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Abstract

This paper introduces unit-specific heterogeneity in panel data threshold regression. Both slope

coefficients and threshold parameters are allowed to vary by unit. The heterogeneous threshold

parameters manifest via a unit-specific empirical quantile transformation of a common underlying

threshold parameter which is estimated efficiently from the whole panel. In the errors, the un-

observed heterogeneity of the panel takes the general form of interactive fixed effects. The newly

introduced parameter heterogeneity has implications for model identification, estimation, interpre-

tation, and asymptotic inference. The assumption of a shrinking threshold magnitude now implies

shrinking heterogeneity and leads to faster estimator rates of convergence than previously encoun-

tered. The asymptotic theory for the proposed estimators is derived and Monte Carlo simulations

demonstrate its usefulness in small samples. The new model is employed to examine the Feldstein-

Horioka puzzle and it is found that the trade liberalization policies of the 80’s significantly impacted

cross-country capital mobility.

Keywords: Panel Data; Threshold Regression; Heterogeneity; Interactive Fixed Effects; Regime

Switching; Feldstein-Horioka Puzzle.
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1. Introduction

Threshold regression was introduced in the seminal paper of Tong (1978) and has since become

one of the few key non-linear models widely employed by econometricians. Tsay (1989, 1998) char-

acterizes threshold models as “practical non-linear models” which stand out in the vast expanse of

the non-linear world. Indeed, threshold regression can capture complex properties of the data like

limit cycles, which in economics correspond to the existence of multiple equilibria often predicted

by economic theory, and yet still maintain intuitive interpretation and tractability. Threshold
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regression was introduced in panel data in Hansen (1999) and has since been an active field of the-

oretical and empirical research. This is because the pooled information across units helps with the

identification of the different regimes, as well as the precise estimation of the threshold parameter.

In this paper, we provide a comprehensive asymptotic theory for estimation and testing in panel

threshold regression model with two key features: i) heterogeneous parameters across units and ii)

interactive fixed effects. We show how to estimate the heterogeneous slopes and thresholds and

prove estimator consistency. We derive novel estimator rates of convergence and offer asymptotically

valid confidence intervals. Finally, we propose a test for the null hypothesis of linearity against the

alternative of a threshold regression.

Parameter heterogeneity arises naturally in panel data which consists of many cross-sectional

units. The greater the number of units, the more likely it is that the model parameters will

vary across them. This is a fact that is well recognized in the panel data literature, see e.g. the

contributions in Swamy (1970), Pesaran and Smith (1995), Pesaran et al. (1999), Pesaran (2006),

Fernández-Val and Lee (2013), Bonhomme and Manresa (2015), Gao et al. (2020), Norkutė et al.

(2021), Trapani (2021), and Chen et al. (2022), inter alia. In the heterogeneous panel model, the

parameters of interest are the individual unit slope coefficients and also their average. Therefore,

only Mean Group (MG hereafter) estimators can be used here (Pesaran and Smith, 1995). If the

model is static and linear, pooled estimators assuming homogeneity across units can consistently

estimate the average slope across units (see e.g. Pesaran (2006)) but this property does not extend

to non-linear models like the panel threshold regression.

The second key feature of the threshold model considered here is interactive fixed effects in the

error term. Interactive fixed effects represent a generalization of the standard two-way fixed effects

model. As their name suggests, interactive fixed effects are the inner product of a vector individual

effect with a vector time effect, which is a more flexible and empirically relevant way of captur-

ing unobserved heterogeneity. Interactive fixed effects have been widely used in microeconomics,

macroeconomics and finance. In microeconomics, they are able to capture the time-varying effect of

unobserved unit-invariant characteristics like ability and soft skills, see e.g. Kejriwal et al. (2020).

In macroeconomics, they can be interpreted as a set of unobserved multiple common factors useful

in capturing cross-section dependence (Pesaran, 2006) and in finance as unobserved factors for asset

returns (Giglio and Xiu, 2021).

Both parameter heterogeneity and the existence of interactive fixed effects have important

implications for model estimation. Parameter heterogeneity reduces the estimator rate of conver-

gence and interactive fixed effects cannot be removed by the standard fixed effects transformations.

There are several types of estimators that can deal with interactive fixed effects, such as the quasi-

difference approach (Holtz-Eakin et al., 1988), the generalized method of moments estimator (Ahn

et al., 2001, 2013; Juodis and Sarafidis, 2022), the Common Correlated Effects (CCE) estimator

(Pesaran, 2006), the Principal Components (PC) estimator (Bai, 2009), the two-stage instrumental

variables estimator (Norkutė et al., 2021), the Post-Nuclear Norm Regularized estimator of Moon

and Weidner (2018), and the Lasso type shrinkage methods on fixed effects (Lu and Su, 2016; Su
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et al., 2016). Yet, not all of the above estimators can deal with heterogeneous coefficients. This pa-

per employs the CCE method for estimation because it is general enough to allow for heterogeneous

coefficients, is analytically tractable, has excellent small sample properties, and is computationally

fast which is important in threshold regression estimation.

The model estimation by CCE is not straightforward and presents several technical difficulties.

First, the identification of individual slope coefficients requires that the threshold variable has a

common support across units, something which is unlikely in practice. This is a serious problem

that can only be avoided if the threshold parameters are also allowed to be heterogeneous across

units. Threshold parameter heterogeneity, however, removes the appeal of panel data, as it the

problem becomes equivalent to running separate time series regressions. To break this impasse, we

assume that there is a homogeneous threshold parameter across units and propose transforming

the threshold variable by the monotonic percentile function. The transformation results in all panel

units having a common support for the transformed threshold variable and a transformed common

threshold parameter. The common threshold parameter (now a threshold in terms of percentiles)

can be estimated precisely using information from both dimensions of the panel as it is desirable.

At the same time, the threshold percentile, which splits the model coefficient regimes, translates

to heterogeneous thresholds in the original threshold variable. Therefore, we estimate a common

parameter across units, whose projected interpretation in the original threshold variable is that of a

heterogeneous threshold parameter. This modelling choice gives us the best of both worlds; efficient

panel data estimation of the common threshold percentile parameter, no identification issues for

the heterogeneous coefficient slopes, and heterogeneous interpretation of each unit’s threshold. The

percentile function transformation and the impact of parameter heterogeneity on marginal effects

are presented in Section 2 below.

Another key obstacle is that the asymptotic distribution of the threshold parameter depends on

nuisance parameters related to the distribution of the error term, see e.g. Chan (1993). To deal with

this problem, Hansen (2000) derives a nuisance parameter-free asymptotic distribution, under the

assumption of a “shrinking theshold”. The shrinking threshold assumption is maintained here, as in

almost all other papers in the literature, however, what is new here is that it interacts with the slope

coefficient heterogeneity. The shrinking threshold assumption in this model contemporaneously

implies shrinking heterogeneity. As the threshold magnitude shrinks, the relevant slope coefficients

become less heterogeneous and the estimator rate of convergence becomes faster, reaching in the

limit that of a pooled estimator in a homogeneous panel. To the best of our knowledge, this is the

first time this effect is observed.

In terms of threshold regression in heterogeneous panels, this paper is closer to that of Chudik

et al. (2017), which considers almost the same framework, however, it is mostly focused on the

specific on an empirical application and does not provide any asymptotic theory supporting the

estimation methodology. We fill this gap with the current contribution. Another paper that is very

close is that of Miao et al. (2020b) which assumes that units belong to a small number of groups

and parameters vary across groups. This paper allows only for fixed effects, and not for the full
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interactive fixed effects model considered in the current contribution. Furthermore, the empirical

application is focused on estimating the number of underlying groups and group membership, which

is different from the form of parameter heterogeneity considered here. The two papers are therefore

clearly distinct. Miao et al. (2020a) consider panel threshold regression with interactive fixed effects

but restrict the parameters to be homogeneous across units. Hacıoğlu Hoke and Kapetanios (2021)

consider a smooth transition model with heterogeneous coefficients and interactive fixed effects.

Massacci (2017) and Massacci et al. (2021) consider threshold regression in the heterogeneous

loadings of pure factor models, without additional regressions. Other contributions in the area are

those of Yu et al. (2023) which considers threshold regressions with endogenous regressors, Chen

et al. (2012) which considers panels with two threshold variables, and Seo and Shin (2016) which

considers threshold regression in dynamic panel data models with a short time dimension. All these

contributions assume homogeneous coefficients and standard fixed effects.

We conclude this paper by applying the new methodology to examine one of the most impor-

tant problems of macroeconomics, that of the Feldstein-Horioka puzzle (Feldstein and Horioka,

1980). The puzzling fact is that domestic savings in a country are highly correlated with domes-

tic investment, meaning that savers disregard potential opportunities for higher returns in other

countries. The new threshold model studied in this paper allows for heterogeneous coefficients

and cross-section dependence which have both been documented previously in country-level data

(Chudik et al., 2017). Our results confirm the existence of the puzzle but show that higher trade

openness results in greater international capital mobility. We find that most countries moved into

this “high capital mobility” regime in the 80’s, which is in line with the trade liberalization policies

introduced at that time (Faini, 2004).

The remainder of the paper is organised as follows. Section 2 describes the model we study.

Section 3 develops the estimation strategy. Section 4 provides the asymptotic theory. Section 5

introduces a test for the presence of the threshold effects. Section 6 applies the methodology to study

the relationship between inflation and economic growth. Section 7 concludes. The supplementary

appendix contains the bootstrap algorithm for the test of no nonlinearity, extensive Monte Carlo

simulations, estimators for group-specific parameter heterogeneity with known group membership,

and all relevant mathematical proofs.

We will use the following notation. The letter C stands for an universal finite positive constant,

while Im denotes m × m identity matrix. Also, for a real m × n matrix A, the element (i, j) is

denoted by Aij , while ||A|| denotes the Frobenius norm. 1T = (1, 1, ..., 1)′, a T × 1 unity vector.

λmin(A) and λmax(A) denote the smallest and largest eigenvalues of A respectively. We define the

projection matrices PA = A(A′A)−1A′ and MA = Im − PA. I(.) is the indicator function, and

Ȳt = N−1
∑N

i=1 Yi,t indicates the cross-sectional average of any variable Yi,t. diag(A) denotes a

diagonal matrix consisting of main diagonal elements of the matrix A. The symbol
p→ denotes

convergence in probability,
d→ convergence in distribution, ⇒ denotes weak convergence with

respect to the uniform metric, and plim probability limit. (N,T ) → ∞ denotes that both N and

T tend to infinity jointly, where N is the number of units in the panel and T is the number of time
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series observations.

2. Model

Consider the following model, in which the response variable of the ith unit, observed at time

t, yi,t is given by the model:

yi,t = β′
ixi,t + δ′iwi,tI{qi,t ≤ γ}+ ei,t i = 1, ..., N , t = 1, ..., T (1)

where xi,t is K × 1 vector of observable regressors, and βi is a K × 1 vector of heterogeneous slope

coefficients, which can be different for each unit i. Additionally, let:

wi,t = R′xi,t, (2)

be an r × 1 subset of the regressors in xi,t. The matrix R is an K × r selection matrix of zeros

and ones with full column rank r that picks elements of xi,t whose coefficients are subject to the

threshold effect. R is known to the researcher. If R = IK , then all K regressors in xi,t have the

threshold effect and the model is called a pure threshold model, while if R = (Ir, 0r×(K−r))
′, then

only the first r regressors in xi,t are affected by the threshold, and the model is called a partial

threshold model.

A key characteristic of (1) is that the effect of the regressors on the dependent variable is

allowed to vary across two regimes which are identified by I, an indicator function which takes

value 1 when {qi,t ≤ γ} and 0 otherwise. The variable qi,t is a scalar that may belong in xi,t, and γ

is the threshold parameter that defines the two different regimes in the model. When qi,t > γ the

effect of xi,t on yi,t is βi. This is frequently called the “high regime”. There is also a “low regime”

with qi,t ≤ γ, where the coefficient of the variables is βi + δi. The model is suitable to identify

the different equilibria which can arise when the response of the dependent variable is different

across periods. Examples of the “low regime” include periods of economic and financial turmoil

and distress, such as poor stock market performance or economic crises, or periods of unfavorable

economic outlook and low sentiment when compared to normal times, namely the “high regime”.1

The model in (1) is sufficiently general to render existing panel models as special cases; (i) the

simple linear heterogeneous panel model of Swamy (1970) corresponds to the case where δi = 0 for

all is and (ii) the homogeneous threshold panel models of Hansen (1999) and Miao et al. (2020a)

correspond to the case where βi = β, and δi = δ.

The threshold parameter γ is assumed to be common across units, in line with all the pre-

existing literature on panel data threshold regression. The γ parameter can be seen as the average

of heterogeneous γi which vary across units, in the same way that a common break can be seen as the

1Similarly, it is possible to define I{qi,t > γ} in (1) to capture regimes where inflation or interest rates are above
a certain threshold in monetary policy models (high inflation regimes). These cases are formally equivalent and the
only difference between them is the interpretations of the δi coefficients.
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average of heterogeneous breaks across units see Bai (2010) and Karavias et al. (2022). Assuming

homogeneity in γ allows estimation by pooling the information across N . Observations on many

units allows observing many limit cycles and this pooling results in more precise estimation of the

threshold parameter. Contrary to the previous literature, in model (1) the threshold homogeneity

assumption creates complications given that the βi and δi are now allowed to vary across units.

When γ is homogeneous and the slopes are heterogeneous across units, the model in (1) is hard

to estimate in most empirical applications due its stringent identification requirements. The identi-

fication of δi necessitates that the threshold γ is such that there are threshold variable observations

in both regimes defined by γ; explicitly
∑T

t=1 I{qi,t ≤ γ} > 0 and
∑T

t=1 I{qi,t > γ} > 0, for every

unit i. If however the supports of qi,t and qj,t, for i ̸= j, are disjoint, then the aforementioned

condition will not hold and either δi or δj will not be identified. To see this, consider the impact

of government expenditure on economic growth. The UK’s General government final consumption

expenditure (% of GDP) varies between 16% to 22% from 1973 to 2021, while that of Mexico in the

same period varies between 8% to 12%. Therefore, there is no common γ that creates two regimes

in both countries.

To bypass this challenge, we introduce a variation in the functional form of the threshold

variable:

yi,t = β′
ixi,t + δ′iwi,tI{pi(qi,t) ≤ γ}+ ei,t. (3)

The function pi(·) transforms the threshold variable into an empirical quantile. The benefit of the

transformation is that it ensures that pi(qi,t) has common support across all units and that all the

δis are identified.

The introduction of the empirical quantile transformation has a significant implication for the

interpretation of the model; the threshold parameter γ is now interpreted as a threshold percentile

value, and not in the original threshold variable units. To translate the threshold parameter in the

original units, the inverse transformation of pi(·) must be employed. Because pi(·) is unit-specific,
the inverse transformation is also unit specific and therefore, the retrieved threshold in the original

units will also be heterogeneous and unit-specific: γi = pi(γ)
−1.

Threshold heterogeneity is a desirable generalization when it does not come at the expense of

estimation accuracy. Efficient estimation is achieved by maintaining a common threshold parameter

γ. The key additional assumption in model (3) is the specific form of the empirical quantile

function. Let for example pi(qi,t) = Ranki(qi,t)/T , where Ranki(qi,t) is the rank of qi,t across the

time series dimension {qi,t, t = 1, ..., T}. This formula transforms qi,t into percentiles. Notice that

the transformed variable pi(qi,t) is in percentiles and thus has T unique observations which coincide

across all units.

Using the ranks of qi,t does not change the interpretation of the slope coefficients in the baseline

model (1). Let q⋆i,t = pi(qi,t). The marginal effect of xi,t is still:

∂E(yi,t|xi,t, q⋆i,t)
∂xi,t

=

βi, if q⋆i,t > γ,

βi + δi if q⋆i,t ≤ γ.
(4)
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The main focus of this paper is to estimate the marginal effects in (4). To this end, we provide

consistent estimators for βi, δi and also γ. Additionally, the average marginal effects are of interest:

1

N

N∑
i=1

∂E(yi,t|xi,t, q⋆i,t)
∂xi,t

=

β̄, if q⋆i,t > γ,

β̄ + δ̄ if q⋆i,t ≤ γ,
(5)

where β̄ = N−1
∑N

i=1 βi, and δ̄ = N−1
∑N

i=1 δi. Following Pesaran and Smith (1995) the average

marginal effects are β̄ and δ̄ or the E(βi) and E(δi) as N → ∞.

The errors eit contain the unobserved heterogeneity, which has the general form of interactive

fixed effects or a multi-factor error structure as it is sometimes called in the literature (Pesaran,

2006):

ei,t = λ′
ift + εi,t (6)

where ft is a m × 1 vector containing m unobserved factors which are common to all units, λi

are the heterogeneous common factor loadings, and εi,t are the remaining idiosyncratic errors. The

unobserved heterogeneity formulation in (6), encompasses all standard panel data models. If ft = 1

then we have the standard fixed effect (FE) model, while for ft = (1, τt)
′ and λi = (αi, 1)

′ we have

the two-way fixed effect (TWFE). The unobserved common factors ft can capture the price of an

unobserved skill which changes in time or the price of an input for production, or even aggregate

shocks to a particular market or economy. Because all units are impacted by these factors, the

factor structure is the source of the cross-sectional dependence across the units.

The interactive fixed effects are allowed to be correlated with the regressors. We follow Pesaran

(2006) and assume that the correlation is linear and can be modelled as:

xi,t = Π′
ift + ξi,t (7)

where Πi is m×K fixed factor loading matrix and ξi,t is a K × 1 is the idiosyncratic part. This is

a Mundlak-style assumption and is well accepted in the literature.

We further assume that the threshold variable qi,t is one of the regressors in xi,t and therefore

satisfies (7). This is the most empirically relevant scenario. Alternatively, it is also possible that

qi,t is not included in xi,t, in which case, the theory below still holds but collapses to that of a

structural break model that can be estimated by arranged regression (Tsay, 1998) as in Karavias

et al. (2022). The assumption that qi,t satisfies (7) does not interfere with the empirical quantile

transformation of q⋆ because the latter appears only in the indicator function I{q⋆i,t ≤ γ}, and there

are no assumptions in the threshold literature on the distribution of I{q⋆i,t ≤ γ}.
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3. Estimation

To present the estimators we stack the model in (3) across the time dimension. Letting wi,t(γ) =

wi,tI{q⋆i,t ≤ γ}, the stacked model becomes:

yi = Xiβi +Wi(γ)δi + ei, (8)

where, yi = (yi,1, yi,2, . . . , yi,T )
′ is a T × 1 vector, Xi = (xi,1, xi,2, . . . , xi,T )

′ is a T × K matrix,

Wi(γ) = (wi,1(γ), wi,2(γ), . . . , wi,T (γ))
′ is a T × r matrix and, ei = (ei,1, ei,2, . . . , ei,T )

′ is a T × 1

vector. The interactive effects from (6) in matrix form become:

ei = Fλi + εi, (9)

where F = (f1, f2, . . . , fT )
′ is a T×m matrix, and εi = (εi,1, εi,2, . . . , εi,T )

′ is a T×1 vector. Finally,

we express (7) in matrix form as:

Xi = FΠi + ξi, (10)

where, ξi = (ξi,1, ξi,2, . . . , ξi,T )
′ is a T × k matrix.

We are interested in three sets of parameters: the threshold parameter γ, the average effect

of the slope coefficients β and δ, and the heterogeneous slope coefficients βi and δi, which may

be different across units i ∈ {1, 2, ..., N}. The model in (8), is linear in the parameters βi and δi

and non-linear in the parameter γ. For now, let γ be known. In this case the model is linear in

the parameters and can be estimated by a variant of the Mean Group CCE estimator in Pesaran

(2006), adapted as in Karavias et al. (2022). The key idea is that cross-section averages of Xi can

be used to consistently estimate the space spanned by the unknown factors in (10). This is an

alternative to using principal components, see e.g. Westerlund and Urbain (2015). The first step

to estimation then involves pre-multiplying (8) by MX̄ = IT − X̄(X̄ ′X̄)−1X̄ ′, where IT is a T -order

identity matrix. The transformed model becomes:

ỹi = X̃iβi + W̃i(γ)δi + ẽi, (11)

where ỹi = MX̄yi, X̃i = MX̄Xi, W̃i(γ) = MX̄Wi(γ) and ẽi = MX̄ei. We will show later that

MX̄ei = MX̄Fλi +MX̄εi = MX̄εi + op(1), asymptotically removing the m common factors.2 The

model in (11) can be rewritten in a more compact form as:

ỹi = Z̃i(γ)θi + ẽi, (12)

where Z̃i(γ) =
(
X̃i, W̃i(γ)

)
and θi = (β′

i, δ
′
i)
′.

2Here we only use X̄ to remove the interactive fixed effects, which is different to using both Ȳ and X̄ as in the
original CCE estimator of Pesaran (2006). Karavias et al. (2022) show that Ȳ is not rotationally consistent for ft in
the model with structural breaks and the same applies here.
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Assuming γ is known, the CCE estimators are:

θ̂i(γ) =
(
Z̃i(γ)

′Z̃i(γ)
)−1

Z̃i(γ)
′ỹi θ̂(γ) =

1

N

N∑
i=1

θ̂i(γ) (13)

and more explicitly:

β̂i(γ) =
(
X̃ ′

iMW̃i(γ)
X̃i

)−1
X̃ ′

iMW̃i(γ)
ỹi, β̂(γ) =

1

N

N∑
i=1

β̂i(γ), (14)

δ̂i(γ) =
(
W̃i(γ)

′MX̃i
W̃i(γ)

)−1
W̃i(γ)

′MX̃i
ỹi, δ̂(γ) =

1

N

N∑
i=1

δ̂i(γ). (15)

If γ is unknown, as it is usually the case in practice, we follow Hansen (1999) and estimate it

with the γ which minimizes the CCE sum of squared residuals:

γ̂ = argmin
γ∈Γ

N∑
i=1

[
ỹi − Z̃i(γ)θ̂i

]′ [
ỹi − Z̃i(γ)θ̂i

]
(16)

= argmin
γ∈Γ

N∑
i=1

[
ỹi − X̃iβ̂i(γ)− W̃i(γ)δ̂i(γ)

]′ [
ỹi − X̃iβ̂i(γ)− W̃i(γ)δ̂i(γ)

]
. (17)

The above sum of squared residuals is a step function for γ having only O(T ) distinct values.

When T is large, Hansen (1999) suggests approximating Γ by a grid search method to save compu-

tational time, searching in Γ ∩ {q⋆1,t, 1 ≤ t ≤ T}.3 First, sort the distinct values of the observations

on the threshold variable q⋆1,t, and next, trim the top and bottom 1%, 5%, 10%, or any other spe-

cific percentiles of q⋆1,t. Finally, search for γ̂ over the remaining values of q⋆1,t.
4 Once γ̂ has been

obtained, the estimators for β̂i, δ̂i, β̂ are δ̂ can be obtained by substituting γ̂ for γ in (14), and

(15).

The estimate γ̂ will be a quantile, and to interpret it in the original variable qi,t for each unit

i the inverse transformation γ̂i = pi(γ̂)
−1 must be applied. We will henceforth denote β̃i = β̂i(γ̂),

δ̃i = δ̂i(γ̂), β̃ = β̂(γ̂), and δ̃ = δ̂(γ̂). Similarly we define θ̃i = (β̃i, δ̃i) and θ̃ = (β̃, δ̃).

4. Assumptions

This section presents the main assumptions under which we develop the asymptotic theory of

the estimators. Since the empirical quantile transformation is a one-to-one and onto map, we only

3Notice that for each unit i, the unique values in {q⋆i,t, 1 ≤ t ≤ T} are the same because they are empirical
quantiles based on the same number of time series observations.

4This problem is computationally faster to solve because there are only O(T ) unique values, instead of O(NT ) in
the case without the quantile transformation. The transformation to quantiles is necessary only when the support
of the threshold variable is not common across units. If this is not the case, then the quantile transformation is
not necessary and the estimation proceeds in the same way except that now there will be O(NT ) distinct threshold
values.
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study asymptotic properties with qi,t to simplify notations. Similar results can be obtained by

replacing qi,t by q⋆i,t. Let D = σ(F ) be the minimal sigma-field generated from the factor structure

F . Let PD(A) = P(A|D) and ED(A) = E(A|D).

We use the superscript 0 to denote the true parameter values. In particular, the true regression

coefficients are denoted by θ0i = (β0′
i , δ0

′
i )′ for i = 1, ..., N, and the true threshold parameter by γ0.5

Assumption A.1 (Common Factors). i) ft is strictly stationary and ergodic, distributed indepen-

dently of εi,t′ and ξi,t′ for all i, t, t′; ii) E||ft||4+ϵ < ∞ for some ϵ > 0; iii) 1
T

∑T
t=1 ftf

′
t

p→ Σf > 0

for some m×m matrix Σf as T → ∞.

Assumption A.2 (Fixed Factor Loadings). i) Rank(Π̄) = m ≤ k for all N , including N → ∞;

ii) ||Π̄|| < ∞; iii) ||λi|| < ∞ for i = 1, 2, ..., N .

Assumption A.3 (Heterogeneity). The slopes θi follow the random coefficient model:

θ0i = θ0 + vi, vi ∼ iid(0,Ωv), i = 1, 2, ..., N, (18)

where ||θ0|| < C, Ωv is a (k + r) × (k + r) symmetric non-negative definite matrix such that

||Ωv|| < C, and the vi are distributed independently of λj, Πj, ξj,t, εj,t and ft ∀ i, j and t.

Assumption A.4 (Regressors). i) ξi,t are independent and identically distributed (i.i.d.) across

i; ii) For each i, ξi,t is strictly stationary and ergodic with ρ-mixing coefficients over t, such that∑∞
m=1 ρ

1/2
m < ∞; iii) E(ξi,t|F (ξ)

NT,t−1) = 0, where F
(ξ)
NT,t−1 is the sigma field such that F

(ξ)
NT,t−1 =

σ({ξi,t−1}Ni=1); iv) E|ξi,t|4+ϵ < ∞ for some ϵ > 0.

Assumption A.5 (Errors). i) εi,t are independent and identically distributed (i.i.d.) across i;

ii) For each i, εi,t is strictly stationary and ergodic with ρ-mixing coefficients over t, such that∑∞
m=1 ρ

1/2
m < ∞; iii) E(εi,t|F (ε)

NT,t−1) = 0, where F
(ε)
NT,t−1 is the sigma field such that F

(ε)
NT,t−1 =

σ({εi,t−1}Ni=1); iv) E|εi,t|4+ϵ < ∞, for some ϵ > 0 v) εi,t and ξj,t′ are distributed independently for

all i, j, t, t′; vi) E(ξi,tξ
′
i,t) = Σξ, and E(εiε

′
i) = Σεi.

Assumption A.6 (Threshold Parameter Space). The threshold parameter γ0 ∈ Γ = [γ, γ], where

Γ is a compact set.

Assumption A.7 (Continuous Threshold Variable). i) qi,t is a continuous threshold variable.

Conditionally on D , qi,t has a conditional probability density function, fi,t,D(γ). ii) fi,t,D(γ) is

continuous at γ = γ0 and it is uniformly bounded, and thus supi,tsupγ∈Γfi,t,D(γ) ≤ C < ∞.

Assumption A.8 (Full Rank Conditions). Conditional on D , we require that

i) M⋆
T,i > M⋆

T,i(γ
1, γ2) > 0 for all i, and γ1, γ2 ∈ Γ, where M⋆

T,i = ED

(
T−1X ′

iMFXi

)
, M⋆

T,i(γ
1, γ2) =

ED

(
T−1Xi(γ

1)′MFXi(γ
2)
)
; Particularly, if γ1 = γ2 = γ, then M⋆

T,i(γ) = ED

(
T−1Xi(γ)

′MFXi(γ)
)
;

5If qi,t has common support across units then the quantile transformation may not be necessary. The asymptotic
theory presented below applies to this section as well.
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ii) M⋆
T,i > M⋆⋆

T,i(γ) > 0 for all i and γ ∈ Γ, where M⋆⋆
T,i(γ) = ED

(
T−1X ′

iMFXi(γ)
)
;

iii) M⋆
NT > M⋆

NT (γ
1, γ2) > 0 for all γ1, γ2 ∈ Γ, where M⋆

NT = ED

(
(NT )−1∑N

i=1X
′
iMFXi

)
,

and M⋆
NT (γ

1, γ2) = ED

(
(NT )−1∑N

i=1Xi(γ
1)′MFXi(γ

2)
)
. If γ1 = γ2 = γ, then M⋆

NT (γ) =

ED

(
(NT )−1∑N

i=1Xi(γ)
′MFXi(γ)

)
;

iv) M⋆
NT > M⋆⋆

NT (γ) > 0 for all γ ∈ Γ, where M⋆⋆
NT (γ) = ED

(
(NT )−1∑N

i=1X
′
iMFXi(γ)

)
.

Assumption A.9 (Identification Condition). Consider the cross-product terms S1i(γ) = Z̃i(γ)
′Z̃i(γ)

with S1i(γ) > 0, S2i(γ) = Z̃i(γ)
′W̃i(γ

0, γ), S3i(γ) = W̃i(γ
0, γ)′W̃i(γ

0, γ), and W̃i(γ
1, γ2) = W̃i(γ

1)−
W̃i(γ

2) for any γ1, γ2 ∈ Γ. Then, i) N−1
∑N

i=1 ||δ0i ||2 > 0, including N → ∞; ii) There exists some

constant τ > 0, as T → ∞ for all i uniformly, such that:

P
{
min
γ∈Γ

λmin

[
1

T

(
S3i(γ)− S2i(γ)

′S−1
1i (γ)S2i(γ)

)]
≥ τmin

(
1, |γ − γ0|

)} p→ 1; (19)

iii) limsupN,T (NT )−1
∑N

i=1E||(Z̃i(γ)
′ei)

′S−1
1i (γ)Z̃i(γ)

′ei|| < ∞, uniformly for γ ∈ Γ; and iv)

limsupN,T (NT )−1
∑N

i=1E||δ′i(S3i(γ)− S2i(γ)
′S−1

1i (γ)S2i(γ))δi|| < ∞ uniformly for γ ∈ Γ.

Assumption A.1 is standard in the literature and it is similar to Assumption 1 in Pesaran (2006)

which excludes non-stationary factors and trends. Assumption A.2 is the so-called rank condition

and states that the number of factors must be smaller or at most equal to the number of regressors.

This assumption is standard in the CCE literature and appears in Pesaran (2006) and in Karavias

et al. (2022). Applied research typically finds a small number of factors in the error term, see e.g.

Juodis and Sarafidis (2022). To further relieve the strain of the rank condition on the number of

regressors, notice that some factors in ft may be observable. Observed factors such as the intercept,

time effects, seasonal dummies, and other common variables like index stock returns, central bank

interest rates and oil prices should be included in Xi. Any factor included in Xi does not count

towards the dimension m of F . When it comes to the factor loadings, we follow Westerlund and

Kaddoura (2022) and assume that λi and Πi are fixed in our setting, unlike Pesaran (2006), which

assumes that they are random and independent of each other, which is much stronger.

Assumption A.3 states that the heterogeneous coefficients are randomly distributed across units

and are independent of any other random elements in the model. This is the prevalent assumption in

the heterogeneous coefficients literature, see e.g. Pesaran (2006) and Chudik and Pesaran (2013).

Assumption A.4 is similar to Assumption 2 of Pesaran (2006) and states that the series must

be stationary and that the cross-sectional dependence across units is fully captured by the factor

structure. The ρmixing assumption controls the degree of time series dependence and is weaker than

uniform mixing, yet stronger than strong mixing. This assumption also implies that ρm = O(ρm)

with |ρ| < 1.

Assumption A.5 is the typical zero-mean assumption made for errors, similar to Pesaran (2006).

We require the errors to be a martingale difference sequence to avoid bias in θ̂i(γ). The series

(xi,t, qi,t) are treated as strictly exogenous variables conditional on D . Furthermore, ξi,t is mean

independent with respect to both future and past xi,t, qi,t conditional on D . Finally, εi,t and ξj,t
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are not correlated. All these ensure the correct specification of the conditional mean. The higher

order moments are as in Miao et al. (2020a).

Assumptions A.6 and A.7, which are also standard in the literature, impose that the threshold

parameter belongs to a compact set (A.6), and also (A.7) that it has a conditional probability

density function and is uniformly bounded (Hansen, 2000).

Assumption A.8 contains full rank assumptions that ensure matrix invertibility wherever nec-

essary, as in Hansen (2000), and assumption A.9 ensures the identification of parameter γ0. 6

Assumption A.9 is not restrictive, and the case where some units do not have threshold effects is

permitted if the order of the number of threshold-affected units is N .

5. Asymptotic Theory

In this section, we derive the asymptotic properties of the proposed estimators and related tests

by letting N and T tend to infinity. Specifically we shall begin with Theorems 1 and 2 which

prove the consistency of γ̂ and derive its rate of converge. Theorems 3 and 4 derive the asymptotic

distributions of the individual θ̃i and the MG θ̃ estimators. Theorem 5 derives the asymptotic

distribution of γ̂, while Theorem 6 provides the likelihood ratio statistic for testing hypotheses

about γ. Finally, Theorem 7 derives a hypothesis test for the null of no threshold. All proofs are

relegated to Appendix A.

Theorem 1. Under Assumptions A.1-A.9, and as (N,T ) → ∞, γ̂
p→ γ0.

Theorem 1 establishes the consistency for γ̂ under weaker conditions than Miao et al. (2020a),

in that it does not require the shrinking threshold assumption, or any restriction on the relative

magnitude of N and T .

While the shrinking threshold assumption is not necessary to prove consistency of the estimator

for γ, it is needed to establish the convergence rate of the estimators.

Assumption A.10 (Shrinking Threshold Assumption). Let C0i = C0+Cvi, where C0 is fixed with

C0 ∈ R, and Cvi is such that Cvi ∼ iid(0,Ωvi), with Ωvi is a r × r symmetric non-negative definite

matrix and ||Ωvi || < C. Additionally, supi=1,2...,N C0i < ∞. For 0 < α < 1/2, the threshold effect

δ0i satisfies that δ0i = C0iT
−α for i = 1, 2, ..., N , and therefore, by Assumption A.3, δ0 = C0T

−α.

Assumption A.10 is called the “shrinking threshold” assumption for the threshold parameter,

introduced in the threshold literature in Hansen (1999) and in the structural breaks literature in

Bai (1997). This assumption is similar to the idea of local to zero approximations in hypothesis

testing, and it is used to derive a pivotal asymptotic distribution of γ̂ in our model, such that the

critical values can be taken from a table. Without this assumption, the asymptotic distribution is

6Hansen (2000) suggests an identification condition such as Z̃i(γ)
′Z̃i(γ

0) = Z̃i(γ
0)′Z̃i(γ

0) for γ > γ0; yet this
equality does not hold in the presence of interactive fixed effects. Instead, we rely on the more complex identification
condition proposed by Miao et al. (2020a).
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ridden with nuisance parameters arising from the underlying error distribution (see Chan (1993)).

However, the assumption implies that the derived asymptotic distribution is a better approximation

of the sampling distribution when δ0i is small. As will be shown below however, when δ0i is large,

it is also easier to estimate.

Hansen (1999) and Miao et al. (2020a) assume that δ0i = O[(NT )−α] as opposed to δ0i = O(T )−α

as in part (ii) of our Assumption A.10. We use this alternative because of the heterogenous

coefficients in (1). For a given γ, the estimator for the heterogeneous slope δi only depends on each

unit’s information.

Additionally, we require the usual condition on higher conditional moments. Let γ1, γ2 ∈
Γ, the parameter space and define Wi(γ

1, γ2) = Wi(γ
1) − Wi(γ

2). Let MD(γ) = (NT )−1
∑N

i=1∑T
t=1ED(C

′
0ixi,tx

′
i,tC0i|qi,t = γ)fi,t,D(γ).

Assumption A.11 (Higher Order Moments). i) There exist D-dependent variables CD
i,t such that

supγ∈ΓED(||xi,t||4|qi,t = γ) ≤ CD
i,t, supγ∈ΓED(||xi,tei,t||4|qi,t = γ) ≤ CD

i,t, and

P
(
(NT )−1

∑N
i=1

∑T
t=1C

D
i,t ≤ C

)
= 1 as (N,T ) → ∞.

ii) MD(γ) is continuous at γ = γ0.

iii) For all ϵ > 0, there exist constants B > 0 and C1 > 0, for enough large N,T , we have:

P
(

inf
|γ−γ0|<B

MD(γ)

|γ − γ0|
> C1

)
> 1− ϵ. (20)

Assumption A.11 i) assumes that the fourth-order conditional moments of xi,t and xi,tei,t exist

and are bounded. Assumption A.11 ii) and iii) are similar to Assumption A.5 of Miao et al. (2020a),

and are made to ensure that the square matrix, MD(γ), is well-behaved in the neighbourhood of

γ0.

Theorem 2. Under Assumptions A.1-A.11, Tα/
√
N → 0, as (N,T ) → ∞, NT 1−2α(γ̂ − γ0) =

Op(1).

Theorem 2 shows that the rate of convergence of γ̂ is NT 1−2α, thus depending on the magnitude

of threshold effects. Smaller α implies that the threshold effect is larger and in turn the convergence

rate is faster. On the other hand, if α is close to 1/2, the rate of convergence becomes slower since

the magnitude of the threshold is smaller. A fixed-magnitude threshold effect, is equivalent to

α → 0 and generates γ̂ − γ0 = Op[(NT )−1]. However, under this rate of convergence, Chan (1993)

finds that the threshold estimator converges in distribution to a functional of a compound Poisson

process with unknown nuisance parameters. This distribution can alternatively be simulated by

a numerical approach as in Li and Ling (2012). The CCE literature typically requires T/N → 0

for pooled estimators (Pesaran, 2006). If this holds, then we have Tα/
√
N → 0 immediately.

Therefore, the relative rate of divergence between T and N in Theorem 2 above is weaker than

what is necessary elsewhere.

Below, we derive the asymptotic distributions of θ̃i, the MG estimator θ̃MG, and γ̂.
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Theorem 3. Under Assumptions A.1-A.11, Tα/
√
N → 0, as (N,T ) → ∞, we have:

i)
√
T (θ̃i − θ̂i(γ

0))
p→ 0.

ii) If we further require that
√
T/N → 0, and conditional on D , then the limiting distribu-

tion is
√
T (θ̃i − θ0i )

d→ N(0, Vθi), where Vθi is the standard asymptotic covariance matrix de-

fined as Vθi = Σ−1
i SieΣ

−1
i , Σi = plimT→∞T−1ED(Zi(γ

0)′MFZi(γ
0)), Σεi = T−1E(εiε

′
i), and

Sie = plimT→∞T−1ED(Zi(γ
0)′MFΣεiMFZi(γ

0)).

Theorem 3 shows that the difference between θ̃i and θ̂i(γ
0) is op(1/

√
T ), which implies that the

distribution of θ̃i can be approximated by the conventional normal distribution as if γ is known

with certainty.

Inference on θ0i requires a consistent estimator of Vθi . Such an estimator is given by V̂θi =

Σ̂−1
i ŜiεΣ̂

−1
i , where:

Σ̂i =
1

T
Z̃i(γ̂)

′Z̃i(γ̂), Ŝiε =
1

T
Z̃i(γ̂)

′diag(ε̂iε̂
′
i)Z̃i(γ̂), ε̂i = ˆ̃ei = ỹi − Z̃i(γ̂)θ̂i(γ̂). (21)

Theorem 3 is useful for testing hypotheses on individual units’ parameters. As an example, consider

testing the statistical significance of the regression coefficients: H0i : θ
0
ik

= 0 v.s. H1i : θ
0
ik

̸= 0,

for some i = 1, ..., N , where ik denotes kth element in θ0i .

Turning to the asymptotic distribution for the MG estimator (13).

Theorem 4. Under Assumptions A.1-A.11, as (N,T ) → ∞ and Tα/
√
N → 0, we have:[√

NIK 0K×r

0r×K

√
NTαIr

]
(θ̃ − θ0)

d→ N(0,ΣMG), (22)

where ΣMG = Ωv. An estimator for the variance is:

Σ̂MG =

[
IK 0K×r

0r×K T 2αIr

]
1

N − 1

N∑
i=1

(θ̃i − θ̃)(θ̃i − θ̃)′.

Theorem 4 derives the rate of convergence and the asymptotic distribution of the MG estimator.

The theorem demonstrates that slope coefficient heterogeneity has unique implications for the

asymptotic theory, as δ̃ has a rate of convergence that is much faster than that of the MG estimator

in linear regression, see e.g., Juodis et al. (2021). This arises due to the shrinking threshold

assumption A.10:

δ0i =
C0i

Tα
=

C0

Tα
+

Cvi

Tα
, (23)

which shows that the error term which drives unit heterogeneity Cvi/T
α, is O(T−α). This implies

that in the limit, heterogeneity vanishes and we have a homogeneous model. The closer the δ0i are

to zero, the closer they are to each other, In other words, they become more homogeneous. This is

reflected in the estimator rate of convergence, which increases to reach the standard
√
NT found

in pooled estimators of homogeneous panel models, see e.g. Pesaran (2006). If the threshold is
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large, this can be captured by α → 0 so that
√
N(θ̃− θ0)

d→ N(0,ΣMG), which is the same result

as Pesaran (2006). If the threshold is small, however, then we are closer to the homogeneous case

where α → 1/2 so that
√
NT (θ̃ − θ0)

d→ N(0,ΣMG).

The result of Theorem 4 cannot be used because it contains the unknown parameter α. Dividing

(22) by Tα gives the following usable corollary.

Corollary 1. Under the Assumptions of of Theorem 4,
√
N(θ̃− θ0)

d→ N(0,ΣMG), and a consis-

tent estimator for ΣMG is given by Σ̂MG = (N − 1)−1
∑N

i=1(θ̃i − θ̃)(θ̃i − θ̃)′.

Below, we derive the asymptotic distribution of the threshold parameter estimator. We will

need the following two assumptions. Let fi,t(.) denote the pdf of qi,t.

Assumption A.12 (No jumps in threshold variable). For all i, if s > t, fi,s|t(γ
0|γ0) < ∞.

Assumption A.13 (Well-behaved limits). Define:

DNT (γ) =
1

NT

N∑
i=1

T∑
t=1

E
[
(C ′

0ixi,t)
2|qi,t = γ

]
fi,t(γ), (24)

VNT (γ) =
1

NT

N∑
i=1

T∑
t=1

E
[
(C ′

0ixi,t)
2ε2i,t|qi,t = γ

]
fi,t(γ), (25)

and let D(γ) = plim(N,T )→∞DNT (γ) and V (γ) = plim(N,T )→∞VNT (γ).

i) The limits D(γ) and V (γ) exist and are continuous at γ = γ0.

ii) There is a constant C⋆ such that:

V ar

[
1√
NT

N∑
i=1

T∑
t=1

ED(||g
(1)
i,t (γ

1, γ2)||2)

]
≤ C⋆supi,tE(||g(1)i,t (γ

1, γ2)||4), (26)

V ar

[
1√
NT

N∑
i=1

T∑
t=1

ED(||g
(2)
i,t (γ

1, γ2)||2)

]
≤ C⋆supi,tE(||g(2)i,t (γ

1, γ2)||4), (27)

where g
(1)
i,t (γ

1, γ2) = xi,t|di,t(γ1) − di,t(γ
2)|, g

(2)
i,t (γ

1, γ2) = xi,tεi,t|di,t(γ1) − di,t(γ
2)| and di,t(γ) =

I{q⋆i,t ≤ γ}.

Assumption A.12 excludes the possibility for the unit i, qi,t = γ0 holds for all t = 1, 2, ..., T ,

which is similar as Assumption 8 of Hansen (1999). Assumption A.13 provides conditional moment

boundedness for all γ ∈ Γ.

Theorem 5. Under Assumptions A.1-A.13, if Tα/
√
N → 0, and

√
T/N → 0 as (N,T ) → ∞,

then:

NT 1−2α(γ̂ − γ0)
d→ ϕζ, (28)

where ϕ = V (γ0)/D(γ0)2, ζ = argmax−∞<r<∞{(−1/2)|r| + W (r)}, and W (r) is a two-sided

standard Brownian motion on the real line.
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Theorem 5 gives the asymptotic distribution of the threshold estimate γ̂. The threshold pa-

rameter’s asymptotic distribution is the same as in Hansen (2000). In the presence of conditional

homoskedasticity in εi,t, ϕ can be further simplified as σ2[D(γ0)]−1. Hansen (2000) suggests that

the asymptotic distribution of Theorem 5 should not be used for the construction of confidence

intervals on γ, because the nuisance parameter ϕ is hard to estimate accurately.

We now propose a likelihood ratio test for the null hypothesis H0 : γ = γ0. This test can be

used to get confidence intervals for γ0, instead of the result in Theorem 5. Let

LR(γ) =
RSS(θ̂1(γ), ..., θ̂N (γ), γ)−RSS(θ̂1(γ̂), ..., θ̂N (γ̂), γ̂)

σ̂2
,

where RSS(θ̂1(γ), ..., θ̂N (γ), γ) =
∑N

i=1(ỹi − Z̃i(γ)θ̂i(γ))
′(ỹi − Z̃i(γ)θ̂i(γ)), and the error variance

estimator is given by σ̂2 = (NT )−1RSS(θ̃1, ..., θ̃N , γ̂).

Theorem 6. Under H0 : γ = γ0, Assumptions A.1-A.13, Tα/
√
N → 0, and

√
T/N → 0, as

(N,T ) → ∞,

LR(γ0)
d→ η2Ξ,

where η2 = V (γ0)/(σ2D(γ0)) and σ2 = plim(N,T )→∞(NT )−1
∑N

i=1

∑T
t=1 ε

2
i,t. The random variable

Ξ = sups∈R[2W (s)− |s|] has a distribution function given by P(Ξ ≤ x) = (1− exp(−x/2))2.

In a special case where the error εi,t is homoskedastic along both the cross-section and time

dimension, η2 = 1 and inference can be made based on readily avaialble critical values. The

distribution function of Ξ has the inverse:

c(a) = −2log(1−
√
1− a). (29)

where c(a) is the critical value and a is the significance level. A test of H0 rejects at the asymptotic

level a if LR(γ0) exceeds c(a). The critical values appear in Table 1 of Hansen (2000) and are:

for a = 0.1 it is 5.94, for a = 0.05 it is 7.35 and for a = 0.01 it is 10.59. In terms of forming an

asymptotic confidence interval for γ, the non-rejection region of confidence level 1 − a is the set

of values of γ such that LR(γ) ≤ c(a). The confidence interval can be found by plotting LR(γ)

against γ and drawing a flat line at c(a).

For homoskedastic errors the above Theorem 6 is asymptotically correct under the shrinking

threshold assumption δ0i → 0 for all i = 1, 2, ..., N . However, if the errors are additionally normal,

i.i.d. across both dimensions and independent of the regressors and the threshold variable, we

conjecture that the result of Theorem 3 of Hansen (2000) holds, which says that inference based

on the LR test is asymptotically valid even if δ0i does not shrink towards 0.

If the errors are not homoskedastic, however, η2 needs to be estimated consistently. This can

be done by noticing that

η2 =
plim(N,T )→∞

∑N
i=1

∑T
t=1E

(
(δ0

′
i xi,tεi,t)

2|qi,t = γ0
)
ft(γ

0)

σ2plim(N,T )→∞
∑N

i=1

∑T
t=1E

(
(δ0

′
i xi,t)2|qi,t = γ0

)
ft(γ0)

, (30)
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which can be estimated nonparametrically by

η̂2 =

∑N
i=1

∑T
t=1Kh(γ̂ − qi,t)(δ̃

′
ixi,tε̂i,t)

2

σ̂2
∑N

i=1

∑T
t=1Kh(γ̂ − qi,t)(δ̃′ixi,t)

2
, (31)

where σ̂2 = (NT )−1RSS(θ̃1, ..., θ̃N , γ̂), Kh(u) = h−1K(u/h), K(.) is a kernel function, and h → 0

is the bandwidth parameter. It is straightforward to show consistency of the above estimator as

in Hansen (2000) and Miao et al. (2020a). Given the estimator η̂2, a normalized LR statistic is

defined as NLR(γ0) = LR(γ0)/η̂2 and its critical values are the same as in the homoskedastic case

studied above.

6. Testing the threshold effect

Testing the null hypothesis of no threshold regression is challenging for two reasons. First,

under H0 : δ0i = 0, for i = 1, ..., N , the parameter γ0 disappears and thus can only be identified

under the alternative. This is a nonstandard hypothesis testing problem which has been studied by

Davies (1977) and further developed by Hansen (1996), among others. To deal with this problem

we will follow the previous literature and test the null hypothesis based on a supremum-type Wald

statistic whose limiting distribution is non-standard but can be estimated by the bootstrap.

The second challenge, which is new to the threshold literature is that the null hypothesis above

is equivalent to testing N individual hypotheses, where N goes to infinity. This is a multiple testing

problem that can lead to low “power”, where power here has the more loose interpretation of “not

the null”. To avoid the multiple testing issue altogether, we employ an approach recently put

forward in Juodis et al. (2021), which notices that under the null hypothesis, the model becomes

homogeneous in δ0i because δ0i = δ0 = 0 for all i. For homogeneous threshold coefficients, the data

generating process becomes

yi = Xiβi +Wi(γ)δ + ei. (32)

For a given γ, δ0 can be estimated by the pooled estimator

δ̂p(γ) =

(
N∑
i=1

Wi(γ)
′MZ⋆

i (γ)
Wi(γ)

)−1( N∑
i=1

Wi(γ)
′MZ⋆

i (γ)
yi

)
, (33)

whereMZ⋆
i (γ)

= I−Z⋆
i (γ)(Z

⋆′
i (γ)Z⋆

i (γ))
−1Z⋆′

i (γ), Z⋆
i (γ) = (X̄, W̄ (γ), Xi), and W̄ (γ) = N−1

∑N
i=1Wi(γ).

The estimator δ̂p(γ) is a pooled estimator with a faster
√
NT rate of convergence. It also varies

from δ̂(γ) in terms of the annihilator matrix. In MZ⋆
i (γ)

, W̄ (γ) is included to remove asymptotic

bias from the interactive effects following Karavias et al. (2022), and Xi is included to project out

the variables with the heterogeneous coefficients as in Juodis et al. (2021).
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The supremum Wald statistic for the null hypothesis is:

supW = sup
γ∈Γ

WNT (γ), (34)

WNT (γ) = NT δ̂p(γ)
′V̂δp(γ)δ̂p(γ), (35)

where V̂δp(γ) = Σ̂−1(γ, γ)K̂(γ, γ)Σ̂−1(γ, γ), Σ̂(γ, γ) = 1
NT

∑N
i=1 W̃i(γ)

′W̃i(γ), and where K̂(γ, γ) =
1

NT

∑N
i=1 W̃i(γ)

′diag(ε̂i(γ)ε̂i(γ)
′)W̃i(γ). In the above ỹi(γ) = MZ⋆

i (γ)
yi, W̃i(γ) = MZ⋆

i (γ)
Wi(γ), and

ε̂i(γ) = ˆ̃ei(γ) = ỹi(γ)− W̃i(γ)δ̂p(γ).

The implementation of supW requires an approximation of Γ like the one used in estimating γ̂

above. To derive the limiting distribution of supW we will need an additional assumption. Define:

SNT (γ) =
1√
NT

N∑
i=1

Wi(γ)
′MF εi, and Σ(γ1, γ2) = plim

(N,T )→∞

1

NT

N∑
i=1

E(Wi(γ
1)′MFWi(γ

2)|D).

Assumption A.14 is a high level assumption. It is straight forward to prove its claims from more

primitive conditions following Hansen (1996) or Lemma A.9 in the appendix of Miao et al. (2020a).

Assumption A.14. SNT (γ) ⇒ S(γ), where S(γ) is a mean-zero Gaussian process with covari-

ance kernel K(γ1, γ2) = plim(N,T )→∞(NT )−1
∑N

i=1E(Wi(γ
1)′MFΣεiMFWi(γ

2)|D), where Σεi =

plim(N,T )→∞E(εiε
′
i).

Theorem 7. Suppose that Assumptions A.1-A.8 and A.14 hold, as (N,T ) → ∞ and T/N → 0,

under H0 : δ
0
i = 0, for i = 1, ..., N , we have:

supW
d→ sup

γ∈Γ
W c

NT (γ) (36)

where W c
NT (γ) = S̄(γ)′K̄(γ, γ)−1S̄(γ), and S̄(γ) = Σ(γ, γ)−1S(γ) is a mean-zero Gaussian process

with covariance kernel K̄(γ1, γ2) = Σ(γ1, γ1)−1K(γ1, γ2)Σ(γ2, γ2)−1.

The limiting distribution under the null depends on nuisance parameters. Following Hansen

(1996), Chudik et al. (2017) and Giannerini et al. (2023) we find the critical values using the

bootstrap. The steps for the bootstrap and Monte Carlo simulations evaluating its performance

can be found in the Appendix.

7. Empirical Application

As an empirical application of the above theory, we revisit one of the key puzzles in international

economics, the Feldstein-Horioka puzzle (Feldstein and Horioka, 1980). In theory, perfect capital

mobility should allow savings from one country to be invested in other countries, where better

investment opportunities with higher returns are available. Feldstein and Horioka (1980), however,

find that this is not the case, and that domestic investments are highly correlated with domestic
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savings. Ever since, this has become one of the six major puzzles of international macroeconomics

(Obstfeld and Rogoff, 2000).

Feldstein and Horioka (1980) used cross-sectional data to estimate the relationship:

I

Y
= a+ β

S

Y
, (37)

where Y is national income, I is domestic investment, and S is domestic savings. They find that β

is closer to 1, than to 0, meaning that there is a strong relationship between domestic saving rates

and domestic investment.

The closest contribution to ours is that of Hacıoğlu Hoke and Kapetanios (2021) which exam-

ine this problem for a panel of OECD countries by introducing a nonlinear relationship between

investment and savings, based on the trade openness of the country. The idea is that higher trade

openness would imply fewer frictions and therefore higher capital mobility. This would in turn

weaken the relationship between domestic savings and investment, given that more investment op-

portunities are made available worldwide. The nonlinearity is modelled via a smooth transition

model based on the logistic function.

Our analysis is different from that in Hacıoğlu Hoke and Kapetanios (2021) in that we employ

the discontinuous and heterogeneous threshold model developed previously. The discontinuous

threshold model has several advantages over smooth transition models. First, it has fewer parame-

ters to estimate and there is no need to select the continuous transition function. Second, it is more

intuitive to interpret as it implies that there are only two regimes, below and above the threshold,

while smooth transition models can be viewed as models with a wide continuum of states between

two extreme regimes. Finally, the threshold parameter estimator in the discontinuous model is

super-consistent and thus has a faster rate of convergence when compared to the smooth transition

threshold parameter. The model we consider is the following:

Investmenti,t = β1iSavingsi,t + β2iTrade Opennessi,t

+ δiSavingsi,tI{pi(Trade Opennessi,t) ≥ γ}+ αi + λ′
ift + εi,t, (38)

where Investmenti,t is the investment share of real GDP per capita for country i at year t, Savingsi,t

is the percentage share of current savings to GDP per capita for country i at year t, Trade Opennessi,t

denotes the trade openness for country i at year t, pi(γ) is the percentile function of the distribution

of Trade Opennessi,t across t = 1, ..., T for country i, αi is the fixed effects, λ′
ift are the interactive

fixed effects, and εi,t, are the innovations. The data is taken from the Penn World Tables version

7.1 as in Hacıoğlu Hoke and Kapetanios (2021) and covers the period of 1951-2000 resulting in a

balanced panel with N = 45 and T = 50.

The main results are displayed in Table 1. The top panel of the table presents the results of the

test for non-linearity which can be seen to reject the null of no-threshold regression. The middle

panel, reveals the threshold parameter estimate, which is 0.685. This means that for country i if

trade openness is below the 68.5 percentile of that country’s historical trade openness distribution,
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Table 1: Main Results

Test for the presence of threshold effects:
SupW 96.194
P-value 0.000

Thereshold estimate:
Threshold(γ̂) 0.685
95%CI [0.685, 0.700]

Coefficient estimates:
Investment

EST SE HC
Savings 0.730⋆⋆⋆ 0.062 0.867
Saving(Trade Openness >= Threshold Level) −0.085⋆⋆⋆ 0.024 0.578
Control variables:
Trade Openness 0.081⋆ 0.049 0.689

Notes: EST denote the coefficient estimates β̃ and δ̃, SE are the corresponding standard errors, and HC indicates
the proportion of units that have statistically significant βi and δi are defined in the section 5.3. ⋆, ⋆⋆ and ⋆ ⋆ ⋆
denote statistical significance at the 10%, 5% and 1% levels, respectively.

then that country is in the low regime. Beyond that threshold, country i is in the high regime.

The confidence interval is asymmetric because it is created by inverting the normalised LR statistic

as suggested in Hansen (2000). The bottom panel of Table 1 reports the estimates for β̃ and δ̃

which are the MG estimates based on the estimated threshold values. The coefficient of savings

in the low regime is 0.73, which is in line with previous literature. Hacıoğlu Hoke and Kapetanios

(2021) report estimates of β̃ of 0.69 (pooled) and 0.61 (MG) for OECD countries when the cross-

sectional dependence is accounted for. On the other hand, Feldstein and Horioka (1980) reported

the savings retention parameter to be 0.89, while Obstfeld and Rogoff (2000) found a smaller

estimate of 0.60. Notice that the forms of non-linearity are modelled in different ways in the above

mentioned papers. In the high regime, the savings retention parameter is reduced by 0.085 to

0.73 − 0.085 = 0.645 showing that as trade openness increases international capital mobility also

increases. The standalone trade openness regressor is included to avoid potential omitted variable

bias. However, removing it will not alter the results obtained.

Table 2, translates the 68.5 percentile threshold into actual trade openness threshold values

for the countries in our sample. Each country has a different distribution of the trade openness

variable and thus the 68.5 percentile translates to a different trade openness threshold. Table 2

presents theses thresholds in an increasing order. The country with the lowest threshold is the

US. Generally, from the left column of the table, larger economies seem to have lower thresholds,

implying that capital flows are easier to leave the domestic market. On the contrary, smaller

economies require significant levels of trade openness in order to divert domestic savings toward

investment opportunities abroad.

Figure 1 displays the proportion of countries that are in the high regime. This proportion can

be seen to increase rapidly in the 1980s, and can be explained by the extensive trade liberalisation

policies implemented internationally at the time, see Faini (2004). The results show that higher

levels of trade liberalisation increase international capital mobility.
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Table 2: Heterogeneous Threshold Levels

United States 13.005 United Kingdom 32.635 Israel 58.489
India 13.121 Portugal 33.131 Norway 58.580
Brazil 13.248 Pakistan 33.492 Philippines 59.025
Japan 15.252 Peru 35.001 Thailand 60.204
Mexico 15.440 New Zealand 35.463 Ireland 64.784
Turkey 18.903 Finland 40.968 Netherlands 69.857
Argentina 19.025 Canada 43.879 Trinidad and Tobago 70.627
Colombia 20.603 Iceland 45.518 Cyprus 85.200
Congo, Dem. Rep. 20.841 Sweden 48.747 Egypt, Arab Rep. 88.981
Spain 22.683 Bolivia 49.311 Belgium 96.196
Australia 23.453 Denmark 51.214 Sri Lanka 116.871
Uruguay 28.454 Venezuela 51.767 Honduras 126.058
Uganda 29.121 South Africa 55.277 Puerto Rico 129.323
France 29.136 Switzerland 56.129 Panama 174.804
Italy 30.279 Austria 56.526 Luxembourg 200.054

Mean 54.237

Notes: Mean denotes the average of heterogeneous threshold levels in the sample.

8. Conclusion

In this paper, we studied a new panel data threshold regression model with heterogeneous

coefficients and interactive fixed effects. We employed a quantile transformation approach to achieve

pooled estimation of the threshold parameter and threshold heterogeneity across units. We provided

a complete and novel inferential theory for the estimated heterogeneous slope coefficients and the

threshold parameter. We also proposed a test for the presence of the threshold effect. The Monte

Carlo simulations showed that the new theory works well in practice. The new model was used to

examine the Feldstein-Horioka puzzle, where we found that once trade openness is greater than a

threshold, capital mobility increases.

There are still several interesting topics for future research. Interactive fixed effects represent

a great novelty in panel threshold regression and existing methods could be extended along this

direction. Such examples include panel threshold models with endogenous threshold variables as

in Seo and Shin (2016) and Yu et al. (2023), multiple-regime threshold models (Yau et al., 2015),

binary response models (Gao et al., 2023) and quantile models as in Chen (2019), Harding et al.

(2020) and Zhang et al. (2021).
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