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Abstract 

In this paper we model the return volatility of stocks traded in the Athens Stock 

Exchange using alternative GARCH models. We employ daily data for the period 

January 1998 to November 2008 allowing us to capture possible positive and 

negative effects that may be due to either contagion or idiosyncratic sources.  

The econometric analysis is based on the estimation of a class of five GARCH 

models under alternative assumptions with respect to the error distribution. The 

main findings of our analysis are: First, based on a battery of diagnostic tests it is 

shown that the normal mixture asymmetric GARCH (NM-AGARCH) models 

perform better in modeling the volatility of stock returns. Second, it is shown 

that with the use of the Kupie‟s tests for in-sample and out-of-sample forecasting 

performance the evidence is mixed since the choice of the appropriate volatility 

model depends on the trading position under consideration. Third, at the 99% 

confidence interval the NM-AGARCH model with skewed student- t  distribution 

outperforms all other competing models both for in-sample and out-of-sample 

forecasting performance. This increase in predictive performance for higher 

confidence intervals of the NM-AGARCH model with skewed student- t  distribution 

makes this specification consistent with the requirements of the Basel II Agreement.  
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1.  Introduction 

During the past two decades, volatility in financial markets and their models 

and forecasts have attracted growing attention by academic researchers, policy makers 

and practitioners. The recent financial turmoil has brought on the surface once again 

the need for appropriate estimation of the volatility of stocks, derivatives and other 

financial instruments as well as the implementation and use of models for evaluating 

the trading positions, capital adequacy and Value-at-Risk measures according to the 

Basle II agreement. Over the years several issues have been raised regarding the 

development of theoretical models of asset returns volatility and their applications to 

real world problems.  

First, modelling volatility is a key element in the pricing of derivative 

securities. An investor's choice of portfolio implies the maximization of his expected 

return subject to a risk constraint, or the minimization of his risk under an expected 

return constraint. A good forecast of an asset's price volatility provides an initial point 

for the assessment of investment risk. For example, the application of the Black and 

Scholes valuation model requires the knowledge of the volatility of the underlying 

asset in order to price an option. In fact, volatility is the only parameter that needs to 

be estimated and we could argue that in option markets, investors trade volatility. 

Second, volatility measurement is an important issue for policy makers, portfolio 

managers and financial market participants because it can be used as a measurement 

of risk, providing an important input for portfolio management, option pricing and 

market regulation (Poon and Granger, 2003 and Badescu et al. 2008). Third, a related 

issue, which has become very clear during the current financial crisis, is that greater 

volatility in the financial markets raises important questions about the stability of 

global financial system and its consequences on the real economy. Finally, with 
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respect to the issue of modelling volatility of stock returns and the forecasting 

performance of alternative models the time-varying property of forecast confidence 

intervals calls for more sophisticated models which are at the same time tractable and 

they are able to capture higher conditional moments and provide more accurate 

forecasts at the 99% confidence interval. 

The enormous growth of trading activity that was observed during the 

recent years in both the developed but mainly in the emerging markets has led the 

financial regulators and supervisory committees to seek well justified methods to 

quantify the risk.
1
 The importance of financial risk management has significantly 

increased since the mid-1970s, which saw both the collapse of the fixed exchange rate 

system and two oil price crises. These major events led to considerable volatility in the 

capital markets, which together with the emergence of the derivatives market, increased 

trading volumes and technological advances, led to increasing concerns about the 

effective measurement and management of financial risk. This need was further 

reinforced by a number of financial crises that took place in the 1980s and 1990s such 

as the worldwide stock markets collapse in 1987, the Mexican crisis in 1995, the Asian 

and Russian financial crises in 1997-1998 as well as the Orange County default and the 

Barings Bank and Long Term Capital Management bankruptcy cases.  

The increased financial uncertainty led to a rise of the likelihood for financial 

institutions to suffer substantial losses as a result of their exposure to unpredictable 

market changes as it has been made evident once again during the current financial 

crisis that already led several major financial institutions to bankruptcy in the U.S. 

and the U.K.  These events have made investors become more cautious in their 

                                                      
1
For a detailed analysis see the Basel Committee on Banking Supervision‟s (1996a, b), Duffie and Pan 

(1997), Jorion (2000), Alexander (2005) and Drzik (2005) provide a comprehensive overview of value 

at risk measures.   
2
 See also Bank for International Settlements (1988, 1999a,b,c, 2001). 
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investment decisions, while it has also led to an increased need for more careful study 

of price volatility in stock markets.  

A stylized fact that is well documented in the literature is that stock returns for 

mature and emerging stock markets behave as martingale processes with leptokurtic 

distributions and conditionally heteroskedastic errors.  Furthermore, these data exhibit 

volatility across time and the unconditional variance is constant even though the 

conditional variance during some periods is unusually large. Therefore, it is 

argued that estimation methods that use conditional variances are more appropriate 

for this type of data, as the heteroscedasticity in the disturbances biases the test 

statistics, leading to incorrect inferences. In the presence of heteroscedasticity, the 

estimators themselves are no longer efficient and hence for the purpose of 

forecasting return series, more accurate intervals can be obtained by modeling 

volatility of returns. 

Following the seminal work by Engle (1982) a voluminous literature has 

emerged that extensively analysed the volatility pattern of all major stock markets as 

well as many of the emerging stock markets of the world by applying the ARCH and 

GARCH class of models as well as numerous variants of these specifications. Overall, 

it has been shown that these methodologies have done well in describing the time-

dependent heteroskedasticity present in stock returns data. Alexander and Lazar 

(2003, 2004, 2005 and 2006) have recently proposed a class of GARCH(1,1) models 

with normal mixture conditional densities having flexible individual variance 

processes and time-varying conditional higher moments in order to model volatility. 

An extension of these models is the asymmetric normal mixture GARCH model. The 

importance of using (asymmetric) normal mixture GARCH process is based on the 

fact that it can capture tails in the financial time series more accurately a property 
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which is particularly useful for modelling return volatility in the emerging financial 

markets where asymmetric high volatility is observed during financial shocks. The 

emerging markets are subject to internal or external shocks observed due to short run 

capital flows, thin trading and instability. Moreover, the normal mixture GARCH 

models are similar to Markov switching models  (Hamilton and Susmel, 1994) in 

capturing the effects of sudden shifts in the DGP of the stochastic evolution of the 

financial variables in the emerging markets but they are easier to estimate (Alexander 

and Lazar, 2005 and 2006).  

This paper considers the modelling of the stock returns volatility in the Athens 

Stock Exchange a capital market which has been characterized by substantial 

volatility during the last decade. Although this market has recently grown in size and 

has been upgraded to the mature market status it still exhibits features that are found 

in the emerging markets. The existence of a rational bubble in the period 1998-2000 

has dominated its behaviour since then and it has been recently affected substantially 

by the financial crisis which is still unfolding and has recorded a loss of 52% in 

capital value since the beginning of 2008. This loss in capital value has been mainly 

caused by the capital flight initiated by foreign institutional investors and hedge funds 

during the current financial, banking and credit crisis which in such an uncertain 

environment prefer to take positions in safer stock markets and currencies. This 

negative trend has been also reflected in the recent increase of the spread of the Greek 

10-year bond spread by 252 base points compared to the German bund.  It is evident 

therefore that it is of crucial importance to use alternative models in order to assess 

their performance in modelling the stock returns volatility and evaluate their 

forecasting accuracy especially for the case of emerging markets.
2
 

                                                      
2
During the last decade a number of studies have examined several issues with respect to the workings 

of the ASE. Thus, Alexakis and Xanthakis (1995), Dockery and Kavoussanos (1996, 2001), Fountas 
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In this paper we adopt Alexander and Lazar (2004, 2005) methodology and 

we compare five main GARCH models with alternative probability density 

functions for the error term in order to capture time-varying conditional skewness 

and kurtosis for the daily stock returns of the Athens Stock Exchange. 

Specifically, we conduct our analysis by using five GARCH models including the 

normal mixture GARCH models with three alternative normality distributions, 

namely normal distribution, Student's-t distribution and skewed Student's-t 

distribution.  

 There are a number of important findings that stem from our analysis. First, 

using daily data for the period January 1998 to November 2008 for FTSE20 of the 

Athens Stock Exchange we show that the Normal Mixture AGARCH model with  

skewed student- t  distribution performs better over a set of competing GARCH type 

models under different error distributions, based on several criteria which include the 

maximum likelihood, the Newey (1985) moment specification tests, the unconditional 

density test and the autocorrelation function. Second, based on Kupiec in-sample and 

out-of-sample forecasting performance we found that the NM-AGARCH with skewed 

student- t  distribution has the best in-sample and out-of-sample performance. Third, 

the choice of the appropriate specification to model stock returns volatility for the ASE 

may depend partially on the chosen confidence level and on the trading position. 

Fourth, the predictive performance of the NMAGARCH model is superior at the 

99% confidence interval which is in accordance with the requirements of Basel II 

Accord with respect to the use of models that capture accurately the volatility of stock 

                                                                                                                                                        
and Segredakis (2002) have examined the efficient market hypothesis and seasonal effects that the 

stock returns exhibit, while Philippas (1998) examine the fitness of various market models, when trying 

to price the shares of the market. Furthermore,  Alexakis and Petrakis, (1991), Apergis and Eleptheriou 

(2001) Leledakis et al., (2002), Siourounis, (2002) and Diamandis et al. (2007) provided evidence that 

the stock returns of ASE can be described by ARCH and GARCH processes . 
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returns and provide appropriate VaR measures. 

The remainder of the paper is organized as follows. Section 2 presents a 

discussion on recent developments on modelling volatility. In section 3 we present the 

econometric methodology. Section 4 reports the data and the preliminary diagnostic 

statistics. In section 5 we present and discuss the empirical results while section 6 

presents our summary and concluding remarks.  

 

2. Volatility modelling: A review of the literature 

The seminal works of Mandelbrot (1963) and Fama (1965) found that the 

empirical distribution of price changes of financial assets is leptokurtic when 

compared to the normal distribution, thus rejecting the assumption of normality. 

Furthermore, Mandelbrot (1967) and Fielitz (1971) provide evidence rejecting the 

assumptions of homoskedasticity and independence over time.   

In order to account for these „peculiarities‟ Engle (1982) developed the 

autoregressive conditional heteroskedastic (ARCH) methodology which allows for the 

modelling of the time-varying volatility of the financial assets. This methodology was 

later generalized by Bollerslev (1986) who proposed the generalized ARCH 

(GARCH) methodology. The works provided the framework for modeling the 

dynamics of the volatility process of returns of financial assets. The advantage of 

these models is that they are easy to estimate and in addition this framework 

allows us to conduct diagnostic tests. Several variations of these models have 

appeared along with numerous empirical applications in the financial markets in the 

last decade (see Bollerslev et al., 1992 and Bera and Higgins, 1993 for an extensive 

literature review). 

However, it was observed that the GARCH(1,1) specification could only 
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capture some of the skewness and leptokurtosis commonly found in financial 

data.
3
 This weakness of the original GARCH(1,1) model led subsequently to the 

development of a large number of extensions in order to provide a better 

description of the data. The main strand of this literature focused on the 

introduction of alternative distributional functions for the error term in order to 

provide a better description of the data and to account for the conditional excess 

kurtosis in the data. Thus, Bollerslev (1987) replaced the assumption of normality 

with Student‟s- t  whereas Nelson (1990) introduced the GED distribution. 

However, it was also shown that even these specifications were unable to fully 

capture the observed non-normalities in both conditional and unconditional returns 

in daily or higher frequency data. Furthermore, Nelson (1991) and Glosten et al. 

(1993) introduced asymmetry in the GARCH specification by incorporating 

leverage effects whereas Forsberg and Bollerslev (2002) assume skewed 

innovation densities for the normal inverse Gaussian distribution.  Finally, 

Christoffersen et al. (2006) assume skewed innovation densities for the inverse 

Gaussian density, Lanne and Saikkonen (2007) for the z -distribution and Aas and 

Haff (2006) for a Generalized Hyperbolic skewed Student‟s- t  distribution.
4
 

Recently Haas et al. (2004) and Alexander and Lazar (2003, 2004, 2005, 

2006) have introduced a general class of GARCH models where errors have a 

normal mixture conditional distribution with GARCH variance components. An 

important advantage of the Normal Mixture GARCH (NM-GARCH) models is 

                                                      
3
Riskmetrics, 1996 developed by Morgan Stanley provides a comprehensive technical tool on 

calculating VaR measures based on GARCH-type of models. See also Lambert and Laurent (2001) for 

a detailed discussion of the use of GARCH models within this framework. 
4
The literature on modeling volatility of stock returns includes additional models such as the 

Asymmetric Power ARCH, Integrated GARCH, Fractionally Integrated GARCH, Fractionally 

Integrated Exponential GARCH, Fractionally Integrated Asymmetric Power ARCH and Hyperbolic 

GARCH. For a comprehensive analysis of alternative model of returns volatility (see Bera and Higgins, 

1993; Bollerslev et al., 1992;  Bollerslev et al., 1994; Lambert and Laurent, 2001;Engle 2002; Tsay, 

2002; Alexander 2005).   
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that besides assuming a skewed leptokurtic conditional density they also take into 

consideration time variation in the conditional skewness and kurtosis. 

Furthermore, Haas et al. (2004) and Alexander and Lazar (2004, 2005) have 

shown that these models provide a superior fit to physical conditional densities as 

compared to other GARCH specifications. This is due to the fact that standard 

asymmetric GARCH models have only a single volatility component; the leverage 

effect. Alexander and Lazar (2005) discuss and show the superiority of the NM-

GARCH models over several GARCH models by explicitly taking into account 

more than one volatility component. They argue that the incorporation in the 

GARCH models two asymmetric variance components provide us with a much 

better understanding of the behaviour of stock market returns. 

Alexander and Lazar (2004, 2005) extended the NM-GARCH(1,1) model 

to introduce two distinct sources of skewness, one „persistent‟ and one „dynamic‟. 

Persistent asymmetry arises when the conditional density is a mixture of normal 

density components having different means. This type of asymmetry is the result 

of obtaining different expected returns under different market conditions. Dynamic 

asymmetry arises from the existence of „short-term‟ asymmetries due to the 

leverage effect. Furthermore, the asymmetric NM-GARCH model can 

accommodate different states of time-varying volatility including a leverage effect 

in each variance component. The main advantage of this approach compared to 

other models is that even without a risk premium, the asymmetric normal mixture 

GARCH implies a volatility skew that is significant and exhibits persistence 

although at a diminishing rate. Alexander and Lazar (2004, 2005) used this model 

in order to examine the determinants of the index skew for the stock markets of 

France, Germany, UK, Japan and US. Alexander and Lazar (2006) also applies a 
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set of fifteen GARCH models using alternative density function for the case of 

three bilateral exchange rates, namely sterling-dollar, euro-dollar and yen-dollar. 

In both applications Alexander and Lazar (2004, 2005, 2006) found that with the 

use of a battery of diagnostic tests the asymmetric normal mixture GARCH(1,1) 

model is superior in accounting for leptokurtosis in these two sets of financial 

data.  

         

3. Econometric Methodology 

Given that the theoretical specifications of the large variety of GARCH 

models which have been developed over the last twenty years have repeatedly 

discussed and employed in numerous applications we restrict our discussion to the 

presentation of the Asymmetric Normal Mixture GARCH model (NM-AGARCH) 

following Alexander and Lazar (2004, 2005). 

The asymmetric normal mixture GARCH model has one equation for the 

mean and K  conditional variance components representing different market 

conditions. To simplify matters the conditional mean equation is written as tty   

assuming that there are no explanatory variables since these can be estimated separately. 

The error term t  is assumed to have a conditional normal mixture density with zero 

mean, which is a probability weighted average of K  normal density functions with 

different means and variances given as follows: 

 




 
k

1

k

1

22

1111 0  ,1    ),,....,,......,,,....(~|
i

ii

i

ikttkkt ppppNMI        (1)   

                                                                           

Therefore the conditional density of the error term is derived as 
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1

( ) ( )
K

t i i t

i

p   


                                      (2)      

where i  represents normal density functions with different constant means 
i  and 

different time varying variances  2

it for 1,...,i K . 

The conditional variance behaviour is described by K variance components - and 

these could possibly characterize different market circumstances. These variances are 

assumed to follow any GARCH process but for the present analysis we follow 

Alexander (2004, 2005) and we assume there are two alternative asymmetric 

specifications.   

 

(i) NM-GARCH which the symmetric normal mixture GARCH(1,1) studied 

Alexander and Lazar (2004) for which: 

 

            2 2 2

0 1 1it i t i it        ,     for  1,...,i K                                      (3) 

 

 

(ii) NM-AGARCH which is the asymmetric normal mixture GARCH model due to 

Engle and Ng, (1993) for which: 

 

             2 2 2 2

0 1 1( )it i t i i it          ,      for 1,...,i K                              (4) 

                                                                                                              

(iii) NM-GJR GARCH due to Glosten et al. (1993) for which: 

 

      2 2 2 2

0 1 1 1 1it i t i t t i itd      

       ,     for 1,...,i K                              (5) 
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 where  1td    if 0t  and 0 otherwise.  

 

In all cases, the overall conditional variance is 

 

             2 2 2

1 1

K K

t i it i i

i i

p p  
 

                                                                         (6) 

  

For 1K , the existence of second, third and fourth moments are guaranteed by 

imposing less restricted conditions than in the single component ( 1K ) models. 

Thus, Alexander and Lazar (2005) show that is not required that 1 ii    to hold in 

every case whereas Haas et al.  (2004) have also found that  1  could occur on the 

second and higher variance components. 

Based on these results Alexander and Lazar (2004, 2005) argue that a 

particular set of conditions for the non-negativity of variance and the finiteness of 

third moment is required which is given as follows: 

 

1

1

0 1, 1,....., , 1,0 ,0 1
K

i i i i

i

p i K p  




                                             (7) 

Therefore, for the case of the NM-GARCH model we should satisfy: 

 

2

1 1 1

(1 )
0, 0

(1 ) (1 )

K K K
i i i i i

i i

i i ii i

p p
m p n

  


   

 
    

 
                                              

                               and 0i i

m

n
         (8) 

the required conditions for the NM-AGARCH model are given by: 
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2

2

1 1 1

( ) (1 )
0, 0

(1 ) (1 )

K K K
i i i i i i i

i i

i i ii i

p p
m p n

    


   

  
    

 
                                  

                                  and 2( ) 0i i i

m

n
         (9) 

 

and finally for the NM-GRJ GARCH model we should have: 

 

      2

1 1 1

(1 0.5 )
0, 0

(1 ) (1 )

K K K
i i i i i

i i

i i ii i

p p
m p n

   


   

  
    

 
                          

                                 ( 0.5 ) 0i i

m

n
                                             (10)                             

As we already explained in the previous section Alexander and Lazar (2004, 

2005) argue that there are two distinct sources of asymmetry in the model; (a) 

Persistent asymmetry and Dynamic asymmetry. The former arises in both symmetric 

and asymmetric normal mixture GARCH models and is due to the fact that when the 

conditional returns density is a mixture of normal density components it has different 

means. The latter appears only in the two asymmetric models and depends on the i  

parameters in the component variance processes. These components capture time-

varying short-term asymmetries arising from the leverage effect. The sign of the 

coefficient i  determines the leverage effect.  A positive sign implies the standard 

result in stock markets that "bad news" has a greater effect than “good news” and this 

corresponds to a negative unexpected return. An important result of the combined effect 

of these two types of skewness in the physical conditional returns density is that we are 

allowed to draw more information about the shape of stock index skews than those 

obtained from the estimation of standard GARCH models and therefore we are able to 

provide a more accurate analysis of volatility of financial returns. 
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A final qualification of the normal mixture GARCH specifications is that can be 

considered as a restricted form of the Markov switching GARCH model where the 

transition probabilities are independent of the past state. These models are 

considerably easier to estimate than the class of Markov Switching GARCH (MS-

GARCH) models, since normal mixture models have a straightforward relationship 

between the regimes and the transition probabilities are not historical state-dependent 

(Alexander and Lazar, 2003, 2004, 2005 and 2006). 

 

4. Data and preliminary results 

In this paper we model the volatility of stock returns traded in the Athens 

Stock Exchange (ASE). We use daily data for the period January 2, 1998 to 

November 30, 2008. The price data for the ASE is the closings price quotations of the 

FTSE/ASE20, a joint venture between FTSE and the ASE which is a capitalisation 

weighted index, consisting of the top 20 companies by market capitalisation (mainly 

banking sector and telecommunications) and it has been drawn from 

DATASTREAM. The sample consists of 2930 observations. The estimation process 

is run using 10 years of data (1998-2007) while the remaining 5 year (252*5 days) is 

used for out-of-sample forecasting. 

 Table 1(A) reports the results from unit root and stationarity tests for the CSE 

general stock price index and its first difference in order to obtain a clear picture of 

the stochastic properties of the series. Specifically, in order to test for the presence of 

a unit root in the level of the series we apply a set of unit root tests developed by  

Elliott et al. (1996) and Elliott (1999) as well as by Ng and Perron (2001). These tests 

modify conventional ADF and Philips-Perron unit root tests in order to derive tests 

that have better size and power. The use of these recently developed tests lead to 
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firmer conclusions with respect to the integration properties of the stock price series 

since rejections of the null hypothesis of nonstationarity will not be attributed to size 

distortions, whereas nonrejections is not the outcome of a low probability of rejecting 

a false null hypothesis. The null hypothesis for the Elliot et al. (1996) GLS augmented 

Dickey-Fuller test (DF-GLSu) and Ng and Perron (2001) GLS version of the modified 

Phillips-Perron (1988) tests ) and ( GLS

t

GLS

a MZMZ  is that of a unit root against the 

alternative that the initial observation is drawn from its unconditional distribution. 

These tests use the  GLS-detrending technique proposed by Elliott et al. (1996) and 

extended by Elliott (1999), to maximize power, and a modified selection criterion to 

select the lag truncation parameter in order to minimize size distortion.  In the GLS 

procedure of Elliot et al. (1996), the standard unit root tests (without trend) are 

applied after the series are first detrended under the local alternative T/1   . 

This methodology resulted to a substantial increase in power for the DF-GLSu test 

deriving power functions that lie just under the asymptotic power envelope. Ng and 

Perron (2001) find similar gains for the GLS

t

GLS

a MZMZ  and tests and they have also 

derived  a modified version of the AIC criterion (MIC) that give rise to substantial 

size improvements over alternative selection rules such as BIC.  Finally, we apply the  

Kwiatkowski et al. (1992) KPSS test for the null hypothesis of level or trend 

stationarity against the alternative of non-stationarity and these additional results will 

provide robust inference. The overall evidence for this set of tests is that the FTSE20 

price index is nonstationary while its first difference is a stationary process. 

Provided that the stock price index is a nonstationary variable we only 

consider the first differences of the stock price index: 

)(*100 1 ttt ppp          

which corresponds to the approximate percentage nominal return on the stock price 
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series obtained from time t   to 1t . 

We also calculate several descriptive statistics for monthly percentage changes 

in the stock prices which are given in Table 1(B). We clearly observe that the mean-

return over the whole sample period is positive, on average about 0.6%, the return 

series are positively skewed whereas the large returns (either positive or negative) 

lead to a large degree of kurtosis. Furthermore, the Lung-Box 2Q  statistic for all 

returns series is statistically significant, providing evidence of strong second-moment 

dependencies (conditional heteroskedasticity) in the distribution of the stock price 

changes. The evidence based on the third and fourth moment of the returns FTSE20 

of the ASE implies that the assumption of normality is rejected and this finding is in 

line with the stylised fact that financial returns exhibit leptokurtosis and volatility 

clustering that has been document in the finance literature. Figure 1 provides further 

insights on the non-normality issue based on the density graphs and the QQ-plots 

against the normal distribution for the daily returns and it is shown that their 

distribution exhibit fat tails. Furthermore, the QQ-plots imply that there is an 

asymmetry in the fat tails. An additional result of these graphical expositions show 

that the return series exhibit volatility clustering, which means that there are periods 

of large absolute changes tend to cluster together followed by  periods of relatively 

small absolute changes. 

 

5. Empirical Results 

5.1. Model estimates 

Given these salient features of the daily returns for the FTSE/ASE20 we now 

move to estimate the conditional variance parameters independently on the residuals 

te  from the )( pAR conditional mean equation with 3p  based on the Akaike 
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Information Criterion. We then obtain the optimal parameters values by maximizing 

the following likelihood function as suggested by Alexander and Lazal (2004, 2005)
5
: 

 

)](ln[)|(
1





T

i

teeL                          (11) 

We constructed and estimated fifteen GARCH(1,1) models for the return 

volatility of the ASE/FTSE20 price index under different distributional assumptions 

and we then evaluated their predictive performance
6
. These model specifications are 

summarized as follows: 

A. Models with normally distributed errors     

(1) GARCH 

(2) GJR 

(3) FIGARCH 

(4) HYGARCH 

(5) NM-AGARCH 

B. Models with symmetric Student‟s t  distributed errors 

(1) GARCH 

(2) GJR 

(3) FIGARCH 

(4) HYGARCH 

(5) NM-AGARCH 

C. Models with skewed Student‟s t  distributed errors 

                                                      
5
 Alexander and Lazal (2004, 2005) provide the updating formula for the grid search. 

6
All computations were performed with G@RCH 5.0 procedure on Ox package (see Laurent and 

Peters, 2002; Laurent 2007).We also use the Ox programming language for the estimation of the 

Asymmetric Normal Mixture GARCH (see Alexander and Lazar, 2005 and 2006; Doornik, 2007) and 

the parameters are estimated using the Quasi Maximum likelihood method  (Bollerslev and Wooldrige, 

1992) and the BFGS Quasi-Newton optimization algorithm.  
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(1) GARCH 

(2) GJR 

(3) FIGARCH 

(4) HYGARCH 

(5) NM-ΑGARCH  

Four model selection criteria are used to assess the appropriateness of the 

fitted models to the returns volatility of the Athens stock market: (a) The maximum 

likelihood; (b) The Newey (1985) moment specification tests. Under this statistical 

criterion we test for normality in the standardized residuals, checking the first four 

moments and for zero autocorrelations in the powers, using a Wald test. The test 

statistics for the moments are distributed as 2 (1) and the cumulative test is 

distributed as 2 (20). The results shown in Tables 2-4 refer to the number of tests 

(out of 20) that are rejected at 1% critical level; (c) The unconditional density test, 

which tests the histogram fit between the model simulated data and the original data. 

The model selection criterion is based on the modified Kolmogorov-Smirnov statistic, 

and (d) The Autocorrelation Function (ACF) test, which captures the dynamic 

properties of the model squared returns. Following Alexander and Lazar (2004) we 

apply the Mean Square Error criterion to assess the fit of the theoretical 

autocorrelation functions with the empirical autocorrelations. 

The estimations for the fifteen models are reported in Tables 2-4.
7
 The 

reported estimated coefficients and calculated statistics are very informative and 

provide evidence in favour of the NM-AGARCH model for modelling the volatility of 

stock returns of the ASE. First, we note that the Ljung-Box 2Q -statistic is not 

                                                      
7
The parameters are estimated by MLE. Numbers in parentheses are t-statistics with (*) and (**) 

denote statistical significance at the 5% and 1% critical level respectively.  

 



 19 

statistically significant implying that all models under consideration are successful in 

taking into account the conditional heteroskedasticity exhibited by the data. Second 

based on the estimated likelihood it is shown that the NM-AGARCH model with non-

zero means in the components is preferable. Third, we find that the application of the 

moment specification tests leads to the conclusion that the basic models do not 

capture the higher moments. Furthermore, for the rest of the models we observe that 

the moment tests do not distinguish well between the models. We find that some 

models pass all the tests whereas some others have several rejections but we observe 

that the NM-GARCH model performs well based on this criterion. Fourth, the 

unconditional density test clearly shows that the NM-AGARCH with all three sources 

of asymmetry is preferred against all the other models. Finally, looking into the 

evidence provided by the ACF test we again find evidence in favour of the NM-

AGARCH models.  

Table 2 and 3 reports the results for the models with Student‟s- t  distribution 

and we note that the parameters (v) are statistically significant for all the GARCH 

models and therefore we conclude that the returns series are fat tailed.  Furthermore, 

when we examine the skewed Student‟s- t  distribution, the asymmetric parameters 

( ) are negative and statistically significant for all GARCH models. This is an 

indication that the density distribution of the FTSE/ASE20 is skewed to the left. 

Estimated long memory parameter d for the FIGARCH model (Chung, 1999) and the 

hyperbolic parameter ( )Ln   for the HYGARCH model are also found to be 

statistically significant and these results are shown in Table 3.   

Table 4 reports the estimates of the parameters 1, ,    as well as the 

normal mixture   parameter for the Asymmetric Normal Mixture models and we 

observe that these are statistically significant for all three cases. Additionally, the 
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Student‟s- t  and skewed  Student‟s- t  parameters,  v – Student- t ,  - Skewness and 

v -Skewness are also found to be statistically significant. Thus, the overall results 

show that NM-AGARCH models perform better in modeling the volatility of stock 

returns of the Athens Stock Exchange. 

        

5.2. Forecasting performance evaluation 

 The next step of the present analysis involves the evaluation of forecasting 

performance of the competing models. This task is accomplished with the application 

of the backtesting procedure provided by the Kupiec (1995) test and out-of-sample 

VaR evaluation criteria.
8
  

Table 5 reports several statistics for the evaluation and comparison of model 

forecast error. Specifically we consider the Root Mean Squared Error (RMSE), the 

Mean Squared Error (MSE), the Akaike information criterion and the Nyblom test for 

parameter stability (Nyblom, 1994). The evidence leads to the conclusion that the 

RMSE and/or the MSE may not be adequate backtesting tests because they do not 

take into consideration tail probability and overshooting effects. This finding is 

further confirmed in Figure 2 as RMSE obtains its maximum value at a point where 

the AIC is not at maximum for NMGARCH models. Moreover, the application of the 

Nyblom test statistic shows that the parameters of each model do not exhibit 

instability in recursive estimations.   

We next move to examine whether the NM-AGARCH model provides better 

VaR estimates and forecasting performance than all other competing models. To this 

end we move on to provide in-sample VaR computations and this is accomplished by 

computing the one-step-ahead VaR for all models. This procedure is equivalent to 

                                                      
8
 For a detailed analysis of selection and evaluation criteria for VaR models see Andersen and 

Bollerslev (1998) Christoffersen, (1998), Sarma et al. (2003) and Bams et al. (2005).  
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backtesting the model on the estimation sample. We test all models with a VaR level 

of significance, )( , that takes values from 1% and 5% and we then evaluate their 

performance by calculating the failure rate for the returns series ty . The failure rate is 

defined as the number of times returns exceed the forecasted VaR. Following Giot 

and Laurent (2003) we define a failure rate lf  for the long trading positions, which is 

equal to the percentage of negative returns smaller than one-step-ahead VaR for long 

positions. In a similar manner, we define sf  as the failure rate for short positions as 

the percentage of positive returns larger than the one-step-ahead VaR for short 

position.
9
             

In Kupiec‟s test, we define f  as the ratio of the number of observations 

exceeding Var( x ) to the number of total observation (T) and pre-specified VaR level 

as a (Tang and Shieh, 2006). The statistic of Kupiec LR test is given by Eq. (12) 

(Kupiec, 1995). Under the null hypothesis Kupiec (1995) developed a likelihood ratio 

statistic (LR) distributed as chi-square distribution which is given as follows: 

 

                           2 log[ (1 ) ] log[ (1 ) ]x T x x T xLR f f                    (12) 

where TNf   is the failure rate, 
^

f  is the empirical (estimated) failure rate, N is 

the number of days over a period T  that a violation has occurred. Giot and Laurent 

(2003) suggest that the computation of the empirical failure rate defines a sequence of 

yes/no, under this testable hypothesis.  

The VaRs of    quantile for long and short trading position are computed as 

in Equation 13, 14 and 15 for normal, Student- t  and skewed Student- t  respectively 

(Tang and Shieh, 2006). 

                                                      
9
 When the VaR model is correctly specified then the failure rate should be equal to the pre-specified 

VaR level. 
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       ˆ ˆ
long t tVaR z   ,                        ˆ ˆ

short t tVaR z                             (13) 

             

       ,
ˆ ˆ

long t tVaR st                          ,
ˆ ˆ

short t tVaR st                           (14)                                                                       

                                                                                                                                                                    

       , ,
ˆ ˆ

long t tVaR skst                      , ,
ˆ ˆ

short t tVaR skst                      (15) 

 

where z , ,st  and , ,skst    are left or right tail quantile at %  for normal, Student- t  

and skewed Student- t  distributions respectively. 

Table 6 reports the corresponding p -values for all competing VaR models 

given that the number of days for the in-sample-forecasting is taken to be 15 and  two 

alternative significance levels 0.01   and 0.05  . Figure 3 provides plots of 

Kupiec‟s test results. The main finding from this analysis is that the NM-AGARCH 

with student- t  distribution for short position and the HYGARCH(1,d,1) with skewed 

student- t  distribution  and GJR with skewed student- t  distribution  for long position 

perform better for 0.05   whereas  NM-AGARCH with skewed student- t  

distribution for short position and NM-AGARCH with skewed student- t  distribution 

and FIGARCH(1,d,1) with skewed student- t  distribution for long position perform 

better for 0.01  . Therefore, we argue that these findings show that at the 95%  

confidence interval the evidence is mixed but as we move to the 99% confidence 

interval the NM-AGARCH with skewed student- t  distribution outperforms all other 

competing models based on Kupiec in-sample forecasting.  

Given that the in-sample forecasting estimates VaR are only based on 

knowing the past performance, we further investigate the performance of the 

competing models by conducting an out-of-sample forecasting analysis. For the out-
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of-sample forecast evaluation we use 252*5 days forecast sample in order to provide 

one-step-ahead prediction. Table 7 and Figure 4 provide a summary of out-of-

sample VaR forecasts for long and short trading positions. The results of Kupiec out-

of-sample forecasting test show that the NM-AGARCH with skewed student- t  

distribution and FIGARCH(1,d,1) with skewed student- t  distribution for short 

position and HYGARCH(1,d,1) with  student- t  and GJR with skewed student- t  

distribution perform better for 0.05   whereas NM-AGARCH with skewed 

student- t  distribution and GJR with  skewed student- t  distribution and GJR with  

student- t  distribution for short position and NM-AGARCH with skewed student- t  

distribution and NM-AGARCH  with  student- t  distribution for long position perform 

better for 01.0a . The overall empirical evidence based on Kupiec in-sample and 

out-of-sample forecasting performance suggests that the NM-AGARCH with skewed 

student- t  distribution has the best in-sample and out-of-sample performance. 

However, we must note that the choice of the appropriate specification to model stock 

returns volatility for the ASE also depends on the chosen confidence level and on the 

trading position since in some cases other model specifications could possibly provide 

better in-sample and out-of-sample performance. 

Our results can be directly linked with the provisions made by Basel II 

Agreement regarding the model accuracy for estimating VaR measures and modelling 

volatility. The Basel II Accord which came in force on November 2007 requires the 

use of a volatility model, which is statistically significant at 99% confidence level, in 

order to provide an accurate measurement of the VaR under extreme cases.
10

 Figure 5 

provides a comparison of out-of-sample performance for GARCH and NM-AGARCH 

with Normal and skewed student- t  distribution. It is shown that the NM-AGARCH 

                                                      
10

 For a detailed analysis see the Basel Committee on Banking Supervision‟s (1996a, b). 
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captures fat-tailed behavior of the data much better than GARCH model and more 

important NM-AGARCH model with skewed student- t  distribution has better 

predictive performance for the 99% confidence interval for the case of the Athens 

Stock Exchange. Our results are in line with those reported in Alexander and Lazar 

(2004, 2005) for the case of four major stock markets, namely CAC40, DAX30, 

FTSE100 and NIKKEI225, in Alexander and Lazar (2003, 2006) for the exchange 

rates of pound sterling, yen and euro vis-à-vis the US dollar and in Badescu et al. 

(2008) for the case of option valuation using the S&P index option.
11

  Therefore, we 

provide evidence that this recently developed class of models is an important tool for 

portfolio managers, institutional investors and hedge funds in order to model stock 

returns volatility and VaR measures in a more accurate way, which is much needed 

especially during the current turbulent period in the global financial markets.     

 

5. Summary and concluding remarks 

 The recent global credit and financial turmoil which has led to bankruptcy 

several major financial and banking institutions and to huge losses in market 

capitalization both the mature and emerging stock markets around the world makes the 

need for the development and use of more sophisticated techniques for modeling 

volatility and measuring VaR. This need is further reinforced by the provisions of the 

Basel II Accord which was put in force in November 2007 and which it underlines the 

importance for using accurate volatility models that provides statistically significant 

results at the 99% confidence interval. 

 This paper considers the modeling of the stock returns volatility in the Athens 

Stock Exchange a capital market which has been characterized by substantial volatility 

                                                      
11

 Cifter and Ozun (2007) obtained similar but less clear-cut results for the case of an emerging market, 

the Istanbul Stock Exchange. 
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during the last decade. During the current financial crisis it has lost 52% of its capital 

value since the beginning of 2008. To this end we use daily data for the period January 

2, 1998 to November 30, 2008 a period that includes the existence of a rational bubble 

in 1999-2000 as well as the current financial crisis. We employ a general class of 

GARCH models where the error term follows a normal mixture distribution which 

introduces a new type of asymmetry and has the advantage of capturing the observed 

time variation in higher conditional moments and at the same time they are tractable. 

Our results show that the Normal Mixture AGARCH model with skewed 

student- t  distribution performs better over a set of competing GARCH type models 

under different error distributions, based on several criteria which include the 

maximum likelihood, the Newey (1985) moment specification tests, the unconditional 

density test and the autocorrelation function. Furthermore, based on Kupiec in-sample 

and out-of-sample forecasting performance we found that the NM-AGARCH with 

skewed student- t  distribution has the best in-sample and out-of-sample performance. 

In addition, we note that the choice of the appropriate specification to model stock 

returns volatility for the ASE also depends to some extent on the chosen confidence 

level and on the trading position since in some cases other model specifications like 

FIGARCH, GJR and HYGARCH could possibly provide better in-sample and out-of-

sample performance. An important finding of this study is that the predictive 

performance of the NMAGARCH model is superior at the 99% confidence interval 

which is in accordance with the provisions made by Basel II Accord and it provides 

support to the need for portfolio managers, institutional investors and hedge funds 

who are active in both developed and emerging markets to employ advanced models 

in order to model accurately the volatility of stock returns and provide appropriate 

VaR measures. 
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Table 1.  (A) Unit root and stationarity tests 

 

Variable   Statistic    

 tμ tτ GLS

aMZ  GLS

tMZ      

p  -0.78 

[3] 

-0.42 

[3] 

-0.29 

[2] 

-0.36 

[2] 

2.019* 0.822* 

p  -13.71* 

[3] 

-14.03* 

[3] 

-29.42* 

[3] 

-18.16* 

[3] 

0.212 0.113 

 

Notes: p and p are the prices and returns, respectively. 

  

 The DF-GLSu is due to Elliot et al. (1996) and Elliott (1999) is a test with an unconditional 

alternative hypothesis. The standard Dickey-Fuller tests are detrended (with constant or constant 

and trend). The critical values for the DF-GLSu test at the 5% significance level are:-2.73 (with 

constant, tμ) and -3.17 (with constant and trend, tτ), respectively (Elliott,1999). 

 aMZ  and tMZ  are the Ng and Perron (2001) GLS versions of the Phillips-Perron tests. The 

critical values at 5% significance level are: -8.10 and -1.98 (with constant), respectively (Ng and 

Perron, 2001, Table 1).  

 ημ and ητ are the KPSS test statistics for level and trend stationarity respectively (Kwiatkowski et 

al. 1992). For the computation of theses statistics a Newey and West (1994) robust kernel estimate 

of the "long-run" variance is used. The kernel estimator is constructed using a quadratic spectral 

kernel with VAR(l) pre-whitening and automatic data-dependent bandwidth selection [see, Newey 

and West, 1994 for details]. The 5% critical values for level and trend stationarity are 0461 and 0.148 

respectively, and they are taken from Sephton (1995, Table 2).  

 Numbers in brackets  denotes the lag structure to ensure absence of serial correlation. (*) indicates 

significance at the 95% confidence level.  

 
 

(B) Descriptive Statistics – Daily Data 

 

 Mean Standard 

Deviation 
3m  4m  JB )24(Q  )24(2Q  

tp  5.96 0.27 2.15* 0.49 1229.8* 639.63* 1509.2* 

tp   0.008 0.11 6.69* 166.2* 6.3x10
6
 1287.2* 1880.0* 

Notes: The average return is expressed in terms of 
310x ; 3m  and 4m  are the coefficients of skewness 

and kurtosis of the standardized residuals respectively; JB is the statistic for the null of normality; 

Q (24) and Q 2
(24) are the Ljung-Box test statistics for up to 24th-order serial correlation in the tp  

and 
2

tp  series, respectively. (*) denotes statistical significance at the 5 percent critical level. 
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Table 2. Estimation Results from GARCH(1,1) and GJR(1,1) 

 

 

 

GARCH GARCH- t  GARCH-

Skew 

GJR GJR- t  GJR-Skew 

  0.04936* 

(5.904) 

0.0706* 

(4.018) 

0.0708* 

(4.016) 

0.04801* 

(5.068) 

0.0737* 

(4.208) 

0.0734* 

(4.198) 

  0.1163* 

(13.03) 

0.1241* 

(7.867) 

0.1253* 

(7.884) 

0.0821* 

(8.971) 

0.0906* 

(5.767) 

0.0914* 

(5.780) 

1  0.8732* 

(100.4) 

0.8571* 

(53.74) 

0.8564* 

(53.60) 

0.8725* 

(87.2) 

0.8508* 

(41.18) 

0.8511* 

(61.23) 

Student t     6.488* 

(7.97) 

  6.703* 

(7.721) 

 

Skewness     -0.0399 

(-2.123) 

  -0.0341 

(-1.5196) 

Skewness     6.4786* 

(7.999) 

  6.688* 

(7.722) 

1 GJR      0.0769* 

(6.492) 

0.0847* 

(3.827) 

0.0829* 

(3.706) 

Volatility 0.0217201 0.0194261 0.01966775 0.0102672 0.0112142 0.0112976 

L  6999.8504 7057.4518 7058.1301 7013.0935 7065.7830 7065.9273 

AIC -5.51367 -5.55828 -5.55802 -5.52332 -5.56405 -5.56338 

2 (10)Q  19.9797 

[0.0104] 

18.9134 

[0.0813] 

18.2616 

[0.0193] 

15.6626 

[0.0475] 

13.8074 

[0.0869] 

13.8983 

[0.0844] 

Moment tests 1% 4 2 3 1 0 0 

Density 1.7981 1.6834 1.3925 0.9754 1.2357 1.1209 

ACF 0.4209 0.3515 0.2618 1.0983 0.8767 0.6789 

Notes: Parameters were estimated by MLE. L  is the Likelihood function. AIC is the Akaike 

Information Criterion for model selection. )10(2Q is the Ljung-Box Q -statistic of order 10  for serial 

correlation on the squared series. Moment is the Newey (1985) moment specification tests. Density is 

the unconditional density test. ACF is the autocorrelation function. Numbers in parenthesis are t -

statistics. Numbers in brackets are p - values. (*) denotes statistical significance at the 5% critical 

level. 
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Table 3. Estimation Results from FIGARCH(1,d,1) and HYGARCH(1,d,1) 

 

 FIGARCH- 

Chung 

FIGARCH 

Chung- t  

FIGARCH 

Chung-

Skew 

HYGARH HYGARH- t   HYGARCH-

Skew 

  4.0714* 

(3.411) 

4.9295* 

(2.142) 

5.154* 

(2.149) 

0.3072* 

(3.550) 

0.3510* 

(2.770) 

0.3469* 

(2.764) 

  0.2687* 

(3.648) 

0.2523* 

(2.179) 

0.2519* 

(2.024) 

-0.2678 

(-1.768) 

-0.1719 

(-0.7704) 

-0.1617 

(-0.731) 

1  0.5143* 

(6.993) 

0.4260* 

(3.437) 

0.4213* 

(3.477) 

-0.1149 

(-0.667) 

-0.0054 

(-0.208) 

0.0072 

(0.0278) 

Student t     6.7040* 

(7.568) 

  7.1127* 

(7.307) 

 

Skewness     -0.0274 

(-1.001) 

  -0.0272 

(-1.007) 

Skewness     6.6815* 

(7.592) 

  7.1011* 

(7.312) 

d  FIGARCH 0.3974* 

(10.45) 

0.4008* 

(7.963) 

0.4044* 

(7.757) 

0.1579* 

(2.935) 

0.2122* 

(2.316) 

0.2138* 

(2.356) 

HYGARCH 

Ln( ) 

   0.4901* 

(2.221) 

0.2840 

(1.189) 

0.2749 

(1.187) 

Volatility 0.0298293 0.0244554 0.0251226 0.0047133 0.005460 0.00548113 

L  7028.8083 7074.1989 7074.7354 7025.7463 7071.8861 7072.4357 

AIC -5.5265 -5.57068 -5.57032 -5.5325 -5.56807 -5.56772 

2 (10)Q  4.28644 

[0.8304] 

4.29997 

[0.8291] 

4.38645 

[0.8207] 

2.44310 

[0.9643] 

3.11411 

[0.9270] 

3.18131 

[0.9225] 

Moment tests 1% 2 2 0 0 1 2 

Density 0.8523 0.7727 0.6982 0.9192 0.7888 0.6798 

ACF 1.2398 0.8788 0.5978 0.4523 0.6209 0.2309 

Notes: Parameters were estimated by MLE. L is the Likelihood function. AIC is the Akaike 

Information Criterion for model selection. )10(2Q is the Ljung-Box Q -statistic of order 10  for serial 

correlation on the squared series. Moment is the Newey (1985) moment specification tests. Density is 

the unconditional density test. ACF is the autocorrelation function. Numbers in parenthesis are t -

statistics. Numbers in brackets are p - values. (*) denotes statistical significance at the 5% critical 

level. 
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Table 4: Estimation Results from NORMAL MIXTURE-AGARCH(1,1) 

 

 NM-AGARCH NM-AGARCH- t  NM-AGARCH–Skew 

  0.04167* 

(9.008) 

0.065347* 

(3.573) 

0.065465* 

(3.592) 

  0.120339* 

(12.81) 

0.13874* 

(8.103) 

0.13077* 

(8.090) 

1  0.86762* 

(97.92) 

0.847743* 

(52.95) 

0.848117* 

(52.95) 

Student t     6.75367* 

(7.727) 

 

Skewness     -0.03020 

(-1.3760) 

Skewness     6.742793* 

(7.725) 

Normal   Mixture 0.003736* 

(6.302) 

0.003704* 

(3.927) 

0.00364* 

(3.825) 

Volatility 0.0220358 0.0197378 0.0198021 

L  7013.9332 7066.3075 7086.3826 

AIC -5.52398 -5.56447 -5.56374 

2 (10)Q  15.3885 

[0.0520] 

13.0074 

[0.1116] 

13.0034 

[0.1117] 

Moments tests 1% 1 0 0 

Density 0.7654 0.6245 0.5898 

ACF 0.1345 0.1009 0.0625 

Notes: Parameters were estimated by MLE. L  is the Likelihood function. AIC is the Akaike 

Information Criterion for model selection. )10(2Q is the Ljung-Box Q -statistic of order 10  for serial 

correlation on the squared series. Moment is the Newey (1985) moment specification tests. Density is 

the unconditional density test. ACF is the autocorrelation function. Numbers in parenthesis are t -

statistics. Numbers in brackets are p - values. (*) denotes statistical significance at the 5% critical 

level. 
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Table 5: Forecast Evaluation Measures 

 

Method MSE RMSE AIC 2 (10)Q  testN   

GARCH-Normal 1.158e-007 0.0003400 -5.455077 18.1348 

[0.0202384] 

2.76533 

GARCH- t  1.158e-007 0.0003403 -5.500143 15.8671 

[0.0443219] 

3.23907 

GARCH-Skew 1.159e-007 0.0003404 -5.499449 15.7861 

[0.045546] 

3.76229 

GJR-Normal 1.136e-007 0.0003370 -5.462809 14.8664 

[0.0617958] 

2.6402 

GJR-t 1.135e-007 0.0003369 -5.504390 12.5601 

[0.127909] 

3.22445 

GJR-Skew 1.135e-007 0.0003369 -5.503519 12.5712 

[0127481] 

3.77487 

FIGARCH-Normal 1.139e-007 0.0003375 -5.479032 4.28309 

[0.830722] 

1.73392 

FIGARCH- t  1.140e-007 0.0003376 -5.513748 4.03299 

[0.854135] 

2.07801 

FIGARCH-Skew 1.140e-007 0.0003377 -5.512977 4.06854 

[0.850887] 

2.6452 

HYGARCH-Normal 1.137e-007 0.0003372 -5.476837 2.9250 

[0.938976] 

1.62957 

HYGARCH- t  1.141e-007 0.0003377 -5.511258 3.19047 

[0.921842] 

2.3441 

HYGARCH-Skew 1.142e-007 0.0003378 -5.510484 3.20433 

[0.920888] 

2.84299 

NMAGARCH-Normal 1.474e-007 0.0003839 -5.462561 15.3885 

[0.0520165] 

2.37792 

NMAGARCH- t  1.474e-007 0.0003840 -5.504262 13.0074 

[0.111595] 

3.05126 

NMAGARCH-Skew 1.475e-007 0.0003838 -5.503387 13.0034 

[0.111733] 

3.63598 

Notes: We report 1 day ahead out-of-sample forecasting based on 252 days evaluation. MSE denotes 

Mean Squared Error. RMSE denotes Root Mean Squared Error. AIC is the Akaike Information 

Criterion for model selection. )10(2Q is the Ljung-Box Q -statistic of order 10 for serial correlation 

on the squared standardized residuals. testN  is the Nymblom (1994) test for parameter stability. 
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Table 6: In Sample Forecasting Kupiec Test 

 

In Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

GARCH-Normal 0.95114 0.07027 0.79094 0.047281 0.40190 0.52611 

GARCH- t  0.94720 0.41096 0.52148 0.051615 0.13804 0.71024 

GARCH-Skew 0.94602 0.82571 0.36352 0.048463 0.12741 0.72113 

GJR-Normal 0.95193 0.20164 0.65340 0.044917 1.4271 0.23224 

GJR- t  0.94720 0.41096 0.52148 0.051615 0.13804 0.71024 

GJR-Skew 0.94720 0.41096 0.52148 0.051675 0.67213 0.41231 

FIGARCH- Normal 0.95548 1.6614 0.19742 0.044129 1.9142 0.16650 

FIGARCH- t  0.95154 0.12741 0.72113 0.045311 1.2112 0.27110 

FIGARCH- Skew 0.95075 0.03087 0.86229 0.044917 1.4271 0.23224 

HYGARCH- Normal 0.95232 0.29309 0.58825 0.044917 1.4271 0.23224 

HYGARCH- t  0.94838 0.13804 0.71024 0.048069 0.20164 0.65640 

HYGARCH- Skew 0.94563 0.99497 0.31853 0.051675 0.29309 0.58825 

NMAGARCH- Normal 0.95035 0.00673 0.93460 0.044523 1.6614 0.19742 

NMAGARCH- t  0.95602 0.82571 0.36352 0.048069 0.20164 0.65640 

NMAGARCH-Skew 0.94563 0.99497 0.31853 0.047675 0.29309 0.58825 

 

In Sample Forecasting 99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec LR p -value Failure Rate Kupiec LR p -value 

GARCH-Normal 0.98700 2.1112 0.14623 0.013002 2.1112 0.14623 

GARCH- t  0.99094 0.23276 0.62948 0.010244 0.015177 0.90195 

GARCH-Skew 0.99094 0.23276 0.62948 0.010244 0.015177 0.90195 

GJR-Normal 0.98700 2.1112 0.14623 0.013396 2.6727 0.10208 

GJR- t  0.99094 0.23276 0.62948 0.010244 0.015177 0.90195 

GJR-Skew 0.98936 0.10232 0.74907 0.009850 1.0057756 0.93942 

FIGARCH- Normal 0.98779 1.1742 0.27854 0.013396 2.6727 0.10208 

FIGARCH- t  0.99212 1.2423 0.26502 0.009456 0.077191 0.78114 

FIGARCH- Skew 0.99133 0.47611 0.49019 0.015366 0.23276 0.62948 

HYGARCH- Normal 0.98779 1.1742 0.27854 0.010266 6.3428 0.011786 

HYGARCH- t  0.99133 0.47611 0.49019 0.011032 0.26434 0.60715 

HYGARCH- Skew 0.99054 0.07719 0.78114 0.010244 0.015177 0.90195 

NMAGARCH-Normal 0.98700 2.1112 0.14623 0.013396 2.6727 0.10208 

NMAGARCH- t  0.98936 4.64e-0.4 0.98907 0.010638 0.10232 0.74907 

NMAGARCH-Skew 0.99332 0.10232 0.74907 0.015366 0.0057756 0.93942 

Notes: Number of in-sample forecaring is 15 days.   
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TABLE 7: Out-of- Sample Forecasting Kupiec Test 

 
Out-of- Sample Forecasting 95% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure 

Rate 

Kupiec 

LR 

p-value 

GARCH-Normal 0.97540 20.881 0.0000 0.018254 34.971 0.0000 

GARCH-t 0.97063 13.177 0.000283 0.02222 25.601 0.0000 

GARCH-Skew 0.97460 19.442 0.000001 0.024603 20.881 0.0000 

GJR-Normal 0.96508 6.7128 0.009574 0.026984 16.756 0.0000 

GJR-t 0.96746 9.1778 0.002445 0.021429 27.318 0.0000 

GJR-Skew 0.97063 13.177 0.000284 0.042857 22.385 0.0000 

FIGARCH- Normal 0.96508 6.7128 0.009572 0.026190 18.068 0.0000 

FIGARCH-t 0.95952 2.5664 0.10916 0.029365 13.177 0.00028 

FIGARCH- Skew 0.96984 0.01679 0.89689 0.030952 11.071 0.00088 

HYGARCH- Normal 0.96508 6.7128 0.00957 0.23810 22.385 0.0000 

HYGARCH-t 0.95873 2.1441 0.14312 0.028571 1.4192 0.23353 

HYGARCH-Skew 0.95079 0.01679 0.89689 0.042857 14.312 0.00001 

NMAGARCH-Normal 0.97302 16.756 0.0000 0.16667 39.315 0.0000 

NMAGARCH-t 0.96746 9.1778 0.002449 0.020635 29.110 0.0000 

NMAGARCH-Skew 0.96984 12.097 0.000505 0.024603 20.881 0.0000 

 

 

Out-of- Sample Forecasting  99% Confidence Interval 

 VaR for Short Position VaR for Long Position 

 Failure 

Rate 

Kupiec 

LR 

p-value Failure Rate Kupiec 

LR 

p-value 

GARCH-Normal 0.99286 1.1539 0.28274 0.0055556 2.9961 0.08347 

GARCH- t  0.99383 8.0799 0.00448 0.0015873 13.928 0.000189 

GARCH-Skew 0.99383 8.0799 0.00448 0.0039683 6.0036 0.014277 

GJR-Normal 0.98333 4.7114 0.29964 0.01111 0.15167 0.69695 

GJR- t  0.99683 8.0799 0.00448 0.0015873 13.928 0.000189 

GJR-Skew 0.99683 8.0799 0.00448 0.003175 8.0799 0.00448 

FIGARCH- Normal 0.99048 0.29325 0.86403 0.008730 0.21442 0.64333 

FIGARCH- t  0.99444 2.9961 0.08347 0.0047619 4.3316 0.037411 

FIGARCH- Skew 0.99444 2.9961 0.08347 0.0047619 4.3316 0.037411 

HYGARCH- Normal 0.99206 0.58318 0.44507 0.0095238 0.029325 0.86403 

HYGARCH- t  0.99524 4.3316 0.03741 0.0039683 6.0036 0.014277 

HYGARCH- Skew 0.99524 4.3316 0.03741 0.005556 2.9961 0.083466 

NMAGARCH-Normal 0.99286 1.1539 0.28274 0.01111 0.15167 0.69695 

NMAGARCH- t  0.99603 6.0036 0.01427 0.0113810 10.663 0.001093 

NMAGARCH-Skew 0.99683 8.0799 0.00447 0.0113810 10.663 0.010929 

Note: Number of forecasts: 252*5  days and 1 day ahead 
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Figure 1: FTSE20/ASE stock index in level, daily returns, daily returns density 

(versus normal) and QQ-plot against the normal distribution. The time period is 

02/01/1998 -10/05/2007. 
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Figure 2: RMSE and Akaike Values 
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Figure 3. In-sample Kupiec test p-value 
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                              Figure 4. Out-of-Sample Kupiec Test p-value 
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Figure 5. Out-of-Sample Forecasting (Last 252 days) 

 

 

 

 

 

 

 

 

 

 


