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Abstract 

This paper provides an analysis of asset allocation using univariate portfolio GARCH 

models applied on daily data for the period January 1999 to December 2009 on stocks 

traded in the Athens Stock Exchange, a recently monitored emerging market. Our 

analysis adopts the variance sensitivity analysis methodology due to Manganelli 

(2004) and we are able to recover from the univariate approach the multivariate 

dimension of the portfolio allocation problem. The main results of the analysis are: 

First, we demonstrate that using a two asset portfolio consisting of blue chips traded 

in the Greek capital market the estimated variance is a parabolic and convex function 

of the estimated weights providing evidence that diversification produces significant 

gains in terms of risk reduction. Second, based on the shape of the first and second 

derivatives the model misspecification due to the fitting univariate GARCH models is 

insignificant. Third, we compare the performance of variance sensitivity analysis 

against that of three popular multivariate GARCH models and it is shown that the 

adopted methodology provides more efficient results than the competing models. The 

gains in efficiency get larger as the size of the portfolio increases. Finally, with the 

application of the Kupiec’s test for out-of-sample forecasting performance we 

demonstrate that the variance sensitivity analysis outperforms all three alternative 

models at both the 95% and 99% confidence interval independently of the trading 

position.   
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1. Introduction 

 

The recent financial turmoil of 2007-2009 has brought to the surface once 

again the need for appropriate estimation of asset allocation given the increase 

volatility of the prices, derivatives and other financial instruments as well as the 

implementation and use for evaluating the trading positions, capital adequacy and 

value-at-risk measures according to the Basle II agreement. During the past two 

decades, volatility in financial markets and their models and forecasts have attracted 

growing attention by academic researchers, policy makers and practitioners whereas 

at the same time several issues has been raised related to the development of 

theoretical models of asset returns volatility and their applications to real world asset 

allocation problems.     

The Basel Committee of Banking Supervision through the 1988 Basel Accord 

and the 1996 Amendment of the Basel Accord (or Basel II) which is in force since 

November 2007 has set the regulation framework for the world financial system. 

There are three main tools available to regulators for the measurement and control of 

financial risk, namely minimum risk capital requirements; inspections and reporting 

requirements and public disclosure and market discipline. Risk management is mainly 

linked with the minimum risk capital requirements which are imposed by the 

regulatory body. The Basel Committee currently recommends two types of models for 

measuring market risk on a daily basis, with VaR being the most popular one. 

The enormous growth of trading activity that has been observed during the 

recent years in both the developed but mainly in the emerging markets has led the 

financial regulators and supervisory committees to seek well-justified methods to 
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quantify the risk
1
. The importance of financial risk management has significantly 

increased since the mid-1970s, which saw both the collapse of the fixed exchange rate 

system and two oil price crises. These major events led to considerable volatility in the 

capital markets, which together with the emergence of the derivatives market, increased 

trading volumes and technological advances, led to increasing concerns about the 

effective measurement and management of financial risk. This need was further 

reinforced by a number of financial crises that took place in the 1980s; in the 1990s 

and in the 2000s such as the worldwide stock markets collapse in 1987, the Mexican 

crisis in 1995, the Asian and Russian financial crises in 1997-1998 as well as the Orange 

County default, the Barings Bank and Long Term Capital Management bankruptcy 

cases, the dot.com bubble and certainly the credit and financial crisis of 2007-2009.  

The increased financial uncertainty led to a rise of the likelihood for financial 

institutions to suffer substantial losses as a result of their exposure to unpredictable 

market changes as it has been made evident once again during the current financial 

crisis that already led several major financial institutions to bankruptcy in the U.S. 

and the U.K.  These events have made investors become more cautious in their 

investment decisions, while it has also led to an increased need for more careful study 

of price volatility in stock markets.  

A stylized fact that is well documented in the literature is that stock returns for 

mature and emerging stock markets behave as martingale processes with leptokurtic 

distributions and conditionally heteroskedastic errors. Furthermore, these data exhibit 

volatility across time and the unconditional variance is constant even though the 

conditional variance during some periods is unusually large. Therefore, it is 

argued that estimation methods that use conditional variances are more appropriate 

                                                 
1
 For a detailed analysis see the Basel Committee on Banking Supervision’s (1996a, b), Duffie and Pan 

(1997), Jorion (2000), Alexander (2005, 2008) and Drzik (2005) provide a comprehensive overview of 

value at risk measures.   
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for this type of data, as the heteroscedasticity in the disturbances biases the test 

statistics, leading to incorrect inferences. In the presence of heteroscedasticity, the 

estimators themselves are no longer efficient and hence for the purpose of 

forecasting return series, more accurate intervals can be obtained by modeling 

volatility of returns. 

The estimation of multivariate GARCH models, initially proposed by 

Bollerslev et al. (1988), is an extensively used approach for risk management. 

However, such estimation is very demanding because we are required to estimate a 

large number of parameters whose number increases exponentially as the number of 

variables rises.
2
 Recently, Manganelli et al. (2002) and Manganelli (2004) have 

developed an approach which provides a solution to the multivariate problem with the 

GARCH estimation. This approach is based on the estimation of univariate portfolio 

models and then with the use of certain statistical tools we are able to recover the 

multivariate dimension which is lost in the estimation of the univariate models. The 

main reason for using this methodology is that it considers not only the portfolio 

returns, but also the estimated parameters of the univariate GARCH model as a 

function of the weights of the assets that form the portfolio. The next step of this 

approach is to take the first and second derivatives of the variance subject to these 

weights. This will enable us to deduct important information with respect to the local 

behaviour (i.e. around the portfolio weights) of the estimated variance. 

This paper focuses on the issue of asset allocation in a European emerging 

market, the Athens Stock Exchange (ASE) a capital market which has been 

characterized by substantial volatility during the last decade. Although this market has 

recently grown in size and has been upgraded to the mature market status it still 

                                                 
2
 See for example, Bollerslev et al. (1994),  Engle and Kroener  (1995) and McNeil and Frey (2000) for 

a detailed analysis. 
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exhibits features that are found in the emerging markets. The existence of a rational 

bubble in the period 1998-2000 has dominated its behaviour since then and it has been 

recently affected substantially by the financial crisis which is still unfolding and has 

recorded a loss of 75% in capital value during the 2007-2009 financial turmoil. This 

loss in capitalization has been mainly caused by the capital flight initiated by foreign 

institutional investors and hedge funds during the current financial, banking and credit 

crisis which in such an uncertain environment prefer to take positions in safer stock 

markets and currencies. This negative trend also reflected the recent economic and 

financial developments in the Greek economy due to its enormous increase in its 

public debt and the questions raised about its sustainability resulted to a rise of the 

spread of the Greek 10-year bond spread by 351 base points compared to the German 

bund in February 2010.  It is evident therefore that it is of crucial importance to use 

appropriate models to obtain portfolio allocation and risk measurement especially for 

the case of emerging markets and during turbulent economic periods. 

We employ daily data of 30 companies listed on the ASE for the period 3 

January 2001 to 31 December 2009. We apply the sensitivity analysis proposed by 

Manganelli et al. (2002) and Manganelli (2004) and we provide an evaluation of this 

approach with the results obtained from the estimation of three alternative models, 

namely the Dynamic Conditional Correlation model (DCC), the Orthogonal GARCH 

model (OGARCH) and the Exponentially Weighted Moving Average (EWMA) 

model. For this application we first estimate the variance sensitivity of a portfolio 

with two assets traded on the ASE and then we estimate minimum variance portfolios 

for any given point of time. Finally, we applied the Kupiec (1995) test in order to 

evaluate the out-of sample performance of the competing models.   
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There are a number of important findings that stem from our analysis. First, it 

is shown that the use of sensitivity analysis for asset allocation in this emerging 

market provides a suitable measure for the diversification opportunities at any given 

point in time. Second, that in terms of the estimated minimum variance we 

demonstrated that the VSA model leads to substantial efficiency gains when it is 

compared to three other GARCH models. Finally, with the application of the Kupiec’s 

test for out-of-sample forecasting performance we demonstrate that the variance 

sensitivity analysis outperforms all three alternative models at both the 95% and 99% 

confidence interval independently of the trading position.   

The rest of the paper is organized as follows. Section 2 discusses the issues of 

asset allocation, risk management and the application of alternative GARCH 

specifications. In section 3 we present the key elements of the variance sensitivity 

analysis. Section 4 reports the empirical results. In section 5 we present the 

forecasting performance evaluation of the alternative model specifications with the 

summary and the concluding remarks provided in a final section. 

 

2. Asset allocation, risk management and GARCH models 

The application of multivariate models of conditional volatility has 

contributed significantly in solving problems which are linked with optimal asset 

allocation, risk management, derivative pricing and dynamic hedging. However, their 

empirical application has been surrounded with several difficulties especially in the 

case of portfolios with a large number of assets due to the fact that the number of 

parameters that need to be estimated increases exponentially as we move from the 

univariate framework. The overall evidence from the use of multivariate GARCH 

with a large number of assets is that they can be tractable only under highly restricted 
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versions of the model. In such circumstances the likelihood of model misspecification 

can be substantial. When considering the case of risk management within this context 

it is usually the case that we should be concerned about the behaviour of the 

predictive density of the asset returns, rather than trying to obtain the model that best 

approximates the volatility. 

Over the last two decades a number of variants of the multivariate GARCH 

have been developed. These include the conditional constant correlation (CCC) model 

introduced by Bollerslev (1990), the Riskmetrics specification (1996) proposed by 

J.P. Morgan and widely used by practitioners, the Orthogonal GARCH developed by 

Alexander and Chibumba (1995) and Alexander (2000) and the Dynamic Conditional 

Correlation (DCC) advanced by Engle and Sheppard (2001) and Engle (2002)
3
. As we 

already mentioned the multivariate volatility models are highly restricted by 

construction and this could lead to substantial model uncertainty. As a consequence, 

given standard data limitations and technical considerations it has been long 

recognized that we are unable to provide rigorous statistical testing and obtain 

unbiased inference using these multivariate GARCH model specifications. These 

problems with implementing appropriate testing procedures coupled with the 

application of model selection techniques may also lead to additional difficulties in 

the proper design of optimal asset allocation and measuring market risk and these 

obstacles get higher as the number of assets increases leading and in there is always 

the case that no single model choice would provide a satisfactory answer to the 

optimal asset allocation problem. 

Pesaran et al. (2009) partially addressed the issues linked with the difficulties 

that we face with the estimation and statistical inference of multivariate volatility 

                                                 
3
 Bauwens et al. (2003) and McAleer (2005) provide comprehensive surveys of alternative GARCH 

specifications. 
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models. They developed an integrated econometric approach to the asset portfolio 

optimization under the constraint of VaR in the presence of model uncertainty along 

with the associated risk monitoring problem. To this end Pesaran et al. (2009) adopted 

model averaging as strategy to risk diversification in order to deal with model 

uncertainty. They argued that such an approach reduces the model misspecification 

issues that may arise by the pre-test selection bias which is embodied in the two-step 

procedure of the AIC and the SIC information criteria. Furthermore, Pesaran et al. 

(2009) argued that the widely used forecast evaluation measures such as the Root 

Mean Square Error (RMSE) face considerable problems when applied in the case of 

multivariate volatility models. Therefore, they proposed a forecasting performance 

criterion that links the VaR performance of their associated portfolios and could be 

considered as a variant of the Kupiec’s (1995) binomial test. The main findings of 

their analysis were that in most cases the Student t Dynamic Conditional Correlation 

model (TDCC) advanced by Pesaran and Pesaran (2007) managed to pass the VaR 

diagnostic tests in out-of-sample performance. In addition Pesaran et al. (2009) 

demonstrated that the equal-weighted average model based on the top 25 models of a 

large set of models it was the one not rejected by the VaR diagnostic tests they 

implemented. However, a drawback of this approach is that is dependent on the 

choice of the models under consideration and their corresponding weights and this 

may be proved a tedious exercise.                   

 

3. Econometric methodology 

In this section we provide a description of the theoretical consideration of the 

variance sensitivity analysis within the univariate portfolio GARCH models drawing 

heavily on Manganelli (2004).  The starting point of the analysis is the argument 
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made by Nijman and Sentana (1996) that a linear combination of variables generated 

by a multivariate GARCH process will only be a weak GARCH process. An 

implication of this result is that an attempt to fit GARCH processes directly to 

portfolio returns will generally lead to a model misspecification. 

Manganelli et al. (2002) and Manganelli (2004) developed an alternative 

methodology to the direct estimation of any multivariate GARCH specification based 

on the notion of “quasi-maximum-likelihood” introduced by White (1994), assuming 

that any GARCH model is only a rough approximation of the true relationship among 

the observed data. The basic proposition put forward by Manganelli (2004) is that 

when we change the weights of a portfolio this will lead to a change of the time series 

of portfolio returns. This change will then lead to an alteration of the information 

available for the estimation of the univariate GARCH process. A result of this 

procedure will be that the derived variance can be considered as a function of the 

portfolio returns via two channels, the first being the vector of portfolio returns and 

the second being the estimated parameters.
4
  

The idea of employing measures of sensitivity to the weights of the portfolio 

allocation has previously been used in a number of alternative models of estimating 

VaR. For example Garman (1996) suggested the computation of the derivative of the 

VaR with respect to the individual elements of a specific portfolio might be used in 

order to evaluate the potential influence of trading on the VaR of a company. 

Moreover, Gourieroux et al. (2000) have adopted the proposal set forth by Garman 

(1996) to provide an analysis of its theoretical implications to alternative VaR 

specifications. Manganelli (2004) argues that the same type of analysis can be used 

for the variance of a portfolio given the corresponding variance-covariance matrix.     

                                                 
4
 As Manganelli (2004, p. 373) points out the estimated parameters depend on the time series of 

portfolio returns used in estimation.   
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Manganelli (2004) makes a significant contribution to the issue of using 

sensitivity analysis for achieving optimal asset allocation within the context of 

univariate GARCH models. His approach has a number of significant implications. 

First, the GARCH sensitivity analysis can be used by portfolio managers and 

investors to test whether their actual portfolio has minimum variance. According to 

Manganelli (2004) this test amounts to a value of zero for all derivatives with respect 

to portfolio weights. Second, this methodology can also be used to examine the effect 

that any asset has on the variance of the portfolio. This will provide valuable 

information to portfolio managers enabling them to identify the main sources of 

market risk and/or to investigate the influence that a specific transaction exercises on 

the portfolio variance. Finally, Manganelli (2004) develops a simple method for the 

estimation of the full variance–covariance matrices of portfolio assets.      

Let ty  be the return of the portfolio comprised of 1n  assets and let ity .  be 

the i th stock return, for Tt ,.....,1 and 1,.......,1  ni .
5
 Denoting the weight of asset 

i  by ia , the portfolio return at time t  is it

n

i

it yay ,

1

1






 . Given that the weights ia  must 

sum to one, we can express one weight as a function of the others, 


 
n

i

in aa
1

1 1 . 

Let us assume that ty   follows a zero-mean process with a GARCH ),( qp  

conditional variance th :    

ttt hy    )1,0(~| tt        (1) 

tt zh           (2) 

where  

),.......,,,......,,1( 1

22

1
1

  pttqtt
mx
t hhyyz ,    ),......,,,.....,,( 110

1
 pq

mx
 , and  

                                                 
5
 For a full analysis of the mathematical and statistical derivations see Manganelli (2004, p. 373-374). 
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1 qpm  

}][,....,][,{ 1

11,

1

11,







 t

rnr

t

trt yya , is defined as the information set of the model, where 

a  denotes the n -vector of portfolio weights.
6
 It is clear from the definition of the 

information set that a change in the vector of portfolio weights implies a change in the 

information set. This is due to the fact that the actual series of the stock returns are 

included in the information. As, evaluating the potential influence of a transaction on 

the estimated variance can become extremely complicated necessitating a re-

estimation of the complete model, Manganelli (2004) suggests an alternative simpler 

method.  

This method calls for the calculation of the first derivative of the variance with 

respect to the weights. Thus, a positive derivative would indicate that the change in 

weights due to trading on a particular asset will result in an increase of the variance of 

the portfolio while a negative derivative will lead to a reduction in the portfolio’s 

variance. To analyze this point let us define 
^^^

tzh


  as the estimated variance. The 

computation of the first derivative of th
^

 is based on the recognition that both the 

vectors tz
^

 and 
^

  (the vector of the estimated coefficients) are functions of the weight 

a . Then the first derivative is derived as follows: 

t
mx

nxm

nx

nxm

t

xx

z
aa

z

a

h ^

1

^
^

1

^

1

^

















         (3) 

                                                 
6
As Manganelli (2004, p. 373) notes, that the )1( n  weight equals one minus the sum of the other 

weights. The respective )1( n asset is considered to be the benchmark asset against which the 

sensitivity is conducted. Bollerslev and Wooldridge (1992) also show that the vector of unknown 

parameters  can be consistently estimated by maximizing the normal log-likelihood.  
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In order to analyse carefully the local behaviour of the estimated variance with respect 

to the portfolio allocation we derive the second derivative, which will allows us to 

examine its concavity. This is given by: 

 

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 (4) 

where  indicates the Kronecker product and nI  is an (nxn ) identity matrix.
7
 

Evaluation of equation (3) and (4) require the computation of the respective 

derivatives.  

Given the above analysis we note that the approach to the optimal asset 

allocation problem advanced by Manganelli (2004) initially results to the standard 

solution which is true for all static and dynamic optimization problems that the 

outcome variance of the portfolio is a function of the weights. The contribution of this 

approach lies on the specific dynamics of this functional relationship and the goal of 

minimizing the curvature of the hyper-surface with respect to the weights vector.    

The sensitivity analysis approach developed by Manganelli et al. (2002) and 

Manganelli (2004) can now be employed in order to estimate large variance-

covariance matrices as well as to analyze the optimal conditional portfolio allocation 

in a mean-variance framework. The second contribution of this approach is provided 

by the utilization of the relationship among the estimated variances, covariances and 

the variance derivatives with respect to the portfolio weights, since it allows the 

development of a simple method for the estimation of full variance-covariance 

matrices of large portfolios, which by construction are positive definite.
8
 As 

Manganelli (2004) demonstrated, this problem involves the maximization of a 

                                                 
7
Manganelli (2004, p. 374-375 and Appendix B) provides a full mathematical analysis of the 

evaluation and properties of the first and second derivatives. 
8
 Manganelli (2004, p. 374-376) provides the algebraic derivation of the necessary and sufficient 

conditions of the maximization problem. 
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function of the conditional mean and the conditional variance with respect to portfolio 

weights. More explicitly this maximization problem can be solved by maximizing a 

function of n variables, the portfolio weights, with known their first and second 

derivatives. Manganelli (2004) notes that univariate portfolio GARCH models are 

subject to misspecification although the degree of misspecification and its impact on 

the shape of the function that is maximized is unknown a priori and this can only be 

revealed on empirical grounds.
9
 When we turn to the estimation of large variance-

covariance matrix then this involves a three step procedure: (a) Minimization of the 

portfolio variance with respect to weights; (b) computation of the second derivatives 

of portfolio variance; and (c) definition of the (n+1)-vector of weights corresponding 

to each asset entering the portfolio and then compute the variance-covariance matrix 

by solving the system shown in Manganelli (2004, p. 377).    

         

4. Data and empirical results 

In this paper we apply the variance sensitivity analysis using stock returns of 

companies listed in the Athens Stock Exchange (ASE). We use daily data for the 

period 3 January 2001 to 31 December 2009. The price data for the ASE is the closing 

prices quotations of the ASE General Price Index which is a capitalization weighted 

index. For the present study we chose the top 30 companies by market capitalization, 

from the banking sector, manufacturing, construction, informatics and 

telecommunications industries and they are given in the Appendix. The data has been 

retrieved from DATASTREAM. The sample consists of  2224 observations. The 

estimation process is conducted for the full sample whereas we use the last 5 years 

                                                 
9
 If the portfolio GARCH models were correctly specified, the function would be quadratic in the 

weights, and the optimization procedure trivial.     
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(each year is taken to have 252 trading days) to conduct the out-of-sample forecasting 

evaluation. 

We begin our empirical analysis with the estimation of the first and second 

derivatives of GARCH variances using a two-asset portfolio composed of the stocks 

of ALPHA (Banking and financial services) and FOLLI-FOLLIE (A manufacturer of 

fashion jeweler) traded on the ASE.
10,11

  We estimate univariate GARCH (1,1) models 

for 31 portfolios constructed from these two assets. The weight )(a for ALPHA Bank 

ranges from -1 to 2, with a step increase of 0.1. For each estimated GARCH model, 

the first and second derivatives of the estimated variance with respect to the weight 

(a) have been calculated. The estimated variances on 31 December 2009 for the 31 

portfolios with respect to the weight (a) along with the first and second derivatives are 

illustrated in Figure 1. There are several points to be made regarding these plots. The 

variance corresponding to 0a is the variance of FOLLI-FOLLIE whereas the 

variance corresponding to 1a is that of ALPHA. Furthermore, those portfolios that 

have a weight greater than 1 are short of ALPHA and those which have a weight less 

than zero are short of FOLLI-FOLLIE. The shape of the estimated variance shown in 

Figure 1 as we have already explained in section 3 is tied to the potential gains from 

portfolio diversification. Thus given that the estimated variance is considered to be a 

parabolic and convex function of portfolio weights a  there are substantial gains from 

portfolio diversification measured in terms of risk reduction.  

Furthermore, in line with Manganelli (2004) our univariate GARCH estimates 

produce results close to the theoretical considerations and therefore we may argue that 

                                                 
10

 To check the robustness of our results we have also applied the two asset portfolio case using two 

other pairs of non-banking sector firms whose stocks exhibit significant trading value and are 

considered as blue chips. The first pair is Mihaniki (construction) and Inform Lykos (Informatics) and 

the second is Mitilineos (Mines) and Iatriko (Medical services). We obtained very similar results with 

respect to the optimization asset allocation problem. To save space these results are available upon 

request. 
11

 All estimations have been run with the MATLAB codes developed by Manganelli. 
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they are good approximations of the unknown true model. This argument is further 

strengthened by examining the shape of the first and second derivatives. If the 

function was a perfect parabola then the first derivative would be a straight line with a 

positive slope and the second derivative would be a straight line with a slope equal to 

zero. From Figure 1 we observe that both derivatives are close to the values implied 

by theory. 

Figure 2 shows the plots of the first derivatives of the estimated variance, 

a

aht



 )(
^

, for the two degenerated portfolios, i.e. FOLIE-FOLLIE ( 0a ) and ALPHA 

)1(  .These plots show the magnitude by which the variance would decrease or 

increase over time, in the situation where an investor moves away from the corner 

solution of holding either stock. Similar patterns can be derived for any portfolio 

weight. Therefore, the investor or the portfolio manager has a complete set of 

information with respect to the effects in terms of risk when the composition of the 

current portfolio is changed. 

Figure 2 also shows that the first derivative of ALPHA is always positive 

whereas the corresponding one for FOLLI-FOLLIE is mostly negative. This finding 

implies that during the period under investigation the minimum variance portfolio was 

formed by a convex combination of these two assets (Manganelli, 2004, p. 379). The 

evidence that over the last part of the sample both first derivatives were positive 

indicates that during that period the risk manager needed to take a short position 

ALPHA in order to obtain the minimum-variance portfolio. In addition, Figure 2 

provides useful information with respect to the sources of risk of a particular 

portfolio. Thus, Manganelli (2004) shows that the greater in absolute value the first 

derivative is, the greater the risk reduction following a portfolio reallocation will be. 
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The first derivative of the portfolio which is only composed by the ALPHA stock is 

much higher on average (in absolute value) than the first derivative of the portfolio 

including only the FOLLI-FOLLIE stock.
12

 Thus, we may conclude that during the 

2000s an investor who was active in Athens Stock Exchange could achieve greater 

variance reduction and therefore could gain more in terms of risk reduction if he/she 

diversified away from the portfolio with only FOLLI-FOLLIE stock than from the 

ALPHA portfolio.
13

   

Next we consider the information obtained from Figure 3. We report the plots 

of the second derivative of ALPHA as well as its difference from the average second 

derivatives computed over all 31 portfolios. Theory suggests that in the case of a 

model which is correctly specified the second derivative should be a flat line since it 

should not depend on the portfolio composition. In this case if we take the difference 

between the average second derivatives and that of ALPHA the second derivative 

should be zero. Indeed, in Figure 3 we observe that the derived difference is quite 

smooth around zero and this evidence is related with our analysis of Figure 1 and 

provides further support in favour of our univariate GARCH model being a good 

approximation of the true variance.
14

 

The second derivative also provides important information to the risk manager 

with respect to the size of change of the variance sensitivity when a change in the 

portfolio allocation takes place. This implies that the greater the value of the second 

derivative, the greater the change in the variance sensitivity will be which in turn will 

lead to the need for a smaller portfolio reallocation in order to attain a given size of 

                                                 
12

 The average first derivative for ALPHA is 5.98 and for FOLLI-FOLLIE is -7.61. This means that the 

variance sensitivity of the portfolio consisting only of FOLLI-FOLLIE was about 27% higher than that 

of the ALPHA portfolio. 
13

 In general, in order to reduce the risk, the risk manager should sell the assets with the highest first 

derivative and buy those with the lowest one (Manganelli et al., 2002; Manganelli, 2004).  
14

 The reason that the difference is not exactly equal to zero is due to the misspecification of the 

univariate GARCH model. 
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variance reduction. In Figure 3 we observe that in the period 2000-2009 the impact on 

variance due to portfolio reallocations is much greater compared to that during the 

1990s. Specifically, the average value of the second derivative was 7.68 between 

1990 and 1999, whereas in the period 2000 to 2009 a substantial increase has been 

documented. These findings suggest that there has been a significant increase in the 

concavity of the portfolio variance (as a function of weight, a ) for the stocks of 

ALPHA and FOLLI-FOLLIE over the last five years and risk managers active on the 

Athens Stock Exchange should take this information into consideration. 

The next stage of the present analysis deals with the implementation of the 

methodology developed by Manganelli (2004) and discussed in section 3, as well. The 

purpose is to estimate full variance-covariance matrices and to find the allocation that 

minimizes portfolio variance. We test this approach with the use of different 

subsamples of the Athens Stock Exchange general index for the period 3 January 

2001 to 31 December 2009.
15

  

The performance of the variance sensitivity methodology is then evaluated 

against three alternative specifications of multivariate models. These specifications 

include the Dynamic Conditional Correlation (DCC), the Orthogonal GARCH 

(OGARCH) and the Exponentially Weighted Moving Average (EWMA) popularized 

by Riskemetrics.
16

  

For these three alternative specifications we first estimate the variance-

covariance matrix on 31 December 2009. Next we compute the weights that lead to 

                                                 
15

 We have calculated the standard summary statistics for the returns of the 30 assets used in the 

analysis. The typical stylized facts that financial data exhibits is also documented here. Thus, it is 

observed that the hypothesis of normality is rejected based on the Jarque-Bera test statistic and the data 

also exhibits high kurtosis. We have also calculate the sample correlations of the returns. The average 

correlation is 0.29. To save space these results are available upon request. 
16

 For daily data the weight   (the decay coefficient) is usually set to 0.94.  
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the derivation of the minimum-variance portfolio
17

. We then estimate the univariate 

GARCH variance associated to this portfolio and present the annualized estimated 

volatility in Table 1. We conduct this exercise for the DCC, OGARCH and EWMA 

models and for five alternative portfolios with 2, 5, 10, 20 and 30 stocks.
18

 

The estimation of the variance sensitivity analysis (VSA) model is conducted 

with the direct minimization of the univariate GARCH variance with respect to 

portfolio weights.
19

 We observe that convergence is achieved very quickly and is very 

robust to the choice of the initial conditions which implies that the objective function 

behaves appropriately even when we consider the case of problems associated with 

high dimensions.
20

 Following Manganelli (2004) we choose as initial conditions of 

the variance sensitivity analysis model the optimal weights of exponentially weighted 

moving average model. Table 1 presents the complete results. 

The picture emerging from Table 1 is that the VSA model outperforms the 

three alternative models in comparison. This result is due to the fact that the VSA 

model is constructed to estimate the minimum-variance portfolio based on the 

univariate GARCH model. Furthermore, we observe that the performance of the VSA 

model relative to the other competing models increases as the number of stocks 

increase.
21

 Thus, we demonstrate that while in the case of the two-asset portfolio the 

differences in the minimum variances are almost zero, as we move towards larger 

portfolios these differences get larger for both the DCC and OGARCH models. With 

five stocks, DCC and OGARCH overestimate the minimum-variance portfolio by 

                                                 
17

 The analytical solution is given in Manganelli (2004, p.382) 
18

 A full list of the companies used in the analysis is given in Appendix A. Assets are progressively 

aggregated in the order reported in this Appendix. 
19

 We use the function fminunc in Matlab and we insert as inputs the first and second analytical 

derivatives calculated in section 2.  
20

 Convergence for a 30-asset portfolio occurs in less than 20 iterations for randomly chosen initial 

conditions. 
21

 The outperformance of the VSA model is measured by the percentage difference in annualized 

volatility. 



 19 

about 2% and 21%, respectively. When we look into the case with ten stocks then the 

difference rises to 5% and 24%, while for the case of twenty and thirty stocks it 

ranges from 32% to approximately 143%. These results lead to the conclusion that as 

the number of stocks in a portfolio rises, the number of restrictions imposed by the 

typical multivariate GARCH models increases and its computation becomes very 

complicated. 

In contrast the results of the EWMA model, the simplest of all data filters, 

provide a rather different outcome since its performance does not deteriorate as much 

and as fast as the DCC and OGARCH models. Manganelli (2004) explains this 

behaviour of the EWMA model on the grounds of its construction. Since we use the 

same weight  for all variance and covariance terms this amounts to the estimation of 

this model’s portfolio variance directly, with coefficient  . Certainly, this does 

necessarily imply that the EWMA model provides reasonable estimates of the 

variance-covariance matrix, (see Manganelli, 2004, p. 384).
22

 

The results of the asset allocation analysis derived from an emerging market of 

the Eurozone confirm the previous evidence obtained by Manganelli (2004) who 

employed a set of stocks traded in the NYSE and this may further suggest that the 

degree of misspecification of the univariate GARCH models on which the variance 

sensitivity analysis is based on is negligible.   

                  

5. Forecasting performance evaluation 

 The final stage of the present analysis involves the evaluation of forecasting 

performance of the competing models. This task is accomplished with the application 

                                                 
22

 It should be noted that the computation time of the VSA model for a thirty-asset portfolio it takes 

less than a few minutes to attain optimization . 
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of the backtesting procedure provided by the Kupiec (1995) test and out-of-sample 

VaR evaluation criteria.
23

  

We test all models with a VaR level of significance, )( , that takes values 

from 1% and 5% and we then evaluate their performance by calculating the failure 

rate for the returns series ty . The failure rate is defined as the number of times returns 

exceed the forecasted VaR. Following Giot and Laurent (2003) we define a failure 

rate lf  for the long trading positions, which is equal to the percentage of negative 

returns smaller than one-step-ahead VaR for long positions. In a similar manner, we 

define sf  as the failure rate for short positions as the percentage of positive returns 

larger than the one-step-ahead VaR for short position.
24

             

In Kupiec’s test, we define f  as the ratio of the number of observations 

exceeding Var( x ) to the number of total observation (T) and pre-specified VaR level 

as a (Tang and Shieh, 2006). The statistic of Kupiec LR test is given by Eq. (5) 

(Kupiec, 1995). Under the null hypothesis Kupiec (1995) developed a likelihood ratio 

statistic (LR) distributed as chi-square distribution which is given as follows: 

 

                           2 log[ (1 ) ] log[ (1 ) ]x T x x T xLR f f                    (5) 

where TNf   is the failure rate, 
^

f  is the empirical (estimated) failure rate, N is 

the number of days over a period T  that a violation has occurred. Giot and Laurent 

(2003) suggest that the computation of the empirical failure rate defines a sequence of 

yes/no, under this testable hypothesis.  

                                                 
23

 For a detailed analysis of selection and evaluation criteria for VaR models see Andersen and 

Bollerslev (1998) Christoffersen, (1998), Sarma et al. (2003) and Bams et al. (2005).  
24

 When the VaR model is correctly specified then the failure rate should be equal to the pre-specified 

VaR level. 
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The VaRs of    quantile for long and short trading position are computed as 

in Equation 6, 7 and 8 for normal, Student- t  and skewed Student- t  respectively 

(Tang and Shieh, 2006). 

       ˆ ˆ
long t tVaR z   ,                        ˆ ˆ

short t tVaR z                             (6) 

             

       ,
ˆ ˆ

long t tVaR st                          ,
ˆ ˆ

short t tVaR st                           (7)                                                                       

                                                                                                                                                                    

       , ,
ˆ ˆ

long t tVaR skst                      , ,
ˆ ˆ

short t tVaR skst                      (8) 

 

where z , ,st  and , ,skst    are left or right tail quantile at %  for normal, Student- t  

and skewed Student- t  distributions respectively. 

For the out-of-sample forecast evaluation we use 252*5 days forecast sample 

in order to provide one-step-ahead prediction.
25

 Table 2 provides a summary of out-

of-sample VaR forecasts for long and short trading positions as well as for all five 

alternative constructed portfolios. The results of Kupiec   out-of-sample forecasting 

test provide further evidence about the superiority of the VSA model as the 

appropriate specification for optimal asset allocation. The overall empirical evidence 

suggests that the VSA model has the best out-of-sample performance against all three 

competing models for 0.05   and 01.0a  and for both short and long trading 

position in most cases.  Therefore, we provided further evidence based on the VaR 

forecasts that variance sensitivity analysis provides an appropriate framework for the 

asset allocation optimization, which is much needed especially during the current 

turbulent period in the global financial markets.     

                                                 
25

 Given that the Kupiec test is applicable only for the univariate case we apply it in the case of all 

competing models by using the estimated residuals from the estimation of each model for the different 

portfolios produced in the previous section. 
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6. Summary and concluding remarks 

Modelling asset volatility using multivariate GARCH models become 

cumbersome since they require strong assumptions to make estimations feasible while 

their dimension increase exponentially as the number of variables increases. A 

common procedure to avoid the problems raised by the estimation is to fit univariate 

GARCH models to the time series data of portfolio returns, but this approach has as a 

shortcoming the loss of the multivariate dimension of the portfolio allocation. 

Variance sensitivity analysis has been proposed by Manganelli et al. (2002) and 

Manganelli (2004) in order to resolve the problem that arises when trying to model 

asset volatility using multivariate GARCH models. More, specifically, this approach 

utilizes the GARCH environment giving at the same time tractable computations and 

clear-cut conclusions. Manganelli (2004) suggested that the impact of a portfolio 

reallocation on the estimated variance should be evaluated by calculating the 

sensitivity of the estimated variance with respect to the weight of the stock involved 

in the transaction. This task can be accomplished by using as a sensitivity measure the 

derivative of the estimated variance with respect to portfolio weights. Furthermore, 

this approach allows us to estimate the full variance-covariance matrix. 

In this paper we provided a variance sensitivity analysis using daily data from 

the Athens Stock Exchange, a closely monitored emerging market. Our sample 

consists of daily returns of thirty assets traded at the Athens Stock Exchange for the 

period between 3 January 2001 and 31 December 2009. This is an emerging market 

which has been closely monitored by portfolio managers as a result of its high returns 

during the last decade. We conducted our analysis by constructing different portfolios 

with two, five, ten, twenty and thirty assets. First, we considered a two-asset portfolio 

consisting of stocks of large capitalization firms traded on the ASE. After the 
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estimation of the variance sensitivity we examined how this sensitivity has been 

changing over time and emphasized its implications for risk management in this 

emerging stock market. Furthermore, we calculated the second derivative of the 

estimated variance for this portfolio with respect to the portfolio weights. The second 

derivative is a measure that provides an indication of the benefits measured in terms 

of risks that arise from portfolio diversification between the two assets under 

examination. Second, following Manganelli (2004) we also computed the minimum 

variance portfolio at any given point in time for alternative portfolios constructed 

from the general index of the ASE. Our results were shown to be robust for alternative 

pairs of stocks. The performance of this methodology was assessed against three 

popular multivariate GARCH specifications, namely DCC, OGARCH and EWMA 

models. Finally, with the application of the Kupiec’s test for out-of-sample 

forecasting performance we demonstrate that the variance sensitivity analysis 

outperforms all three alternative models at both the 95% and 99% confidence interval 

independently of the trading position.   

The overall results of the present analysis leads to the conclusion that the 

adopted methodology provides more efficient results than the competing multivariate 

GARCH models. An important point to be made is that the degree of misspecification 

of the estimated univariate GARCH is insignificant. Finally, our results are in line 

with those reported by Manganelli (2004) for the NYSE suggesting that this 

methodology performs well on daily data derived from mature as well as emerging 

markets and thus can be considered a useful tool for portfolio and risk managers. 
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APPENDIX 

 

Table A.1 List of stocks traded in ASE used in the analysis 
 
A/A NAME  

1 ALPHA BANK S.A.  

2 ATTICA S.A. HOLDING  

3 PIRAEUS BANK  

4 COCA-COLA S.A.  

5 FOLLI-FOLLIE  

6 J&P AVAX S.A.   

7  GEKTERNA– CONSTRUCTION  

8  ELLAKTOR– CONSTRUCTION  

9 DOL-PUBLISHERS  

10 
ΒΙΟHALKO INDUSTRIAL(COPPER AND 
ALUMINIUM)  

11 HELLENIC OIL  

12 ΜIΤΙLIΝEΟS S.A.  

13 ΤΙΤΑΝ – CEMENT S.A,  

14 BABYLAND  

15 HALCOR-METALURGIC  

16 ANEK-SHIPPING CO  

17 ELVAL  

18 NATIONAL BANK OF GREECE  

19 SIDENOR-METALURGIC  

20 LAVIPHARM-CHEMICAL  

21 ALTER-INFORMATICS  

22 ΙΑTRIKO MEDICAL CENTRE  

23 ΙΝΤRAKOM S.A. INFORMATICS  

24 HELLENIC WIRES  

25 ΜAILLES MINES  S.A.  

26 IMFORM LYKOS-INFORMATICS.   

27 ΜΕTKA S.A.  

28 ΜIHANIKI CONSTRUCTION  

29 ΟΤΕ TELECOMMUNICATIONS S.A.  

30 FOURLIS-ELECTRIC  

 



 28 

 

 

Table 1. Comparison between the VSA methodology and alternative multivariate GARCH models 

 

 

 

 

 

 

 
 Portfolio with 2 assets Portfolio with 5 assets Portfolio with 10 assets Portfolio with 20 assets Portfolio with 30 assets 
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DCC 31.07% 0.13 16 27.05% 6.31 23 23.52% 13.19  39 18.62% 32.64 86 17.25% 112.23 144 

OGARC

H 

35.44% 14.20 3 29.92% 21.24 5 25.39% 24.47 9 21.67% 40.86 18 19.31% 143.19 27 

EWMA 32.44% 4.53 1 24.85% 0.67 1 23.27% 3.88 1 18.83% 22.40 1 19.40% 34.12 1 

VSA 31.03% 0 46 24.68% 0 73 20.40% 0 120 13.38% 0 122 11.41% 0 354 

Note: DCC is the dynamic conditional correlation; OGARCH is the orthogonal GARCH; EWMA is the exponentially weighted moving average. For each portfolio we report 

the univariate GARCH annualized volatility associated with the minimum-variance weights implied by the estimated variance-covariance matrix, the percentage difference 

with respect to VSA and the computation time to estimate the model. 
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TABLE 2: Out-of- Sample Forecasting Kupiec Test 

Portfolio with 2 assets 

Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

DCC 0.97238 16.328 0.00538** 0.01322 31.962 0.00791** 

OGARCH 0.97178 15.166 0.00284** 0.08712 22.671 0.00028** 

EWMA 0.97460 16.441 0.00198** 0.03456 3.545 0.11441 

VSA 0.96508   2.981 0.26278 0.02698 4.289 0.02879 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

DCC 0.99891 14.7891 0.00045** 0.005824 10.567 0.02347* 

OGARCH 0.99578 15.4352 0.00123** 0.007935 19.8771 0.03568* 

EWMA 0.97368 19.2451 0.01256* 0.008630 17.0156 0.00234** 

VSA 0.96257 6.8289 0.26781 0.028573 2.3891 0.34507 

 

Portfolio with 5 assets 

Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

DCC 0.98345 17.873 0.00234** 0.016278 24.961 0.0001** 

OGARCH 0.99023 14.254 0.00012** 0.023456 22.559 0.0022** 

EWMA 0.97788 18.341 0.00689** 0.028972 20.445 0.0122* 

VSA 0.99689 5.2562 0.24134 0.017891 2.2952 0.2416 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

DCC 0.99338 22.1529 0.00789** 0.012887 23.9958 0.002347** 

OGARCH 0.99167 17.0801 0.00367** 0.015781 11.378 0.01799* 

EWMA 0.98679 18.2336 0.01119* 0.028793 28.4572 0.00897** 

VSA 0.98389 3.2892 0.51289 0.016298 15.277 0.39695 
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Portfolio with 10 assets 

Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

DCC 0.99783 19.709 0.00225** 0.01689 24.971 0.0256* 

OGARCH 0.98287 15.201 0.00028** 0.02190 15.601 0.0198* 

EWMA 0.99234 20.879 0.02379* 0.02877 20.678 0.0023** 

VSA 0.99345 8.3356 0.33768 0.01198 13.790 0.2241 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

DCC 0.99186 21.539 0.00274** 0.01882 22.9932 0.04347* 

OGARCH 0.99283 18.799 0.00448** 0.01952 17.9528 0.00018** 

EWMA 0.99091 18.355 0.02567* 0.02009 16.0233 0.00435** 

VSA 0.98221 4.6981 0.28864 0.01831 1.15173 0.69695 

 

Portfolio with 20 assets 

Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

DCC 0.97640 20.812 0.00022** 0.01675 32.911 0.00336** 

OGARCH 0.97263 16.277 0.01156* 0.01923 22.641 0.00278** 

EWMA 0.98678 20.142 0.00336** 0.01908 22.765 0.00035** 

VSA 0.96533 1.7128 0.27897 0.02234 1.113 0.41103 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

DCC 0.99102 21.129 0.00562** 0.00891 22.678 0.03647 

OGARCH 0.99209 18.233 0.00446** 0.00228 23.557 0.00019 

EWMA 0.99679 19.221 0.03778* 0.00366 3.0271 0.21091 

VSA 0.98210 4.224 0.33989 0.01224 2.1513 0.51229 
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Portfolio with 30 assets 

Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

DCC 0.98622 28.889 0.00345** 0.01255 21.656 0.0156* 

OGARCH 0.97334 17.652 0.00019** 0.01368 26.503 0.00015** 

EWMA 0.98189 19.989 0.01277* 0.01329 19.255 0.00668** 

VSA 0.96679 5.7339 0.18971 0.01477 2.8288 0.31882 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

DCC 0.98556 21.334 0.00335** 0.002981 22.334 0.00561** 

OGARCH 0.98673 16.221 0.00167** 0.013245 23.598 0.01664* 

EWMA 0.99112 15.902 0.00013** 0.016562 26.033 0.00098** 

VSA 0.97299 4.2214 0.23356 0.000335 1.4422 0.44671 

Note: Number of forecasts: 252*5 days and 1 day ahead. (*) and (**) denote 5% and 10% level of 

significance respectively. 

 

 

 

 



 32 

 
 

Figure 1. Plot of estimated variance, first and second derivative on December 31, 2009, for 31 

portfolios constructed from ALPHA and FOLLIE-FOLLIE. On the horizontal axis is the portfolio 

weight for GM, which ranges from -1 to 2 with increments of 0.1. The variance is computed by 

reestimating a GARCH(1,1) model for each of the 31 portfolios. The first and second derivatives are 

computed analytically, as described in section 2.    
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Figure 2. Plot of the first derivative of the estimated variance for the two degenerate portfolios of 

ALPHA and FOLLIE-FOLLIE.  
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Figure 3. Plot of the estimated second derivatives, computed from the degenerate ALPHA portfolio 

(upper graph) and its difference w.r.t. the average second derivatives of 31 different portfolios (lower 

graph). 

 

  


