401.05 1.280 335.55 409.60 

Median 0.756 199.73 250.54 0.616 163.80 198.93 0.844 222.77 276.58 0.844 221.87 275.99 

Trimmed Mean 1.160 307.22 375.05 1.176 311.39 381.85 1.188 312.96 383.61 1.208 317.40 394.36 

DMSFE(1) 1.328 351.32 416.12 1.360 360.40 424.64 1.336 352.53 421.31 1.332 349.27 424.73 

DMSFE(0.9) 1.500 396.47 461.06 1.512 400.49 464.24 1.484 391.65 460.93 1.432 376.34 452.68 

Cluster 2 1.464 385.07 411.83 1.296 340.49 368.95 1.372 359.50 388.12 1.104 288.53 319.81 

Cluster 3 1.116 291.79 322.80 1.200 314.99 345.08 1.184 309.08 339.97 1.300 340.14 376.57 

Principal Components 1.644 431.32 461.80 1.664 436.44 464.99 1.660 436.00 467.54 1.648 432.60 463.38 

Notes: See Table 5. 



Table 7. Economic evaluation of robust point forecasts and combining methods (Time varying weights) 

 TVW1 TVW2 TVW3 

Panel A: Univariate 

Models 
ΔU Φ Θ ΔU Φ Θ ΔU Φ Θ 

D/P -0.228 -58.35 -36.51 -0.080 -21.01 -51.44 -0.340 -86.61 -69.97 

D/Y 0.096 24.87 86.33 0.252 64.85 115.50 0.088 23.07 84.20 

E/P -0.120 -31.11 -61.59 -0.108 -27.91 -74.53 -0.368 -93.94 -108.50 

D/E 0.788 203.79 249.59 0.712 185.23 229.66 0.972 250.31 308.63 

SVAR 0.240 63.01 27.74 0.212 55.73 12.20 0.416 107.81 149.64 

B/M -0.392 -102.43 -137.07 -0.556 -145.09 -180.72 -0.664 -171.06 -211.52 

NTIS 0.340 89.42 3.92 0.204 53.89 -28.31 0.680 175.60 225.20 

TBL 1.916 502.73 539.42 1.872 491.11 526.69 2.064 544.76 573.92 

LTY 1.604 419.28 477.80 1.448 378.52 423.89 1.492 389.70 430.37 

LTR 1.472 388.09 465.84 1.296 342.03 419.04 1.320 345.22 419.84 

TMS 2.052 542.88 573.92 2.084 552.75 585.27 1.756 460.75 489.98 

DFY -0.028 -7.59 23.45 0.088 22.87 44.30 0.400 102.72 182.27 

DFR 0.684 177.66 237.69 0.716 186.26 244.82 0.696 178.09 258.51 

INFL 1.608 417.64 516.24 1.592 415.45 515.46 1.644 426.44 523.45 

I/K 0.992 255.28 308.74 1.044 269.24 309.43 1.052 270.15 320.04 

Panel B: Combining Method       

Mean  1.780 465.01 551.74 1.736 454.71 538.34 1.652 427.58 514.98 

Median 1.136 295.49 368.83 0.960 251.36 325.03 1.264 325.50 410.78 

Trimmed Mean 1.712 446.27 533.89 1.620 423.88 510.59 1.584 409.18 496.63 

Notes: See Table 5. 

 

 

 

 



Table 8. Economic evaluation of robust point forecasts based on combined information 

 

 FW1 FW2 FW3 FW4 

Panel A ΔU Φ Θ ΔU Φ Θ ΔU Φ Θ ΔU Φ Θ 

Mean  1.252 331.29 393.74 1.292 342.16 404.80 1.268 334.31 401.05 1.280 335.56 409.63 

Median 0.532 141.49 167.08 0.464 122.88 135.56 0.568 149.91 179.39 0.644 169.12 212.66 

Trimmed Mean 1.148 303.61 371.31 1.168 309.80 379.06 1.160 306.43 376.27 1.164 305.22 380.93 

DMSFE(1) 1.328 351.65 415.66 1.356 359.39 422.13 1.344 354.16 422.11 1.328 349.05 423.39 

DMSFE(0.9) 1.504 397.63 462.71 1.524 403.48 466.21 1.480 390.30 460.48 1.404 368.18 445.80 

Cluster 2 1.456 383.37 414.24 1.464 385.70 414.24 1.408 370.49 405.24 1.344 352.18 414.01 

Cluster 3 0.980 256.29 287.44 1.072 280.52 309.96 0.992 259.34 295.86 1.096 285.38 338.62 

Principal Components 1.380 359.82 384.69 1.524 398.04 423.43 1.428 372.48 398.05 1.504 393.63 420.88 

BMA 1.600 410.57 471.59 1.640 422.45 483.24 1.320 337.78 394.93 1.148 293.66 347.76 

Panel B  TVW1 TVW2 TVW3  

Mean  1.840 477.53 566.67 1.796 468.37 557.36 1.540 396.80 485.88 

Median 1.324 343.17 429.34 1.156 300.64 388.00 1.232 316.44 404.86 

Trimmed Mean 1.780 460.66 549.05 1.716 446.62 537.82 1.496 384.96 473.33 

BMA 1.320 340.72 407.90 1.176 302.83 375.89 1.376 355.33 427.07 

Notes: See Table 5. 

 

 


