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Abstract 

The already apparent, and exponentially deteriorating, consequences of Climate Change, dictate that 

the decarbonatization of the world economy be realized the sooner possible. To that end, several steps 

towards the integration of clean energy, i.e. renewable sources, have been realized. Also, these steps 

include the harnessing of the available wind resources, by means of wind turbines, which are directly 

linked to the energy grid, providing green energy to the whole economy, and thus, contributing to the 

alleviation of the negative effects that Greenhouse Effect imposes to the society, economy, and the 

environment. However, wind energy has some drawbacks that mostly emanate from its volatile nature, 

which does not foster the ultimate assimilation of it to the energy market. Positively, due to recent 

technological advances in the field of information technology and computer science, have emerged 

lucrative avenues that could solve this persistent problem. This paper will try to give answers to two 

main questions. First, can machine learning be used in the wind energy sector, in order to successfully 

predict future hourly wind energy production of wind farms? Second, are there any benefits for the 

economy, and the environment, in case such a technology be exploited for the aforementioned purpose? 

If so, how could those be evaluated in monetary terms?  The results of this study are rather encouraging. 

As the findings of the first part of the exercise indicate, machine learning can be used for short-term 

prediction of hourly wind energy production. Lastly, regarding the benefits of the new technology for 

the environment and the economy, these exist, and their monetary equivalents are quite noticeable. 

Keywords: Wind Energy Generation Forecasting, Machine Learning, Monetarized Benefits, 

Evaluation, Nord Pool, Wind Energy Producers, Environment, Climate Change 
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1 Introduction 

In the wake of the numerous devastating consequences of global warming, which refers to the long-

term raising of the planet’s temperature levels, due to human activities that first started during the 

industrial period, humanity has to find a promising solution. What causes temperature levels to rise, is 

the global economy’s excessive reliance on fossil fuels, whose combustion is emitting great volumes 

of greenhouse gasses, which in turn get elevated to the atmosphere’s higher levels and absorb the sun’s 

radiation, thus increasing the Earth’s temperature levels. Interestingly, many centuries have already 

passed since humans had first resorted to the harnessing of renewable sources of energy (RES), with 

the first happening in Europe around 200 BC. Contrastingly, the first commercial wind turbine was sold 

way later in USA at 1927, when the first official steps of the wind energy industry also took place. It is 

historically evident, that humanity has always been returning to nature for solving its most challenging 

problems. However, as RES are naturally volatile, meaning they cannot be accurately predicted, another 

remedy has to be found, so that they are exploited at full extend. 

According to the related literature, machine learning can serve as a lucrative workaround to the problem 

of wind energy production’s lack of predictability. There are many studies, indicating the aptitude of 

machine learning methods in very short-term to short-term predicting wind power production. 

Generally, very short-term predictions, are used for operating on the energy grid in real time (Chang, 

2014) and having better technical control over the wind farms (Colak et al., 2012), while short-term 

forecasts serve as a tool for scheduling future load dispatches, thus ensuring the economic viability of 

wind energy. For example, Chaudhary et al. (2020), by a comparison of two machine learning 

algorithms, specifically of a Random Forest (RF) and a Support Vector Machine (SVM), have proven 

the aptitude of both of them to successfully deploy accurate short-term wind power forecasts, with the 

former being better from the latter one. Furthermore, Zendehboudi et al. (2018), have also shown the 

supremacy of machine learning algorithms, especially of a hybrid SVM, as a “an effective and precise 

modelling approach”, for short-term wind power forecasting, in comparison with other conventional 

models. Moreover, Treiber et al. (2016), showed that when tuning its hyperparameters, the SVM 

algorithm can yield up to a 24% reduction in prediction error, in comparison with the persistence model, 

when used to create very short-term predictions of wind power production. 

Similarly, machine learning can also be used in establishing medium-term to long-term wind energy 

predictions, yet the corresponding scientific literature is relatively lesser. Also, the medium-term and 

long-term predictions of wind energy have a wide range of applications. For example, they are mostly 

fostering managerial issues, such as maintenance of wind farms, and decision making, relating to energy 

reserves and wind turbines’ energy commitments (Chang, 2014). For instance, Barbosa et al. (2017), 

created an ensemble, or a hybrid, of learning models, which were an ARIMA and two Neural Networks 

(NN), and showed that wind speed, and therefore wind energy generation, could be fairly, with the 

lowest prediction errors, predicted in every forecasting horizon, ranging from ultra-short to long-term. 

In addition, Barbounis et al. (2007), used three Recurrent Neural Networks (RNN) for a 72-hour ahead 

wind power prediction, and found that the RNN structure can outperform the persistence model by 50%, 

while the same number can be subject to improvements if more data are passed into the constructed 

models. Furthermore, Catalao et al. (2009), created a “three-layered feedforward ANN trained by the 

Levenberg-Marquardt algorithm”, which could long-term forecast with relatively lower error than the 

persistent and ARIMA model, the future wind energy generation. Lastly, another application of machine 

learning for generating medium-term to long-term forecasts of wind speed and power production are 

presented by Cadenas and Rivera (2010), who used a hybrid model, consisting of an Artificial Neural 

Network (ANN) and a traditional ARIMA model, to forecast wind speed from three different regions, 

up and to 2 days ahead into the future. Conclusively, it is evident, from the respective scientific literature 

of the field, that deep learning algorithms, namely neural networks etc, have been more extensively 

used for medium and long-term forecasts, than other machine learning models, such as Random Forests 

and Support Vector Machines. 
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As the current study will encompass only machine learning models, and will not examine the suitability 

of deep learning for predicting future wind power generation, it would be interesting to see how short-

term wind energy forecasts can benefit the energy market’s functioning. More specifically, it would be 

helpful to evaluate those benefits, if any, in monetary terms, so that they become practically useful in 

decision making, both from wind energy producers, and the policy makers, who intend to maximize the 

social prosperity, though the mitigation of the consequences imposed by climate change. However, 

there are not any studies, which have broached the issue of evaluating a machine learning project, such 

as the one of this study, for environmental purposes. Contrastingly, some of the studies, which relate to 

topics of the energy markets microstructure, not only have they not incorporated such forecasts, but 

they have deemed them rather infeasible. More specifically, Mazzi and Pinson (2017) did so by 

assuming that wind resources “have a stochastic nature and can be predicted with a limited accuracy”, 

while Bitar et al. (2014) that are “modelled as a random process”. These, are some of the literate 

indications, which imply that there is not a greatly amassed volume of articles that study the underlying 

purpose of this exercise. Technically, however, Mazzi and Pinson (2017) in their paper, constructed a 

profit’s maximization problem of the wind energy producers, which is expressed as a function of the 

electricity prices of the Nord Pool’s market. On top of that, there exist many studies, which utilize 

machine learning methodologies, in order to predict these future electricity prices (see Beigaite et al., 

2018; Kristiansen, 2014; Chaabane, 2014). Nevertheless, not quite many studies exist, which 

contemplate issues of wind power predictions in the framework of the energy market of Nord Pool. 

This paper will broach, both the issue of predicting future wind energy generation with the aid of 

machine learning technologies, and finding potential benefits of it for the economy and the environment, 

which will also be converted into monetary terms, for decision making purposes. The study is divided 

into two concrete parts. On the one hand, the first part is allocated to the implementation of machine 

learning forecasts of future hourly wind energy production. Sub-partially, the first part adheres a 

specific sequence of content. First, the methodology of the following conducted study takes place, 

during which the proposed machine learning models of the comparative analysis are described, and 

then, the algorithmic procedure of their construction is outlined. Later, the part, concerning the 

collection and the pre-processing of the data is cited. Afterwards, follows a short part for the description 

of the evaluation metrics, or in other words, how is the predictive accuracy of the proposed models 

going to be measured and compared. Lastly, the empirical results of the first part are presented. First, a 

preliminary Exploratory Data Analysis (EDA) is performed, and right after that, are demonstrated the 

final results of the first part. On the other hand, the second part of this exercise, is dedicated in the 

evaluation of the exceeding predictive power of machine learning models, like Support Vector 

Regression (SVR) and Random Forest Regression (RFR), against other traditional methods, such as 

Linear Regression (LR) and Autoregressive Integrated Moving-Average (ARIMA). First of all, a 

theoretical setup is configured, so that every needed information is introduced. For instance, the 

framework of the Nord Pool’s underlying energy market is described, and all the linked benefits, 

stemming from exploitation of machine learning by wind energy producers and the energy grid, are 

pinpointed. Then, the evaluation process is summarized, and lastly, the technical procedure and the final 

results are discussed.  
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2 Methodology 

2.1 Description of Predictive Models 

In this study, both statistical and machine learning models were selected. However, deep learning 

models, namely neural networks and their variants, have been purposely omitted from the analysis, 

since they serve as one of the most promising avenues for predicting wind power production, and thus, 

require a whole separate study, in order for their true aptitude to be unveiled. The goal of this part of 

the exercise is to compare the predictive accuracy of traditional with that of more advanced models. To 

that end, a baseline model has also been set up, which produces a naïve (myopic) forecast, and helps in 

determining the increment in terms of predictive accuracy that a more complex model adds to the 

forecasting task. Below, follows a short description of the selected predictive models. 

2.1.1 Persistence Model 

 

The persistence model is the most common reference model in wind power prediction and other 

tasks involving time series data. Also, it is one of the simplest models, as it only performs a 

myopic prediction. That is, the prediction of the next observation is always equal to the previous 

one. As for the study’s short forecasting horizon, which has been stipulated to one hour, the 

persistence model is effective and difficult to outperform. Mathematically, it is outlined as: 

  

ŷt = yt−1, ∀ t ∈ Z        (1) 

 

2.1.2 Linear Regression 

 

The linear regression is one of the most basic statistical models. In particular, it establishes a 

linear relationship by fitting a straight line between a target and a predictive variable(s), given 

a historical set of observations, which describes their past behaviour. The best linear 

relationship, namely its intercept and coefficients, is found by minimizing the squared distance 

(ordinary least squares) of the line from the past observations. The estimated line is: 

 

ŷt = âOLS + ∑ b̂i
OLS × xit

n

i=1

, ∀ t, n ∈ Z        (2) 

 

2.1.3 Elastic Net Regression 

Although linear regression is not a complex model, there is a probability to overfit the data, 

should the number of features greatly increase. Hence, to address this issue, it would be useful 

to incorporate a form of penalization, which will eliminate any of the model’s excessive, non-

beneficial complexity. The elastic net regression utilizes a form of penalization that combines 

both lasso (L1) and ridge (L2) regressions. What makes elastic net different from linear 

regression, is the alteration of the cost function, which now integrates two more penalization 

terms. The new cost function is formulated as follows: 

 

min
𝑎̂𝐸𝑁𝑅,𝑏̂𝐸𝑁𝑅

∑ (yi − 𝑎̂𝐸𝑁𝑅 − ∑ b̂j
ENR × xij

q

j=1

)

2
n

i=1

+ (λ1 × ∑|b̂j
ENR|

q

j=1

) + (λ2 × ∑ b̂j
ENR2

q

j=1

)      (3) 

 

In the cost function, above, the second and the third term, describe the L1 and L2 penalization 

forms, respectively. The L1 term adds the magnitude of the coefficient, as a penalty, to the cost 

function, while the L2 term does the same, by adding the square of the coefficient. Hence, ridge 
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regression shrinks the coefficients, thereby alleviating issues, regarding overfitting and multi-

collinearity, but lasso regression can even eliminate some of the coefficients, thus, not only 

helping in addressing overfitting, but also serving, as a feature selection method. Conclusively, 

the estimated regression line is: 

 

ŷt = âENR + ∑ b̂i
ENR × xit

n

i=1

, ∀ t, n ∈ Z        (4) 

 

2.1.4 Polynomial Regression 

In effect, polynomial regression is a variation of the linear regression model, whose set of 

features is expanded, not only including the predictor variables, but also their higher powers, 

i.e. quadratic, cubic etc. Although the model has non-linear features, it is only assumed a 

“quasi” non-linear algorithm, because the coefficients of the predictor variables are still linearly 

calculated. That is, the algorithm cannot clearly explain the non-linear relationship, which 

might exist between the target and predictor variables. However, the function of the generated 

predictions is part of the non-linear space. The estimated polynomial regressor is: 

 

ŷt = â + ∑ b̂i

n,K

i,k

× xit
k , ∀ n, K ∈ Z        (5) 

2.1.5 Autoregressive Integrated Moving Average 

In contrast with the previously described models, ARIMA is explicitly designed to handle 

timeseries data and respect their peculiar characteristics, which mostly emanate from the 

consequences of the residuals’ autocorrelation. More specifically, it is a conjunction of two 

parts, which are the autoregressive (AR) and moving average (MA). The former consists of a 

linear regression of the target variable onto its lagged observations, and the latter, of the target 

variable onto the previous error terms. Furthermore, the integration part regards prerequisites 

of the algorithm, concerning the nature of the target variable, which has to be stationary, namely 

have an invariant statistical distribution over time. In order for a non-stationary timeseries to 

be converted into stationary, (non-seasonal) differences have to be applied. The minimum order 

of differencing that successfully converts the series into a stationary process is the integration 

order. Rigorously, the estimation line is: 

 

ARIMA(p, d, q):    ∆(yt, yt−d)̂ = â + ∑ γi

p

i=1

× yt−i + ∑ δi

q

i=1

× εt−i, ∀ t, p, q ∈ Z        (6) 

 

2.1.6 k-Nearest Neighbours Regression 

 

The k-NN model is a machine learning method. Particularly, through the construction of a 

multi-dimensional space, whose number of dimensions equals the number of predictor 

variables, it predicts new cases, by averaging their nearest observations. The location of those 

is pinpointed, by calculating their multi-dimensional euclidean distances from every other past 

observation, and then the nearest cases are selected. Mathematically, predictions are formed as: 

 

ŷ =
∑ yk

i=1

k
, ∀ k ∈ Z        (7) 
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2.1.7 Random Forest Regression 

 

A random forest is an ensemble of multiple decision trees (CART). In effect, the CART 

(Classification and Regression Tree) algorithm is the way of how a random forest really 

function. Essentially, a decision tree aims to minimize the current state of disorder (entropy) in 

the data, by splitting it in such a way, so that the greatest reduction of the error metric is realized. 

Also, a decision tree consists of nodes, at which the data is split, using the predictor variables 

of the regression. The amount of reduction incurred by splitting the data, utilizing a certain 

predictive feature, is called “information gain”, as it describes the information that the 

corresponding feature provides, concerning its ability to effectively explain the nature of the 

data. Moreover, every decision tree, which comprises the random forest ensemble, is trained 

upon a randomly generated, through a process called “bootstrap aggregation”, subset of the 

initial data. Jointly, the concepts of “entropy” and “information gain”, form the ID3 algorithm, 

which is quite common for building decision trees. Comparatively, random forests are more 

efficient than individual decision trees, since they are able to reduce variance, thus eliminating 

the decision trees’ extended risk of overfitting, and serving, as a significantly more reliable 

predicting option. Lastly, when all splitting nodes have been optimally created, a final, uniform 

prediction for every node is calculated. More specifically: 

 

ŷnode =
∑ yi

Nnode
i=1

Nnode
, ∀ Nnode ∈ Z        (8) 

 

2.1.8 Support Vector Regression 

The support vector regression (SVR) is a variant of support vector machines (SVM), and it is 

used to solve regression, rather than classification problems, as a regular SVM does. Also, the 

same algorithm can handle, both linear, and non-linear data. In effect, the SVR is a linear 

regression method, because it intends to find a linear function that best explains a linear set of 

instances. However, if the data are non-linear, a kernel (see K(xi, xj) below) function is utilized 

that projects them onto another, of higher dimensions, mathematical space, in which they are 

linearly transformed, yet without having the interrelationships between the samples eliminated. 

Now, since the data have been linearly transformed on the surrogate mathematical space, the 

best linear function (y), or hyperplane, is calculated. According to the SVR algorithm, the best 

linear hyperplane is the one that maximizes (maximum margin regressor) its distance from 

certain selected observations, which are called “support vectors” and are used to find the closest 

match between the samples and the hyperplane. Intuitively, when the distance among the 

“support vectors” and the hyperplane is maximized, the more accurate are the generated 

predictions by the model, due to the presence of random noise in the data. Finally, this 

maximized distance stipulates a range (ε), inside which any prediction errors occurred are 

neglected, while the ones being out of it, called “slacks” (ξ and ξ*), are tracked and subjected 

to minimization. Hence, the conditional optimization problem is mathematically formed, as 

follows: 

min
 

1

2
× ‖w‖2 + C × ∑ (ξi − ξi

∗)n
i=1   

s. t.  

yi − w × xi − b ≤ ε + ξi  

w × xi + b − yi ≤ ε + ξi
∗  

→ ŷi = ∑ wi × K(xi, x)n
i=1 + b, where: Κ(xi, xj) = e

(−‖xi−xj‖
2

2×σ2⁄ )
, ∀ n ∈ Z        (9)  
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2.2 Evaluation Method 

The objective of evaluation is to estimate the generalization error, which regards a model’s accuracy to 

predict new cases based on its training, using only known data. The used evaluation methodology is a 

combinatory approach, since it jointly exploits the techniques of cross validation and grid search. These, 

are more specifically described below: 

2.2.1        Grid Search 

This method is used for the optimal determination (tuning) of a model’s set of hyperparameters. 

There are two types of parameters to be tuned, during the construction of a model. These, are 

the regular parameters and the hyperparameters. What makes them different is that the latter 

have to be specified prior to the training phase, due to their inability to be estimated through 

the data. Essentially, hyperparameters are used to control the learning process, thereby being 

different from the regular parameters, which are estimated during the learning process itself. 

Moreover, most of the models possess tuneable hyperparameters, while there are others, which 

do not. In latter case, grid search can be skipped and its place occupy the training part. In effect, 

grid search is an exhaustive iteration over a matrix, which hosts every possible combination of 

the hyperparameters of a model. This process is iterative, since all combinations are used to 

train the model and the one yielding the best results, namely the lowest generalization error, is 

chosen. Furthermore, there are other tuning methods, which could be alternatively considered. 

However, it was not part of this study’s purpose. 

2.2.2 Cross-Validation 

 

The cross-validation method is one of the most important concepts in machine learning, 

because, during which not only is performed the estimation of the generalization error, but also 

an improvement process of pinpointing it. Hence, this procedure yields the best possible 

generalization error of a model’s predictive accuracy. According to it, the dataset is partitioned 

into a predefined number of equal parts, which are iteratively distributed to the training and 

testing sets. In every iteration, the maximum amount of data that can be occupied by the testing 

set is only one of the segmented folds, while the rest of them is allocated to the training set. The 

goal is for a number of training and testing sets’ pairs to have been generated that match the 

number of equal parts, into which the original dataset had been divided. Then, the model is 

trained and evaluated on every of the aforementioned pairs, and the average of all the errors, 

corresponding to the different testing sets, is reported as the final generalization error. 

 

Image 1: Regular Cross-Validation, Source: Ren, Qiubing & Li, Mingchao & Han, Shuai (2019) 
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However, the above version of cross-validation is not designed for tasks that incorporate time series 

data, since the random partitioning is infringing their fundamental characteristics. That is, the randomly 

segmented folds do not retain the coherence of the time component, whose presence yields the 

autocorrelation observed between the successive data points in a time series. Hence, in order to account 

for these temporal dependencies in the data, another version of cross-validation has to be employed. A 

suitable alternative version is called “nested cross-validation” and it is different, although inheriting the 

rationale of its previous variant, since it does respect the presence of the dataset’s time component. 

More specifically, an “expanding window” approach is implemented. Initially, the window covers a 

certain amount of the dataset, starting from the beginning, which is split into the first pair of training 

and testing sets. Continuingly, the window’s size iteratively increases by the amount of data that had 

been assigned to the testing set of the first iteration. Note that in every iteration the size of the evaluation 

set remains constant. Lastly, the model is constructed and evaluated, using every iteration’s pair of sets, 

and the average of all the out-of-sample (testing) errors is indicated as the generalization error. 

 

 

 

             2.2.3 Nested Cross-Validation 

Now that the above methods have been described, it would be wise to analyse the combinatory 

algorithmic methodology, which was used to create and evaluate the predictive models of this 

exercise. To combine the approaches of cross-validation and grid search, an algorithmic 

procedure had to be configured, since there is a need to simultaneously find the model’s optimal 

generalization error and its respective best setting of hyperparameters. In order to accomplish 

that, a structure of two nested for loops has been implemented. The pseudocode of the algorithm 

is graphically shown in the image below. The outer loop (step 7) iterates over the rows of the 

matrix, containing all the available hyperparameters’ combinations, thus letting the inner loop 

(step 9) apply the “nested cross-validation” to every one of them. Substantially, this produces 

a matching of all the combinations of the hyperparameters against their corresponding best 

generalization errors. Then, a searching for the combination with the lowest generalization error 

is realized and its findings are what the program prints back to the user. As for the first five 

steps of the pseudocode, they help in amending the algorithm, in case where there are not any 

hyperparameters to be tuned for the model. 

Image 2: Nested Cross-Validation for Time Series Data, 

Source: https://godatadriven.com/blog/its-time-to-trust-your-predictions/ 

https://godatadriven.com/blog/its-time-to-trust-your-predictions/
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3 Empirical Results 

3.1 Software 

This study has been conducted using the R programming language (v4.0.2) and several of its embedded 

libraries, which are tailored for timeseries data. More specifically: the dplyr (v0.7.8) library was used 

for manipulating the dataset; ggplot2 (v3.3.2) for data visualization; stats (v3.6.2) and tseries (v0.10-

47) for deploying various statistical tests, and training linear models, such as linear and polynomial 

regression; forecast (v8.12) for addressing non-stationarity, implementing timeseries decomposition, 

and ARIMA modelling; caret (v6.0-86) as a baseline for writing the combinatory algorithmic 

methodology’s code; ranger (v0.12.1) for training random forests; kernlab (v0.9-27) for training 

support vector machines; and lastly, yardstick (v0.0.6) for evaluating the predictive accuracy of the 

different machine learning models. 

Image 3: Pseudocode of the Combinatory Algorithmic 

Methodology 
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3.2 Data Description 

The forecasting of wind energy output, using weather’s properties, requires two basic sets of data. 

These, consist of a dataset of the energy generation, measured over a certain period of time, and a 

dataset, containing the respective, spatially and time adjusted, meteorological data. Graphically: 

 

  

 

 

 

 

Regarding the collection of the data, they were retrieved from different sources, because it was not 

possible to find a unified set, containing every needed information for the purposes of the study. First, 

the energy generation dataset was retrieved from the Ontario’s Independent Electricity System Operator 

(IESO) official website, and second, the meteorological dataset was collected from the Government of 

Canada’s official website. 

This procedure required that both sets be calibrated in the same manner, in terms of spatial and time 

resolution. As for spatial resolution, the datasets concerned different geographical locations, due to the 

absence of weather stations in the location of the wind farm. Hence, the main problem was to optimally 

pinpoint that combination, among the available weather stations and the wind farm, with the least spatial 

distance. Inherently, this inevitably propagates some error to the final forecasts, yet not to the extent 

that the purpose of this exercise become unreachable. Regarding time resolution, both sets were 

successfully collected for the same period of a year, while their frequency is one measurement per hour. 

Thus, the sample’s total size is 8760 observations. 

 

Table 1: Visual Inspection of the Dataset 

Image 4: The Location of the Wind Farm and the Closest Weather Station, Source: Google Maps 
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3.3        Data Preparation 

The data preparation, or pre-processing, helps in converting a raw dataset into an understandable form 

by the machine. More specifically, some of the most fundamental parts of this technique, which are 

used in this study, are: a. data quality assessment, b. feature encoding, and c. splitting of the initial 

dataset into training and testing sets. Furthermore, other important, although not been used in this 

exercise, techniques are dimensionality reduction, feature aggregation and sampling. 

             3.3.1        Data Quality Assessment 

In this step, a careful inspection of the initial dataset is performed, thus any particularities are 

spotted and treated accordingly. The most frequently observed blemishes in datasets are 

missing and inconsistent values, which refer to not and incorrectly assigned measurements, 

respectively. In this study, the latter were not the case, since the measurements were registered 

by accurate instruments that track down properties of the weather. However, there were some 

missing values in the dataset. There are two basic ways to cope with missing values, which are, 

either the elimination of the rows, containing the missing values, or the estimation of those 

values, using interpolation or filling methods. In this exercise, any encountered missing values 

were replaced by the mean of the column, in which they had been first found. This is a filling 

method and is the most commonly used among researchers. 

 

3.3.2        Feature Encoding 

 

This part of data preparation helps in the transformation of several types of variables, or 

features, so that they are ready for machine learning applications. The variables’ type can be 

nominal, ordinal, or categorical. In this study, the variables were restricted only to the nominal 

type. Hence, the encoding should concentrate on feature scaling, which is how the nominal type 

of data is transformed, so that the range of values, among the variables, is equalized. This kind 

of data transformation is used, because certain models utilize Euclidian distances, and thus are 

dependent on the range of the features, which, if not equivalent, would deteriorate the training 

process. Therefore, every nominal independent variable has been standardized, using the 

following formula: 

x̃i =
xi − x̅train

σ(xtrain)
, ∀ i = {train, test}        (10) 

 

Note, that the training and testing sets’ standardization is performed, using only the mean and 

standard deviation of the training set. This, accounts for the data leakage’s consequences, if the 

precedure were performed, using statistical properties of the initial dataset. 

 

3.3.3        Splitting into Training and Testing Sets 

 

This is one of the most fundamental parts of the pre-processing module. In machine learning, 

the spotlight of interest is inclined towards the practical implementation, which actually is the 

construction of predictive models, used in predictions of everyday life, such as the task of 

forecasting the wind energy production from a wind farm. Inductively, a need exists to assess 

the performance of these models and their ability to work effectively, when applied in real life 

situations. For that reason, the initial dataset is to be divided into two subparts, which are called 

training and testing sets. The former is used for training the model, so that it learns the insightful 

correlations within the data. The latter, which consists only of newly seen cases, is used to 

evaluate the effectiveness of the previous learning process, serving as a target of prediction for 

the trained model. Lastly, in this study, the avenue of splitting the initial dataset into the two 

aforementioned subparts is automatically addressed, using algorithmic techniques. 
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Lastly, every part of the data preparation is going to be separately implemented onto the training and 

testing sets, in order to prevent the consequences of data leakage from having negative effects on the 

performance of the models, had the original dataset initially been used. These consequences are related 

to falsesly overoptimistic generalization errors, due to the models’ retrospective acquaintance with 

information of the testing set, during the training phase, which is normally meant to be independenlty 

predicted in the testing part. 

3.4        Evaluation Metrics 

The evaluation regards the way of calculating the prediction’s error. This, refers to the deviation, 

between the actual value and the corresponding generated prediction by a predictive model. Moreover, 

there are two types of errors, called “in-sample” and “out-of-sample”, which are calculated, during the 

training and testing phases, respectively, while their comparison serves, as an indication of the presence 

of an overfitted or underfitted model. Technically speaking, there are many error metrics, which are 

being used in regression problems. However, the most common are: the root mean squared error 

(RMSE), mean absolute error (MAE). In this study, both these metrics are going to be used, so that 

there is a clearer and more robust comparison, among the constructed predictive models. Distinctively, 

the above two metrics, which are described in equations (a) and (b), solely measure the prediction’s 

accuracy of the models. Below, are given their formulas: 

       MAE =
∑ |ŷi − yi|

n
i=1

n
, ∀ n ∈ Z+

∗         (11)                   RMSE =  √
∑ (ŷi − yi)

2n
i=1

n
, ∀ n ∈ Z+

∗         (12) 

 

 

3.5 Explanatory Data Analysis (EDA) 

Above, there is a graph of the target and predictor variables. The dependent variable does not appear to 

have a constant mean and variance, which preliminary suggests that it be a non-stationary process. Also, 

there are not any noticeable outliers, spikes or sudden shifts. Moreover, no strong seasonal patterns and 

cyclical movements are discernible through visual depiction. Furthermore, it is observed that a 

relationship exists between the predictors and target variables, while the most noticeable is the one 

between wind energy generation and wind speed, air pressure. However, although graphs’ inspection 

helps in revealing hidden characteristics of the data, more rigorous statistical tests are to be employed, 

in order to technically assure their existence. 

Figure 1: MAE (left) and RMSE (right) graphically illustrated, Source: https://i.stack.imgur.com/PtfUm.png 

 

https://i.stack.imgur.com/PtfUm.png
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Following, a correlation matrix (heatmap) and the variance inflation factors (VIF) of the independent 

variables are illustrated. According to the heatmap, there is a linear relation, associating the target with 

the predictor variables, while the most prominent is the one between wind speed and wind energy 

generation. This, is in line with the observations from the preceding graph of the different time series. 

Also, there is a linear relationship among the independent variables, indicating the presence of 

multicollinearity, which negatively effects the training process of the predictive models. However, as 

the VIF table designate, its current state is not severe enough, since the VIF values of every variable is 

below the relating threshold. 

Figure 2: Target and Predictor Variables Over Time 
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The below complex of graphs intends to shed light to the underlying and hidden characteristics of the 

dataset through the inspection of the residuals’ behaviour. Specifically, the graph (a) describes the 

nature of the relationship’s form, between the target and the predictor variables, namely if it is linear or 

non-linear. In this case, linear regression did not capture every pattern in the data, hence indicating their 

non-linear nature. Next, graph (b) shows how the residuals of the linear regression are distributed. The 

residuals’ distribution seems to be resembling the normal, yet it is not identical. Continuing, graph (c), 

also called spread-location plot, helps in examining how the residuals are spread along the range of the 

predictor variables. Here, the funnel-shaped dispersion of the samples unveils the presence of 

heteroskedasticity. Lastly, graph (d) helps to identify any influential cases in the dataset, i.e. outliers, 

leverage points etc, which might influence the determination of the best regressor. It is shown that not 

many influential samples exist in the dataset, apart from few cases, which are denoted by their index 

number. The issue of influential cases will be more thoroughly assessed later. These remarks divulged 

some of the particular characteristics of the data, which violate several assumptions of the linear 

statistical models that use ordinary least squares as an optimization technique. Hence, in such situations, 

other predictive models should be used, so that better understanding of the nature of the data is derived. 

Figure 3: Correlation Matrix and VIF scores 
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Now, it would be wise to more technically investigate matters, concerning influential cases in the 

dataset. After calculating the Cook’s Distance threshold (red line) for the regression and the same value 

for every sample (black bars), the comparison of them is conducted. Instantly, only a few cases exceeded 

the threshold, and thus, were further investigated. Specifically, two linear regressors were fitted into 

two different datasets, from which the one had every influential observation excluded from it. The 

adjusted coefficients of determination of the two regressors do not have great difference, thus no action 

is needed regarding the addressing of the outliers in the data. 

Figure 4: Diagnostic Plots of Multiple Linear Regression 
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Proceeding, in order to investigate the autocorrelation of the target’s time series, the graph of the 

functions of the autocorrelation and partial autocorrelation are shown. More specifically, the ACF 

describes a gradually decreasing behaviour of the autocorrelation of the residuals, which is mostly be 

due to the propagation of the first order’s autocorrelation to the next ones, as it is also ratified by the 

abrupt cut off of the undifferenced series’ PACF (b) at the first lag. Furthermore, the persistent decaying 

over time of the ACF (a) indicates that non-stationarity is present. Furthermore, no signs of seasonality 

or cyclical movements are present, according to the graphs (a) and (b). It is evident that the derivation 

of the first differences of the original series has converted it into a stationary and random process, since 

it has almost every of its lagged autocorrelations statistically insignificant. Although, the differenced 

series’ ACF and PACF can serve as a guide for selecting the ARIMA model’s best hyperparameters, 

they are not indicative enough of the optimal setting that has to be used, presenting ambiguous results. 

Nevertheless, their concurrent sharp cut off at the first lag, reveal the process’s joint AR and MA 

signature. Conclusively, the optimal hyperparameter setting has to be found through grid search 

methodology, which was described in the methodology part. 

Figure 5: Cook’s Distance for Multivariate Outlier Detection 
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Next, the validity of the stationarity’s assumption, which has to hold true for timeseries data, is being 

formally checked. To that end, the ADF-GLS (ERS) test is employed, since, among the available test 

candidates, it produces the most accurate and reliable results. As it is evident, the underlying series has 

a unit root, namely is non-stationary, as the value of the test-statistic is lower than the minimum critical 

value. This, also confirms the previous visual inspections. 

 

 

 

 

 

 

Figure 7: Output of the ADF-GLS (ERS) Unit Root Test 

Figure 6: Autocorrelation (AC) and Partial Autocorrelation (PAC) Functions Before (a and b) and After (c and d) Differencing 
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Continuing, a histogram and a kernel density estimate (KDE) graph of the original series are shown. 

Seemingly, the series is differently distributed from the normal distribution, and resembles a positively 

skewed and long-tailed random variable. More specifically, most of the observations are centred around 

zero, while a part of them is dispersed along the right tail of the distribution. 

 

  

Finally, the quantile-quantile plot of the time series is demonstrated, along with the Jarque-Bera test for 

normality. As the graph indicate, the data does not follow the normal distribution, a fact which was 

implied by the previous histogram, and is now strictly validated by the statistical test’s results. 

 

 

Figure 8: Histogram and KDE of Wind Energy Generation Series 

Figure 9: QQ-plot and the Jarque-Bera Test for Normality 
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3.6 Results 

In this section, the results of the first part of this study will be discussed. Below, there is a table, in 

which the generalization errors (testing or out-of-bag) of the different predictive models are listed. The 

persistence model is shown first, since it serves as the baseline for the comparison among the rest of the 

models. Generally, the comparison consists of two parts. Initially, is measured the difference in the 

accuracy between some models, in order to establish, which one of them is the best. Then, the accuracy 

of the best model is juxtaposed with that of the persistence model, and it is examined whether or not it 

is able to outperform it. If so, it is concluded that it can yield predictions that are more valuable for the 

achievement of the underlying objective than those produced by the naïve option, which in this case is 

the persistence model. Furthermore, the constructed models were optimally calibrated by selecting the 

best setting of hyperparameters for the study’s purpose, and so none of them did overfit or underfit the 

data. Hence, the training errors and the best set of hyperparameters of the models are not cited, because 

they add no value to the analysis of the results. 

Model MAE (MW) RMSE (MW) 

Persistence Model 8.57590 13.81597 

Linear Regression 11.75929 15.94240 

Elastic Net Regression 7.07855 8.48146 

Polynomial Regression 10.02260 12.04853 

ARIMA 10.67559 12.22158 

k-Nearest Neighbours Regression 6.63282 8.55386 

Random Forest Regression 6.93581 8.77609 

Support Vector Regression 6.45846 8.88295 

  

The first main goal of this article was to establish a comparative relationship, between various 

traditional and machine learning methods, which will render superior only one of the two groups of 

models, in terms of accurately predicting wind power production. According to the table above, this 

relationship is clearly formed, since almost every machine learning model yields better predictions, both 

from every other traditional predictive method, and from the persistence model. By referring to MAE, 

it is safe to infer that the study’s best model for predicting wind energy generation is the Support Vector 

Regression (SVR), followed by Random Forest Regression (RFR) and k-Nearest Neighbours 

Regression (k-NNR). Next, the best traditional method is Elastic Net Regression (ENR). Also, it is 

concerning that some of the models did not surpass the persistence model’s accuracy, thus indicating 

that the task of predicting wind power is demanding, yet attainable, as has also been proven by the 

added complexity of machine learning models. 

Now, given the conclusion made by the above discussion, it would be interesting to examine how recent 

technological advancements, such as machine learning, could benefit the environment, economy, and 

the society, in general. On top of that, it would be quite useful to convert these benefits into monetary 

terms, if possible, in order to better inspect their economic implications. To that end, a theoretical 

blueprint has been structured. What it does regard, is how could artificial intelligence benefit the 

functioning of Nord Pool’s energy market. The inclusion of Nord Pool’s case is capable, not only of 

capturing the benefits that machine learning entails for the environment, and wind energy producers, 

by means of greenhouse gasses emission mitigation and cost reduction, respectively, but also of 

converting them into monetary terms. In the next section of this study, the theoretical setup, and the 

results of this procedure will be reported and discussed. 

 

 

 

Table 2: Final Generalization Errors 
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4 Evaluation of Wind Energy Generation Forecasts of Machine Learning 

4.1 What is Nord Pool? 

Nord Pool is one of Europe’s leading power markets. In effect, it operates through the day-ahead and 

intraday markets, which are the main ways of trading energy. Specifically, the day-ahead market creates 

a joint pool of selling and buying bids, which are placed by the producers and consumers, respectively. 

Note that the day-ahead is a spot market, namely agents retrospectively, one day (24 hours) before the 

actual time delivery, designate their position for the next day at a known and certain future price. 

Afterwards, these bids are aggregated, in order to calculate supply and demand for energy. On the other 

side, the intraday supplements the day-ahead market by serving as a regulatory tool for suppliers, so 

that balance is secured between supply and demand. Lastly, there exists the regulatory market, which 

clears any imbalances incurred, between supply and demand, after the closure of the day-ahead and 

intraday markets. For example, if demand exceeds supply, then conventional energy producers provide 

the needed energy to eliminate the deficit. Similarly, these urgent loads of energy are traded in the 

regulatory market an hour prior to the time of energy delivery. 

4.2 How can Machine Learning help? 

4.2.1 The benefits associated with the Wind Energy Producers 

Since wind power production is by nature volatile, deviations between the placed selling bids 

and the actual energy delivery are subject to merits and penalizations, according to the current 

imbalance settlement system. There exist two general pricing settings, which are the single-

price and double-price. For instance, in a double-price setting, if the market is in deficit and a 

wind energy producer delivers more power than the initially stated, thus helping in the 

upregulation of the energy deficit, then he is benefited for the excessive power produced. The 

same applies, if the market is in surplus and a producer delivers less power than expected, 

because he or she helps in the downregulation of the market’s surplus. Contrastingly, however, 

if the market is in energy surplus/deficit and a producer delivers more/less energy than 

expected, then he is penalized for exacerbating the current energy imbalance in the market. In 

such situations, machine learning can benefit producers, since with its aid they can more 

accurately predict their future production, thereby minimizing their expected loss, which refers 

to penalties imposed, due to imbalances in the expected and actual energy delivery. 

4.2.2 The benefits associated with the Environment 

The provision of generated wind energy without deviations between the contracted and actual 

energy deliveries, not only upholds the better integration of wind power to the market, but it 

also mitigates the mediation of the regulatory market, because less energy imbalances occur 

over time in the day-ahead market. As previously stated, the regulatory energy mostly comes 

from conventional producers, who produce it, using coal, thus leading to higher emissions of 

greenhouse gasses (GHG) to the Earth’s atmosphere. Consequently, should less energy-

supplying interventions by the regulatory market happen, less GHG will be emitted. Hence, a 

positive relation exists, between the utilization of machine learning in the energy market and 

greenhouse effect’s alleviation. 

4.3 How can these benefits be quantified in monetary terms? 

This analysis will be conducted, assuming that the market functions upon a double-pricing imbalance 

settlement system. In their paper, Mazzi and Pinson (2017), have formulated the profit’s function of a 

wind power producer under the effect of certain assumptions, in relation to the loss of profit, applied 

due to discrepancies from the contracted energy delivery. In addition, they also formulate that loss’s 
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function, and in conjunction with the function of the profit, they construct the maximization problem 

of the wind energy producer. Mathematically: 

πk=t−t0
= pk

DA × Qk − E(Lk), ∀ k ∈ Z        (13) 

 

k period between the bidding (t0) and delivery time (t) (equals 24 hours) 

π profit of the wind energy producer 

pDA price of energy per unit in the day-ahead market 

Q actual wind energy production 

E(L) expected loss of profit, due to imperfect information, i.e. penalties 

 

Lk = {
   (pUR − pk

DA) × (qk
DA − Qk),   if qk

DA ≥ Qk

   (pDR − pk
DA) × (qk

DA − Qk),   if qk
DA < Qk

, ∀ n ∈ k        (14) 

 

pUR price of energy per unit, when upregulation is required (= pR) or not (= pDA) 

pDR price of energy per unit, when downregulation is required (= pR) or not (= pDA) 

pR price of energy per unit in the regulatory market 

qDA contracted amount of wind energy for delivery 

 

In equation (1), the expected loss: E(Lk), is used, because it is not priorly known what amount of energy 

the producer is going to offer as his/her bid in the day-ahead market. That is, the expectation of the loss 

is calculated with regard to the forecasted amount of energy that will have produced over the fixed 

interval of k = t – t0 hours, E(Qk). Thus, the final maximization problem is the following: 

 

max
qk

DA
   πk=t−t0

= pk
DA × Qk − E[ Lk | qk

DA = E(Qk) ], ∀ n ∈ k        (15) 

 

 

In the above maximization problem, the E(Qk) is the prediction of future wind energy production created 

by the machine learning models that had been previously described in this article. These predictions 

serve as a bidding guide for the producers, as they will now use them to pinpoint the optimal amount of 

energy that has to be contracted in the day-ahead market, which will minimize their expected loss. The 

monetarized benefits for the producers can be conceived as the difference between machine learning 

forecasts and naïve forecasts, expressed in deviancy reduction terms, between the contracted and actual 

energy output. These naïve forecasts are perceived as the worst-case scenario, when trying to minimize 

the losses in profit, associated with enforced penalties for unbalanced energy deliveries. In other words, 

it is the difference in the expected loss, which is calculated, using the aforementioned methods: 

BPk
ML = ∑{ E[ Lk | qk

DA = E(Qk
ML) ] − E[ Lk | qk

DA = E(Qk
naive) ] }

T

k=1

, ∀ n ∈ k        (16) 

 

On the other side, the benefits for the environment arise, when the energy market is in energy deficit, 

and the producer also delivers less energy than the expected, hence extending the already formed market 

deficit further. In order to effectively record the benefit that machine learning has to offer in such cases, 

the same naïve forecasts are again assumed the worst-case scenario. The maximum number of 

megawatts of wind energy, up to which machine learning methods reduce the declination that occurs 

by these naïve options, given that the imbalances of the market and the producer are both of negative 

direction, consists the benefit associated with the environment. Particularly, when these deviations, 

which create the market’s energy deficit, are curtailed, less supplements of conventional energy have 

to be provided by the regulatory market into the energy grid. Hence, the less these supplements are, the 

lower are also the emissions of GHG into the atmosphere. Concretely: 
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BEk
ML|

qDA>Q
AD>AS = |∑( qk,ML

DA − qk,naive
DA )

T

k=1

 | × pCO2
, ∀ n ∈ k        (17) 

In equation (5), the pCO2
 is the marginal cost saved from the avoidance of the total amount of CO2 that 

is emitted per MWh of conventional energy produced. Specifically, USEIA (US Energy Information 

Administration) has calculated the borderline amount of CO2 emitted into the atmosphere per kWh of 

conventional energy generated, using coal, natural gas, or petroleum, for the year of 2018 in the US. 

That number is approximately 2.21 pounds of CO2 per kWh. Since the volume of GHG emissions from 

the combustion of fossil fuels is not to be altered, if realized in a different place on the Earth, it is also 

deemed to be promisingly resembling that of the EU. Additionally, Richard S.J. Tol, in his recently 

conducted study (2019), has measured that the EU’s social cost of carbon (SCC) is $0.33 per ton of 

carbon emitted. Hence, by algebraically manipulating the above pieces of information, it is possible to 

be shown that the SCC (pCO2) per MWh of conventional energy generated is $0.3315/MWh. Thus, 

pCO2
 equals $0.3315/MWh. Lastly, any required data for the calculation of the benefits of ML for the 

wind energy producers and the environment, had been collected from the official website of Nord Pool. 

4.3 Methodology: The Technical Procedure 

First, a new dataset was created, using all the available data, which had been collected from Nord Pool’s 

official website. This new set of data was created, as if wind energy producers had been bidding every 

hour in the day-ahead market. After their bids are placed, the market stops receiving offers (usually at 

12 a.m.) and the market operator clears any imbalances occurred, between supply and demand. 

Therefore, for every bidding hour, the dataset includes the corresponding information that is needed to 

calculate the deviation of the actual wind energy output from the contracted one, the net difference 

among market’s aggregate supply and demand (deficit or surplus), the relating losses for the 

discrepancies from the energy delivery target, and lastly, the total amount of conventional energy 

avoided, because of machine learning forecasts’ superiority against the ones of the naïve methods. 

Continuing, the benefits for the producers and the environment, are deduced against three baseline 

forecasts, which are based on: the persistence model, the median, and the average of the wind power 

production time series. Technically, these forecasts produce predictions, based on the available past 

information. For instance, the persistent forecasts assume that the produced wind energy of every next 

hour up until the delivery time, will be the one that was recorded at the bidding time. Contrastingly, the 

forecasts, which are based on the average value of the production, conceive the production of every 

next hour to be the average production of the previous hours. Lastly, the forecasts that are generated, 

using the median value of the production, suppose the production of every next hour to be the median 

value of the production. The baseline forecasts are graphically illustrated in the plot below: 

Figure 10: Hourly Forecasts of the Baseline Models 
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Once every baseline forecast has been constructed, their final proposals, upon which the wind energy 

producers will base their offers in the day-ahead market, are measured. In effect, the final proposal of a 

baseline model equals the summation of every hour’s forecast up to and the hour of the energy delivery, 

which is arranged for exactly 24 hours after the bid has been placed. Thus, the proposals are as follows: 

 

 

Note that the above graph is demonstrating the final proposal of the baseline models, only for a random 

auction, during not a specific day of the year, and it just grants a visual representation of their function. 

Thus, it is not to be considered as a general rule of the effectiveness of the selected naïve models. It is 

evident that the selected baseline forecasts, which cover a wide variety of the producers’ basic strategies 

for configuring the total amount of wind energy to be offered at every available auction of the day, can 

serve well enough their purpose, deeming from the above instance. Specifically, according to the above 

graph, the average of the production has offered an effective proposal, while the rest of the strategies 

did the same, but with some moderate amount of deviancy, which will, in conjunction with the market’s 

clearing state, also be indicative of the imposed penalties to the wind energy producer. 

Contrary to the aforementioned baseline models, another useful option that can generate bidding 

proposals for the producers, relies on “point-to-point” forecasts. That is, they utilize past observations 

to predict wind energy production, and not just guess upon its future nature. Such an option are also the 

forecasts, which are created, using machine learning methods. According to the analysis of the first part 

of this exercise, the best data-driven models for predicting wind energy generation, come from the 

machine learning family. More specifically, the SVR, RFR, and k-NN models have produced the best 

generalization errors. Therefore, these three models, along with their optimal configuration settings, 

will be used to quantify the benefits that are created for the environment and wind energy producers.  

The training/testing procedure of the models is now different than the one followed during the first part. 

Here, a single split of the data is performed, in order to create a training and a testing set, where 70% 

of the samples are attributed to the training set and the rest 30% to the testing set. The split’s weights 

were set in such a manner, in order for a complete number of days to be part, both of the training set, 

and the testing set. More specifically, a complete number of 255 and 110 days, were added to the 

training set and the testing’s set, respectively. In other words, 255 × 24 = 6120 and 110 × 24 = 2640 

auctions have been included to the two datasets, correspondingly. As it is already mentioned, the initial 

dataset has been calibrated in such a way, where all the needed information is granted for every auction. 

Next, after every necessary information is gathered, using both groups of models, BP and BE for every 

auction are calculated, and the mean of all of the auctions is reported back as the final result. 

Next, the forecasts of the three selected machine learning models are visually illustrated. Furthermore, 

there is a bar chart, in which their final bidding proposals are recorded and shown. More elaboratively,  

Figure 11: Final Proposals of the Baseline Models 
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in the case of the machine learning models, it is quite obvious that the regarding predictions and final 

proposals of theirs, converge much more to the actual wind energy generated in the course of the day, 

than those generated by the baseline models. A clear, consistent pattern is kept between the actual wind 

energy produced and the forecasts, implying the effectiveness of the models to even capture long-term 

relationships in the data. Although every model overestimates the actual energy production, the SVR’s 

forecasts seem to be associated the most with the lowest incurred error among the three candidates. The 

above sets of charts represent only one out of the total number of available auctions for evaluation in 

the dataset, and so, an overall measurement of all the instances has to be derived. Lastly, the final 

monetarized benefits for the producers and the environment are measured in euros saved per day (or 

auction), due to the integration of machine learning technologies into the energy market. 

 

4.4        Results 

Indeed, the results of the second part of this study, similarly to these of the first part’s, designate an 

apparent dominance of the machine learning over benchmark forecasts, employed by the wind energy 

producers, to successfully predict future wind power production. For instance, in the case of the final 

monetarized benefit for the producers (FBPML), the capitalization of advanced technologies can yield 

on average a 52.4% decrease in the daily (per auction) expected losses of the average wind energy 

producer. In this exercise, a wind farm of total capacity of 100 MW have been utilized, whose summary 

statistics are shown below, in order for a comparative nature of the results to be revealed: 

Figures 12 and 13: Hourly Forecasts and Final Proposals of the selected Machine Learning Models 
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Wind Farm (MW) 

Min 1Q Median Mean 3Q Max 

0.00 6.00 22.00 32.51 55.00 97.00 

Expected Loss Using Baseline Forecasts (€/auction) 

Min 1Q Median Mean 3Q Max 

0.00 0.00 23875 34616 52115 385899 

Expected Loss Using Machine Learning Forecasts (€/auction) 

Min 1Q Median Mean 3Q Max 

0.00 0.00 12722 18138 28350 238374 

 

FBPML = |LossML − Lossnaive| = |18,138 − 34,616| = 𝟏𝟔, 𝟒𝟕𝟖 € 𝐚𝐮𝐜𝐭𝐢𝐨𝐧⁄ (𝐝𝐚𝐲)/𝟏𝟎𝟎𝐌𝐖 

More simply, a producer, who occupies a wind farm of total capacity of 100 MW, can on average save 

16,478 euros per submitted offer (auction) in the day-ahead market, should he or she utilize machine 

learning forecasts, instead of those of the standard options. It would be possible to extrapolate this 

expectation of the final benefit also for wind farms of different energy capacities, by analogically 

manipulating the above summary statistics. However, these analogies will be a part of the realm of 

speculation and should be taken with a grain of salt. 

Moving onto the benefits, linked to the environment, one should take a more cautious glance to equation 

(5). Specifically, it is comprised of two terms, of which the second one is the marginal cost, pCO2
, of a 

pound of CO2 emitted per MW of conventional energy produced. Now, let’s rule that term out, and only 

focus on the first one. The first term of the equation, neglecting for now its absolute value, is 

responsible, for tracking down of how much better do machine learning options can predict the optimal 

final offers to be submitted in the day-ahead market. Algorithmically, the construction of this metric 

was done by using only the instances, where: qk,ML 
DA < qk,naive

DA , in order to reveal the worth that machine 

learning adds to the whole procedure. Now, moving further, the difference: qk,ML
DA − qk,naive

DA , shows the 

portion of the baseline models’ error that was curtailed, because of the deployment of the new forecasts. 

Evidently, this difference is always negative, thereby demanding the calculation of its absolute value. 

The results have shown that smart technologies, such as machine learning, can indeed mitigate the 

extensive emission of GHG, when applied to the energy market, and overall, help in alleviating many 

of climate change’s devastating consequences, due to high amounts of conventional energy produced. 

Practically, it is proven that a 160% reduction in GHG emissions can take place, if artificial intelligence 

be used for building a smart energy grid, which is not entirely relying on basic strategies for predicting 

future wind energy production, like the naïve ones. By using a part of eq. 5, it is relatively easy to 

demonstrate that a total number of 389,547 MWh of conventional energy can be avoided, during a time 

span of 4 months. The same number, if one use only the baseline forecasts, is 149,826 MWh. According 

to the previously mentioned information (see pg. 25), the total benefit, in terms of avoided GHG 

emissions, is translated into a volume of 2,210 × 389,547 = 861 × 106 pounds of CO2 that is emitted 

into the Earth’s atmosphere, in case, where the machine learning option is neglected. This, in monetary 

terms, writes: 

FBEML = 389,547 × 0.3315 = 𝟏𝟐𝟗, 𝟏𝟑𝟓 € 𝟒 𝐦𝐨𝐬.⁄ /𝟏𝟎𝟎𝐌𝐖 

 

Please, note that the final benefits for the producers and the environment are measured per a capacity 

of 100 MW of wind energy. That is, since the current study has been conducted, using a wind farm of 

a total capacity of 100 MW, the amount of the conclusive benefits is assuredly associated only with that 

certain capacity. Therefore, for different energy capabilities, e.g. the wind energy potential of a whole 

country, continent etc, separate studies have to be taken into consideration before these results are 

ensured to be able to be generalized, for instance, for any other energy capacity. 

Table 3: Summary Statistics of the Final Benefit for the Wind Energy Producers 
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4 Conclusion and Discussion 

Summarizing, the two main questions under consideration of this study were, on the one hand, if 

machine learning can be used in the energy sector for predicting future hourly wind energy production 

by wind farms, and on the other hand, if that is the case, what would the associated monetarized benefits 

be for the environment and the economy. The results of the first part’s answers (see paragraph 3.6) 

indicate that machine learning is eligible for the accomplishment of such a purpose, as it can yield better 

results than the naïve forecasts. More specifically, it is found that machine learning algorithms, such as 

the Support Vector Regression, k-Nearest Neighbours, and Random Forest Regression, when their 

hyperparameters are optimally tuned, can reduce the persistence model’s Mean Absolute Predictive 

Error (MAE) up to 24.7%.Similarly, the results of the second part (see paragraph 4.5), given the 

stipulated benefits for the wind energy producers and the environment, described in paragraphs 4.2.1 

and 4.2.2, respectively, support that machine learning can produce tangible capitalized added value for 

both agents. For instance, wind energy producers, who utilize a wind farm of total capacity of 100MW, 

can, on average, reduce their expected losses, due to deviances between contracted offer and actual 

energy delivery, up to 16,478€ per submitted offer in the day-ahead energy market of Nord Pool. On 

the other side, the environment can get rid of itself approximately 861 million pCO2, in a total time span 

of 4 months per 100MW of wind energy introduced into the energy grid. That is, expressed in monetary 

terms, 129,135€ saved per 4 months per 100MW of wind energy. 

In line with the initial hypothesis that machine learning can be successfully employed for forecasting 

wind power generation (Chang, 2014), are also the above-mentioned findings. Moreover, as Treiber et 

al. (2016) have shown, the tuned SVR algorithm can outperform the persistence model, in terms of 

Mean Absolute Error (MAE), by 24%, while only using wind speed, as a predictor, and wind energy 

generated, as a target variable. Contrastingly, the current study has jointly selected wind speed, air 

pressure, temperature, and relative humidity, as the features, comprising its set of target variables. This, 

could indeed mean that wind speed is the most prominent predictor, when forecasting of future wind 

power generation is the underlying task, and that any other of the aforementioned variables are of minor 

significance. Also, in contrast with Chaudhary et al. (2020), who showed that Decision Trees (a Random 

Forest with one tree) can greatly outperform Support Vector Regression, this study found that both 

algorithms have almost the same predictive accuracy, but with the former to be generating slightly better 

results than the latter. Overall, however, as the rest of the studies have found (see, for example, 

Zendehboudi et al., 2018), the machine learning algorithms, which were deployed in this exercise, are 

yielding much better results than the traditional models, e.g. Linear Regression, Polynomial Regression, 

and ARIMA. Lastly, it is not easy enough to contextualize this paper, with respect to its second part, as 

no studies exist that intend to examine the same, or similar, field. 

The conclusions from this article, should be taken into account, when considering to implement smart 

technologies, related to artificial intelligence, into a structure that produces clean energy, through an 

energy generator, which utilizes wind resources to do so, i.e. mostly wind farms. The results, not only 

provide insights for the expected economic feasibility of this venture for the wind energy producers, 

but also for the environment, which equally renders them suitable to be taken advantage of by policy 

makers, so that they speculate over the results of introducing machine learning, as a broader regime, in 

the energy sector, in order to further precipitate the current trajectory of world decarbonization. 
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