Constantine Bardis , 4150084
Professor: Spyros Skouras
Athens, September 2079

Abstract

The purpose of this exercise is to investigate whether a few statistical learning
algorithms, both classical and of the machine learning variety, can adequately predict
daily index prices of a portfolio of stocks closely resembling the S&P 500 index,
while restricted on the number of features available as predictors and on
computational power. Under those circumstances, it has been found that more
complex algorithms do not necessarily add enough predictive power to justify the
extra computational expense, and at times even underperform compared to simpler
ones.

More specifically, always regarding the out-of-sample results, we found that the
predictability of the daily returns as measured by the coefficient of determination is
generally very low, often diving into negative territory; Mean squared errors are
generally roughly equal among models, indicating that added complexity does not
lead to particularly improved results; and that no single model outperformed the
others across the board, thus there is no clear winner. However, the daily Sharpe
ratios of every single strategy are positive, albeit still low, with the Convolutional
neural network coming on top with 0.1464, much higher than the runner-ups offering
ratios just short of 0.05.

Table of Contents

L INEEOAUCTION. ...ttt ettt sttt s 3
Y, (5111 10T 1] 10 oy 2SR 6
2.1) Model FOrmulation.............occuiiieiieiiiieeiee e eeiee ettt et eevaeeeraeeevee e 6
2.1.1) (Multiple) Linear Regression..........ccueecveeeciiieeiieeeiiee e eieeeeieeesvee e 6
2.1.2) EIASHIC NEL....ueiiciiiieciiecee ettt s eave e e eees 7
2.1.3) Autoregressive — moving-average (ARMA)......cccccovvvieeeiieeiiiecieeeeeeee, 7
2.1.4) Polynomial RE@IeSSION.........cccueeiieriiiiiieiieeiieiie ettt 8
2.1.5) RaNdAOm FOTESt.......uvieiiiieiiieeiie ettt e e ae e e vae e s 8
2.1.6) Support Vector Machine (SVM).......cccevviiiiiiiiieiieeieeieeee e 10
2.1.7) Multilayer Perceptron (MLP)........cccoviiiiiiiiiieeiee et 11
2.1.8) Convolutional Neural Network (CNN).......ccoviiiviiiieiiieeciee e 14
2.1.9) Long short-term memory Network (LSTM)......cccoeveviierciiiniiiieiieeeee e, 16
2.1.10) “Hybrid” Neural Network (CNN-LSTM)....ccccceceevirieniininiineeiecienene 18
2.2) Cross-Validation.........c.ceeeuieeiiieeiiiieeieeeeeeeeieeestee et eeseveeeeaeeesaeessaeessseeesnnes 19
3. EMPIrical RESUILS......cccuiiiiiiiieiiece et 23
3.1) SOTIWATC......viicieeeeeee et ettt e e et ee e 23
3.2) Data and Metrics Preparation...........cccceecuveeeiieeriieeniie et 23
3.3) Exploratory Data Analysis (EDA).......ccccueiiiiiiiriiieieeeeeeee e 26
3.4) Training and Testing of Predictive Models for a Market Index....................... 31
3.4.1) Models using the Index’s History and History of individual stocks........... 31
3.4.2) Summary of evidence on training and testing of predictive models for a
MNATKEE TIACK . eeteteeieitet ettt sttt sttt et st e bbb enre e 48
4. CONCIUSION. ..ttt ettt ettt ettt e et et e et e st e e sbeesseeeabeesabeenbeenaee 49
S APPCIAIX .ottt ettt et e bt e et e e abeebeesnreetaens 50
6. BIDIOZIAPNYceiiiiiieeiiiecee e e e e e aeeens 53

1. Introduction

In the ‘Big Data Era’, where the abundance of information is unprecedented, and the
speed with which it becomes available to interested parties for research or operational
or any other kind of use is staggering, models well versed in effectively processing
such massive amounts of inputs are rapidly becoming a necessity. The need for such
models is also further compounded by the highly nonlinear nature of economic data,
as well as the very complex ways the “large numbers of predictor variables that the
literature has accumulated over five decades” (Shihao Gu et al 2018: page 7) often
interact, which may not be captured adequately by more classical approaches, such as
linear models.

To that end, due to the rapid advances in hardware technology and the increasing
sophistication of learning algorithms, the notion of Artificial Intelligence as a tool for
dissecting and analyzing various problems of economic interest has emerged, in the
form of machine learning, and more recently, deep learning. Those frameworks have
been designed to be capable of learning in the face of nonlinearity, such as Decision
Trees or Support Vector Machines, even when using models originally developed for
other tasks like Recurrent Neural Networks (RNNs) for speech recognition and text
generation (see Dean et al. 2012 and Lake et al. 2016).

Financial forecasting problems in particular, a flavor of which to be explored further
being the main empirical application focus of this exercise, such as those present in
designing and forecasting the prices of financial derivatives (Hutchinson et al., 1994;
Yao et al., 2000, among others), automating the construction of portfolios (Heaton et
al. 2016) and risk management in various sectors, such as the credit card industry

(Butaru et al. 2016) or Mortgage Risk assessment (Sirignano et al 2016) among
others, often involve particularly large and complex datasets, which current leading
economic models often fall short of adequately specifying. This is where the power of
modern machine learning algorithms becomes more apparent by virtue of producing
more useful results than standard models, as deep learning is capable of detecting and
exploiting all the interactions within the data that “at least currently, are invisible to
any existing financial economic theory” (J. B. Heaton et al 2016).

However, Al has not been yet established as the mainstream approach in empirical
econometric research. What does the literature have to say regarding AI’s usefulness
in modelling financial problems in the context of asset pricing and of predicting
financial returns, and how does it compare with more traditional econometric tools?

Shihao Gu, Bryan Kelly and Dacheng Xiu, in their 2018 paper, utilize several models
to attempt to measure and later accurately forecast asset risk premia, including
generalized linear models, dimension reduction techniques, boosted regression trees,
random forests, and neural networks. They find out that not only that the more
advanced methods, particularly densely connected neural networks and decision trees,
outperform the more classical methods, due to their increased ability to uncover and
model nonlinearity in the data, but also that there exist specific signals that are far
more important that others, like stock and industry level momentum, short-term
reversal, liquidity and volatility.

J. B. Heaton, N. G. Polson and J. H. Witte (2016) present some state of the art deep
learning frameworks like LSTMs and autoencoders, and suggest the idea that they can
be used to boost predictive performance significantly. To demonstrate that, they used
autoencoders to effectively compress the representation of S&P 500 stock data to a
more tractable version for easier processing, which while not perfect, succeeds in
being a good approximation of the index.

Yao and Tan (2000) used neural networks for derivative pricing, specifically option
price forecasting. They concluded that even though the traditional Black-Scholes
model still is useful for pricing at the money options, neural networks tend to
outperform it when more volatility is inserted into the ‘equation’. Thus, they conclude,
that depending on how the data is partitioned, the Blach-Scholes model represents
more conservative investors better, and neural networks tend to accommodate more
high-risk, high-reward preferences.

Hutchinson, Lo and Poggio (1994) conduct multiple Monte Carlo simulations to test
how nonparametric models, like radial basis functions (RBFs) and multilayer
perceptron networks (MLPs) compare to their more established, parametric siblings
like the Black-Scholes model, when it concerns derivative asset pricing. They
concluded that even though they are not unconditionally a strictly better option, they
can indeed be more computationally efficient and precise when the underlying
dynamics of the assets are fuzzy and dynamic, or when there is no analytical solution
to the parametric methods. That is attributed, at least partly, to their ability to let the
data itself determine the price dynamics, with very few assumptions on the part of the
models, which makes them less prone to specification errors, which often are the bane
of parametric models.

Other advantages, the authors note, of these models is that they are more skilled at
adapting rapidly to structural changes in the dynamics of the data more effectively
than parametric models can, and that even though they can adequately describe a
range of instruments, they remain quite simple to to implement in practice. However,
they do require quite large amounts of data to be trained properly, which minimizes
their usefulness for assets with low availability of historical data, like thinly traded
assets or newly created ones, and when the dynamics of the assets are well understood
and analytical solutions are well defined, the parametric models tend to perform best
in terms of pricing and hedging precision.

There is one another one important drawback of machine learning models, as noted by
Moritz and Zimmermann (2016), and one that echoes across the literature: That they
do not offer themselves to interpretable predictions, and that they work like black box
processes (eg Breiman, 2002). The authors, in their attempt to create portfolios based
on various factors like momentum via decision trees, exhibit that they can in fact
extract interpretable information from the structure of the forecasts. They also found
that only the most recent returns history, that is the past six month ones, are powerful
predictors, and that their nonlinear models result in an information ratio up to 3 times
higher than the ones achieved by linear frameworks.

An important benefit of decision trees, exemplified on that research, is their ability to
effectively process the multitudes of different variables that may be useful for
forecasting, taking into account the nonlinear ways they interact, which again,

standard linear models cannot do.This is a significant property, as the literature has
not yet conclusively decided which features are fundamentally important for robust,
out-of-sample predictions. Also, as found in other papers, decision trees can much
more easily accommodate the inclusion of new features and combine them with
existing ones to form more informed forecasts, than most standard (parametric)
models.

Nayak, Misra, Behera (2017) provide a survey of nature-inspired algorithms used in a
very wide variety of applications, and they focus on efficient stock market indices’
forecasting by utilizing chemical reaction optimization instead of backpropagation to
train the neural networks used. The resulting model, due to its enhanced ability to
overcome issues of overfitting, convergence and parameter setting, displayed a
significant improvement over the standard MLP approach, tested with 7 index values.
Their model has been adapted and trained for predictions over all time periods,
namely short, medium and long- term predictions, further adding to its robustness
across time horizons.

Henrique, Sobreiro and Kimura (2018) use a support vector machine (SVM) to gauge
whether it can deliver higher returns than what the Efficient Market Theory (EMH)
would allow, for both large and small cap stocks, in differing markets (Brazilian,
American and Chinese) and in the daily and minute data frequency, with the
benchmark being a random walk model as proposed by EMH. After extensive
cross-validation, they came to the conclusion that the SVR with a linear kernel was
delivering better results in the daily frequency, but almost always worse in the minute
frequency, particularly when the models were periodically retrained to take advantage
of any changes in the trends of the time series. However, those results do not
contradict the EMH, as they do not recommend any specific strategies, and the
authors note two major limitations that could skew the results, those being the quality
of the data and the volume of available data points for effective training.

Menon et al (2018) conducted a study where they compared the performance of 4
types of neural networks, the MLP, RNN, LSTM and CNN (Convolutional Neural
Network), in predicting the returns of 5 different companies on NYSE and NSE
(National Stock Exchange of India), while only trained on data from a single company
from NSE, after normalization was performed. The results indicated that all of the
neural networks performed well with the CNN crowned as the best model, and
collectively providing an improvement over the standard ARIMA model, which
indicated that they were indeed capable of learning the underlying dynamics of both
stock markets, unlike the aforementioned linear competitor.The authors bring up the
idea that a hybrid neural network could prove to be an interesting next avenue to
explore, combining the strengths of LSTMs / RNNs and of the CNNs.

After this short, far from exhaustive literature review into the uses of Al into financial
research concerning asset pricing and forecasting of returns, it is time we proceeded to
our own mini empirical analysis using a few of the models mentioned, of both classic
econometric nature and of the machine learning variety, to perform a short analysis
into how these models fare into predicting daily stock prices, closely resembling the
S&P 500 index.

The rest of the paper is structured as follows: In the upcoming “Methodology” section
the basic theoretical foundations of the algorithms used will be concisely reviewed,
along with some of the basic methodological tools and concepts employed to optimize
the models’ training and tuning; Then, in the “Empirical Results” section the majority
of the results will be presented, mainly in the form of plots, starting with exploratory
data analysis (EDA) along with the methodology used to gather and prepare the data
and concluding in aggregate plots of all the algorithm’s performances; In the
“Conclusion” section, the most basic insights will be summarized, and exciting new
future directions for research will be briefly discussed. In the Appendix, some
additional uses of Al in the broader field of finance will be discussed.

2. Methodology

2.1) Model Formulation

In total, excluding benchmarks, a sum of 10 models were trained and evaluated,
generally starting with the simpler ones and gradually moving on to newer, and more
complex, architectures. In this section, without delving too much onto the
mathematical details, the basic theoretical formulations of those models will be
presented, as well as some of their advantages and disadvantages. As this is not a
theoretical exercise, and for brevity reasons, proofs of the equations to be explained
are omitted.

2.1.1) (Multiple) Linear Regression

The most basic model found in economic literature, is also the first to be evaluated
and used. Its mathematical implementation is given as follows (in matrix form):

Y=Xf+e (1)
& ~N(0,0%)
Where X :Our feature matrix with the 10 predictor variables, /:The coefficients

and ¢ :Residual errors, supposedly distributed according to normal distribution with
mean 0 and constant variance, an assumption which practically does not really apply
on our dataset.

This simple equation is then minimized according to the standard Ordinary Least

Squares (OLS) method in order to estimate the true parameters £ as /[, our fitted
values, by minimizing the sum of squared residuals:

hmd%=ka—%%Y=W—Xﬁ)

In order to finally (analytically) derive the OLS parameters:

Bows =(X'X)'(XY) (3)

However, as the number of features increases, so does the ‘complexity’ of the
algorithm, that could theoretically result in overfitting (even though practically it is
not plausible due to the linear nature of the model), which means it could lose its
power to generalize to unseen data well. To that end, we need some form of
penalization for increasing the complexity (number of features) to prevent that,
leading to the second model utilized:

2.1.2) Elastic Net

The Elastic Net regression effectively combines Lasso regression (L1 regularization)
and Ridge regression (L2 regularization) for more effective penalization of added
complexity, which avoids completely eliminating all but the most important features,
as L1 is prone to, but also working well when the number of features is large, like L2
does. This property of Lasso to zeroing some coefficients can also be used as a sort of
feature selection method, like PCA, with the added benefit of being cheap to run
given it is also a linear transformation. Therefore, this model’s coefficients are
produced by the minimization of the following:

” . 2

p=argmin, (v -Xp[+ 4|4, + LAl) = @a)

A K K

p=argming > (v,=F 1) + 4 2 |B |+ W2 B (@b)

i K=l K=l

The two forms are exactly equal, described here only for clarifying any potential
ambiguity.
However, both these models still do not really take into consideration the nature of the
data they are trying to learn; Namely they lack any sort of specialized structure which

takes advantage of the defining trait of the series, serial autocorrelation. To
compensate for this, we proceed to the next model:

2.1.3) Autoregressive — moving-average (ARMA)

This is one of the mainstream models used in financial Econometrics for the task of
understanding, and more importantly attempting to predict, various time series of
interest, like stock market movements or commodities’ future prices. As the name
suggests, it consists of two parts: The Autoregressive (AR), which involves regressing
the variable on its own lagged values and the Moving Average (MA) part, which
models the error term as a linear combination of the previous error terms. Thus it it
referred to as ARMA(p,q) with p: Order of AR (sub)model and q: Order of MA
(sub)model.

Rigorously, in its general form, it is defined as such:

)4 q9
X, =c+eg, +Z¢IXH + Z@ié‘t_,- 5

i=1 i=1

ARMA models by their nature are restricted to handling only one time series for
training and prediction, unlike every other model used here; Thus, and to ensure that
ours is evaluated in the closest possible manner as the others, it is trained on the
unscaled series before any features are computed, as training it on the scaled series
could warp its forecasting ability due to its temporal structure, with the same percent
split for train and test sets. This does not prevent it from achieving a relatively good
performance, as will become apparent in the next section, even though the most
potent model identified is a simple AR(2).

2.1.4) Polynomial Regression

Polynomial Regression is the first “quasi” nonlinear algorithm deployed. It is called
that here as even though it does not provide a linear line as its set of predictions, it
remains a special case of the traditional linear regression, where the terms are
expanded to include powers of the predictor variables. For that reason, the same
matrix notation applies as was the case with the linear regression, and the same
formula for calculating the coefficients, but with X including the expanded feature
set:

Y=Xf+c<
¥y, Lx, xt.x" | B | | &
v |_ 1, x2..x) | B N ©
y, Lx,x2..x" | B, |e&,

The model used here also includes all interaction terms between the variables, and the
degrees of the polynomial evaluated are 2" and 3%, as degrees higher than that were
much more computationally expensive to run and did not offer any out-of-sample

improvement over the ones mentioned.

2.1.5) Random Forest

Random Forests are essentially Ensemble algorithms, and in this occasion an
ensemble of individual CARTSs, decision trees capable of handling both classification
and regression tasks. It utilizes multiple such decision trees, each trained on a random
subset of the data, via a process called “Bootstrap Aggregation” (or “Bagging”) and
averages over the predictions to deliver the final result. Due to those techniques, it has
the distinctive advantage of being able to reduce variance of individual CARTs, thus
eliminating some of the risk of overfitting, but also resulting in more accurate

predictions than any individual tree, particularly in classification tasks. Graphically, it
looks like this:

Image 1:Random Forest

h]

;
.
,

tree tree

we | L A = 5
et £ ' et - o
Y 3 = F 1 _95 F A ¥
] .l 4] 1) o] alall] g cosoooeoe
tree At each node:
~ choose some small subset of variables at random
u find a variable (and a value for that variable) which optimizes the split
-
St N
¥ 4 ¥ ¥
Q0 Q0

Source: Dan Benyamin
Without going too deep into the details of how individual CARTs are formulated,
which compose the Random Forest, in essence each split is done so that the the
greatest reduction in the residual sum of squares is incurred. This is referred to as a
reduction to the ‘entropy’ of the system, which is the disorder of the data, that it aims
to minimize. Entropy is defined as

Entropy =) p(X)log p(X), (7)
Where p(X) : fraction of examplesin a given class

Closely related to the concept of entropy is the concept of ‘Information Gain’, which
is loosely defined as the amount of information a feature provides about its potential
class, and is based on the decrease in entropy after a dataset is split on an attribute,
and it can be used as a criterion with which to minimize the system’s entropy. The
combination of those two concepts results in the ID3 algorithm, a very basic
algorithm for building decision trees. IG can be (rather loosely) be formulated as
such:

IG _ _ Nlefft Nright .
(f,sp)=1(parent) (T I(left)+ Tl(rlght)), 8)

f : feature, sp : split - point, I(.) : Metric, N : Number of samples
Therefore, when it comes to regression trees, which we are interested in given our

objective of predicting continuous values, the IG can be defined as such (using Mean
Squared Error or MSE):

1 y D\
DO =r)s @)

node i€node

A 1 l
Y ode = > oy? (10)

N node i€node

I(node) = MSE (node) =

2.1.6) Support Vector Machine

These algorithms produce linear separation boundaries by transforming the initially
nonlinear feature space appropriately, and then running a linear regression in that
vector space. This linear regression is not the same as the familiar OLS one, and is

expressed as:

() =2 wd(x)4(x) (1)

Where y; are the observations from the training set, ¢(.) is the transform applied to the
data, and the dot is the usual matrix dot product.

It is also called the ‘maximum margin classifier’ as it attempts to find the best linear
separation boundary that maximizes the distance between the two clusters of data it
trains on, in order to avoid overfitting. Again, we will skip over the convoluted
mathematical details, except for one graph which summarizes the objective function it

aims to optimize.
Image 2:Support Vector Regression

Support Vector Regression

* Find a function, f(x), with at most e-deviation
from the targety

The problem can be written as a WX, +b—y <¢
convex optimization problem

minlllwll2
2

Income

st y,—W,-X.—b<g;

W, X, +b—y, <¢g;

C: trade off the complexity / Age

What if the problem is not feasible?

We do not care about errors as long as

We can introduce slack variables
they are less than ¢

(similar to soft margin loss function).

Source: University of Adelaide, Paul Paisitkriangkrai, 2012

10

2.1.7) Multilayer Perceptron (MLP)

Neural networks are state of the art deep learning methods, used in a very wide

variety of fields and contexts, like natural language processing, computer vision, time

series prediction, medicinal diagnosis, offering excellent performance even when the

data is very complex and highly nonlinear.

We begin by applying the simplest, but by no means less effective or versatile,
architecture of the neural networks, the MLP. While a detailed explanation of how
and why it works is outside of the scope of this article, as was the case with the two

previous complicated algorithms, some insights into its workings should be provided.

Initially, below follow two important graphs which illustrate succinctly how it
internally works, the first one providing a bird’s eye view, and the second one

magnifying an individual neuron’s mechanism:

Image 3:MLP Architecture

Multilayer perceptrons
hr13=gtw[1jh[1]+h[1])
When each node in each layer is a linear

combination of all inputs from the previous [VICU T
layer then the netwaork is called a multilayer x A—D\
rerceptron (MLP) . i N y
P P L) X Y/ W Fix)
: . . _ . “‘I'l') —r—3 - -
Weights can be organized into matrices. — ‘,’, .:j'- ‘_}:_' _—
"l‘-._" G-!.-l.ﬁ YA AT Y -
Forward pass computes JXY }x;:_' FFy
| T\ .-/”": 2]
¥ N/
hy =x L Wi
hit) = |j[“-“'h:r_1' + Hily
5 Width
flx) = hiE
Depth

Source: Elisa Sayrol, Master course, University of Barcelona, Autumn 2017

11

Image 4:MLP Neuron

.‘Cl .
x;' f(j) B
x?‘? : offset
Summation Transformation

.5:2_11'-:r f(.g}:#

Source: Christian Freischlag, digital thinking Apache Spark

As is the case with every other supervised learning algorithm visited so far, the MLP
attempts to minimize the output errors, according to some metric specified beforehand,
such as MSE, by tuning its weight parameter vectors W and the bias parameters b.

The power of these networks lies in the fact that even though they calculate a simple
summation for each ‘half’ of each neuron, that is fed to an activation function f(s)

which then applies a nonlinear transformation.

In that way, the network is able to effectively learn nonlinear data, and as more layers
and neurons per layer are added, so does its ability to learn increasingly complex data
grows. More rigorously, those terms can be expressed as follows:

Let f,,..., f, represent the activation functions for each of the L layers. An activation
function does the following:

N
1= 1 COW, X b) = [V X, +B)I<ISL (12)

j=1
There has been much research into what the most effective choice of an activation
function is, with no universally accepted consensus as of yet. Sigmoid used to be the
most popular choice, but ReLU has gained significant momentum and is currently the
most widely adopted choice, particularly in computer vision - related tasks. This can
be attributed to a few technical reasons, such as its robustness to the vanishing
gradient problem, which essentially means the network stops learning due to very
small updates to its weights, its computational efficiency and empirical work which

shows it indeed tends to lead to better convergence (for example Krizhevsky et al,
2012).

12

It does have disadvantages though, such as exploding gradient, as it is not constrained
to a certain interval of values like sigmoid, and ‘dying ReLU’ where if receiving
negative values it does not output anything, thus ‘dying’. To that end, ‘Leaky ReLU’
has been proposed as a solution, which will always output something meaningful,
however small. More concretely:

z=WX, +b (13)

sigmoid : 0(z) = — (14)
I+e

ReLU = max(0, z) (15)

Leaky ReLU = max(0.1x,x) (16)

Where Z: The linear combination fed as input into each of these functions.
The Neural network applies those transformations successively in order to output a

final prediction, and the number of times it does depends on how many layers it has.
Concretely, denoting Z' as the /-th layer (thus Z'” = X) and the final response
as Y, ‘forward-propagation’ is defined as:

AR f(l)(W(O)X+b(0))
A :f(Z)(W(l)Z(l) +b(1))

VAR :f(L)(W(L*I)Z(/fl) +b(1f1))’ 17)

Y(X)=w®z" +p" 18)

VVI c mN,xNH
As any other model, here too the network intends to minimize a given cost function,
often with a regularization parameter to prevent overfitting, to which complex models
like that are prone to, expressed via the parameter lambda. Usually, the choice is L2
regularization,or L?-norm, but other norms may also be used, like lasso. Here an

example of L2 is provided:

T A
argming, , = 3 LYy (X)) + 290F.5) (19

i=1

T T
2
sy =\, =2 W, W, (20)

I=1
Finally, in order for the network to be trained, which entails the minimization of the
loss function, the first partial derivatives of this cost function must be calculated, so
that the weight matrices can be updated in every iteration, via gradient descent, which

is a standard first-order, iterative optimization algorithm :

13

VL Yws(X) @1)

This method applied to neural networks specifically is called ‘Backpropagation’, to
contrast with the more straightforward ‘forward propagation’ and to indicate that the
derivatives are being ‘propagated back’ to the beginning. The resulting backprop
equations can be quite complex, so they will not be referenced here.

2.1.8) Convolutional Neural Network (CNN)

CNNs were originally developed to deal with 2- and 3- dimensional data, like image
and video recognition or classification, but have also seen fairly wide use in natural
language processing, recommender systems, or even medical image analysis. It is
inspired by the mathematical convolution operation, which is an operation on two
functions to produce a third one, that expresses how the shape of one is modified by
the shape of the other. Rigorously,

(F*9)0= [f(Dglt-)dr (22)

Where *: is the Convolution Operation

The symbol t does not necessarily represent a time dimension, but the formula can be
described as a a weighted average of the function f (1) at the moment t where the
weighting is given by g(—r) simply shifted by amount t. As t changes, the weighting
function emphasizes different parts of the input function.

Without going into further details on how this operation works, it suffices to know
that its main purpose is to extract the high level features out of the matrix (such as an
image) it is applied to, by essentially reducing its size. An example graph of a CNN
used in handwritten digit recognition is provided to provide some additional intuition

into how it works from a high level perspective:

14

Image 5:Convolutional Neural Network - Computer Vision Application

fc_3 fc_4
Fully-Connected Fully-Connected
MNeural Netwark Meural Metwaork
Conv_1 Conv_2 RelU activation
Convolution Convolution | r—)H
(5x5) kernel Max-Pooling (5 1 5) kernel Max-Pooling fwith
valid padding 2x2) valid padding (2x2) T

e
...2

[gy |
I INPUT nl channels nl channels n2 channels n2 channels = . 9
(28%28x 1) (24 x 24 x nl) (12 x 12 x nl) (8 x 8 xn2) (4 x 4 x n2) ‘ OUTPUT

Source: Sumit Saha, Towards Data Science, Medium

Given that CNNs can be particularly deep or complicated in their architecture, like
GoogLeNet (2015), with 22 layers or Microsoft ResNet with 152 layers,
regularization of some form becomes important. A novel way to do this has been
proposed by Hinton et al (2014) called ‘Dropout” which essentially assigns some
probability at random that some layer’s parameters will not be taken into
consideration, effectively ‘dropped out’ during training, but not during testing, and
they showed that it does significantly increase performance on various supervised
learning tasks, like vision, speech recognition, computational biology and on various
benchmark data sets (like MNIST). More specifically, in a simple one layer network,
dropout would be inserted as follows, with D denoting a matrix of independent
Bernoulli-distributed random variables:

Dl.(l) ~ Ber (p), (23a)
~ (D)

Y =DV ® X", (23b)
YO =f(z?"), (23¢)

zD=wPOxD+p" (23d)

® : Hadamard (element - wise) matrix product,
There are several other operations that are available and used specifically in CNNss,
but only the Pooling operation will shortly be mentioned, which again is a
downsampling operation, intended to extract the most critical features from the
matrices it is applied to while further compressing the input size. It also has the added

15

benefit that it generalizes the results from a Convolutional filter, making the detection

of features invariant to scale or orientation changes.

In the same way that CNNs are used for higher dimensional data, they can also be
used for 1D data. The difference in an NLP setting is accurately (and intuitively)
captured in the following graphic, and the reasoning is exactly the same for the type

of data we are interested in, namely time series.

Image 6: 1D VS 2D CNN side-by-side comparison

10 Convolutional - Example 2D Canvolutional - Example

RGB value of a

Height Start position Width 1
love | L single pixel
within an

one
image at
position [x, y].

dimensional
convolutional

neural ¥ position
netweorks

very
miuch

Final position

Encoded representation of word X position

In this example for natural language processing, a sentence is made up In this example for computer vision, each pixel within the image is

of 9 words. Each word Is a vector that represents a word as a low represented by its x- and y position as well as three values (RGB). The
dimensional representation. The feature detector will always cover the feature detector has a dimension of 2 x 2 in our example. The feature
whole word, The height determines how many words are considered detector will now slide both horizontally and vertically across the
when training the feature detector. In our example, the height is two. image.

In this example the feature detector will iterate through the data 8

times.

Source: “1D versus 2D CNN” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0

The rest of the operations mentioned, specific to CNNs which deal with higher
dimensional data, can also be very comfortably applied to that 1-dimensional
architecture as well. The network also has its own gradient descent and
forward/backward propagation equations, which will not be mentioned here, but again

follow the same pattern as the MLPs.

2.1.9) Long short-term memory Network (LSTM)

The LSTM network comes as an improvement to standard Recurrent Neural
Networks (RNNs), which had been developed specifically to process sequential data.
The RNNSs, due to their recursive architecture, are able to capture some long-term
dependencies within the data, which standard MLPs cannot do. Effectively, this
means that the model should be able to share some of its learned parameters across its

16

different parts. However, as research has shown, like in Bengio et al (1994) or
Hochreiter (1991), in practice they may not always succeed.

LSTMs were developed as a solution to this problem, and indeed are a very successful
type of model, outperforming other types of RNNs, Hidden Markov Models and other
sequence learning models in a very wide variety of applications, such as time series
data, natural language processing, smart assistants (like Amazon’s Alexa or Google’s
Allo) and more.

To achieve this state of the art performance, they deploy a sophisticated architecture:
Each of their cells consists of three ‘gates’: The forget gate, which decides what
information the network should discard; The input gate, which decides what values of
the input to be updated, which often is the value outputted from a previous hidden
layer; and the output gate, which determines the output of the cell, by applying a
nonlinear activation function, namely tanh. Intuitively, the architecture of each cell
can be visualized as such:

Image 7:LSTM Cell N

.. S e e

o
0 g e
o =

Xt

Layer Pointwize op Copy

Legend: N

Source: Guillaume Chevalier - Own work, CC BY 4.0

LSTMs can be trained using the same principles as ordinary neural networks, given
they are extensions of them, but using more advanced variations of those methods,
such as “Backpropagation through time (BPTT)’ but a more detailed discussion of
how and why LSTMs work again goes far beyond the scope of this exercise, although
certainly interesting. However, for completeness, a basic architecture will be
presented here:

17

E = O-(W/'T[Zt—l’ Xt]+bf)a (24)
I =c(W[Z, . X,]+b). (25

t-1°

C, =tanh(W'[Z, ., X,]+b,), (26)

t-1°

C=F®C_ +I®C, (27

Z, =0, ®tanh(C,) (28)
There are other flavors of LSTMs, but we will only briefly mention the ‘Bidirectional
LSTM’ here, as it is used in the empirical section, which is based on the idea that the
value at moment t is not only influenced by values before it, like t-1,....t-m, but also
by values after it, like t+1, t+n. This is more evident in the NLP compartment,
where for example a word’s meaning can change based on other words present before

or after it, as is common in English.

2.1.10) “Hybrid” Neural Network (CNN-LSTM)

The final architecture employed is a combination of the previous two types of neural
networks, namely the CNN, for feature extraction at which it admittedly excels, and
the LSTM for sequence prediction problems, like video or time series, also a problem
it was designed for. This ‘Hybrid’ naturally aims to take advantage of the power
points of both networks, and some of the tricks originally reserved for each
architecture, in order to output better predictions.

It is not the first time an architecture like that is used, for example Dohahue et al
(2016) have already used it for tasks involving sequences, visual or otherwise, with
very positive results outperforming other state of the art approaches, so it remains an
interesting question to test it on a financial time series prediction task.

A final important note of practical essence on neural networks: The MLP, as all other
neural nets in this exercise, are trained via the Adam (“Adaptive moment estimation’)
optimizer, which is considered one of the more effective options, and is often used as
the default in deep learning applications. It was first presented in the seminal paper
“Adam: A Method for Stochastic Optimization” by Kingma and Ba (2015) and
essentially it is a combination of two other algorithms, RMSProp and AdaGrad, and
takes advantage of the power points of both: It enables the learning rate to adjust
dynamically during training, and takes advantage of momentum by using moving
averages of the gradients to more smoothly converge to the minimum cost.

In addition, mini-batch gradient decent is used to train all models with the default size
per batch of 32 training samples (or 32 time steps) and a learning rate of 0.01. It is
also trained with 150 epochs, which means 150 passes over the entire training set. It
should however be noted that for the rest of the networks, due to their size and to the
fact that their performance, as measured by the MSE metric, plateaued after a while,
were trained with less epochs: The CNN and the computationally expensive LSTM

18

with 120 while the Hybrid model performed just 90. Further testing showed that going
above those markers actually seemed to even marginally decrease performance,
perhaps due to overfitting.

2.2) Cross-Validation

Before we proceed to the empirical section, it is important to clarify the concepts of
grid search and of time series cross-validation. Grid search simply means that a ‘grid’
of hyperparameters for some algorithm is defined, and an exhaustive search is
conducted over every possible combination of the candidate values. This means that
the asymptotic runtime increases exponentially with each new hyperparameter added,
a problem also known as the ‘curse of dimensionality’, and particularly with more
complex, nonlinear models can become very computationally expensive very fast,
even though a remedy could be found in parallel computing methods, as the settings
evaluated are independent of each other. That is not to say it is the only or indeed the
optimal tuning process; Other contenders, like Bayesian optimization or evolutionary
algorithms are gaining traction as ‘smarter’ and often computationally more efficient,

informed search techniques.

Cross-validation is a critical concept in machine learning, as it is a process allowing
the models to improve their performance on unseen data and thus minimizing the
danger of learning noise. In cross-sectional data, K-fold cross-validation is often
thought of as the “gold-standard”, as it allows for a more thorough estimation of the
generalization error, by randomly partitioning the original sample into K equally sized
samples, using K-1 for training, the K for testing, repeating this process K times and
then reporting the average test error on all K test subsamples as the final

generalization error.

However, as the partitioning process is random, it does not respect temporal
dependencies, thus making unsuitable for time series data, of which the defining
characteristic is the autocorrelation between successive data points. A more suitable
technique, which both respects the temporal dependencies and retains the advantages
of vanilla K-fold CV is called ‘Forward Chaining’, or “time series cross-validation”
(abbreviated from now on as tscv), which can be intuitively summarized in the
following graphic:

19

Image 8:Time Series Cross Validation (Forward Chaining)

—— B el e e e e e e e e e e e — time
—— o+ — — — — — — — —
— 00— 00— 00— 00— —
—e 9o o o o o ¢ & o o+ — — — — — — — — — —
— oo o o o+ o o o o» — — — — — — —— s
— -+ — — — — — — — — — — — — — —
— 0 0 6 0 & O & & — — — — — — —
— % o % o o % " " " - - - » — — — — — — — —
— 00— ——F———————————— —
B e S e S S S S S —
— -+ 4 0 4 o o & o+ — — — — — — — — —
— 889 90 0 0 ¢ 0 0 0 & ¢ & & & & & ——————i— —
—— T BT OO f G GGG —— —— —— — — — —— —
e e e e ® B 8 & 9 ® ¢ ¢ ® & € & ¢ €€ e - —
— 0 0 0 0 & 0 0 0 0 S & ¢ & & ¢ & — — — — ——
— 99 9 9 9 ¢ ¢ 9 0 0 9 ¢ ¢ O o - o o S ¢ o — — — —
——— 00— 90— 00— 00— 0000 ——
— 8 o o 0 0 9 0 ¢ 0 0 0 0 0 6 6 06 & 0 0 o & o o o — >

Source: Rob J Hyndman, “Cross-validation for time series”

Essentially, a ‘rolling’ CV is executed: All data points up to and including time k are
selected (blue dots) and used as training data; The datum at time k+1 is used at the
test data (red dot), while the rest of the observations are temporarily ignored (white
dots); The error is computed on the test datum; The whole process is repeated for
i=1,2, ... T-k times, gradually expanding the training set, where T is the total number
of observations; Finally the individual errors are used to calculate an aggregate error
metric which is our final tscv estimate of the generalization error. The above graphic
summarizes one-step rolling forecasts, but can be very easily generalized to multistep
ones if need be. Having clarified those terms, it is also set that for the rest of this
exercise, each time we use tscv we use it with 5 folds (meaning K=5) and the
optimization metric used is the MSE.

In addition, a recap on the algorithm of nested cross-validation is provided, as it
describes the process of cross-validation used to define our benchmark ‘meta-model’.
Simply put, it is a more robust way to conduct more reliable model selection via a
double cross-validation, consisting of two loops: The inner loop is used to perform the
hyperparameter tuning, which is what we have been using up until now, while an
outer loop is used to average the performance of the inner loop k-folds and report a
final metric as our result. It can be intuitively illustrated with the following graphic:

20

Image 9:Nested Time Series Cross Validation

Nested Cross-Validation

Train | Test

Test

Outer Loop

Tz 1. Tral_n each split with
optimal parameters

Test 2. Average each split's
.. test error

Inner Loop

Training Subset |Validation
Tune hyperparameters

Source: Courtney Cochrane, Toward Data Science, Medium
The algorithm more specifically is the following:

1.Divide the dataset into K cross-validation folds via forward chaining (as shown
above, increasing train set size and shifting the test set each turn)

2.For each fold k=1,2,...,K: outer loop for evaluation of the model with selected
hyperparameter

2.1 Let test be fold k

2.2 Let trainval be all the data except those in fold k

2.3 Randomly split trainval into L folds

2.4 For each fold I=1,2,...L: inner loop for hyperparameter tuning

2.4.1 Let val be fold |

2.4.2 Let train be all the data except those in test or val

2.4.3 Train with each hyperparameter on train, and evaluate it on val. Keep track of
the performance metrics

2.5 For each hyperparameter setting, calculate the average metrics score over the L
folds, and choose the best hyperparameter setting.

2.6 Train a model with the best hyperparameter on trainval. Evaluate its performance
on test and save the score for fold k.

3. Calculate the mean score over all K folds, and report that as the generalization
error.

This algorithm however, even though a statistical improvement over the standard
cross-validation, is computationally very expensive and only useful for models with
actual hyperparameters able to be tuned. Therefore, for all the models which lack that
feature, namely OLS, AR(2) and Polynomial standard 5-fold cross-validation was
instead performed. In addition, only very few hyperparameters were used for the

21

neural networks, due to computational reasons (a single full run for the LSTM/
Hybrid models took several hours for each). Also noted that we utilize 5 folds for both
inner and outer loops, and we still utilize the appropriate time series k-fold process as
mentioned before, namely forward chaining.

So, how do we use this procedure to generate a ‘meta-model’?

What is done is that all models are reapplied to the benchmark data, which essentially
is our original data after it has been appropriately engineered in the manner described
in the ensuing section, and subjected to (nested) cross-validation in order to ensure a
statistically sound way to estimate out-of-sample performance.

Then the model with the best R-squared, chosen instead of MSE used earlier as we are
now more interested in explainability for the purpose of establishing a benchmark,
will be chosen as our ‘meta-model’, and it will be used to establish two kinds of
benchmarks, one using the Index’s history and the other using the Index’s history of
individual stocks, via a ‘bottom -up’ approach. The first one is simply going to
undergo the same process at all other models, applied to the same training and test
data, and used to calculate all the relevant metrics.

The second one, via the ‘bottom-up’ approach, will be used to individually predict
each of the 200 largest corporation’s returns, after the feature engineering for each
stock is performed, and for every day (where every day is a single time step) the final
prediction is going to be the simple average of all 200 predictions. Out of that vector,
we will calculate the final metrics to be used as our second meta-model benchmark.
More specifically,

n,= 10 : Number of features

T : Time-steps after feature engineering
R™ :Returns of stock i, each of dimension Txn,

Txn ;)x200 Tx Txny : i
D :[Rl*"’ o Ry J:Matrlx containing each of the R, vectors

Then, we use our meta-model on each entry of the D matrix, generating a

Tx200 prediction matrix (a prediction for each time-step of each of the 200 vectors);
Finally, the average of every row is calculated, leading us to the final vector of
predicted values, like we would get by applying any other model. More concretely,

M : Best meta-model based on prior (nested) cross-validation on benchmark data
yEm = MREY L MRED

all _ preds

200
(1/200)*> M(R™)
Tx1 — =l
preds _mean 200 .
(1/200)* > M(R™)
L =l ATx1

With Y™ being our final prediction vector, used to calculate the various

preds _mean

metrics. This process is repeated for both train and test sets, following the original
division and using the same scaling, after all data preprocessing has been done.

22

Do note that the starting point for both these approaches is the exact same
‘meta-model’, the best performing algorithm in the R-squared metric after the (nested)
cross-validation procedure and essentially only the application approach differs.

3. Empirical Results

3.1) Software

It should be noted that multiple libraries of the Python programming language were
used in order to develop those frameworks and conduct the analysis: statsmodels was
used for the ARMA models and various tests and plots; sklearn for the majority of the
modelling process and for building all algorithms except the neural networks; Keras
(with TensorFlow backend) was used to develop the neural networks; pandas to
import and manipulate the data structures and perform various matrix computations;
matplotlib and seaborn for the various visualizations; Ta-Lib for feature creation; and
numpy for various linear algebra operations. The environment used was Anaconda’s
Spyder scientific IDE (Integrated Development Environment). Mendeley was used to
format the bibliography.

3.2) Data and Metrics Preparation

The dataset used in the analysis was taken from Thomson Reuters’ Datastream
database, and it concerned the 200 largest S&P 500 corporations at 31/12/1979 on the
basis of Market Capitalization. The same dataset was also used during the benchmark
process, during the training and tuning of our meta-model.

More specifically, regarding the primary dataset, the two categories of data retrieved
were the Total Return Index (TRI) of those 200 corporations, which tracks the capital
gains of the asset assuming all its distributions are reinvested, thus giving a clearer
picture of the asset’s performance, and their Market Value (MV), both in daily
frequency spanning the time period between 31/12/1979 up to 10/18/2018, for a total
of around 38 years worth of daily data observations.

The Datastream data (which also doubles as our index data later) required some
elementary engineering before any further computations were to be done. First, it
included the “observations” in non-business days, such as New Year’s Eve, as
duplicated rows, which had to be removed else they would skew the analysis,
particularly given the span of the data set.

Then, as is the convention in financial applications for reasons like stationarity or to
avoid spurious correlations, the daily TRI prices were converted to daily returns. In
addition, in order to avoid ‘look ahead bias’ before the portfolio is constructed, the
MYV rows were all shifted by one day so that the following would hold true for the
total portfolio return at every given time t:

Pt=TRI, * MV, ¥t (29)

As it is assumed that at time t would we only know the market value of the previous
time point, expressed as t-1. TRI prices will be considered returns for the rest of the
article.

23

In order to insulate the portfolio from any external, random fluctuations and make it
develop solely on account of its TRI history, the following formulas were used to
recompute an initial MV ratio, and then use its cumulative product with TRIs to build
the new, insulated MV data matrix:

t-1
MV, =MV *[[(+r,) (30)
j=l
MV,
MV, =—" (31)

- N
> MY,
i=1

Where i:stock, j:time step, MV, :Initial MV value (i.e the first row in the MV set
after the preceding operations).

After we obtain our new MV matrix, it is simply a matter of applying equation (29) to
get the cumulative returns at each time moment, by weighting the contribution of each
of the 200 stocks to our portfolio via its market value, creating in essence a market
value weighted portfolio, for all time stamps.

With our portfolio now ready, some further computations and feature engineering is
conducted to prepare it for supervised learning. First, 90% of the initial portfolio time
steps are used to calculate scaling statistics, with which to scale the entire initial,
univariate dataset, from which the other features will also be calculated. That is as
90% is chosen to be the size of the training set, with the rest relegated to the test set,
in order to avoid data leakage or ‘look - ahead’ bias by including (unseen) information
from the future when scaling present values. More rigorously, the new “Z-values” we
get back, and which are used for feature engineering, model training and predictions,
are computed as follows:

Zirain =X —Ha (32
o(X,)

Ztest = KXo = Mo (33)
o(X,)

Scaling is performed as some of the algorithms that use euclidean distances in their
calculations (like SVMs) or require data to lie in a certain interval for effective
training (like neural networks) can perform in an optimal manner. Other benefits of
scaling include faster training, for example with gradient descent, minimization of the
probability of being stuck in local optima, better error surface and more effective
weight decay, particularly helpful for neural networks.

The scaling is only inverted after predictions are made, in order to calculate the

metrics with which the models’ predictive ability is compared, such as R’
(coefficient of determination) and Mean Squared Error (MSE), with the values in their
original scales. Those metrics are defined as:

24

N A2
Z(yi_yi)
RZ _ =l

D — (34)
Z (y—y)’

] & "
MSE = ﬁ*z(” -3, (35
i=1

In addition to those metrics, which are used to tune the models, we also utilize two
additional metrics to gain a better picture of the algorithms’ performance, not
computed during training or cross-validation. These two metrics are Pearson’s
correlation coefficient and the Sharpe ratio, since the bottom line is to find the
algorithm which provides the best return on our investment. Sharpe ratio is defined as
follows:

R —R, Re=0
Sharpe L+ = (36a)
o

(ratio) =

p

Sharpe (36b)

(ratio) =
p
Where p denotes the returns and standard deviation of our portfolio, with the

simplifying assumption that the risk-free return is zero.

As Sharpe ratio is a financial metric, often used in practice to compare investing
strategies, it can give us a much clearer picture into what it would practically mean to
the investor’s balance were they to deploy each model into their decision making,
thereby making it a very interesting metric to compare our tuned models’ predictions
with each other.

The non algorithm specific methodology to calculate the ratio, in both train and test
sets, after the models have been finalized, is the following:

1. Saved all models’ train and test prediction vectors as-is: Y7, Y ”**Ymodel ; Also

train > ~test
saved the targets used during modelling process.
2. Create a ‘Mask’ for each prediction vector:
For value in prediction vector:
If value > 0: value = 1
Else-if value <0: value = -1

-0.5 o -1
For example, if Y7 =| 0.3 |=>Y" =|1 |,
0.02 1

Where each element in the vector is a daily prediction.

3. Then perform element-wise multiplication of the masked vectors with the actual
targets, in order to translate the predictions to an actual strategy: When the model
predicts the portfolio’s value will fall (a negative prediction, given it is a regression
problem) we want to capitalize on that by selling. Thus, if it does fall, meaning a
negative target, the product will be a net positive, thus incurring a profit. Same goes

25

for when the model predicts a positive value, which is when we want to buy, so that
the product between target (positive) and decision again is positive, or profitable. That
serves to simulate long and short positions we would take in the actual market, were
we to follow those suggestions. For example,

-1 -0.23 0.23
Yol = 1@y =| —0.5 |= R =) -0.5
1 0.45 0.45

4. Calculate the mean return () and standard deviation (o) of each such
R vector for each model for both sets (so a total of 20 such vectors).

5. Then calculate the daily realized Sharpe ratio = % for each model in both sets,

and report that as the final metric.

The process for calculating the correlation coefficient was much simpler, as all that
was required was to calculate the correlation between each prediction vector with the
target vector, again for both sets and for each model. Note that for the plots the MSEs
were multiplied by a constant of 1000 for better visualization, and that the graphs
have been ‘zoomed in’ to allow for easy inspection.

Following the scaling, we proceed to enriching our feature space by adding a total of
10 new predictor variables: Two lags of the original series, and the 14, 30, 50 and 200
- day Simple Moving Average (SMA) and Relative Strength Index (RSI), calculated
from the original series. Those indicators are defined as:

SMA = (%) * iTRI, (37)

100

1+ RS
Where RS= Average Gain over “n” period times / Average Loss over “n” period times,
where n can be defined from the user (here defined for the aforementioned 4 periods).

RST =100~

(38)

Having done those operations, we end up having 10 predictor variables which we feed
into the models: Our 2 lags and the 2 technical indicators sampled in 4 different
frequencies. Note that the RSIs are also divided by 100 in order to bring them to
(roughly) the same range as the others, otherwise they could be given disproportionate
weight in some algorithms or slow down the training.

In addition, all NA values created during any stage of the preprocessing pipeline were
dropped at each stage prior to the next step, because they do not offer anything to the

analysis and to avoid any numerical problems.

3.3) Exploratory Data Analysis (EDA)

We begin with some basic exploratory data analysis (EDA), an integral part of any
machine learning project as it allows us a glimpse into the state of our data. First, we
begin by simply plotting the original portfolio series, that is before any scaling or
feature engineering is conducted, but after it has been modified to only include returns,

26

since in finance it is customary to only work with returns, as we will also do for the
course of the entire discussion.

Figure 1:Portfolio daily returns over time

Retumns over time

010

005

000

Returns

—0.05

—0.10

-0.15

—-0.20
3 =) ' o i = s
o o o It o o o
Date

The differenced series seems to be mostly mean stationary, but with some very
noticeable spikes during 1990 and 2010. Variance also seems to not remain consistent
over times, but it does appear in clusters, as it is higher around the spikes and lower
around calmer times.

However, the graph is mainly useful to provide some intuition about the nature of the
data, hence we employ two statistical methodologies to more formally test for
stationarity and unit roots, mainly the Augmented Dickey-Fuller and and the KPSS
test. The Ho hypothesis for the ADF is that there is a unit root, while the Ho
hypothesis for the KPSS is that the data is stationary. With that in mind, here are the
tests on our (differenced) series:

Table 1: Table 2:

Results of ADF Test Results of KPSS Test

Test Statistic -24.700 Test Statistic 0.296
p-value 0.00 p-value 0.1
Lags Used 17.00 Lags Used 39.00
Critical Value (1%) -3.43 Critical Value (1%) 0.739
Critical Value (5%) -2.86 Critical Value (5%) 0.463
Critical Value (10%) -2.56 Critical Value (10%) 0.347

The p-values in ADF test indicate the in our series we reject the Null Hypothesis that
there is a unit root, in favor of the alternative. In the KPSS, with a p-value of 10%, we
may not reject the Null hypothesis that our data is stationary, in favor of the
alternative. Thus, those two tests concur that probably the first order difference has
indeed turned our series into a stationary process, making it significantly easier to
work with.

27

Another interesting thing to look at is the distribution of our series, and how close it is
to a normal distribution, as it can have important consequences for the modelling
process. To that end we will start by employing a simple histogram with 50 bins, and
then a kernel density estimate graph (KDE) for a smoother inspection:

Figure 2:Histogram of Portfolio returns

3000 H retums

2500

:

1500

Frequency

000

500

10

Figure 3:KDE Estimation of Portfolio returns

Kemel Density Estimate of Retums

Density

10

Both graphs show that our data is strongly centered around a mean of zero, with not
too many outliers, resembling a contorted normal distribution around 0 which raises
the need for some additional testing. Here we employ the QQ Plot and the
Jarque-Bera test (a type of Langrange Multiplier test), which is particularly well
suited for large data sets such as ours:

28

Figure 4:QQ Plot of returns

(iR [s] L]
L]
Qo5
® ooo
5
S
w 005
s
] o~
-0.10
-0.15
L]
-0.20
-3 -2 -1 i 1 2 3
Theoretical Quantiles
Table 3: Given the fact that the JB test’s Ho hypothesis is that the

Results of Jarque-BeraTest | data is normally distributed, we can easily reject Ho in
TeStIStatg‘t(')c‘ 140763.32, favor of H1, due to a p-value equal to zero, and a huge
p-value :0.0,
skewness:-0.69, t-StatISt'IC. 'That, in conjuqctlgn Wlth .the QQ plot Vlsugl
kurtosis:21.45 result, indicate that our distribution is not normal, as is
often one basic assumption in most standard econometric

models, which makes the use of more advanced models imperative.

One other interesting plot, which would describe the effectiveness of the portfolio in
the financial sense, is the plotting of the Holding Period Return (HPR) over time.
HPR is simply defined as the total return of the instrument over the period it is held,
and could be thought of as the sum of the investment’s appreciation and its income,
like dividends paid, so it offers a comprehensive image of its aggregate performance.
The mathematical formulation of HPR is:

Income+V, =V,

HPR =

0

HPR,, =[(1+7r)(1+n)..A+r)]-1 (39)

Where,

Income: The distribution of the proceedings of the asset, like dividends paid;
Vn: The final value of the investment

Vo: The initial value of the investment

r: % return over a given period

n: number of periods

The second formula (39) was practically used to create the following plot, which
represents the HPR of our market value weighted portfolio of the 200 largest (by
market capitalization) stocks of S&P 500 index at 1/1/1980. Empirically, it shows that
buying and holding those stocks in that manner for that period of around 40 years was

29

indeed a very profitable investment, earning an HPR of up to 100, with a major fall
only around the time the great financial crisis of 2008 occurred, and climbing
relatively unimpeded ever since.

Figure 5: Portfolio HPR over time

Helding Period Return over Time

100 1
—— Returns

20 1

1980 1985 1990 1995 2000 2005 2010 2015 2020
Dates

We will also take a look at the autocorrelation graphs for our portfolio series, which
can help to not only gain some intuition on the presence of auto-correlation within the
time series, but also indicate what orders in ARMA would be sensible to start with.

Figure 6:Portfolio autocorrelation graph

Autocorrelation

08
06
04

o2

0o T [~ ¢ ¢ I T —1 I

oo 25 50 1.5 0.0 12.5 15.0 7.5 20.0

The AC graph indicates that there is no statistically significant relationship of
autocorrelation within the portfolio’s returns, and implies that the process is more or
less a random walk process, hence it does not provide any guidance as to what orders
of ARMA would be suitable for forecasting.

After we conduct our feature engineering, that is adding our various new features just
prior to utilizing them for predictions, a very useful way to discover (linear)

30

relationships within the data is to calculate the correlation matrices and visualize them
via a tool called a ‘heatmap’ for easy and quick inspection:

Figure 7: Feature Correlations' Heatmap

-0.038-0.041 025 0.034 017 0.019 014 0.016 0.068 0.019

iR
-0.038 0.27 018 gkl 014 D.D?E

LB -0.046.82-050.0340.00460.0350.00790.013 0.018

returms_lag_2
returms_lag_1

future_returns

012 JOXER 0.18 021 027 025 04

L 0.89 0.88 0.014

L UYEE 011 | 038 015 oo
0.9 1 L 0016

mas0 014 014 -0.035 L

LNl (.049 011
mis0 -0.01 EM{J.DDTB 0.21

mazo0 0.068 0.072 0.013 027 0014 039 0.016

miz00 0.019REN-0.018 0.25 015 011
* g 2

=+

E

mal4 025 027 0.04

mild 0034 RikEE S2-05 0.12

ma30 017 018 -0.034E

mi30 -0.019.0045 0.18

=i
rsi 30

E

future_returns

returns_lag_2
returnis_lag_1

‘future returns’ are the values we are trying to predict, and its lagged variants are
dubbed ‘returns_lag x’. The results are rather predictable, as the non lagged features
are slightly to moderately correlated with one another, which is expected given they
both represent momentum indicators of differing time scales. It is also apparent that
the target variable has almost no correlation with anything else, at the very least linear,
which is indicative that the features may indeed be irrelevant and the process
inherently unpredictable, or that any relationships are nonlinear, again indicating that
only nonlinear models may be able to extract something of value.

3.4) Training and Testing of Predictive Models for a Market Index

3.4.1) Models using the Index’s History and History of individual stocks

Initially, we will summarily refer to the model’s results mainly in regards to the
optimization criterion of R-squared, along with highlighting each algorithm’s special
side analysis, before concluding with the discussion and comparison along all four
metrics used, in conjunction with various benchmarks.

It is important to note that the training and tuning of the models was conducted via
MSE, with the intent to minimize it, as we are now predominantly interested in
maximizing predictive ability and not so much interpretability. However, we will
initially only mention performance as measured by R-squared and postpone the

31

discussion for all other metrics in the detailed results subsection, as it is a more
intuitive metric and offers slightly more interesting results than its counterpart.

We begin the implementation by applying Multiple Linear Regression. To
demonstrate the best line fit visually, a scatter plot of the data, both the train (in blue)
and the test (red) with the regression line superimposed follows:

Figure 8: Linear Regression: Line of best fit

Multiple linear regression best line fit

frain
aio Est

oS5

oo

]
=
® 005

-0.10

-0.15

-0.20

-0.02 -0.01 000 o1 ooz
predictions

The distribution of the data seems rather nonsystematic, and it is clear that a linear
model cannot possibly get any good forecasts out of that highly nonlinear feature
space, which however does not mean that nonlinear models would do significantly
better due to the lack of, at least a visible, pattern in the data.

The OLS’s weakness is exemplified by the very low score in the metrics of R-squared,
which for the in-sample prediction lies around 0.008, and for out-of-sample forecasts

is even lower, but still not negative. More specifically, the coefficients (standardized,
as the training is done in scaled data) along with their standard errors in parentheses,
and the p-values of the coefficients are as follows:

Table 4:
returns LA
-1 (0.038)
returns 0.0381
=2 (0.011)
0.0008
mal4 (0.067)
. 9.2034
rsilg (5.326)

32

ma30 0.0269

(0.12)

. 38.06
rsi30 (33.19)
-0.1893

mas0 (0.149)
. 42.87
rsi50 (47.12)
0.1644

ma200 (0.20)
. 28.139
rsi200 (46.23)
constant -21.081
(15.19)

R-squared 0.008

(in-sample)

Obs. 8698

R-Squared 0.002

(out-sample)

Variable P> |t|
returns, , 0.000
returns ,_, 0.001

mal4 0.991
rsild 0.084
ma30 0 0.822
rsi30 0.262
ma 50 0.205
rsi50 0.363

ma 200 0.428
rsi200 0.543

These p-values indicate that only our two lagged return values are statistically
significant, and the rest of the features are irrelevant in a linear setting.

It is interesting to see the effect of regularization to linear regression’s out of sample
performance. To that end, we move on to applying Elastic Regression, which
combines L1 and L2 regularization. Elastic regression has two hyperparameters we
grid search over, ‘alpha’ and ‘11 _ratio’. Alpha is a constant multiplying the penalty
terms, while 11_ratio is the penalty mixing parameter, which are involved in the
elastic regression equation as such:

minwﬁﬁn Y Xulf +a* 11 _ratiolu], +0.5%a*(1~11 _ratio)*|ulf (40)
i=1

If 11 _ratio=1= then the penalty is L2 only;
Elseif | lratio=1= the penalty is L1 only;
Else it is a mix of those two, which is where we will restrict our grid search to.

Elastic regression, via tscv grid search of the aforementioned two parameters achieved
a worse out-of-sample R-squared than linear regression, and an almost identical value
on the training data:

R? 0o = 0.00089
R’ ~0.0006

out—sample

Given those obvious nonlinearities, it is an interesting question how a polynomial
regression would fit to the data. We fit polynomials of both the 2" and the 3™ degree,
and find that the second degree one offers much better out-of-sample performance as
regards R-squared compared to the third, although still diving into negative territory.
More detailed discussion of the performance metrics will follow once the cumulative
performance plots are shown, and for now the best 2" degree fit line is shown:

Figure 9: Polynomial (degree=2) line of best fit

10]

ons

000
W
E
= -
o 0.05
-0.10
-0.15
L]
-0.20
—-0.20 015 -0.10 -0.05 Qoo os 10

future_returns

What we can see is that even though it may seem to be more capable at capturing
some nonlinearities than its purely linear cousin, the very nature of the data prevents it
from being able to effectively capture any existing patterns, resulting in a subpar
performance.

34

What about the performance of a family of models specifically created to deal with
time series, our ARMA(p,q) models? After some grid search of ARMA
‘hyperparameters’, here the p and q values, we come to the conclusion that the AR(2)
achieved the best performance by AIC, BIC, R-squared and MSE metrics, closely
followed by ARMA(1,1). The coefficients, along with their standard errors are
reported below. Note that p-values for both of them and the constant are zero, so they
are all statistically significant, a parameter also received into consideration when
deciding what model of this family was the best:

returns, = 0.0001-0.0381returns, | —0.0377returns, , (41)

(5.61e-07) (0.005) (0.004)
lelfsample ~ 000057
R’ ~0.00016

out—sample

Note that for the very long out-of-sample forecasting period that was conducted so
that the model would be comparably measured against the other models, consisting of
967 data points, eventually the forecast converged to the long-term mean of the series,
which is evident of those linear models’ inability to handle long prediction horizons.
Note how in the prediction graph for the last 30 in-sample predictions and first 10
out-of sample ones how quickly the prediction line flattens:

Figure 10: AR(2) line of best fit, in- and out- of sample

= forecast
20
ﬂl = retums
I

95% confidence interval

BETO BEVS EGRO BGBS BE00 BE05 -El] ET03 ET10

While even during in-sample prediction it is evident it cannot keep up with the daily,
seemingly random, fluctuations of the returns. That inability to fully model the data is
also made evident by the diagnostics of the fitted model:

35

Figure 11: Diagnostics Graphs: Residuals, Histogram, QQ plot and ACF

Standardized residual Histogram plus estimated density
06

— KDE
= N[0,1)
a5 N Hist

Q 2000 4000 000 ;00
MNormal Q-Q Correlogram
1.00
10 ..
a7s
5
Q50
W
n
= a 025
=)
& 000 ~
o 5 L w]
g -0.25
@ -0
-0.50
-15 075
[]
-1.00
-3 -2 -1 Q 1 2 3 a 2 4 6 8 0

Theoretical Quantiles

Where both the QQ Plot and the KDE plots indicate a less than perfect fit: The former
implies the samples do not follow the standard normal trend, indicated by the red line,
only to be confirmed by the latter as the residuals do not align with the theoretical
standard normal distribution, indicating there could be a better fit, perhaps with a
more sophisticated model.

The next algorithm, and one with good empirical performance in dealing with
nonlinear data, is the Random Forest. Essentially, it is an ensemble of individual
decision trees (CARTS) applied on various subsamples of the training data, with their
predictions’ averaged to simultaneously improve forecasting accuracy and control
overfitting.

The hyperparameter grid that was specified here for tscv consisted of the following
three parameters: the number of estimators, or the number of individual trees used in
every iteration; The minimum samples required to be at any leaf node for the split to
be allowed; The maximum depth of the tree, which should be monitored to avoid
detrimental overfitting. One other thing that should be mentioned is that tree based
algorithms, due to the way they are built, do not care much for feature scaling and will
deliver the same results regardless of any feature engineering done, which is another
key benefit of them, compared to say SVMs or Neural Networks which can suffer a
dramatic loss of predictive ability if faced with not appropriately designed data.

Decision trees, and by extend random forests, can enable us to measure the relative

importance of each feature during prediction, which can be though of as how much
the tree nodes use a particular feature to reduce impurity (or maximize information

36

gain). The higher that weight is, the more useful its feature was while building the tree,
and the higher its relative importance compared to the others. Here we create one such
bar chart, sorted in descending order:

Figure 12:Random Forest feature importances

returms_lag_2
=ild
a2 00

returms_lag_1

=iz0 [
miso [
mizoo [Jj

oo aons 10 (IR E] 0ao 025 0ao 0as

The graph is interesting as it depicts the short term moving average indicators as by
far the most important features, indicating that short-term momentum can indeed play
a part in forecasting. It is also interesting as it gives more weight to the second lagged
return than the more recent one. It also seems as most medium to long term metrics
were not considered especially important as well.

Random forest performs rather well compared to the previous two models, but with
still very low R-squared values:

2 2
Rout—sample ~ Rin —sample

~0.002

Moving on to the SVM, here too we execute a hyperparameter grid search, with three
components: The Kernel (linear or Radial Basis Function); Gamma, the Kernel
coefficient; C, the penalty parameter. The last two are only useful when utilizing the
Gaussian RBF Kernel, defined as

K(xi7xj) = exp(—y”xl. - xjH2)> (42)

1
= >0
4 20°
Thus gamma is a free parameter, which essentially decides how much influence the

support vector x, has in the classification of the training sample x,. A large gamma

can be thought to lead to high bias and low variance models, and vice versa. The
penalty parameter C essentially is used to decide how smooth the decision surface

37

should be, with smaller values leading to smoother decision planes, which means
smaller penalization of the slack variables introduced to simplify the initial
optimization problem, or allowing higher leniency to errors in order to avoid over
complicated decision boundaries.

After the grid search is performed, we end up favoring the RBF kernel, yet still get
very low values for the R-squared metric, falling into slightly negative territory for
out-of-sample predictions:

R:

in—sample

RZ

out—sample

~0.028
~—0.01

Finally, the more complicated, oftentimes criticized as black box processes, neural
networks are tested. We first evaluate the MLP. The architecture simply consists of
the densely connected layers for the learning part, along with two dropout layers for
efficient regularization:

Layer (type) Param # (Table 5: MLP)
Dense (n=10;)= - 1100 T
Dropout (dr=0.3) 0

Dense (n=150) 15150

Dense (n=50) 7550

Dropout (dr=0.1) 5

Dense (n=1) 0

Total params: 2=3=,851, n:neurons, dr=dropout r::e T

Judging by the loss graph, where loss here is equivalent to the MSE metric, we can
see that although it constantly declines as the training goes it, it does so in a very
noisy manner and with wide fluctuations, which could signal that either a better
choice of hyperparameters is needed, thus much more extensive tuning, or that the
data itself resembles a random walk thus is it impossible for any algorithm to
effectively learn its structure.

38

Figure 13:MLP Loss History (Training)

Vanilla last loss:0.860207

:Train Loss (MSE)
1.025

1.000
0875

0850

Loss

0azs
0800
0a7Ts

0.BS50
a o 40 a0 B 100 120 140
Epoch

The metrics also reveal that indeed its predictive ability is not particularly high, with a
still negative out-of-sample R-squared:

R? e = 0.00355
R’ ~—0.0951

out—sample

The next variant applied is the 1D (1 Dimensional) Convolutional Neural network. Its
exercise specific architecture can be summed up in the following board:

Layer (type) Param# (Table 6: CNN)
ConviD (f=64) 1344
MaxPooling 0
Dropout (dr=0.25) 0
ConvlD (f=64) 8256
Dropout (dr=0.15) 0
Flatten 0
Dense (n=100) 6500
Dense (n=100) 5050
Dense 51
Total params: 21,201, n:neurons, dr=dropout rate, f=filters

39

It uses the 1D convolutional layer, the 1D max pooling for feature extraction, the
dropout for regularization, and the densely connected layers as per customary at the

end for outputting the final predictions. The loss graph is very similar to the previous

one, indicating the aforementioned two potential problems and the same progress
during training.

Figure 14:CNN Loss History (Training)

ConviD last loss:0.736249

1.05

:Train Loss (MSE)

1.00

a3

oo

0Bs

Qa0

] 20 40 L8] ED 100 120
Epoch

What is interesting though is the very large disparity between the in- and out- of
sample coefficients of determination: While the out-of-sample one lies in negative
territory, the in-sample one is very quite high, particularly compared with that of all
preceding models:

Rii—sample ~ 02606
R; ~-0.1162

out—sample

The penultimate model is the LSTM, and its architecture is summarized as follows:

Layer (type) Param # (Table 7: LSTM)
Bidirectional LSTM (n=50) =;4400)
LSTM (n=100) 80400

Dropout (dr=0.25) 0

LSTM (n=50) 30200

Dense (n=100) 5100

Dropout (dr=0.25) 0

Dense (n=1) 101

Total params: 140,201, n:neurons, dr=dropout rate)

40

The first layer utilizes a Bidirectional LSTM cell, in order to take advantage of any
interrelationships both forward and backward in time, while the other layers are a
combination of vanilla LSTM cells, densely connected layers and dropout layers.
Below follows the graph of its loss history, which also is very similar to the previous
ones, perhaps indicative of the inherent randomness of the data preventing a smooth
convergence:

Figure 15:LSTM Loss History (Training)

LSTM last loss:0 872801

:Train Loss (MSE)

1.10

103
1.00 \
0os

0oo

1] 20 40 i ¥ ED 100 120
Epoch

This randomness is particularly evident here given the very high loss spikes at
seemingly random moments, when one would expect the error would simply drop off
in a rather predictable fashion. Despite this, the RNN achieved a positive
out-of-sample R-squared, and a rather high in-sample on too:

Ry e = 0.1266
R ~0.00386

out—sample
The final model is our RNN-CNN Hybrid. It is a computationally expensive model,
due to its complexity, thus it is trained with the least amount of epochs of all neural
networks. Notice the jump in the number of (trainable) parameters from the LSTM,
the second most extensive network, is over two-fold:

41

Layer (type) Param # (Table 8: LSTM-CNN)
ConviD (f=256) 5376)
MaxPooling 0

Dropout (dr=0.1) 0

LSTM (n=100) 142800

LSTM (n=100) 80400

LSTM (n=100) 80400

Dropout (dr=0.15) 0

Dense 101

Total params: 309,077, n:neurons, dr=dropo:c rate, f=filters)

This architecture first utilizes the CNN for feature extraction, in conjunction with the
MaxPooling operation, the output of which is directly then fed to a 3-layer deep
LSTM network for dissection, with a densely connected layer to output the final
prediction, and dropout layers for regularization.

Figure 16:Hybrid Loss History (Training)

Hybnd last loss:0.816864

——————— :Train Loss (MSE)

1.00

0os

083

080
a 20 40 a0 B0
Epoch

The hybrid nature of this network is also evident by its loss graph, which combines
the obvious, rapid downward movement of the loss observed in the graph of the CNN,
while also suffering from the occasional loss spikes, observed in the LSTM graph,
albeit less extreme and frequent. Nevertheless, at least judging by R-squared, it does

42

not achieve as high performance out-of-sample as the vanilla LSTM network, while
achieving a higher in-sample result than LSTM, but lower than the CNN. In short, its
performance lies somewhere between the average of its constituent members, at least
regarding that metric.

Rii—sample ~ 0 l 8959
R? ~-0.0572

out—sample
Nevertheless, R-squared is not a particularly suitable metric for nonlinear models, nor
does it necessarily tells us if the underlying model is actually good at what it does. In
addition, it is a metric mostly suited for rating model’s ability to explain the data and
not so much about its ability to predict, which is what we are principally interested in.

In addition,the empirical analysis will have to conclude by attempting to respond to
the question of what exactly, at the end of the day, constitutes a ‘good’ model? To
answer that, the establishment of a benchmark is necessary, with which the rest of our
working models can be measured with. Usually, an ‘index portfolio’ could be used to
that end, which simply is the index itself. However, we go further and establish two
kinds of benchmarks: A basic AR(0), essentially a constant, ‘always-long’ model, to
establish a quick baseline; And our ‘meta-model’ mentioned earlier, employed both
directly to the Index and to the Index’s history of individual stocks. The selection
process crowns the SVM as the winner, achieving a slightly higher score:

Figure 17: Meta-Model Selection results

Qo002
N Nested CV RA2

Qoo

mnnBl

B
~0.001

-0.002

-0.003

-0.004
o = = = = = = = o ==
H.I o (5] = Q (&) [=] [[
= b=l
2 g B 8 I J: b I L I
E'l w m ui m [} m [[1w
1] o i)] o [+] '} 1] ']
= = = = = = = = = =
> & § & s g § § 5 ¢
s & & & g = § 5 § @
g g E iy
5 e = i3
5 = c 0
e 2 = E
£ m
- i

43

Therefore, to alleviate both aforementioned concerns, the following two graphs will
plot not only the R-squared of all our models, but also 3 other useful metrics: MSE,
Correlation and daily Sharpe ratio, which have been computed as described in the

preceding ‘Data Preparation’ section, including the benchmark and the meta-models:

Figure 18: Train set results

Train Metrics

L5}

L=

h

-0.05
-0.10
e = e 2 = ™ = =
= E g 5 5 & 5 g 5 B 5 3 5
i e g
* ¢ § E 3 8 5 ® b & 3 i 3
= = i = & i 5 o E = (i =
= = [i] = =
4 ¢ 3 g ¢ ¢ ¢ & £ % £ I
o 2 @ F] = =y m @ a]
= m =]) 5 il 4 = 3 k=
E w = 5 = B g £ z z
g 2 I S E §
s 2 g 3 3 s & £
B = o — @ 5
£ M = a 3 &
=] o E
5] = E
o=
o
(i

What does that graph reveal?

First, regarding our primary tuning metric, the MSE, we observe that almost every

035

030 BNl ain_kharpe B 2 frain B correlation_train mee_train®1{#0
025

020

o1

o1

w I i

single model outputs roughly the same number, with the CNN being slightly superior.

This may be a confirmation of the suspicion we had since the EDA, namely of the
rather random nature of the data, which disallows any model to effectively learn it,

thus added complexity should not be equated with improved forecasting ability. This

is further confirmed by the fact that all models’ MSE is very close to that of all our
three benchmark models, indicating that they in fact do fail to do any better.

Regarding Pearson’s correlation, an interesting pattern emerges: The more
complicated models, here the neural networks, all seem to have a very high

coefficient, especially relevant to the benchmarks. That, in conjunction with the rather

low MSEs and given the high R-squared values of the CNN, RNN and Hybrid

networks could imply they overfitted the data, in spite of the dropout regularization
they were subject to and their relatively mild size. If that is true, then those model’s
performance would drop quite substantially when employed on out-of sample data.

44

The story the meta-models let on, regarding that metric, is also interesting: It seems
like predicting the Index directly is a much more effective approach than attempting
to individually predict its constituents. This could indicate that the autocorrelation of
the values of the index is a stronger one that its relation to its comprising stocks across
that time period.

When it comes to Sharpe rations, we see that they are generally close to zero or
negative, with the notable exception of the CNN, which has an impressively high
Sharpe compared to its competitors and the benchmarks, indicating that it may be a
promising model. The rest of the models however hover around the benchmark’s ratio,
indicating again that they do not in fact offer much value.

Again, the meta-models offer themselves for a very interesting story. Here we see the
reverse pattern that what was the case with correlation, where following the history of
the index results in a significantly poorer financial outcome that taking the average of
its constituents. It could be owing to the fact that individual stocks are quicker to
respond to price movements, thus when modelling on their level, it is easier to capture
the right direction, thus earning higher Sharpe ratios, though that is not definitive.

It is an oddity that the RNN, even though it seems to do well in its predictions as
measured by R-squared and correlation, has a very bad Sharpe ratio and is included
among the three worse models in that regard (the two other being linear regression
and SVM). An explanation for this could be that when the RNN outputs a value in the
correct direction of the target (for example a positive value when the target is positive)
it is closer in distance to the target, thus increasing R-squared, yet often fails to
predict in the correct direction, thus suggesting bad tactics. Below follows the
breakdown of results:

Table 9:

TRAIN Sharpe R-squared Correlation MSE*1000
AR(2) 0.0484 0.0005 0.0325 0.1155
Benchmark 0.0484 0.0000 -0.0257 0.1155
Convolutional
Neural 0.1275 0.2606 0.5179 0.0854
Network
Elastic
Regression
Hybrid
Neural 0.0295 0.1896 0.4398 0.0937
Network
Linear
Regression
Meta-Model:
Index 0.0450 0.0000 0.0331 0.1165
Bottom-Up
Meta-Model:) ho03 g 008 01755 01122
Index History

Polynomial ~ 0.0042 0.0313 0.1770 0.1119

0.0424 0.0009 0.0559 0.1154

-0.0651 0.0083 0.0913 0.1146

45

(degree=2)
Regression
Random

Forest 0.0482

0.0020

Recurrent
Neural
Network
Support
Vector
Regression
Vanilla
Neural
Network

-0.0568 0.1266

-0.0873 0.0288

0.0514 0.0036

0.0505

0.3591

0.1755

0.4322

0.1153

0.1009

0.1122

0.1151

Moving on to the test set results, we also have interesting insights to gleam, especially
in comparison to the train set results. Here is where theoretically a more unbiased
estimate of our algorithms’ performance can be formed:

Figure 19:Test set results

015

Test Metrics

B &st_sharpe B 2 test

010

oo

ch

|| |

oo

-0.05

AR(2)

Benchmark

Convolutional Meural Metwork
Elastic Regresion

Hybrid Neural Metwork

B correlation_test

SN ree_test* 1000

TN

Linear Regression

Meta-Model: Index Bottom-Up

Meta-Model: Index History

2) Regression
Ramdom Forest

Polynomial (degres

Recurrant Naural Metwork

Support Vector Regressor
‘Vanilla Meural Metwork

Initially, we observe the same pattern regarding MSE: It is very similar across our
models and fluctuates very little. This stability across models and working sets could
be yet another indication that added model complexity, does not actually help bring
the error down; That could be due to a variety of reasons, perhaps the biggest one

46

being the semi random nature of the data itself, as predicted by economic theory. Here,
the benchmark model also has around the same error as the other models, lending
more weight to that perspective.

We also observe that indeed, as regards to R-squared and correlation coefficients
metrics, the performance of the best train set neural networks plummets to solidly
negative territory, indicating redundant complexity. This does not impede them from
achieving positive returns, and the CNN seems to be the by far best model in that
regard, easily topping the charts. Aside from the neural networks, we can observe
generally good correlation scores for our various models, much higher than what
achieved by the benchmark.

It can also be seen that even the very simple linear and elastic regression models
result in favorable financial outcomes, comparable to the random forest and support
vector machines, again favoring the hypothesis that when it comes to financial time
series modeled without a particularly rich feature set, and in the daily frequency,
complex is not necessarily better. Nonetheless, they for the most part still fail to
surpass the simplistic benchmark set.

It is intriguing that all Sharpe values in the test set are positive, in contrast to the much
more disappointing train set values, as one would expect the opposite i.e the
out-of-sample results would be worse. A reason for this could be that the train set is
simply harder to model: It covers a long period beginning from 1980 all the way up to
2015, which includes many crises and rises. On the other hand, the test set covers the
period from 2015 up to later 2018, a period when the US stock market rallied, so
pretty much any strategy would work well, justifying the high Sharpe values across all
models.

In the same vein, the meta-model based on the individual stocks seems to do much
better than the one directly predicting the index. This again could be attributed to it
being more sensitive to individual stocks’ upwards movement, rather than just relying
on a more modest variation of the entire index, thus better able to capture those
fluctuations, like in the training set.

Another reason for higher Sharpe ratios could simply be that the complexity of the
test set is lower, as for the most part there is just one big upward trend, and no dilution
with recessions and other unforeseen or ‘black swan’ events, like there probably were
quite a few in the preceding, long 30- year period. For completeness reasons, the
breakdown of the results follows:

Table 10:

TEST Sharpe R-squared Correlation MSE*1000
AR(2) 0.0443 0.0002 0.0876 0.0577
Benchmark 0.0459 -0.0006 0.0000 0.0577

Convolutional
Neural 0.1464 -0.1163 -0.1979 0.0640
Network

Elastic

. 0.0443 0.0006 0.0731 0.0576
Regression

47

Hybrid
Neural 0.0244 -0.0572 -0.1144 0.0606
Network
Linear
Regression
Meta-Model:
Index 0.0464 0.0028 0.1031 0.0579
Bottom-Up
Meta-Model:
Index History
Polynomial
(degree=2) 0.0173 -0.0444 -0.0310 0.0602
Regression
Random
Forest
Recurrent
Neural 0.0127 0.0039 0.0628 0.0571
Network
Support
Vector 0.0267 -0.0108 0.0006 0.0583
Regression
Vanilla
Neural 0.0146 -0.0951 -0.0201 0.0632
Network

0.0499 0.0021 0.0626 0.0576

0.0267 -0.0108 0.0006 0.0583

0.0443 0.0021 0.0509 0.0576

3.4.2) Summary of evidence on training and testing of predictive models for a market
index

The purpose of the meta-models, is to find a systematic way to be able to foresee in
advance what model among all available options would be best in forecasting abilities
over a given time horizon. Some would argue that more complex models are better,
due to their supposed ability to capture nonlinearities more easily; Others, might
accept the fact that the stock market is unpredictable and opt for the simpler, more
computationally efficient ones. Still others might use a process similar to our own and
make a more data-driven decision, based on benchmarks and very extensive
cross-validation.

Conceptually speaking, the last approach could be considered statistically superior as
an analyst cannot possibly know in advance what the best algorithm would be at any
given time to predict such time varying and ultra sensitive series. That is the reason
why here the decision is made to establish not one but two such meta-models, one on
the index itself and one based on forecasting and averaging over individual stocks.

The reasoning behind this is that the combination of those methodologies would
provide us with a more sophisticated benchmark than a simple constant, and allow us
a better glimpse into the inner workings of the data. From the results, at least one
interesting insight is indeed found due to their simultaneous application:

48

On the more complex and longer-spanning training set, the model focusing on the
Index itself proves superior. That may suggest that over longer, more tumultuous
periods, an analyst should preferably focus on the higher-level history of the index in
question, presumably due to its ability to average all the shocks and provide better
evidence for future performance.

However on the shorter, and arguably easier to model test set, where a clear bullish
trend was in place, the meta-model dissecting the Index to its individual parts proved
superior. That could be due to stocks individually being more sensitive to such
movements and trend cycles, and even when averaging over each one’s prediction,
can still provide a more accurate picture of performance in shorter-term horizons,
particularly if there is a clear underlying trend.

These observations however do not imply these are the best models indeed, or even
that the particular methodology employed to come up with them is the optimal one;
There are still competitors clearly superior in the arguably most important metric, the
Sharpe ratio, such as the CNN, and even in all other metrics they still fare rather
modestly, pretty much in par with the rest. This however does make for good
benchmarks, and conceptually, it does not invalidate at all the intuition with which
they were conceived in the first place: That human intuition alone about the fitness of
any model should not be trusted above analytical methodologies when choosing what
to apply in practice, as it unfortunately is just not possible to know better beforehand,
doubly so when intuitions about statistics are very often proven wrong and
misleading.

4. Conclusion

The purpose of this exercise was to examine whether several machine learning
algorithms were capable of producing any meaningful financial strategies, on the
daily level and relatively constrained on the richness of features available. The
empirical analysis indicated that while complex algorithms like CNNs or Random
forests can result in good outcomes, as measured by the Sharpe ratio, it also indicates
that complexity is not necessarily adding enough value to be justifiable in
out-of-sample predictions.

The exercise also indicated that stock returns are not a particularly well-behaved time
series, often demanding many involved preprocessing operations and a lot of data for
even marginally useful results, and that many simplifying assumptions often
underlying traditional econometric and financial models, like stationarity, often do not
apply without handcrafted engineering or yet persist, eventually limiting their
effectiveness. Then comes the need for more advanced models, particularly
nonparametric, which allow the data itself to shape architecture instead of the other
way, like it happens with most traditional, often oversimplifying models. This intense
nonlinearity also demands more, better data and thus domain expertise to decide the
most important factors.

This has been far from an exhaustive analysis, and there are many promising and
fascinating avenues to extend such analysis. The most basic directions would be to
obtain a richer feature space, via even more data, more varied indicators including
fundamental and macroeconomic ones, and perhaps at different time intervals, as

49

daily data tend to be rather noisy. Also, more computational power would be
necessary in order to train larger models much faster than what a conventional
personal computer would allow, and for more extensive cross-validation techniques in
reasonable time with smarter, ‘informed-search’ approaches like coarse-to-fine,
Bayesian optimization and genetic algorithms.

Other very interesting ways to create more robust predictive models is to take
advantage of computer vision and natural language processing: For example, the
former could be used in predicting the traffic in ports and thus measure the direction
in which economic activity could move, according to shipping activity. The latter has
recently found interesting use in sentiment analysis of social media posts, which could
be used to reflect the mood regarding a corporation, as sentiment is a major driving
factor of prices, regardless of the rationality assumptions held by classical economics.

Moreover, generative adversarial models (GANs) could be trained in order to
synthesize more artificial training data in areas of finance where availability of data is
not high, like for example derivatives or emerging markets, and autoencoders could
be utilized as very effective dimensionality reduction techniques, alongside other
popular unsupervised learning techniques, like PCA and t-SNE, being particularly
helpful in large, feature-rich datasets.

Reinforcement learning has been found to be a very promising future avenue for more
effective machine learning in a wide variety of tasks not well suited for traditional
supervised learning, like autonomous cars, learning games and of course trading, and
is already slowly being employed by major banks, as its merits become clearer and
the algorithms improve.

Another very interesting idea, would be to more effectively merge insights from
psychology and behavioral economics into predictive models, even going so far as to
insert elements of human irrationality into the models deployed for forecasting. That
could paradoxically prove to improve out-of-sample performance, as it is quite
apparent that human irrationality often is the driver of stock market movements, and it
is at least an oversight on the part of modelling to overlook it entirely while deployed
in the real, filled with biases and cognitive shortfalls, world.

Finally, a supremely exciting development, which still is in its early steps, is the
application of Quantum mechanics’ principles into the machine learning pipeline.
This could be done via the still-to-be commercially deployed quantum computers that
would enable unparalleled processing abilities, and via the clever exploitation of
various quantum world properties, like Superposition and Entanglement, to even
further tremendously improve performance.

5. Appendix

Besides predicting returns, is machine learning used in other financial contexts? The
answer is a resounding ‘yes’, with broad applications including but not limited to risk
assessment in the consumer and banking level, credit scoring, bond valuation and
even volatility forecasting. A short, very much not all-inclusive, overview of these
exciting applications follows:

50

Khandani et al (2010) attempt to construct consumer credit risk models using machine
learning algorithms, like CARTs, radial basis functions and support vector machines.
The results look promising with very high, out-of-sample R-squared values up to 85%
for 6-12 month delinquency forecast horizons. Those results, the authors report, could
lead to a conservation of resources in case of losses ranging from 6% to 25% of total
losses. A final very important implication is that by aggregating the individual
forecasts to build a measure of the systemic risk in the consumer lending sector, it is
possible to model it in its entirety better thus reducing the chances of another big
financial meltdown occurring out of the blue.

Closely related to the work by Khandani et al (2010), Ong et al (2005) again use
varying methods to build credit scoring methods, like ANNs (Artificial Neural
Networks) and decision trees. The novelty of their work is on utilizing genetic
algorithms, which seem to outperform all other models, and point to the potential of
such methods over backpropagation for ANN training. Martens et al (2007) focus on
improving the explainability of SVMs in the context of credit risk models, and they
do so with minimal loss of classification accuracy, thus resolving an important
criticism of ML models working as black boxes, which especially in areas like finance
where interpretability is critical, can be a major drawback.

Machine learning has also been used in the context of (corporate) bankruptcy risk
assessment.Min and Lee (2005) test various models, like MLPs, MDA, Logit and
SVMs, and the later are proved to perform better, with the added bonus that they do
not require much data to be trained effectively, due to the transformations of the data
they perform, essentially reducing the complexity of the problems. Atiya (2001) used
indicators inspired by the work of Merton in the context of credit risk models, in
conjunction with MLPs, and showed that they can provide a significant boost in
predictive performance, up to 85.5% for a three-year ahead forecast.

Sirignano et al (2018) utilize deep learning to examine a particularly broad range of
variables to assess mortgage risk, and they too find strong nonlinear interactions
between them. Based on that, they reason that the standard linear models can
significantly be misspecified and fail to recognize the effects of various key factors,
like interest rates, unemployment and housing prices on consumer behavior on
consumer borrowing and weaken the economic validity of their conclusions. Thus,
with their extensive out-of-sample testing, they show that their deep neural network
architecture can effectively deal with the massive dataset and naturally work out the
nonlinearities, which “significantly improves the accuracy of loan- and pool-level risk
forecasts, the investment performance of mortgage trading strategies, and the
valuation and hedging of mortgage-backed securities” (Sirignano 2018, page 32).

Their work has two significant implications: First, the effectiveness of their neural
network can pave the way to absolve econometric analysts from the extensive feature
engineering they may have to perform in order to extend the linear models to more
capably adapt to nonlinearities, as they are not naturally accustomed to it, by more
readily applying such architectures. Second, the model’s predictive prowess hints at it
being useful for a variety of other important applications, given it is appropriately
refitted to its problem domain, including the valuation and hedging of
mortgage-backed securities as in Curley & Guttentag (1977), Schwartz & Torous
(1989) and Stanton & Wallace (2011).

51

Butaru et al (2016) apply decision trees, random forests and regularized logistic
regression, to measure risk in the credit card industry, and propose better risk
management measures. They find that decision trees and random forests deliver better
in- and out- of sample forecasts, especially in the short term. However, they find that
the delinquency rates vary wildly among different banks, so even those better models
cannot be broadly applied accurately to all cases, which are defined by their
heterogeneity, for example in the management styles or other macroeconomic risk
factors.

Similarly, Huang et al (2004) use MLPs and SVMs for credit rating analysis. They too
found that they performed well in their given task (close to 80% classification
accuracy for both, with SVMs offering slightly better performance) ,which was to
learn the dynamics of past evaluations of credit risk and to use that to accurately
predict the current credit score of corporations. This is in par with the literature’s prior
findings, which shows that Al systems regularly outperform classic statistical learning
methods due to their increased complexity, even though it may more easily lead them
to overfitting problems. Interestingly, they found that even though Taiwanese and
American markets favor similar lists of variables crucial to the bond rating process,
the feature importance between them was different, which could mean that the models
should be retrained for maximum performance according to the market they are being
applied to, and there is no ‘one size fits all’ system.

To cite but a handful of examples of the aforementioned literature which indicates
ML systems can be superior more often than not, the authors mentioned Singleton and
Surkan (1990) who used an MLP to classify Moody’s bond ratings of four categories,
where they achieved 88% accuracy; Kim’s (1993) comparison of linear regression,
discriminant analysis, logistic analysis and a rule-based system for bond rating, and
found that neural networks outperformed everything, on a 6-level rating scheme using
Standard and Poor’s financial data; Moody and Utans (1995) who also concluded that
neural networks reigned supreme in all of the 3, 5 and 16 category classification tasks;
and Maher and Sen (1997) who again found neural networks gave the better
performance (up to 70% accuracy) when compared with logistic regression.

Machine learning models have also been used to measure and predict volatility.
Monfared and Enke (2014) used GJR-GARCH models in conjunction with three
mainstream neural network architectures, in order to improve the GARCH model’s
performance in periods of both calm waters and crisis. They conclude that even though
the Hybrid approach (combining the GARCH with a Neural Network) could improve
the predictions in times of crisis, due to the increased complexity of the data which
gets ameliorated by the added intricacy of the hybrid model, in peaceful times the
hybrid models tended to perform subpar compared to the GJR-GARCH model used
standalone, due to the added complexity of the hybrid. Finally, they too have come to
the conclusion that there is no ‘one size fits all” approach, as different architectures
fare better in different circumstances, as the underlying dynamics are fluid, and no
single framework reigns supreme.

52

6.Bibliography

Pedregosa Fabianpedregosa, F., Michel, V., Grisel Oliviergrisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., ... Duchesnay Edouardduchesnay, Fré. (2011).
Scikit-learn: Machine Learning in Python Gaél Varoquaux Bertrand Thirion
Vincent Dubourg Alexandre Passos Pedregosa, Varoquaux, GramforT et al.
Matthieu Perrot. Journal of Machine Learning Research, 12, 2825-2830.
Retrieved from http://scikit-learn.sourceforge.net.

Hutchinson, J. M, Lo, A., & Poggio, T. (1994). Massachusetts institute of technology
center for biological and computational learning A Nonparametric Approach to
Pricing and Hedging Derivative Securities Via Learning Networks. Convergence,
1879(1471).

Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine
with optimal choice of kernel function parameters. Expert Systems with
Applications, 28(4), 603—614. https://doi.org/10.1016/j.eswa.2004.12.008

Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A
survey and new results. IEEE Transactions on Neural Networks, 12(4), 929-935.
https://doi.org/10.1109/72.935101

Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible
credit scoring models using rule extraction from support vector machines.
European Journal of Operational Research, 183(3), 1466—-1476.
https://doi.org/10.1016/j.ejor.2006.04.051

Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via
machine-learning algorithms. Journal of Banking and Finance, 34(11),
2767-2787. https://doi.org/10.1016/j.jbankfin.2010.06.001

Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis
with support vector machines and neural networks: A market comparative
study. Decision Support Systems, 37(4), 543-558.
https://doi.org/10.1016/50167-9236(03)00086-1

Sirignano, J., Sadhwani, A., & Giesecke, K. (2018). Deep Learning for Mortgage Risk.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2799443

Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Learning in Finance,
(February), 1-20. Retrieved from http://arxiv.org/abs/1602.06561

Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3281018

Giglio, S. W. (2016). Inference on Risk Premia in the Presence of Omitted Factors.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2865922

53

Moritz, B., & Zimmermann, T. (2016). Tree-Based Conditional Portfolio Sorts: The
Relation between Past and Future Stock Returns. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2740751

Zheng, A., & Jin, J. (2017). Using Al to Make Predictions on Stock Market, 1-6.

Monfared, S. A., & Enke, D. (2014). Volatility forecasting using a hybrid GJR-GARCH
neural network model. Procedia Computer Science, 36(C), 246—253.
https://doi.org/10.1016/j.procs.2014.09.087

Ong, C.S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using
genetic programming. Expert Systems with Applications.
https://doi.org/10.1016/j.eswa.2005.01.003

Surkan, A. J., & Singleton, J. C. (1990). Neural networks for bond rating improved by
multiple hidden layers. In IJCNN. International Joint Conference on Neural
Networks.

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using
support vector regression on daily and up to the minute prices. The Journal of
Finance and Data Science. https://doi.org/10.1016/].jfds.2018.04.003

Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018). NSE Stock
Market Prediction Using Deep-Learning Models. In Procedia Computer Science.
https://doi.org/10.1016/j.procs.2018.05.050

Mabher, J.)., & Sen, t. k. (1997). Predicting Bond Ratings Using Neural Networks: A
Comparison with Logistic Regression. International Journal of Intelligent
Systems in Accounting, Finance & Management.
https://doi.org/10.1002/(sici)1099-1174(199703)6:1<59::aid-isaf116>3.3.c0;2-8

Lake, B., & Baroni, M. (2018). Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks. In 35th
International Conference on Machine Learning, ICML 2018.

Schwartz, E. S., & Torous, W. N. (1989). Prepayment and the Valuation of
Mortgage-Backed Securities. The Journal of Finance.
https://doi.org/10.1111/j.1540-6261.1989.tb05062.x

Brealey, R. (1977). Value and Yield Risk on Outstanding Insured Residential
Mortgages: Discussion. The Journal of Finance.
https://doi.org/10.2307/2326774

Stanton, R., & Wallace, N. (2011). The bear’s lair: Index credit default swaps and the

subprime mortgage crisis. Review of Financial Studies.
https://doi.org/10.1093/rfs/hhr073

54

Moody, J., & Utans, J. (1994). Architecture selection strategies for neural networks:
Application to corporate bond rating prediction. Neural Networks in the Capital
Markets.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research.

Szegedy, C., Liu, W,, Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A.
(2015). Going deeper with convolutions. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2015.7298594

Nayak, S. C., Misra, B. B., & Behera, H. S. (2018). Artificial chemical reaction
optimization based neural net for virtual data position exploration for efficient
financial time series forecasting. Ain Shams Engineering Journal.
https://doi.org/10.1016/j.asej.2016.10.009

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with
Gradient Descent is Difficult. IEEE Transactions on Neural Networks.
https://doi.org/10.1109/72.279181

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A
structure for efficient numerical computation. Computing in Science and
Engineering. https://doi.org/10.1109/MCSE.2011.37

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science
and Engineering. https://doi.org/10.1109/MCSE.2007.55

McKinney, W. (2010). Data Structures for Statistical Computing in Python.
Proceedings of the 9th Python in Science Conference.

Oliphant, T., & Millma, J. k. (2006). A guide to NumPy. Trelgol Publishing.
https://doi.org/D0I:10.1109/MCSE.2007.58

Kim, J. W., Weistroffer, H. R., & Redmond, R. T. (1993). Expert systems for bond
rating: a comparative analysis of statistical, rule-based and neural network
systems. Expert Systems. https://doi.org/10.1111/j.1468-0394.1993.tb00093.x

Hochreiter, S., Frasconi, P., & Schmidhuber, J. (2001). Gradient Flow in Recurrent
Nets: the Difficulty of Learning Long-Term Dependencies - Abstract - UK PubMed

Central. A Field Guide to Dynamical Recurrent Neural Networks.

Donahue, J., & Darrell, T. (2017). Dversarial eature earning. Iclr.

55

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic gradient descent.
ICLR: International Conference on Learning Representations.

Yao, J, Li, Y., & Tan, C. L. (2000). Option price forecasting using neural networks.
Omega. https://doi.org/10.1016/50305-0483(99)00066-3

Breiman L. (2001). Machine Learning, 45(1), 5-32. Statistics Department, University
of California, Berkeley, CA 94720. https://doi.org/10.1023/A:1010933404324

Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Prediccién del
indice del mercado bursatil utilizando una red neuronal artificial. Journal of
Economics, Finance and Administrative Science, 21(41), 89-93.
https://doi.org/10.1016/j.jefas.2016.07.002

Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk
management in the credit card industry. Journal of Banking and Finance, 72,
218-239. https://doi.org/10.1016/j.jbankfin.2016.07.015

Chollet, F. (2015) keras, GitHub. https://github.com/fchollet/keras
Talib: https://github.com/mrjbq7/ta-lib

Seaborn: https://zenodo.org/record/12710#. XUCN IntS-Uk
Statsmodels: www.statsmodels.org/stable/index.html

J. Dean, G. Corrado, R. Monga, et al (2012). Large scale distributed deep networks,
Advances in Neural Information Processing Systems, pp. 1223-1231, 2012.

56

