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Introduction

The leptokurtic nature of asset returns has spawned an enormous amount
of research into effective ways of modeling them, often involving the use
of distributions which have power tails, and the ensuing nonexistence of
higher moments.
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Introduction

This issue has long since transcended ivory tower academics and
quantitative groups in financial institutions, especially since the
statement by Alan Greenspan (1997, p. 54),

... the biggest problems we now have with the whole evaluation
of risk is the fat-tail problem, which is really creating very large
conceptual difficulties. Because as we all know, the assumption
of normality enables us to drop off a huge amount of complexity
of our equations very much to the right of the equal sign.
Because once you start putting in non-normality assumptions,
which unfortunately is what characterizes the real worldwhich unfortunately is what characterizes the real worldwhich unfortunately is what characterizes the real world, then
the issues become extremely difficult.
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Introduction

We propose a multivariate model which, besides exhibiting leptokurtic
behavior and asymmetry,

lends itself to tractable distributions of weighted sums of the
marginal random variables (to enable portfolio construction),

portfolios possess finite positive integer moments of all orders,

is super-fast to estimate,

delivers superior (compared to DCC and related models) multivariate
density forecasts,

has trivial stationarity conditions as a stochastic process. This is
accomplished by not using a GARCH structure.
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Need for Mixtures

A mixture can capture, besides excess kurtosis and asymmetry, the two
further stylized facts of

the leverage or down market effect—the negative correlation
between volatility and asset returns, and

contagion effects—the tendency of the correlation between asset
returns to increase during pronounced market downturns, as well as
during periods of higher volatility.

Other fat-tailed multivariate distributions, such as the multivariate
Student’s t or the multivariate generalized hyperbolic distribution, cannot
achieve this.
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Need for Mixtures

With a two-component multivariate normal mixture model with
component parameters µ1, Σ1, µ2, Σ2, we would expect to have the
primary component capturing the “business as usual” stock return
behavior, with a near-zero mean vector µ1, and the second component
capturing the more volatile, “crisis” behavior, with

(much) higher variances in Σ2 than in Σ1,

significantly larger correlations, reflecting the contagion effect,

and a predominantly negative µ2, reflecting the down market effect.

A distribution with only a single mean vector and covariance (or, more
generally, dispersion) matrix cannot capture this behavior, no matter how
many additional shape parameters the distribution possesses.
This is true even if each marginal were to be endowed with its own set of
shape (tail and skew) parameters, as is possible when using a copula.
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Evidence for Mixtures

We use the 30 stocks comprising the DJIA-30, daily data from June 2001
to March 2009, for T = 1945 observations, on 30 variables.

Let Yt = (Yt,1,Yt,2, . . . ,Yt,d)′
i.i.d.∼ MixkNd(M,Ψ,λ), t = 1, . . . ,T ,

where MixkNd denotes the k-component, non-singular d-dimensional
multivariate mixed normal distribution, with

M =
[
µ1 µ2 · · · µk

]
, µj = (µ1j , µ2j , . . . , µdj)

′, Ψ =
[

Σ1 Σ2 · · · Σk

]
,

λ = (λ1, . . . , λk), Σj > 0 (i.e., positive definite), j = 1, . . . , k , and

fMixkNd
(y; M,Ψ,λ) =

k∑

j=1

λj fN
(
y;µj ,Σj

)
, λj ∈ (0, 1),

k∑

j=1

λj = 1,

with fN denoting the d-variate multivariate normal distribution.
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Evidence for Mixtures

For k = 2 components in the MixkNd distribution, show the d = 30
means for components 1 and 2 separately.
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Evidence for Mixtures

Same, but for the d = 30 variances for components 1 and 2 separately.
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Evidence for Mixtures

Same, but for the
(
30
2

)
= 425 covariance for components 1 and 2

separately.
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Shrinkage Estimation

Shrinkage estimation is crucial in this context for both numeric reasons,
and (far) improved estimation.

The paper gives full details on how this is done.

Our shrinkage prior, as a function of the scalar hyper-parameter ω, is

a1 = 2ω, a2 = ω/2, c1 = c2 = 20ω, m1 = 0p, m2 = (−0.1)1p,

B1 = a1
[
(1.5− 0.6)Ip + 0.6Jp

]
, B2 = a2

[
(10− 4.6)Ip + 4.6Jp

]
.

(1)

The only tuning parameter which remains to be chosen is ω.

The effect of different choices of ω is easily and informatively
demonstrated with a simulation study, using the Mix2N30 model, with
parameters given by the MLE of the 30 return series.
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Shrinkage Estimation

For assessing the quality of the estimates, we use the log sum of squares
as the summary measure, and noting that we have to convert the
estimated parameter vector if the component labels are switched. That is,

M∗(θ̂,θ) = min
{

M(θ̂,θ),M(θ̂,θ=)
}
, (2)

where θ =
(
µ′1 µ

′
2 (vech(Σ1))′ (vech(Σ2))′ λ1

)′
, the vech operator of a

matrix forms a column vector consisting of the elements on and below
the main diagonal,

M(θ̂,θ) := log(θ̂ − θ)′(θ̂ − θ), (3)

and θ= refers to the parameter vector obtained by switching the labels of
the components, i.e., θ= =

(
µ′2 µ

′
1 (vech(Σ2))′ (vech(Σ1))′ (1− λ1)

)′
.
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Shrinkage Estimation

Estimation accuracy, measured as four divisions of M∗ from (2) (λ1 is
ignored), based on simulation with 10,000 replications and T = 250, of
the parameters of the Mix2N30 model, using as true parameters the MLE
of the d = 30 return series, as a function of prior strength parameter ω.
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Shrinkage Estimation
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Component Separation

The Ht,j are the posterior probabilities from the EM algorithm that
observation Yt came from component j , t = 1, . . . ,T , j = 1, 2,
conditional on all the Yt and the estimated components.

It is natural to plot these versus time.
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One might be tempted to use this finding as further evidence for the
claim that there exist two, reasonably distinct, ’regimes’ in financial
markets, but this is not the case!

The same effect would occur if the data had arisen from a fat-tailed
single-component multivariate distribution.
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Component Separation

Now use a multivariate normal distribution (left) and a heavier-tailed
multivariate Laplace, both of which are single-component densities!
Then fit fit the 2-comp mixture of normals.
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Thus, the separation apparent for the DJ-30 data is necessary, but clearly
not sufficient to declare that the data were generated by a mixture
distribution.

Stronger evidence for mixtures comes from the earlier graphic: the
means of the first and second component differ markedly, with the latter
being primarily negative, and the correlations in the second component
are on average higher than those associated with component 1.
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Further Evidence for Mixtures

Example: 2 stocks for which the correlations change the most between
component 1 and 2.

For Chevron and Walt Disney, the component 1 correlation is 0.25; for
component 2 it is 0.63.
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Component Inspection: Is Normality Adequate?

The apparent separation is highly advantageous because it allows us to
assign each Yt to one of the two components with very high confidence.

Once done, we can assess how well each of the two estimated multivariate
normal distributions fits the observations assigned to its component.

We use the criteria Ht,1 > 0.99, choosing to place those Yt whose
corresponding values of Ht,1 suggest even a slight influence from
component 2, into this more volatile component.

This results in 1,373 observations assigned to component 1, or 70.6% of
the observations, and 572 to the second component.
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Component Inspection: Is Normality Adequate?

Based on the split, for each of the k × d = 60 series, we fit a flexible,
asymmetric, fat-tailed distribution.
We use the generalized asymmetric t, or GAt, distribution, with
location-zero, scale-one pdf given by (p, ν, θ ∈ R>0)

fGAt (z ; p, ν, θ) = Cp,ν,θ ×





(
1 +

(−z · θ)p

ν

)−(ν+ 1
p )
, if z < 0,

(
1 +

(z/θ)p

ν

)−(ν+ 1
p )
, if z ≥ 0,

Parameter p measures the peakedness of the density, with values near
one indicative of Laplace-type behavior, while values near two indicate a
peak similar to that of the Gaussian and Student’s t distributions.

Parameter v indicates the tail thickness, and is analogous to the degrees
of freedom parameter.

Parameter θ, controls the asymmetry, with values less than 1 indicating
negative skewness.
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Component Inspection: Is Normality Adequate?

Remember: Parameter v indicates the tail thickness analogous to the df
in the Student’t t, except that moments of order v · p and higher do not
exist. So that, if p = 2, then we would double the value of v to make it
comparable to the df in the usual Student’s t.
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Worst Case: McDonalds
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Component Inspection: Is Normality Adequate?

For each of the 30 series, but not separating them into the two
components, we fit the GAt, with no parameter restrictions, and with the
restriction that 90 < v̂ < 100 (forces normality if p = 2 and θ = 1, or
Laplace if p = 1 and θ = 1)

Compute the asymptotically valid p-value of the likelihood ratio test. If
that value is less than 0.05, then we remove the largest value (in absolute
terms) from the series, and re-compute the estimates and the p-value.
This is repeated until the p-value exceeds 0.05.

We report the smallest number of observations required to be removed in
order to achieve this.

Do this for the actual 30 series, and also the two separated components.
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Component Inspection: Is Normality Adequate?

Stock number 5 is Bank of America, and shows that 65 most extreme
values had to be removed from the series to get the p-value above 0.05,
but no observations from component 1 needed to be removed, and only
3 from component 2.

Stock # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All 19 19 5 2 65 21 11 27 60 10 30 19 28 31 8
Comp1 0 0 0 0 0 3 0 0 1 1 1 0 0 0 0
Comp2 0 1 0 0 3 1 1 6 8 2 0 8 0 1 1

Stock # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All 7 12 8 5 19 7 15 28 3 14 10 11 6 8 10
Comp1 0 0 2 2 0 0 7 0 0 0 0 0 0 0 0
Comp2 0 0 0 1 0 0 1 2 0 2 1 3 0 2 1
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Density Forecasting

We forecast the entire multivariate density.

The measure of interest is what we will call the (realized)
predictive log-likelihood, given by

πt(M, v) = log fMt|It−1
(yt ; ψ̂), (4)

where v denotes the size of the rolling window used to determine
It−1 (and the set of observations used for estimation of ψ) for each
time point t.
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Density Forecasting

We suggest to use what we refer to as the normalized sum of the
realized predictive log-likelihood, given by

Sτ0,T (M, v) =
1

(T − τ0) d

T∑

t=τ0+1

πt(M, v), (5)

where d is the dimension of the data.

It is thus the average realized predictive log-likelihood, averaged over
the number of time points used and the dimension of the random
variable under study. This facilitates comparison over different d , τ0
and T .

In our setting, we use the d = 30 daily return series of the DJ-30,
with v = τ0 = 500, which corresponds to two years of data, and
T = 1, 945.
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Density Forecasting

We compute for set of models indexed by ω, πt(Mω, v) from (4).

We take
{
Mω

}
to be the Mix2N30 model estimated with shrinkage prior

(1) for a given value of hyper-parameter ω.

We do this using a moving window of size v = 250, starting at
observation τ0 = v = 250, and updating parameter vector θ̂ at each time
increment.
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Density Forecasting: Finding the optimal ω
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Here,

C (h, ω) =
h∑

t=τ0+1

πt(Mω, 250), h = τ0 + 1, . . . ,T ,
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Optimal Shrinkage as a Function of d
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The Competition: CCC, DCC, A-DCC, RSDC-GARCH

It turns out that the forecasted values yield only a barely visible
preference of DCC over CCC, and A-DCC over DCC.

In light of what appears to be a general consensus in the literature that
DCC is significantly superior to CCC, and the encouraging in-sample
results favoring asymmetry, these results were somewhat surprising.

The Regime Switching Dynamic Correlation (RSDC-) GARCH model of
Pelletier (2006) also recognizes different “regimes” in the data.
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The Competition: MVN and MVT

Use of the MVN in the left panel. Just as a benchmark...

Right panel shows: (i) the multivariate Student’s t distribution (MVT)
with fixed degrees of freedom 4 (ii), the two-component multivariate
Student t mixture (using 10 and 4 degrees of freedom, for the two
components), and (iii) the Mix2Lapd distribution introduced below.
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Why does Mix2Lapd beat Mix2Studd

From a forecasting point of view, the Laplace mixture resulted in superior
performance. We conjecture the reason for this to be that the tails of the
t, when used in a mixture context, are too fat.

While higher kurtosis is indeed still required for the second component,
the Laplace offers this without power tails and the ensuing upper bound
on finite absolute positive moments.

Moreover, as demonstrated above via use of the GAt distribution and the
fitted values of peakedness parameter p, there is evidence that the two
components, particularly the second, have a more peaked distribution
than the Student’s t.
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Portfolio Construction

Let Y ∼ MixkNd(M,Ψ,λ), with, as before,
M =

[
µ1 µ2 · · · µk

]
, Ψ =

[
Σ1 Σ2 · · · Σk

]
, and

λ = (λ1, . . . , λk).

Interest centers on the distribution of the portfolio P = a′Y, a ∈ Rd .

We show in the Appendix that

fP (x) =
k∑

c=1

λcφ (x ; a′µc , a
′Σca) , (6)

where φ
(
x ;µ, σ2

)
denotes the normal distribution with mean µ and

variance σ2 evaluated at x .

With such a simple analytic result, portfolio optimization is
straightforward, and simulation (as is required when copula-based
methods are used) is not necessary.
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Portfolio Construction

With µc = a′µc and σ2
c = a′Σca, c = 1, . . . , k ,

µP = E [P] =
k∑

c=1

λcµc , σ2
P = V (P) =

k∑

c=1

λc
(
σ2
c + µ2

c

)
− µ2

P .

It is common when working with non-Gaussian portfolio distributions to
use a measure of downside risk, such as the value-at-risk (VaR), or the
expected shortfall (ES).
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Portfolio Construction

The VaR involves the γ-quantile of P, denoted qP,γ , for 0 < γ < 1, with
γ typically 0.01 or 0.05, and which can be found numerically by using the
cdf of P, easily seen to be FP (x) =

∑k
c=1 λcΦ ((x − µc)/σc), with Φ the

standard normal cdf.

The γ-level ES of P is given by

ESγ (P) =
1

γ

∫ γ

0

QP (p) dp,

where QP is the quantile function of P. We prove in the Appendix that
this integral can be represented analytically as

ESγ (P) =
k∑

j=1

λjΦ (cj)

γ

{
µj − σj

φ (cj)

Φ (cj)

}
, cj =

qP,γ − µj

σj
, qP,γ = QP (γ) .
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Multivariate Laplace

The d-variate multivariate Laplace distribution is given by

fY (y,µ,Σ, b) =
1

|Σ|1/2 (2π)d/2
2

Γ (b)

(m

2

)b/2−d/4
Kb−d/2

(√
2m
)
, (7)

where m = (y − µ)′Σ−1(y − µ).

It generalizes several constructs in the literature, but itself is a special
case of the multivariate generalized hyperbolic distribution.

We write Y ∼ Lap (µ,Σ, b).
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Mixtures of Multivariate Laplace

We say the d-dimensional random variable Yi follows a k-component
mixture of multivariate Laplace distributions, or MixkLapd , if its
distribution is given by

fMixkLapd
(y; M,Ψ,λ,b) =

k∑

j=1

λj fLap
(
y;µj ,Σj , bj

)
,

λj ∈ (0, 1),
∑k

j=1 λj = 1, with fLap denoting the d-variate multivariate
Laplace distribution given above, M, Ψ and λ are as with the
MixkNormd , and b = (b1, . . . , bk)′.
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Mixtures of Multivariate Laplace

We observe d-variate random variables Yt = (Yt,1,Yt,2, . . . ,Yt,d)′,

t = 1, . . . ,T , with Yt
i.i.d.∼ MixkLapd(M,Ψ,λ,b), and take the values of

b = (b1, . . . , bk) to be known constants.

Interest centers on estimation of the remaining parameters.

This is conducted via an EM algorithm, the derivation of which is given
in the Appendix.

In addition, the EM recursions are extended there to support use of a
quasi-Bayesian paradigm analogous to that used for the MixkNd

distribution.
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Estimation of the bi in the Mixture of Multivariate Laplace

We use the profile likelihood to each component, applied to the split data
via the EM algorithm.

The details are in the paper. This is not optimal, but adequate.
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Portfolio Construction for MixkLapd

Let L ∼ Lap (µ,Σ, b) with density (7).

Then, for a ∈ Rd , P = a′L ∼ Lap (a′µ, a′Σa′, b), which is a special case
of the general result for normal mixture distributions, as shown in, e.g.,
McNeil, Embrechts and Frey (2005, p. 76).

Now let Y ∼ MixkLapd (M,Ψ,λ,b) and P = a′Y.

Then, analogous to the Mix MVN case, and using the same format of
proof, we find that

fP (x) =
k∑

c=1

λc Lap (x ; a′µc , a
′Σca, bc) .
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Portfolio Construction for MixkLapd

Similar to (33), we have, with µc = a′µc and σ2
c = a′Σca, c = 1, . . . , k,

µP = E [P] =
k∑

c=1

λcµc , σ2
P = V (P) =

k∑

c=1

λc
(
bcσ

2
c + µ2

c

)
− µ2

P .

A closed-form expression for the expected shortfall is currently not
available.

Though given the tractable density function of P, and the exponential
(not power) tails of the Laplace distribution, numeric integration to
compute the relevant quantile, and the integral associated with the
expected shortfall, will be fast and reliable.
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