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Abstract

We introduce an instantaneous, intensity-based metric for estimating the number,

type, and probability of different agent-types over any time interval. It is founded on

the idea that differences in trading motives are reflected in agent specific arrival rates,

which are modeled using conditional hazard functions. This novel framework exhibits

superior empirical performance and theoretical properties over its interval-based — and

thus slower — counterparts. In addition, it enables the derivation of a local measure

for HFT reflexivity that is found to be highly correlated with the presence of variance
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spikes and extreme events, such as flash crashes. Therefore, it can act as a propensity

measure for HFT market ”stress”.

Keywords: High Frequency Trading; Agent-types; Hazard Functions.

JEL Codes: C41; C55
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1 Introduction

AI […] could lead to firms taking increasingly correlated positions and acting in

a similar way during a stress, thereby amplifying shocks. Such market instability

can then affect the availability and cost of funding for the real economy.”

Bank of England, April 2025

The quote above stresses out that Algorithmic Trading (AT) might propagate errors in

a manner and speed that can harm the real economy.1 In principle, AT acts as a continuous

market monitoring mechanism (Brogaard et al., 2014, 2019, 2025) that has the potential to

improve market efficiency (Chaboud et al., 2014) by exploiting arbitrage opportunities, even

at low latency (Hasbrouck and Saar, 2013), rendering it eventually “relevant for humans”

(Chordia et al., 2024, Chakrabarty and Pascual, 2023). In order to do so, AT relies on

trading signals (Li et al., 2021) as a proxy for fundamental information (Yadav, 2015), which

gets propagated to subsequent trades; a property known as market reflexivity (Soros, 1994,

2013). At these trading speeds (measured in micro-seconds; Aquilina et al., 2022), these

signals become highly entropic (Shannon, 1948), making AT conditional on a noisy signal of

fundamental information.2 In normal trading conditions, more or faster trading resolves this

information faster (Kirilenko and Lo, 2013, Kirilenko et al., 2017), but in periods of stress, it

becomes increasingly difficult to discern information about the informational content of other

trades (Hendershott et al., 2011, Zhang and Zhang, 2025) and, thus, AT might propagate

noise instead of signal.3 In this case, reflexivity becomes toxic (Easley et al., 2014) and can
1The report of Bank of England on “Financial Stability in Focus: Artificial intelligence in the financial

system” can be found here: https://www.bankofengland.co.uk/financial-stability-in-focus/2025/april-2025.
2At trading speeds (in µs; Aquilina et al., 2022) that exceed those of humans (>650ms; Johnson et al.,

2013), it is increasingly unrealistic to assume AT has the time to extract, analyze, and act upon fundamental
information concerning the cash flows of an asset. Instead, algorithms try to extract this information from
the actions of other agents and the trading signals (e.g., trading volume, direction, etc.) they emit. This
cannot be done perfectly and thus, information is being resolved only gradually, exhibiting entropic features.

3According to the Bank for International Settlements (BIS) in “FX execution algorithms and market
functioning” (www.bis.org/publ/mktc13.pdf), AT uses the same set of data and their actions tend to be
highly correlated. In normal trading periods, this can accelerate information resolution, but in periods of
stress, the informational content of trades might not be that clear and, thus, AT might propagate noise,
instead. This creates the fundamentals for extreme events, such as flash crashes and price spikes.
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escalate to systemic risk, fairly quickly, due to High Frequency Trading (HFT).4

Consequently, it is essential for AT to infer the real trading motives of other market

participants, from observable (trading) signals, or heuristically “who trades in the market”,

in real time. Previous approaches suggest interval-based metrics, which in HFT are rather

slow. In this paper, we propose an empirical strategy for identifying the presence of different

agent-types over any time interval, venturing the idea that their trading motives are reflected

in tangible actions; in particular in the arrival rates of observable variables. Drawing on the

theory of point processes, the conditional intensity (hazard function) fully describes these

arrival rates and it is used to capture the presence of these agents. The new metric, referred

to as the (i)ntensity-based (R)elative (P )roportion (iRP), is highly relevant in HFT and

exhibits significant advantages over previous approaches.

First, iRP is an instantaneous metric and can be estimated at any point or over any

time interval. Efficient markets (Fama, 1965) imply an instantaneous and unanimous infor-

mation resolution, but at HFT there is a drastic shift to ”trading” information as a noisy

signal of ”fundamental” information, which forces AT to extract it from trading (primarily

speed-related; Easley and O’hara, 1992) signals. The objective is to infer the informational

content (trading motives) of a trade, or else, ”who trades in the market”. At every point in

time several agent-types co-exist and their interactions constitute the mechanism by which

information is price resolved. Consequently, the agent composition is essential for condi-

tioning AT, but this constitutes a latent piece of information, which can only be estimated

in a probabilistic manner.5 Toward this end, prior literature suggests using the aggregated,

primarily over time, characteristics of trading activity as observable proxies for the actions of
4May 2010 and October 2014 are examples of signal misinterpretation that resulted in a sharp liquidity

withdrawal, while August 2015 and October 2016 are examples of misinterpretation resulting in coordinated
actions. In both cases, the inability of AT to identify the real motives behind a trading signal resulted in
a market-wide shock within minutes. Smaller and faster shocks are also present in the market ((U)ltra-fast
(E)xtreme (E)vents (UEE’s); Johnson et al., 2013) and they are also the result of signal misinterpretation.

5The agent-type composition cannot be known either ex-post or ex-ante. Arthur (2013) argues that iden-
tifying individual agent-type strategies is rather unattainable using only public information. Consequently,
mean field theory (Jovanovic and Rosenthal, 1988) cannot address the complexity arising from the emer-
gent properties of agent interactions. Thus, the identification of agent-types cannot rely on observing their
individual actions but must instead be approached probabilistically, as a sample property.
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different agent-types.6 They are mostly based on fluctuations in the aggregated magnitude

of a variable over an interval, which albeit intuitive, suffers from a trade-off between sam-

pling bias and frequency.7 In HFT, where the timing of possessing information is crucial,

because it can turn time priority into an information advantage (“to be uninformed is to

be slow”; Haldane, 2012) a faster identification, ideally as a point estimate, would be more

appropriate.

This is the primary concern of this study, which suggests matching differentials in the

conditional intensities (hazard functions) of observable events (e.g., trades or volume) to dif-

ferent trading motives, as they are reflected on these events, in order to identify the presence

of different agent-types and provide a point estimate for their probabilities. Unlike previ-

ous approaches that focus on the ‘aggregated properties’ of the accumulated actions of each

agent-type, iRP focuses on the properties of their ‘accumulation rates’. The starting point

is the presence of the agent-type herself, who is assumed to act upon stimuli in a distinct

time-invariant manner. Consequently, her actions exhibit a distinct time-invariant arrival

rate. However, her presence is conditional on market conditions and thus,time-variant. The

market as a whole is seen as an infinite mixture of their presence or absence, considering that

all agents (as experts with time invariant characteristics) contribute to shaping the overall

market activity, with time varying weights that account for market conditions. This is a

flexible framework to estimate the instantaneous probability that a particular event is initi-
6Since its early stages, the microstructure literature has associated the arrival rate of trades (Easley and

O’hara, 1992) and volume (Easley et al., 1996; Easley et al., 1997b; Easley et al., 1997a) with the existence
of informed agents. Other agent-types have also been identified based on observable characteristics, such
as trade sidedness (Sarkar and Schwartz, 2009), which is linked to asymmetric information; trade initiation
runs (Patterson and Sharma, 2010), associated with information cascades and herding; and trade/order
imbalances (Easley et al., 2011; Easley et al., 2014), associated with order flow toxicity.

7Longer time intervals reduce noise, but result in slower pace in information extraction. Arthur (2013)
claims that a top-down approach captures better the emergent properties arising from agent interactions.
Interval-based measures are more likely to capture these aggregated properties in a manner that reduces the
impact of noisy signals (Pöppe et al., 2016). However, there is no clear consensus on what constitutes an
optimal sampling interval. Empirical evidence (e.g., Easley et al., 2011; Easley et al., 2014; Andersen and
Bondarenko, 2014) reports significant sampling bias, as these metrics face a trade-off: longer intervals better
address noisy signals (e.g., trade initiation, Easley et al., 2014) but are less sensitive due to mean reversion,
while shorter intervals are more sensitive but also more prone to noise (Andersen and Bondarenko, 2014).
Consequently, higher sampling frequencies, which are more relevant to HFT, may render interval-based
metrics ineffective for capturing the finer properties of the data due to noise.
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ated by a specific agent-type, which can be extended over any interval without introducing

sampling bias (Andersen and Bondarenko, 2014).

Second, iRP is a significant generalization, where any number or type of agents can be

identified, because their presence is linked to a precise statistical measure (hazard function)

rather than to a specific variable, such as volume to informed trading. The trading char-

acteristics of an agent-type can be described by any set of variables, but the detection of

the agent-type is done by how they affect the conditional intensity, without assuming any

prior link. This introduces a flexible framework that can be used either i) to estimate the

probability of a specific agent-type, with a well defined trading characteristics or ii) in an

agnostic manner, to estimate, the number, type and probability of the agent-types present

in the market with no prior assumption about their number or the observable factors their

actions might affect. We illustrate the former with an application on private information in

Section 4 and the latter in a simulation in Section 5.

Finally, our framework enables an explicit assessment of the degree of reflexivity, derived

from the per-trade informational entropy (informational gain). We consider, in the spirit of

Jacobs et al. (1991), a (M)ixture of (E)xperts approach, where the different agent-types affect

the trading activity in a collective manner, both with their presence (conditional intensity), as

well as with their absence (survival function). Their actions and interactions are manifested

into the overall market activity, as a highly non-linear mixture that exhibits time variant

characteristics due to varying market conditions, as well as by their arrival rates. This enables

the estimate of (sample-wide) prior probabilities and local revisions (posterior probabilities),

depending on assessment errors. This separates the impact of market conditions from the

impact of arrival rates and can be used in order to assess how much trading is affected by

the former, which constitutes a signal, or the latter, which indicates endogenous trading;

thus, a higher degree of reflexivity. We develop a new metric to capture this and we show

that it is highly correlated with higher variance and the presence of extreme events, such as

flash-crashes and price spikes.
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2 An Intensity-Based Estimator of Agent-Types

2.1 The Market as a Collection of Different Agents

The market is a collection of k = 1, 2, ..., K agent-types that interact and formulate the over-

all trading activity. Each agent-type is driven by a stationary, time-invariant motivation for

trading, e.g., information, technical rule, etc., which is characterized by a set of parameters

τ k ∈ RQ; Q∈Z is the number of parameters that describe differentials in trading behavior.

These parameters govern the shape, scale, and entropy behavior of her arrival rate, which,

are assumed to be time invariant, for traceability reasons. Then, the conditional intensity

λk (t|Fs) ≡ λk
(
t, τ k|Fs

)
describes fully the arrival rate of each agent-type k.8

These intensities are latent and only the intensity of the market, λ (t|Fs) ≡ λ (t, τs|Fs) =

f(t,τs|Fs)
S(t,τs|Fs)

, can be observed at any point in time t = s. f (t, τs|Fs) and S (t, τs|Fs) are the

distribution and the survival function respectively. Our objective is to infer the presence of

all agent-types from the observable λ (t, τs|Fs). We consider that each agent-type contributes

to the overall market activity in a latent non-linear manner, because emergence properties

(Johnson et al., 2003) that are not necessarily the sum of the actions of all agent-types.

Consequently, we employ a ”Mixture of Experts” (MoE) approach (Jacobs et al., 1991),

rather than a ”Mixture of Densities” (MoD) like in Bowsher (2007), which embeds the

contributions of all agents/”experts” τ k as a convex combination in the parameters that

govern the overall market activity, τs.

λ (t, τs|Fs) = λ

(
t,

K∑
k=1

(pkt |Fs)τ
k|Fs

)
(1)

8λk
(
t, τ k|Fs

)
is the conditional intensity of a simple point process and describes mathematically the

entire trading behavior of agent-type k. {Ti}i∈Z denotes a simple point process on [0,∞), defined as a
sequence of non-negative random variables on some probability space (Ω,F ,P), such as 0 < Ti < Ti+1∀i.
N(t) is the counting process of {Ti}i∈Z defined as N(t) =

∑
i≥1 1(Ti < t) that counts the events up to

time t. Then λ(t|Fs) is defined as the intensity of N(t), given some filtration Fs, if E(N(t) − N(s)|Fs) =
E
(∫ t

s
λ(u) du

∣∣∣Fs), for 0 < s < t, and fully describes {Ti}i∈Z. The counting function can be defined as

Nk(t) =
∑
i≥1 1(Ti < t)(Zi = k), with a cumulative function E(Nk(t)−Nk(s)|Fs) = E

(∫ t
s
λk(u) du

∣∣∣Fs).
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Each agent k contributes – (pkt |Fs)τ
k – to the market activity either with their presence –

λ
(
t,
∑K

k=1(p
k
t |Fs)τ

k|Fs

)
– or their absence – S

(
t,
∑K

k=1(p
k
t |Fs)τ

k|Fs

)
– albeit in an agnostic

manner. This makes pkt |Fs a measure of the probability of agent k entering the market, prior

to its arrival; thus, a prior probability, which is inferred from the trading characteristics τ k.

Collectively, the market can be seen as a time-varying (infinite) mixture, pkt |Fs, of the

contribution of different agent-types, τ k, to the overall market activity, τs. Unlike the inten-

sities of each agent-type that are latent, the intensity of the market, λ(t|Fs) ≡ λ(t, τs|Fs),

and its counting function, N(t) =
∑

i≥1 1(Ti < t), are observable. They are assumed to

be the combined outcome of the interactions of all the agent-types present in the market,

reflected on the parameters τt, which define the conditional intensity of the market:

E(N(t)−N(s)|Fs) = E
(∫ t

s
λ(u) du

∣∣∣Fs

)
≡ E

(∫ t
s
λ(u, τu) du

∣∣∣Fs

)

= E

(∫ t

s

λ(u,
K∑
k=1

(pku|Fs)τ
k) du

∣∣∣∣∣Fs

)
(2)

In Eq.(2) the overall market activity, E
(∫ t

s
λ(u, τu) du

∣∣∣Fs

)
, is the combined outcome of

the interactions of all agent-types, E
(∫ t

s
λ(u,

∑K
k=1(p

k
u|Fs)τ

k) du
∣∣∣Fs

)
. Each agent-type is

characterized by a uniquely identifiable conditional intensity, λk
(
t, τ k|Fs

)
, that is defined

by a set of time-invariant parameters, τ k. This describes their trading pattern that captures

their intrinsic motivation and can be thought of as their baseline intensity. Their presence

in the market is defined jointly by their intrinsic motivation and their interactions, pkt |Fs,

with the presence fk
(
t, τ k|Fs

)
, or absence Sk

(
t, τ k|Fs

)
of all other agents. This results in∑K

k=1(p
k
u|Fs)τ

k, where conditionality is reflected on ”how” each ”expert” contributes to the

shape of the overall trading activity τs.

2.2 Toward an Empirical Specification

To use Eq.(2) empirically, λk(t, τ k|Fs) and pkt |Fs, must be extracted from the observed

λ(t, τs|Fs). We use the conditional density of arrival times, f(t, τs|Fs) (Kalaitzoglou and
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Ibrahim, 2013), and focus on durations , xi = ti− ti−1, i.e., the time between two consecutive

events, which are modeled with an ACD specification (Engle and Russell, 1998):

xi = ψiϵi (3)

ψi = E(xi|Fi−1) is the expected duration, conditional on past information Fi−1. ϵi = χi

ψi

is the standardized duration, the distribution of which, f(ϵi|Fi−1), is used to derive the

distribution of χi, f(χi|Fi−1) = f(ϵi|Fi−1)ψ
−1, which in turn is used to derive the conditional

intensity for the whole market, λ(χi|Fi−1). Following Eq.(2), f(χi|Fi−1) is modeled as:

f(χi, τi|Fi−1) = f(χi,
K∑
k=1

(pki |Fi−1)τ
k|Fi−1) (4)

Eq.(4) defines f(χi, τi|Fi−1), the shape of which is defined collectively by all agent-types

as a weighted average
∑K

k=1(p
k
i |Fi−1)τ

k of their distinct characteristics τ k and the prevailing

market conditions pki |Fi−1. pki |Fi−1 ≡ pkt |Fs is the prior probability in event time, i, rather

than in continuous time t. We estimate pki |Fi−1 and fk(χi, τ k|Fi−1) by linking the distinctive

characteristics of each agent-type to a set of q = 1, ..., Q parameters, different values of which

would indicate a differently shaped distribution. Eq.(4) can be rewritten as (conditionality

is denoted by i):

f(χi, τi|Fi−1) = f(χi, τi(Wi(:), τ
m|Fi−1) = f(χi,

K∑
k=1

Lki (Wi)τ
k|Fi−1) (5)

τi = (τ qi )
Q
q=1 is a vector of q = 1, ..., Q parameters, dissected into m = 1, ...,M regimes,

that determine the shape/scale of f(χi, τi|Fi−1), which is expressed as a function, τi(:),

of a [Q × M ] matrix of weighting functions, Wi(:), and a [Q × M ] vector of shape/scale

parameters, τm =
((
τQm
)Q
q=1

)M
m=1

. Different combinations of τ qm lead to differently shaped

conditional intensities λk(χi, τ k|Fi−1) that can match the actions of an agent-type k. The

prior probability, pki |Fi−1, is expressed as a function Lki (:) of Wi. Differentiation in Eq.(5) is
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reduced to estimable parameters τ qm, which lead to vectors τ k =
(
τ q=1
m:k , ..., τ

q=Q
m:k

)
, with m : k

indicating the regimes m that lead to an intensity λk(χi, τ k|Fi−1), which fully describes the

baseline intensity of agent-type k. Accordingly, each parameter, τ qi , ∀q, is defined as:

τ qi =
M∑
m=1

W q
m,iτ

m (6)

which is a data driven way to identify different regimes, m, of observable variables, Ji

that are associated with the parameters τm. The k’s are latent and they have to be inferred

from the data. This is done by associating different values of τm’s with specific trading

characteristics. Then, we employ the smooth transition functions Gi (Teräsvirta, 1994) to

assess Wi. ∀q:

W q
m,i =

(
Gq
m,i −Gq

m,i+1

)
, with Gq

1,i = 1, Gq
M+1,i = 0 and

M∑
m=1

W q
m,i = 1 (7)

Gi =
((
Gq
m,i

)Q
q=1

)M
m=1

is a matrix of smooth transition functions across regimes, which

estimate the weighting of each regime m in τ qi . Then, depending on the complexity of

f(χi, τi|Fi−1), more than one parameters (q ≥ 1) might define the shape/scale of the hazard

function. Consequently, the prior probability of a trade initiated by an agent-type k, pki |Fi−1

can be estimated via combinatorial intersections (Lki (:)) of Wi =
((
W q
m,i

)Q
q=1

)M
m=1

, as:

P(Zi = k|Fi−1 = Lki (Wi) =
∑

Q
⊗
m:k

∏
Q
⊗
M

W q
m,i (8)

∏
Q
⊗
M W q

m,i is the cross-multiplication product of W q
m,i that defines the probability of

the intersection between parameters, q, and regimes, m, with dimension MQ.
∑

Q
⊗
m:k(:) is

the intersections Q
⊗

m : k where the parameters result in a distribution that matches the

characteristics of agent-type k. Then, pki |Fi−1 is the sum of all Q
⊗

m : k. Conditionality is

summarized into Gi’s, which are modeled as smooth transition functions (Teräsvirta, 1994):
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Gq
m,i = Gq

m,i(Ji : g
q
m, j

q
m) =

(
1 + e−g

q
m(Ji−jqm)

)−1

(9)

where, Ji =
((
Jqv,i
)Q
q=1

)V
v=1

is a vector of v = 1, ..., V threshold variables, measurable

with respect to Fi−1. The magnitude of Ji relative to the threshold values, jqm, determines

the allocation of each event into a regime (Lof, 2012). Then, each τ qi can be defined as:

τ qi =

 1︷ ︸︸ ︷
Gq
m=1,i−G

q
m=2,i


︸ ︷︷ ︸

W q
m=1,i

τ qm=1 +
(
Gq
m=2,i −Gq

m=3,i

)︸ ︷︷ ︸
W q

m=2,i

τ qm=2 + ...+

(
Gq
m=M−1,i −Gq

m=M,i

)︸ ︷︷ ︸
W q

m=M−1,i

τ qm=M−1 +

Gq
m=M,i −

0︷ ︸︸ ︷
Gq
m=M+1,i


︸ ︷︷ ︸

W q
m=M,i

τ qm=M (10)

Eq.(10) is a specific derivation of Eq.(6), which links the value of each shape or scale

parameter τ qi to observable variables Ji through the weighting functions Gq
m,i, which eventu-

ally lead to the prior probabilities P(Zi = k|Fi−1), through the combinatorial intersections

Lki (:). This is a data driven way to estimate P(Zi = k|Fi−1) and can be used in two ways:

• Estimate the probability of an agent-type. Should the trading characteristics of an agent-

type be reflected on a set of observable variables and a uniquely shaped hazard function;

Eq.(10) can be used to estimate the probability of this agent-type entering the market.

• Estimate the number of different agent-types. Eq.(10) can be used to identify the num-

ber of regimes and intersections that fit the data best and thus; estimate how many

different agents exist in the market and their probabilities.
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2.3 Estimation

Eqq. (5)-(10) set an optimization problem that corresponds to a non-linear, parameter-based

generalization of the MoE framework of Jacobs et al. (1991). Each agent-type (”expert”)

contributes to the market activity, through her presence or absence, but not directly, since the

type of this agent cannot be known with certainty. Instead, all agents do so, in a combined

manner, the aggregated output of which, is observable as the overall market activity. To

simulate this, we consider that each agent-type (τ k) contributes to the overall market activity

λ(χi, τi|Fi−1) through a ”gating” mechanism, which is captured by the impact of functions

Gi or in Lki (:)’s on the shape/scale of the overall market activity τi, rather than directly.

This way all parameters can be estimated based on the distributional assumptions (Engle and

Russell, 1998) for the market durations (Eq.(5)) and the likelihood function
∑

i log f(χi; τi =∑
k L

k
i (Wi; θ))τ

k|Fi−1)), with θ = {gqm, jqm, τ k}.

The objective of this work is to capture the presence of a multitude of agents and this

depends on the flexibility of the distribution in producing non-monotonic hazard functions.

Distributions employed in previous literature (e.g., Weibull, Burr, (generalized) Gamma),

primarily to capture the dipole of informed/uninformed, can only generate monotonic haz-

ard functions. Instead, another distribution is ’indicatively’ proposed here, the q-Weibull

distribution, for its flexibility in generating non-monotonic hazard functions and its link

to ”information entropy”. 9 The ”q-Weibull” distribution can be defined for (χi|Fi−1) ∼

Wq

(
Ai, τ

q=1
i , τ q=2

i

)
:

f(χi|Fi−1; τi) = (2− τ q=1
i )

τ q=2
i

χi

[
χi
Ai

]τq=2
i

eq

(
−
[
χi
Ai

]τq=2
i

)
(11)

Ai =

[
Γ(1+1/τq=2

i )
−τ

q=2
i /ψi

]
is the scale parameter, ”q”:= τ q=1

i is the entropy parameter,

9The selection of the q-form is based on ”information entropy” (Tsallis, 1988) or the ”information rate”
of a DGP (Shannon, 1948), which is introduced in the ”q”-form by measuring the impact of the ”surprise”
through the Box-Cox transformed parameter (1 − ”q”), which captures the degree of extensivity of the
stochastic DGP; or else the impact of an observation in changing the moments of the overall distribution.
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τ q=2
i is a shape parameter and eq is the q-Exponential distribution (Box and Cox, 1964) that

collapses to the exponential when τ q=1
i = 1. It generates non-monotonic hazard functions:

0 < τ q=2 < 1 τ q=2 → 1 τ q=2 > 1
0 < τ q=1 < 1 Bath-tub Increasing Increasing
τ q=1 → 1 Decreasing Flat Increasing

1 < τ q=1 < 2 Decreasing Decreasing Unimodal

The cummulative hazard function, Hk(t|Fs) (Eq.(14)), is (Nadarajah and Kotz, 2007):

H(t|Fs) =


(2− τ q=1) (Ai(t− s))τ

q=2∑∞
j=0

[((1−τq=1)Ai]
j

j+1
when τ q=1 < 1

(Ai(t− s))τ
q=2

when τ q=1 → 1

2−τq=1

τq=1−1
ln
[
1 + (τ q=1 − 1) (Ai(t− s))τ

q=2
]

when 1 < τ q=1 < 2

(12)

2.4 Hazard Functions and Agent Types

Our framework can cover a wide range of different agent-types, as long as their actions

can be linked to a distinct pattern in the arrival rate of observable factors. In particular,

the underlying concept is that the actions of a particular agent type are reflected on a set

of observable factors (variables, Ji), such as trading volume (Easley and O’hara, 1992),

trading imbalance (Sarkar and Schwartz, 2009), order flow (Easley et al., 2014), etc, which,

ultimately determine the arrival rate (shape of the hazard function λk(t, τ k|Fs)) of a variable

(χi) that is inextricably linked to their presence. This is done by using Ji to split the sample

into sub-groups, each one of which exhibits a hazard function with a different shape (values

of τ k). Consequently, the building blocks for our modelling are:

Table 1 summarizes the necessary inputs for identifying the presence of an agent-type.

For illustration, we introduce this to identify the presence of informed agents in Section

3, but other applications are also discussed in the Appendix B.3. In section 3, we follow

relevant literature (Easley and O’hara, 1992, Easley et al., 2014, Hujer and Vuletić, 2007)

and we assume that the actions of informed agents are reflected on trading intensity (Ji is

defined in Section 3). Then, Eqq.(9)-(10) link different values of trading intensity to the
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Table 1: Hazard Functions and Agent Types
Economic Concept Statistical Variable Notation
Observable Factors Set of threshold variables Ji
The speed of events The modelled variable χi

The arrival rate of the events The Hazard Function λk(t, τ k|Fs)

Variations in observable factors Regimes of the
threshold variables

Jqi < jqm=2 …
jqm=M−1 ≤ Jqi < jqm=M

…Jqi ≥ jqm=M

Variations in the arrival rates Different distributions
defined by shape/scale parameters τ qm

shape parameter τ q=2
m of the q-Weibull distribution in Eq.(11). The value of this parameter

is associated with differently shaped arrival rates of trades (in the case of PIN in Section

3.1) or volume (in VPIN in Section 3.2). According to previous studies (Easley et al., 2014),

uninformed agents arrive randomly, following a flat hazard function. This is observed when

τ q=2
m → 1. So the presence of uninformed agents can be identified by the values of Ji that

are associated with τ q=2
m → 1. No prior assumption is required concerning the values of

Ji and their link to the presence of this agent-type. The data will identify this through

the shape of the hazard function. Furthermore, considering that informed agents have no

incentive to trade when there is no price unresolved information, their probability of entering

the market should be higher when new information arrives and should decay to zero, when

information becomes public. So, in our setup, informed trading would be identified by the

values of Ji that are associated with τ q=2
m < 1 and, thus, with a decreasing hazard function.

In consistency with theory and previous studies, but without any prior assumption, we find

that higher trading intensity is associated with an increased probability of informed trading.

2.5 A Decision-Theoretic Interpretation

But how is the temporal footprint of each agent linked to their demand functions, in a

unique way, in order to become identifiable? To address this point we model the behavior of

a representative agent within each agent-type as an optimization problem, which ultimately

determines their demand and, consequently, their trading pattern. Representative agents
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choose a timing distribution over t ∈ [0,+∞) (rather than a single point), trying to i)

maximize their utility with respect to the timing of their actions and ii) minimize the adverse

impact of their actions. They choose a conditional density fk(ti | Fs(i)), where Fs(i) denotes

the filtration available at the decision epoch s(i) for unit i and solve an entropy-regularized

utility maximization problem, with D being the set of admissible densities on [0, T ]:

max
fk∈D

Efk
[
Uk(ti | Fs(i))

]
+ ηk ·H(fk), (13)

This formulation captures the agent’s trade-off between expected utility and strategic

placements. Uk(t | Fs(i)) is the utility from acting at time t and, H(f) := −
∫ T
0
f(t) log f(t) dt

is the Shannon entropy, which captures the ”surprise” implied by acting at time ti and thus,

of the impact of this action. The first part, accounts for the direct utility gained from acting

according to this trading pattern and it is directly derived from their intrinsic motivation.

The second part is a regularization of this pattern according to the subsequent trading

impact. This accounts for potential strategic action implied by these intrinsic characteristics.
10 Heterogeneity within and across agent types could be accounted for with ηk ≥ 0, which

controls the strength of the regularization.

To illustrate this, consider an uninformed agent, with a constant utility with respect to

time (Easley et al., 2014), Uuninf(t | Fs(i)) = Ū . Her optimization reduces to pure entropy

maximization, such as minimizing trading costs, by minimizing the impact of her trades,

maxf∈DH(f). This yields a unique solution; the exponential distribution, f(t) = λe−λt,

with a flat hazard λ(t) = λ. This binds the characteristics of uninformed agents to a unique

shape (flat) of the hazard function.

Along the same lines, informed agents (Section 3) have an incentive to act before private

information decays in value and thus, their utility decreases in t. For instance, U inf(t |
10For example, a liquidity trader would try to minimize the liquidity impact of her trades (Hasbrouck and

Schwartz, 1988), an informed agent would try to minimize the price impact (Engle, 2000), while an impatient
agent would try to minimize the time impact Foucault et al. (2005), Engle and Russell (1998) of her actions.
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Fs(i)) = −αtq, with α > 0 and q > 0. In this case, the optimal density from (13)

takes the Gibbs-form f(t) ∝ exp (−αtq/η), which is a member of the q-Weibull family:

f(t) = a/b (t/b)a−1 expq (− (t/b)a), where a, b > 0 and expq(−x) denotes the q-exponential

function. This formulation directly links the shape parameter a and the entropic index q

to the agent’s underlying preferences and strategic environment. Steeply decreasing utilities

result in decreasing hazard functions (a < 1).

Consequently, Eq. (13) is the underlying mechanism that links the intrinsic qualitative

characteristics of each agent-type to a uniquely shaped hazard function. As long as, the

characteristics of an agent type can be mapped into a unique utility function and entropy

sensitivity, then her presence can be linked to a unique hazard function. Conditionality and

heterogeneity can also be further addressed in the parameters of Eqq. (3)-(11).

2.6 The (i)ntensity-based (R)elative (P )roportion

Eq.(8), defines the probability of an agent-type entering the market, based on past informa-

tion. The prediction is formed by aggregating the outputs of multiple specialized components

(experts) through a gating mechanism (Gi and Lki ’s), which map covariates to regime prob-

abilities and, ultimately, to prior weights over type-specific parameters τ k. The resulting

mixture, assuming a flexible distribution, enables the model to adaptively capture complex

temporal trading dynamics through a structured yet data-driven prior. The prior Lki is then

a full-sample summary of how often each expert is activated under optimal parameterization.

This estimate functions as a belief distribution over latent agent-types, conditional on

market features Ji that determine Gi and Lki (:)’s, but the presence or the absence of an

agent-type, affects these probabilities only as a sample-wide property. In HFT, though, a

continuously updated probability that takes into consideration the arrival of agents would

make more sense, because it could provide a probability at any point in time. We introduce

a continuous time revision of the prior probabilites Lki , based on the cumulative hazard

functionsHk(χi; τ
k|Fi−1). We name this the (i)ntensity-based (R)elative (P)roportion (iRP):
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iRPk
t =

E
(
Nk(t)−Nk(s)

∣∣Fs

)∑K
k=1 E (Nk(t)−Nk(s)|Fs)

=
E
((
pkt
∣∣Fs

) ∫ t
s
λk(u) du

∣∣∣Fs

)
∑K

k=1 E
((
pkt
∣∣Fs

) ∫ t
s
λk(u) du

∣∣∣Fs

) ⇒

iRPk
i =

LKi (:)H
k(χi; τ

k|Fi−1)∑K
k=1 L

K
i (:)H

k(χi; τ k|Fi−1)
(14)

iRPk
i ≡ Pki is a posterior estimate of pki |Fi−1 = Lki (:) that is continuously updated by

the presence λk(χi, τ k|Fi−1) or the absence Sk(χi, τ k|Fi−1) of a specific agent-type. After

revealing Ji, the prior probability pki |Fi−1, is the equivalent of a sample wide weighting for

each agent. However, depending on whether the arrival time of the trade is ”as expected” by

the prior λk(χi, τ k|Fi−1) and as time lapses Hk(χi; τ
k|Fi−1), the prior is revised accordingly.

This, continuous revision, enables the estimate of a posterior probability over any interval.

According to Jacobs et al. (1991), the posterior distribution Pi =
∑K

k=1 Pki is not directly

obtained via Bayes’ rule but emerges as the solution to a variational optimization problem,

motivated by expert aggregation based on a regularized partial likelihood loss. Given the

prior belief Li =
∑K

k=1 L
k
i (:) and the observed duration χi, Pi can be expressed as the

minimizer of the following objective function, with ∆K being the standard K − 1 simplex:

Pi = arg min
µ∈∆K

{∑
k

µ(k)(− logHk(χi; τ
k|Fi−1)) + KL(µ∥Li)

}
, (15)

where, Hk(χi; τ
k|Fi−1) is the hazard rate implied by type k at the observed duration χi

and KL(µ∥Li) =
∑

k µ(k) log(µ(k)/Lki (:)) is the Kullback-Leibler divergence penalizing de-

viation from the prior. µ is the estimated quantity (i.e., distribution of weights across agent-

types k), which, according to the minimization criterion above is a balance between a data

dependent loss (
∑

k µ(k)(− logHk(χi; τ
k|Fi−1))) and overall model consistency (KL(µ∥Li)).

The first element measures a ”loss”, ℓk = − logH(χi; τk), at every observation that

penalizes deviation from prior. At time i, when the duration χi is observed, ℓk gets lower

(higher) values when the inferred agent-type k is (not) the one observed and, thus, the
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inferred and actual hazard functions do (not) match. This makes ℓk an explicit measure of

”surprise” at observation level: How different from expectation is the probability that the

trade at time i is initiated by agent-type k, based on information summarized in χi. In

parallel, the second element, KL(µ∥Li), controls for overall (sample) model consistency, by

penalizing µ for larger deviations from the prior.

2.6.1 iRP and Market Reflexivity

Pi is a continuous time update of prior beliefs based on the realization of actual events. When

(the duration of) a trade is as expected the revision is small, indicating that the new trade

does not introduce any new information. In the opposite case, a larger deviation from the

prior suggests that the new trade carries some kind of new information, not incorporated in

the prior. This makes the difference between the posterior Pi and the prior Li an observable

”surprise statistic” Si := KL(Pi∥Li) that captures the information gain at trade i:

Si :=
K∑
k=1

Pki log
(
Pki
Lki

)
. (16)

Si is the degree of change in the prior belief because of the realization of the event at time

i; thus, it is an explicit measure of how informative trading is at a particular moment. Beyond

the estimate of the probability concerning the presence of an agent-type, Pki , our modeling

provides also an assessment of how much this estimate is affected by market conditions

(Lki |Ji) or by the realization of a trade (H(χi; τk)). Higher values for Si indicate that the

realization (duration) of the last trade affected more Pki than the market conditions Ji.

This dissection is a major implication of our modeling because it enables an assessment

of how informative trading speed is; an inextricable feature of HFT (O’Hara, 2015). Higher

values for Si suggest that conventional metrics Ji, such as trading volume, do not describe

perfectly the composition of agent-types, but it is significantly complemented by their arrival

rates; a feature that becomes more prevalent during monre intense endogenous trading. That
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makes Si a measure of trading endogeneity; How much trading depends on trading signals,

contained in Ji, compared to arrival rates. When Ji is sufficient, the prior estimate of the

probability is adequate, Ji → Wi → Li, and, the observed durations match the expected.

When, however, Ji is not sufficient, the prior is biased and the observed durations are

different from expected. The estimate of the (posterior) probability is revised according to

new durations (relative speed) and thus trading becomes more endogenous. Consequently, Si

can be thought of as an indirect local measure of ”reflexivity” (Soros, 1994), which measures

the degree at which trading is affected by trading itself. Naturally, higher reflexivity (higher

Si) should be correlated with microstructural issues related to information propagation,

such as variance (Easley and O’hara, 1992), order flow toxicity (Easley et al., 2014) and/or

Ultra-fast Extreme Events (Johnson et al., 2013).

3 Empirical Application: iRP and Information

Eq.(14) expresses the relative proportion of a specific agent-type as a function of the cumu-

lative hazard function that describes her ’on average’ trading characteristics. Consequently,

it is essential to map distinctive trading characteristics to distinctively shaped hazard func-

tions. Eqq.(3)-(10) propose an empirical framework that links the magnitude of observable

variables with different values of shape/scale parameters of the distribution of durations that

determine the shape of the hazard function. Therefore, Eqq.(3)-(14) can identify a plethora

of different agent-types, as long as their trading behavior (i) has a material impact on some

observable variables (ii) in a manner that is associated with a distinctively shaped hazard

function. There is no restriction in the number of variables or in the shapes of hazard func-

tions and, thus, the modeling here can theoretically identify the existence of any number of

agent-types. Unlike previous approaches, iRP is estimated in the limit when ∆t → 0 and

not over an interval, which is more appropriate for an HFT environment.

This is a significant generalization over previous approaches and it constitutes the major
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contribution of this study. To demonstrate the relative merits of iRP, we illustrate how it

can be used in detecting the presence of information in this section (probability of informed

trading), while in Section 4 and Section 5 we present its empirical and theoretical properties,

while presenting briefly an alternative two ways that it can be used: i) to investigate the

agent composition of the market and ii) to assess the degree of market reflexivity.

3.1 (i)ntensity-based (P)robability of (IN)formed trading (iPIN)

One of the most well-documented concepts in the literature (Easley and O’Hara, 1995;

O’Hara, 2003), is the presence of private information. This information refers to shifts

in fundamental valuations and it is revealed gradually through the actions of traders that

have a timing advantage on it (O’Hara, 2015). These agents, called “informed”, as opposed

to “uninformed”, exploit their information benefit and the direction of their trading would

deviate systematically from a random arrival of order flow. Easley et al. (1996, 1997b)

introduce a measure of the (P)robability of (IN)formed trading (PIN) derived from these

deviations. The basic notion in PIN is that when there is no information only liquidity traders

exist in the market and the direction of their trading should be random with a probability

of 50%. In contrast, when there is private information, informed agents align their demand

with the direction of the signal and this creates an order imbalance. The PIN interprets the

magnitude of these deviations as increased presence of informed agents. Accordingly, the

PIN is defined as, αµ
(αµ+e)

, where a is the probability of the existence of private information

and µ and e are the arrival rates of informed and uninformed agents, accordingly. This

intuitive measure estimates the proportion of informed agents, (αµ) relative to the number

of all trades (αµ+ e), which is equivalent to a time invariant version of Eq. (14).

Albeit insightful, PIN has a notable limitation. It is derived from the trade direction,

which is usually latent in raw data. To mitigate the issue of noise in trade direction clas-

sification algorithms (Ellis et al., 2000), PIN is estimated over a period of time, without a
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clear selection criteria for the optimal interval length (Andersen and Bondarenko, 2014).11.

This makes it a rather slow interval estimate, inapt for using it a higher trading frequencies

required in algorithmic trading (O’Hara, 2015). This is further exacerbated by the fact that

PIN is a time invariant estimate. Several approaches propose time variant probabilities con-

ditional on either daily trade imbalances (Lee, 1989) or trade durations (Easley et al., 2008).

These approaches account for differential arrival rates of buys and sells on a daily scale, but

they still require a trade classification algorithm and the selection of an optimal interval to

mitigate the impact of classification bias; thus, it is relatively slow for HFT standards.

Instead, Eq.(14) shifts the focus from the aggregated properties of order flow to the

aggregation rate itself to estimate the instantaneous probability of a trade to be informed

Pinfi and their arrival rates H inf (χi; τ
inf |Fi−1). Then using Eq.(14), PIN can be transformed

into an intensity-based equivalent, iPINi = iRPinf
i |Fi−1:

iPINt =
(αt|Fs)µ

(αt|Fs)µ+ (et|Fs)
=

E
((

pinft

∣∣∣Fs

)∫ t

s

λinf (u) du

)
K∑
k=1

E
((
pkt
∣∣Fs

) ∫ t

s

λk(u) du

) =

(
pinft

∣∣∣Fs

)
H inf (t|Fs)

K∑
k=1

(
pkt
∣∣Fs

)
Hk(t|Fs)

(17)

which becomes in terms of parameters τ k:

iPINi =
E
(
Linfi (Wi)H

inf (χi; τ
inf )
)

K∑
k=1

E
(
Lki (Wi)H

k(χi; τ
k)
) =

∑
Q
⊗

(m:k)

 ∏
Q
⊗
m:k

W q
m,iH

Q
⊗

(m:k)(χi; τ
Q
⊗

(m:k)|Fi−1)


∑
Q
⊗
M

 ∏
Q
⊗
M

W q
m,iH

Q
⊗
M(χi; τ

Q
⊗
M |Fi−1)


The first line of Eq. (17) express PIN as a function of the prior probabilities pinft |Fs

and the hazard functions H inf (t|Fs), as in Eq. (14). The numerator is the number of

trades initiated by informed agents and the denominator is the total number of trades.
11Easley et al. (1996, 1997b) suggest that one month worth of data produces is sufficient for a relatively

accurate estimate of PIN; a claim that has been debated in the literature (Pöppe et al., 2016)
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This is a definition identical to conventional PIN, but the second line, of Eq. (17) provides

an instantaneous estimate of PIN that can be estimated conditionally over any interval.

More precisely, the parameters in τ k determine the shape of the hazard function that is then

matched to the trading characteristics of different agent-types. The parameters in Wi capture

the probability of belonging to different regimes, m, and consequently, the prior probabilities

that a trade is initiated by a particular agent-type. According to relevant literature (De Luca

and Zuccolotto, 2006, Bowsher, 2007, Kalaitzoglou and Ibrahim, 2013), informed traders are

more likely to exhibit a downward slopping hazard functions, due to their incentive to act

prior to their informational advantage becoming public information.

A matching shape (decreasing) in Eq.(11) would be observed when τ q=1 ≥ 1 and τ q=2 ≤ 1.

The regimes, m of τ q=1 τ q=2 that lead to a decreasing shape of the hazard function, identify

informed trading (m : k = inf). Then, according to Eq.(8), the aggregated number of in-

formed agents over time is the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of intersections

Q
⊗

(m : k) ≡ Q
⊗

(m (τ q=1
m ≥ 1, τ q=2

m ≤ 1) : k) in the contingency table, where τ q=1 ≥ 1

and τ q=2 ≤ 1, times the respective cumulative hazard functions of these intersections, i.e.,

HQ
⊗
(m(τq=1

m ≥1,τq=2
m ≤1):k)(χi; τ

Q
⊗
(m(τq=1

m ≥1,τq=2
m ≤1):k)|Fi−1). This is then compared to the ex-

pected number of the trades of all agent-types, defined explicitly in the denominator. A

specific version of Eq.(17), as an example, is discussed in Section 4.

3.2 VPIN: A High(er) Frequency PIN and iVPIN

A fundamental difference between iPIN and PIN is that it derives the probability not from

the aggregated sign of trades, but from trading frequency and volume. This is in line with

previous studies that account for the time (Easley et al., 2008) and the volume (Easley et al.,

2011, 2012) dimensions. PIN is a rather noisy measure due to its reliance on the noisy signal

of trade initiation and Easley et al. (2011) suggest a more HFT-friendly estimate of PIN,

based on fixed buckets of volume or time, as well as from price changes (rather than trade
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imbalances).12 The new measure, VPIN, is an explicit recognition that the speed of volume

accumulation might be better associated with information. The aggregated signed volume

(Volume Imbalance, VIi) approaches αµ, while the aggregated volume accounts for all trading

(αµ + e). Using a rolling window of length n, VPINt can be estimated as VPINtbucket =∑tbucket
tbucket−n|V B

tbucket
−V S

tbucket
|∑tbucket

tbucket−n Vtbucket
, with E(∥V B−V S∥)

E(V B+V S)
→ αµ

(αµ+e)
, where

∑tbucket
tbucket−n

∣∣V B
tbucket

− V S
tbucket

∣∣ is

the VItbucket and
∑tbucket

tbucket−n Vtbucket is the total volume over the last n buckets prior to tbucket .

This bucket-ing mechanism makes it rather slow for HFT. Whereas VPIN approaches

informed trading from the perspective of aggregated signed volume, Eq.(14) focuses on the

aggregation process itself. In particular, N(t) in iPIN (Eq.(17)) counts the total number of

trades and a time transformation is required to account for the volume dimension. In line

with price (Engle and Russell, 1998) or volume (Kalaitzoglou and Ibrahim, 2015) durations,

which measure the arrival rate of a “differently” defined event (a unit of price change or

volume), we transform t → t∗, where the counting process N(t∗) =
∑

i≥1 1(Ti < t∗) counts

how many events (units of) occur over a time interval. Define χ∗
i = t∗i − t∗i−1 as the waiting

time for a given magnitude of volume. N(t∗) counts how much volume is traded over a

time interval and, following Eq.(2), it can be traced back to the agent-type who initiated

it. Nk(t∗) is defined as Nk(t∗) =
∑

i≥1 1(Ti < t∗) =
∑K

k=1

∑
i≥1 1(T < t∗)(Zi = k) and

counts the volume traded by each agent-type k. This way, the (volume) trading activity of

each agent-type is modelled and its relative proportion to the total trading activity can be

computed according to Eq.(14). The intensity-based VPIN (iVPIN) can be formulated as:

iVPINi =

∑
Q
⊗
(m(τq=1

m ≥1,τq=2
m ≤1):k)


∏

Q
⊗
(m(τq=1

m ≥1,τq=2
m ≤1):k)

W q
m,iH

Q
⊗

(m:k)(χ∗
i ; τ

Q
⊗

(m:k)|Fi−1)

∑
Q
⊗
M

∏
Q
⊗
M

W q
m,iH

Q
⊗
M(χ∗

i ; τ
Q
⊗
M |Fi−1))

(18)

Eq. (18) differs from Eq.(17) in the way the conditional intensities are considered. In-
12Andersen and Bondarenko (2014) report that different time interval lengths change its distributional

properties rather than mitigating the issue
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stead of the λk(t) that account for the arrival rate of the transactions instigated by agent-

type k, Eq.(18) is based on λk(t∗) that account for the arrival rate of volume traded by

agent-type k. This way, the regimes, m of τ q=1 and of τ q=2 that lead to a decreasing

shape of the hazard function, identify informed trading, by considering the arrival rate

of their trading volume. Then the numerator defines the aggregated volume traded by

informed agents over time as the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of inter-

sections Q
⊗

(m (τ q=1
m ≥ 1, τ q=2

m ≤ 1) : k) in the contingency table, where τ q=1
m ≥ 1 and

τ q=2
m ≤ 1, times the respective cumulative hazard functions of these intersections, i.e.,

HQ
⊗

(m:k)(χ∗
i ; τ

Q
⊗

(m:k)|Fi−1). This is then compared to the aggregated total volume that

is defined in the denominator. This is an alternative measure to VPIN in continuous time

that does not suffer from sampling bias.13

3.3 From iRP to iPIN and iVPIN. An Empirical Specification

Eqq (17)-(18) present the general definitions for iPIN and iVPIN, but how could this be ap-

plied in a real-world scenario? The following specification of iRP is employed as an indicative

example to show how both can be linked to estimable parameters:

Table 2: Indicative Empirical Specification Example
χi = ψiϵi, ψi = E (χi|Fi−1, ω, β, ϕ, δ) = ω + βψi−1 + (χi − βχi−1)− (χ̃i − ϕχ̃i−1)

f

(
χi|Fi−1;Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
, τ q=1, τ q=2

i

)
= (2− τ q=1)

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)

τ q=2
i =

 1︷ ︸︸ ︷
Gq=2
m=1,i−G

q=2
m=2,i


︸ ︷︷ ︸

W q=2
m=1,i

τ q=2
m=1 +

Gq=2
m=2,i −

0︷ ︸︸ ︷
Gq=2
m=3,i


︸ ︷︷ ︸

W q=2
m=2,i

τ q=2
m=2

for Gq=2
m=2,i =

(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

, with Ji = tii = (durationi ∗K(volumei))
−1

13The empirical properties of VPIN depend on the selection (Andersen and Bondarenko, 2014) of the time
(Easley et al., 2011, 2012) or volume (Easley et al., 2016) bucket size, as well as on trade classification. iVPIN,
instead of selecting an “optimal” sampling frequency that would account for the aggregation properties of
information, it models the aggregation process itself with the intensities of the different agent-types. This
way, iVPIN, unlike VPIN, derives the presence of private information from the relative speed of volume
accumulation without suffering from sampling frequency bias.
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In Table 2, χi is defined as χi = ∆ti, when a trade-”clock” is employed (relative to PIN),

or as as χi = ∆t∗i , when a volume-”clock” is employed (relative to VPIN). The conditional

mean follows a FIACD(1, δ, 1) (Jasiak, 1999) specification, where χ̃i = (1− L)δ χi is a frac-

tional difference (L is the lag operator) of χ with a fractional differentiating parameter δ.14

τ q=1 is time invariant and τ q=2
m has a dimension ofM = 2 regimes, identified by different levels

of the threshold variable Ji. Ji = tii is the inverse of volume weighted duration, which is es-

timated as the product of diurnally adjusted durations and K(volumei) = e

(
− volumei−volume

σvolume

)
,

where volume and σvolume are the sample mean and standard deviation of volume, esti-

mated per stock. Ji is an increasing variable of trading intensity. This specification models

the inter-trade or volume weighted inter-trade waiting times as an infinite mixture of two

q-Weibull distributions that are identified by a sole time-varying shape parameter, τ q=2
i .15

To articulate this more firmly, trading intensity is employed as a classification variable,

Ji, different levels of which are associated with differently shaped hazard functions and

thus, with different agent-types. In line with prior literature (Easley and O’hara, 1992)

higher levels of trading intensity, i.e., Jq=2
i > jq=2

m=2, are expected to be associated with

decreasing hazard functions, i.e., τ q=2
m=2 < 1, and, therefore, with a higher probability of this

trade to have been initiated by an informed agent, captured by a higher value of W q=2
m=2,i.

Accordingly, W q=2
m=2,i is an estimate of the probability of the existence of private information

and W q=2
m=2,iλ

k=inf
0 (t, τ q=2

m=2) is the conditional instantaneous probability of the arrival of an

informed trader. Then, assuming τ q=1 → 1, iVPINi = iVPINi:ti→ti+∆t can be written as:

iVPINi:ti→ti+∆t =
W q=2
m:inf,i(Ai((ti +∆t)− ti))

τq=2
m:inf∑3

m=1W
q=2
m,i (Ai((ti +∆t)− ti))τ

q=2
m

14This specification is preferred over more conventional specifications (Engle and Russell, 1998) due to the
potentially long memory of durations. δ is the degree of decay that captures, in a sense, the life span of trading
information. This allows distant past events to affect the conditional expectation of χ, ψi = E(χi|Fi−1),
and its conditional distribution, f (χi|Fi−1;Ai). Variations in f (χi|Fi−1;Ai), captured by τ qm, depend on
ψi and, thus, on the long memory, i.e., δ, and its impact, i.e., ϕ, on ψi. This way, the identification of the
different agents is done in a way that accounts for market reflexivity.

15When τ q=2 = 1 the hazard function is flat matching the time-invariant arrival rate of uninformed agents,
while when τ q=2 < 1 (τ q=2 > 1) the hazard function is decreasing (increasing) matching the characteristics
of informed (technical) traders (Kalaitzoglou and Ibrahim, 2013).
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4 Empirical Properties of the iRP

Section 4 presents a real-world application in order to illustrate the empirical performance

of iRP. Section 4.1 presents the data sample employed, while Section 4.2 discusses the

estimation procedure for all the metrics used. Section 4.3 discusses the empirical findings on

detecting information, the probability of informed trading and market reflexivity.

4.1 Data

The specification defined in Eq.(17) (as well as some extensions in Appendix B.3) is indica-

tively evaluated on a one-year, 2/1/2019-6/12/2019, sample of all constituents of Dow Jones

Industrial Average (aka DOW30). The primary objective is to evaluate the performance

of iRP against interval-based metrics, which would be better facilitated by a sample with

minimal market-specific stylized factors or other types of trading biases. DOW30 consists of

liquid, large-cap stocks and, from this perspective, is less likely to suffer from market specific

biases. In addition, the constituents do not change during the sample period and, therefore,

the trading activity is unlikely to be affected by portfolio rebalances. Also, the sample stops

prior to the COVID-19 news and, thus, it should not be affected by it.16

For each transaction we record the date, time-stamp (millisecond), price ($) and trading

volume (# stocks). The trade direction is inferred by applying the ”EMO” (Ellis et al., 2000)

rule. All observations outside the “normal trading hours” as well as the first transaction of

each day are omitted. Furthermore, all trades with identical time stamp, price and trade

initiation are considered as one segmented trade with aggregated volume. This accounts for

passive splitting and mitigates the information loss of the trade classification algorithm. In

addition, it reduces the proportion of trades with zero duration or zero price change, which,

beyond the computational benefits, creates a sample that is focused on the time evolution of
16All our findings remain robust to sampling bias. We test our estimates to two one-month samples from

2024 (April) and 2025 (October) and the findings remain qualitatively the same. We report the full sample
estimates from 2019, because it appears to be a sample with minimum macro-economic bias.
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Table 3: Descriptive Statistics: Full Sample
Full Sample #230,084,293 Simulation 1 asset 100 days x #100,000

Avg. Min. Max. Std. Avg. Min. Max. Std.
Return 0 -9.76 9.77 0.04 0 -8.72 14.01 0.04
Volume 205.8 1 88,000 538.94 355.48 1 112,000 355.78

Duration 0.90 2.1E-5 4,500 2.34 0.85 0 3,856 1.99

Table 3 presents the descriptive statistics, i.e., the average (mean), the maximum (max), the minimum (min)
and the standard deviation (std) of duration (in seconds), trading volume (in number of stocks) and price
change (in $’s). The left panel presents the cross-sectional estimates of the statistics for the full sample
that consist of all constituents of DJ30 (full table in Appendix). The left panel presents the cross-sectional
estimates of the simulation that generates a calendar quarter worth of data (100 days, assuming 100,000
observations per day) the # sign is the count of observations per stock.

volume and price change without thinning the data. Moreover, duration has been computed

as the time between two consecutive trades excluding the overnight period and has been

diurnally adjusted (Engle and Russell, 1998). This results in a panel dataset of all filtered

transactions of 30 firms with 230,084,293 unique observations.

The basic statistics of the final sample are presented in Table 3 (per-stock in Appendix

A). The sample consists of liquid stocks with an average duration of less than 1 second;

around 0.9 seconds. The average volume per trade is just over 200 stocks and it is over-

dispersed, indicating a wide range of values. Price changes exhibit some moderate variation

with a standard deviation of 0.04. Our sample is relatively homogeneous, with adequate

variation, consistent with prior literature.

4.2 Empirical Estimation and Performance

In order to get comparable estimates, for both intensity-based and interval measures, the

focus of the analysis is time, rather than volume. This is not an issue for iVPIN, but for

VPIN the time and length of interval are parameters of choice. Although fixed-volume

buckets might perform better (Pöppe et al., 2016), the empirical setup here employs fixed-

time buckets in order to create contemporaneous estimates. The sample is split into fixed-
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time buckets of different time lengths, bucketsize = (1′′, 5′′, 15′′, 30′′, 1′, 5′, 15′, 30′, 60′)′, and

all measures are estimated at the end of each bucket, at a time noted as tbucket.17 Then VPIN

and iVPIN are estimated using the same sampling frequency, over 10 lags, following that:

E
(

αtbucket
µtbucket

(αtbucket
µtbucket+etbucket )

)
→ αµ

(αµ+e)
.

VPIN. The benchmark metric for comparison is the conventional VPIN, which is

estimated based on the principle (Easley et al., 2008) that E
(∥∥V B − V S

∥∥) → αµ and

E
(∥∥V B + V S

∥∥) → αµ + e. The aggregated buy V B → V B
tbucket

and sell V S → V S
tbucket

volumes are computed over different time intervals, i.e., bucketsize, with tbucket marking the

time at the end of each bucket, acting as a time identification. Then, VPINtbucket is com-

puted over a rolling window of n = 10 lags as: VPINtbucket =
∑tbucket

tbucket−n|V B
tbucket

−V S
tbucket

|∑tbucket
tbucket−n Vtbucket

.18 In

this metric, the most important element is the identification of trade initiation; a variable

that is absent in raw data. This, has been shown to be an important issue (Pöppe et al.,

2016), affecting the performance of VPIN, especially in combination with different sampling

frequencies. The trade classification rules that exhibit superior performance are the ”EMO”

(Ellis et al., 2000) and the Bulk Volume (hereafter BV: Easley et al., 2012) classification.

In a misuse of the term, the estimate of VPIN using the EMO classification is called PIN,

due to its resemblance to the lower frequency estimate of PIN. In parallel, the BV classifi-

cation derives trade initiation solely from price changes. In particular, using the notation in

this paper, V B
tbucket

and V S
tbucket

are defined as V B
tbucket

= VtbucketZ
(
Pricetbucket−Pricetbucket−1

σ∆Price

)
and

V B
tbucket

= Vtbucket

(
1− Z

(
Pricetbucket−Pricetbucket−1

σ∆Price

))
.

iVPIN. As an example of iRP, in Eq.(14), the conventional VPIN is compared to
17Pöppe et al. (2016) suggests that volume buckets are more relevant in identifying information because

they are based on the speed of accumulation of the same magnitude of information, captured by a unit of
volume. This would create buckets of variant time intervals, which would undermine comparability with
iRP. Instead, the comparison is based on fixed intervals that vary from from 1” to 1h.

18The length of the rolling window of 10 is selected in order to facilitate the investigation of the performance
of intensity-based measures in HFT. when bucketsize = 1′′ the rolling window of 10 corresponds to 10”. This
interval is sufficiently short for algorithmic trading standards in order to evaluate whether the VPIN metric is
of relevance at this sampling frequency, while it is also sufficiently long enough to avoid missing observations
due to lack of data. On the opposite side, a rolling window of bucketsize = 60′ corresponds to a full trading
day. Previous literature (Pöppe et al., 2016) shows that this interval provides reasonable estimates for VPIN,
while it is still relevant to algorithmic trading, whose trading horizons rarely exceed one trading day.
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an intensity-based alternative, coined iVPIN. In order to create a comparable estimate,

iVPIN is estimated on a per-trade basis, considering the inter-trade durations, i.e., χi+1 =

(ti+1 − ti) for trades or (t∗i+1 − t∗i ) for volume weighted durations, as the waiting time,

i.e.: iVPINi:χi+1
=

W q=2
m:inf,i(Aiχi+1)

τ
q=2
m:inf∑3

m=1W
q=2
m,i (Aiχi+1)τ

q=2
m

. This provides a rather granular estimate of the

expected level of VPIN, that can be, then, estimated at any desirable interval. VPIN

is estimated for each bucketsize = (1′′ to 60′)′ and then an average over a time interval

n = 10. The same approach is applied in the case of iVPINtbucket , which is estimated

as: iVPINtbucket =

∑tbucket
tbucket−n

∑#tradestbucket
i

iVPINi
#tradestbucket

n
. For reference, when χi+1 = (ti+1 − ti), the

intensity-based estimate is named iPIN, while, when χi+1 = (t∗i+1 − t∗i ), it is named iVPIN.

iVPIN vs VPIN.After computing VPIN and iVPIN their performance is evaluated based

on their forecasting ability on subsequent variance and the existence of UEE’s. Following

Andersen and Bondarenko (2014) this is evaluated based on the following regression:

Qtbucket = c0 + c1Metrictbucket−n + cCVtbucket−n + f.e.+ ϵtbucket (19)

where, Qtbucket = (RVtbucket ,UEEtbucket)
′. The values are multiplied x100 in order to ad-

just the decimal places of the estimated coefficients. Metric = (PIN,VPIN, iPIN, iVPIN)′.

RVtbucket is the average realized volatility of each bucket over the time interval n. UEEtbucket

is the average number of UEE’s: (Johnson et al., 2013) of each bucket over the time in-

terval n.19 CV = (RV, spread, orders, average duration)′ is a collection of standard market

microstructure variables that are introduced to control for varying market conditions and

the sensitivity of VPIN to them (Chakrabarty et al., 2015). f.e. is company fixed effects.

Market Reflexivity. According to Eq. (16), Si can capture the information gain due to

durations (Hk(χi, τ
k|Fi−1)) on top of market conditions (Ji). The information gain should

be expected to be more intense during periods that the realization of events carries more

impact on subsequent trading. We consider that, in HFT, this captures the ”learning” of
19UEE’s are defined as periods that last less than 1,500ms, they follow a run (same trade direction) that

exceeds 10 trades, during which prices change by more than 0.8% of the price at the beginning of the run.
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AT from the actions of other AT and, thus, we link it explicitly to market reflexivity (Soros,

1994) in HFT. According to Johnson et al. (2013), when the intensity of AT towards a

specific direction increases, it creates the conditions for toxicity (Easley et al., 2014), and,

ultimately UEE’s (Johnson et al., 2013). Should this be the case, Si should be correlated

with these metrics, because AT ”learns” more from duration during these periods and, thus,

Si should exhibit higher values.

We compute the information gain Si =
∑

k Pki log
(

Pk
i

Lk
i

)
, as a proxy for market reflexivity,

where, k = (inf, unin)′, Pi = (iVPINi:χi+1
=

W q=2
m:inf,i(Aiχi+1)

τ
q=2
m:inf∑3

m=1W
q=2
m,i (Aiχi+1)τ

q=2
m

, (1 − iVPINi:χi+1
))′ and

Li = (W q=2
m:inf,i, ((1 − W q=2

m:inf,i))
′. We distinguish between iPIN and iVPIN, by considering

χi+1 = (ti+1 − ti) for the former and χi+1 = (t∗i+1 − t∗i ) for the latter. Then in a similar

fashion to iVPINtbucket , we compute, the average information gain, as a metric of the intensity

of market reflexivity over a period= bucket, as Stbucket =
∑tbucket

tbucket−n

∑#tradestbucket
i

Si
#tradestbucket

n
.

Then, we investigate whether this explicit measure of information gain is related to

market microstructure systematic risk, by assessing its impact on the occurrence of UEE’s

and on price change volatility. We add Si in Eq. 19 in order to capture how/whether market

reflexivity interacts with information at a micro level. Si captures how much the duration of

a trade (arrival of an agent) affects the belief about the probability of a specific agent-type

entering the market. When the revision is high, this specific trade influences the market-

wide perception about the probability and it is expected to affect subsequent trading. This,

in a sense, measures how much the market learns from a trade and how much it increases

reflexivity. Should this coincide with the presence of information, higher Si would mean

higher learning rate and, thus, faster price discovery (Madhavan, 2000). However, when

this is the result of higher endogenous trading (higher market reflexivity), rather than of

information, order flow might become toxic (Easley et al., 2014) and prices might deviate

from fundamental valuations (Ibrahim and Kalaitzoglou, 2025). Metric captures information,

while Si captures reflexivity.
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4.3 Empirical Findings

4.3.1 Trading and Information

Table 4: Estimation Results

iPIN iVPIN iPIN iVPIN
low high low high

ω 0.6298 0.5305 q 1.3069 1.0144
(0.02) (0.01) (0.01) (0.02)

β 0.3073 0.5376 (τ |ti) 1.1480 0.6376 1.1853 0.5945
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

ϕ 0.4898 0.3695 g(ti) 1.0077 0.9951
(0.01) (0.02) (0.00) (0.02)

δ 0.1565 0.2475 j(ti) 1.1388 1.0639
(0.02) (0.02) (0.03) (0.03)

The left panel of Table 4 presents the estimation results for the conditional mean specification pa-
rameters, assuming a FI-ACD specification ω + βψi−1 + (χi − βχi−1) − (χ̃i − ϕχ̃i−1). The right
panel presents the distribution parameter estimates, assuming a q−Weibull distribution for χ, i.e.,
f (χi|Fi−1) = (2 − τ q=1)τ

q=2
i /χi [χi/Ai]

τq=2
i eq

(
− [χi/Ai]

τq=2
i

)
, where Ai =

[
Γ(1+1/τq=2

i )
−τ

q=2
i /ψi

]
, τ q=2

i =(
Gq=2
m=1,i −Gq=2

m=2,i

)
τ q=2
m=1 + Gq=2

m=2,iτ
q=2
m=2 and Gq=2

m=2,i =
(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

. The estimates are for
the iPIN and iVPIN specifications in section 3.3 All estimates are cross-sectional averages, with standard
deviations in (:).

Table 4 presents the estimates of the parameters of the specification in Table 2. The

left panel refer to the conditional mean specification. δ takes the value of 0.1565 (0.2475 for

VPIN), suggesting a long memory (Jasiak, 1999), but not a fully integrated process. The

values for β and ϕ indicate strong persistence, but at the same time satisfy the positivity

constraints (Caporin, 2003) β − δ ≤ ϕ ≤ 2−δ
3

and δ
(
ϕ− 1−δ

2

)
≤ β(δ − β + ϕ).

The right panel reports the estimates of the parameters of the distribution, The entropy

parameter q is converging to 1 and this shows a convergence to a Weibull distribution. The

smoothness parameters, gq=2
m=2 noted as g(ti)’s, are very close to one, while the threshold

values, jq=2
m=2 noted as s(ti)’s, are very close to the unconditional means. This shows, a

rather smooth transition from one regime to the other. These, data identified, regimes

exhibit two distinct trading groups, as they are captured by the shape parameters, τ q=2
m=1
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and τ q=2
m=2, noted as τti<j(ti) (low) and τti>j(ti) (high), respectively. τti<j(ti)’s are consistently

higher than 1 and τti>j(ti)’s are consistently less than 1. This is consistent with previous

literature (Kalaitzoglou and Ibrahim, 2013, 2015, 2023) and indicates that higher trading

intensity is associated with an increasing probability of informed trading. According to the

estimates, when the threshold variable, Ji, takes values that are higher than 1.1388 (1.0639),

the iPIN (iVPIN) metric indicates that there is an increasing probability that this trade

was instigated by an informed trader. This is inferred by its sample-wide post trade impact

that is reflected on a decreasing hazard function. The higher Ji is, the closer the shape

parameter is to τ q=2
m=2 (0.6376 for PIN and 0.5945 for VPIN) and, thus, the sharper is the

decreasing shape of the hazard function (indicating an accelerating market and, thus, a trade

with high(er) post-trade impact), which is interpreted as more informative. Heuristically,

this indicates that higher trading intensity is associated with higher presence of private

information. This finding is consistent with Easley and O’hara (1992) but the novelty in

iVPIN is that it provides an empirical framework to assess the exact probability. In addition,

the smoothness parameter is an indirect measure of how easy is to infer information from

trading signals and, thus, it is an estimate of market opacity.20

4.3.2 Intensity-Based versus Interval Estimates

Furthermore, in order to provide a direct comparison between the intensity-based versus

the interval-based metrics of PIN, their relative performance is tested in forecasting realized

volatility (Pöppe et al., 2016) and UEE’s (Johnson et al., 2013). Table 5 presents the

estimations results of Eq.(19) for variance and Table 6 for UEE’s. The top panel presents the

estimates of the parameter c1, with t-statistics in ( : ) and it is followed by the R2 and (M)ean

(S)quared (E)rror (MSE). All estimations include asset fixed effects and a set of microstrure

controlled variables, the estimates of which are not reported for brevity. Each section named,
20A sharper (smoother) transition, captured by a higher (lower) value of the smoothness parameter, gq=2

m=2,
would indicate a clearer (less clear) distinction between the two regimes. Considering that the presence of
different agent-types is latent information, a clearer (less clear) distinction would indicate greater (lower)
market opacity because it is easier (more difficult) to extract latent information from observable signals.
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Table 5: Real Data: Performance of metrics-Variance
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Estimates
PIN -0.0054 -0.0084 -0.0103 -0.0073 -0.0059 -0.0058 -0.0025 -0.0026 -0.0024
(t) (-1.44) (-74.27) (-64.22) (-56.63) (-37.03) (-34.24) (-20.36) (-3.63) (-2.29)
R2 0.6688 0.5749 0.5249 0.4951 0.3238 0.3220 0.2726 0.2581 0.2436

MSE 0.0198 0.0163 0.0154 0.0132 0.0128 0.0120 0.0088 0.0068 0.0065
iPIN 0.6816 0.4112 0.3926 0.3239 0.2722 0.2326 0.1950 0.1306 0.0933
(t) (124.44) (76.17) (66.62) (61.91) (40.64) (37.30) (22.01) (10.60) (8.51)
R2 0.6817 0.5819 0.5285 0.4980 0.3256 0.3229 0.2731 0.2646 0.2601

MSE 0.0160 0.0133 0.0130 0.0113 0.0111 0.0106 0.0080 0.0061 0.0052
VPIN -0.0017 -0.0077 -0.0093 -0.0053 -0.0051 -0.0498 -0.0036 -0.0032 -0.0032

(t) (-0.32) (-52.26) (-62.15) (-48.83) (-36.52) (-32.14) (-20.01) (-8.46) (-6.00)
R2 0.6683 0.5740 0.5231 0.4947 0.3233 0.3212 0.2721 0.2643 0.2587

MSE 0.0257 0.0187 0.0165 0.0147 0.0130 0.0121 0.0091 0.0068 0.0056
iVPIN 0.8395 0.7551 0.6949 0.4712 0.4216 0.3743 0.2758 0.2213 0.2105

(t) (133.90) (92.07) (55.75) (52.53) (50.47) (40.58) (26.93) (12.81) (9.21)
R2 0.6848 0.5849 0.5312 0.5007 0.3281 0.3252 0.2753 0.2668 0.2609

MSE 0.0158 0.0124 0.0123 0.0110 0.0102 0.0100 0.0074 0.0061 0.0051
MSE

PIN/iPIN 1.2377 1.2277 1.1863 1.1660 1.1466 1.1308 1.1017 1.1135 1.2512
VPIN/iVPIN 1.6330 1.5074 1.3401 1.3370 1.2710 1.2071 1.2295 1.1109 1.0951
iPIN/iVPIN 1.0138 1.0725 1.0549 1.0314 1.0907 1.0526 1.0782 1.0019 1.0239
PIN/VPIN 0.7684 0.8735 0.9339 0.8995 0.9839 0.9861 0.9662 1.0041 1.1699
PIN/iVPIN 1.2548 1.3167 1.2515 1.2026 1.2506 1.1903 1.1879 1.1155 1.2811

R2
PIN/iPIN 0.9810 0.9879 0.9933 0.9940 0.9945 0.9972 0.9981 0.9755 0.9368

VPIN/iVPIN 0.9760 0.9813 0.9847 0.9878 0.9854 0.9878 0.9883 0.9907 0.9918
iPIN/iVPIN 0.9955 0.9950 0.9947 0.9946 0.9924 0.9928 0.9919 0.9916 0.9969
PIN/VPIN 1.0007 1.0016 1.0035 1.0009 1.0016 1.0022 1.0017 0.9764 0.9417
PIN/iVPIN 0.9955 0.9950 0.9947 0.9946 0.9924 0.9928 0.9919 0.9916 0.9969

Table 5 presents the estimation results for Eq. (19), where the dependent variable is Realized volatility.
All estimations include the same control variables and company fixed effects. The top panel presents the
estimates of the coefficients with t-stats in (), as well as the adjusted R2 and the (M)ean (S)quared (E)rror
(MSE). The bottom two panels report the ratios of MSE and R2 for the pairs indicated on the left.

PIN, iPIN, VPIN and iVPIN are separate estimations with each metric being considered

independently of the others. The comparison is based on R2 and the MSE and the bottom

panel presents the ratios for direct commparison. Finally, both tables are organized into

columns according to the interval frequency, bucketsize = (1′′, 5′′, 15′′, 30′′, 1′, 5′, 15′, 30′, 60′)′.

The empirical findings using both metrics are rather consistent and show that the intensity-

based metrics perform better, especially in higher sampling frequencies. iVPIN and iPIN

exhibit a higher R2 and a lower MSE than VPIN and PIN, in this order. This is more
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Table 6: Real Data: Performance of metrics-UEE’s
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Estimates
PIN 0.0352 0.0542 0.0666 0.0473 0.0381 0.0372 0.0159 0.0166 0.0158
(t) (4.84) (36.27) (31.36) (27.65) (18.08) (16.72) (9.94) (7.77) (4.90)
R2 0.0679 0.0576 0.0524 0.0496 0.0324 0.0324 0.0273 0.0258 0.0243

MSE 0.5025 0.4976 0.0492 0.4312 0.0321 0.0319 0.2834 0.0255 0.0268
iPIN 0.0573 0.0346 0.0330 0.0272 0.0229 0.0196 0.0164 0.0110 0.0079
(t) (49.45) (39.23) (34.31) (31.89) (20.93) (19.21) (14.34) (9.91) (7.96)
R2 0.0686 0.0586 0.0532 0.0501 0.0328 0.0325 0.0275 0.0266 0.0262

MSE 0.4944 0.4618 0.4516 0.3943 0.3865 0.3669 0.2764 0.2120 0.1792
VPIN 0.0367 0.1613 0.1955 0.1111 0.1075 1.0465 0.0761 0.0671 0.0664

(t) (3.39) (35.55) (42.28) (33.22) (24.84) (21.87) (13.61) (8.76) (6.21)
R2 0.0648 0.0573 0.0522 0.0493 0.0321 0.0322 0.0271 0.0263 0.0257

MSE 0.5763 0.0583 0.0527 0.0501 0.0326 0.0326 0.0276 0.0254 0.0229
iVPIN 0.0598 0.0433 0.0398 0.0270 0.0242 0.0215 0.0158 0.0127 0.0121

(t) (51.07) (41.29) (32.20) (27.17) (19.07) (16.55) (15.17) (13.84) (10.57)
R2 0.0696 0.0594 0.0540 0.0509 0.0333 0.0330 0.0280 0.0271 0.0265

MSE 0.4726 0.4314 0.4291 0.3828 0.3552 0.3498 0.2577 0.2125 0.1767
MSE

PIN/iPIN 1.0164 1.0766 0.1104 1.0955 0.0833 0.0871 1.0301 0.1208 0.1496
VPIN/iVPIN 1.2196 0.1347 0.1241 0.1303 0.0926 0.0927 0.1058 0.1202 0.1314
iPIN/iVPIN 1.0462 1.0714 1.0459 1.0281 1.0869 1.0479 1.0676 0.9954 1.0195
PIN/VPIN 0.8719 8.5642 0.9303 8.6444 0.9787 0.9843 10.3904 1.0003 1.1606
PIN/iVPIN 1.0634 1.1535 0.1155 1.1262 0.0906 0.0913 1.0997 0.1202 0.1526

R2
PIN/iPIN 0.9893 0.9813 0.9843 0.9843 0.9898 0.9897 0.9979 0.9660 0.9276

VPIN/iVPIN 0.9311 0.9591 0.9657 0.9629 0.9669 0.9683 0.9718 0.9693 0.9695
iPIN/iVPIN 0.9861 0.9856 0.9853 0.9852 0.9831 0.9834 0.9825 0.9822 0.9875
PIN/VPIN 1.0478 1.0084 1.0043 1.0071 1.0063 1.0051 1.0088 0.9789 0.9447
PIN/iVPIN 0.9861 0.9856 0.9853 0.9852 0.9831 0.9834 0.9825 0.9822 0.9875

Table 6 presents the estimation results for Eq. (19), where the dependent variable is UEE. All estimations
include the same control variables and company fixed effects. The top panel presents the estimates of the
coefficients with t-stats in (), as well as the adjusted R2 and the (M)ean (S)quared (E)rror (MSE). The
bottom two panels report the ratios of MSE and R2 for the pairs indicated on the left.

pronounced in higher sampling frequencies, especially when the interval is closer to 1” (more

relevant for HFT). This highlights that interval-based measures might not be adequately

adopted for HFT, even when the volume-clock is considered in VPIN. The ratios reported

at the bottom of the two tables show that in lower frequencies, e.g., 30’ or 60’, the per-

formance differences persist, but all the metrics seem to converge. The biggest differences

are observed in higher sampling frequencies, e.g., 1” to 15”, highlighting that, in HFT,
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the aggregation process itself (hazard functions), constitute a stronger signal, compared to

the aggregated values (trade direction or price change). This finding is consistent cross-

sectionally and provides strong evidence in favour of the underlying concept in this study,

that in HFT, where AT acts in sub-human attention speeds, interval estimates are inapt

in capturing the properties of the data. We show that this is even more pronounced as

sampling frequencies increase. Instead, the modeling of the arrival rates performs notably

and consistently better, because it focuses on the granular properties of the data.

In addition, trading volume enhances the performance of all metrics. In intensity-based

metrics the volume enhanced iVPIN outperforms consistently the iPIN that is based solely on

the arrival rate of trades, rather than of volume. In interval-based metrics, VPIN exhibits

some significant noise in high sampling frequencies, 1” to 1’, but it outperforms PIN in

intervals that exceed 15’. This highlights that the initial intuition behind VPIN that the

noise present in the trade direction might be mitigated by focusing on the volume-clock, is

toward the right direction. However, classification according to trade direction is still noisy,

independently on whether is based on trade direction (PIN) or price change (VPIN). Instead,

focusing on the aggregation properties of volume leads to a consistently higher performance,

that persist even at lower trading frequencies.

4.3.3 Market Reflexivity and Systematic Risk

Si, in Section 2.6.1, is an indirect assessment of how endogenous trading is at a particular

moment, which in the spirit of Filimonov and Sornette (2012), Hardiman et al. (2013) and

Filimonov and Sornette (2015), is a measure of market reflexivity. In their work, they provide

an interval estimate for the degree of reflexivity and they observe that it is directly linked

to higher variance and the realization of UEE’s (Johnson et al., 2013). Si follows the same

rationale, but it also provides a point estimate of reflexivity. In this section, we investigate

its empirical properties and its correlation with price change variance and UEE’s.

Table 7 presents the sample averages for the top and bottom 50% of Si focusing on mar-
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Table 7: Market statistics at different degrees of reflexivity

bottom 50% Top 50% t-statistic p
Li 0.10 0.22 43.99 (0.00)
Pi 0.12 0.69 59.98 (0.00)

VPIN 0.10 0.47 64.72 (0.00)
Bid-Ask Spread ($’c) 0.02 0.03 10.31 (0.00)

Algorithmic Trading (%) 0.57 0.97 76.34 (0.00)
Trading Intensity 1.34 0.63 -42.17 (0.00)

Duration (seconds) 1.14 0.09 -33.76 (0.00)
Volume (#shares) 213.07 234.13 2.52 (0.01)

Table 7 presents the average prior (Li) and posterior (Pi) probabilities, as well as VPIN, Bid-Ask spread, the
proportion of Algorithmic Trading and Trading Intensity, as a the volume weighted durations, for two sub-
samples, defined by the distributional characteristics of reflexivity. The last column present the t-statistics
and the p-values in (:) of the top-bottom differences.

ket conditions. The first notable observation is that higher reflexivity is due to a higher,

not lower, posterior probability. This confirms our intuition that a sizable revision in the

posterior probability is associated with ”more” rather than ”less” trading. This is also re-

flected on a significantly higher trading intensity (0.63 seconds for a share to be traded

versus 1.34), that is primarily related to more (shorter durations), rather than bigger (vol-

ume is only marginally higher) trading. In line with Section 4.3.1, we observe that higher

trading intensity accelerates subsequent trading and thus it is linked with higher presence

of private information. Naturally, AT would intensify its presence and this is observed in

the top 50%. According to Johnson et al. (2013), this has the potential to put significant

directional pressure on the order flow (Easley et al., 2011) and crowd the market (Ibrahim

and Kalaitzoglou, 2025), eventually rendering it toxic (Easley et al., 2014) to an extend that

might lead to UEE’s (Johnson et al., 2013). We do observe higher spreads, more AT and

higher toxicity (VPIN) during periods of higher Si. This is evidence that Si captures periods

of more endogenous trading, potentially due to AT, and thus it can capture reflexivity.

In order to assess whether this exhibits a significant impact on subsequent trading, we

investigate whether Si is correlated with price change variance (Table 8) and the realization
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Table 8: Reflexivity and subsequent trading: Price Change Variance
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Va
ria

nc
e

S 0.0733 0.0666 0.0413 0.0351 0.0315 0.0271 0.0164 0.0128 0.0087
(t) (46.41) (35.23) (29.81) (20.18) (16.67) (5.36) (1.42) (0.95) (0.84)
R2 0.0660 0.0559 0.0509 0.0480 0.0315 0.0281 0.0237 0.0230 0.0225

PIN -0.0995 -0.0954 -0.0115 -0.0075 -0.0071 -0.0068 -0.0032 -0.0029 -0.0028
(t) (-18.14) (-63.33) (-58.82) (-48.19) (-37.01) (-36.63) (-21.85) (-3.65) (-2.31)
S 0.0772 0.0704 0.0434 0.0370 0.0330 0.0285 0.0173 0.0135 0.0092
(t) (48.90) (37.26) (31.36) (21.26) (17.50) (5.64) (1.50) (1.00) (0.89)
R2 0.6705 0.5773 0.5302 0.4954 0.3256 0.3250 0.2726 0.2582 0.2435

iPIN 0.5819 0.3575 0.3363 0.2866 0.2335 0.2069 0.1688 0.1120 0.0805
(t) (86.77) (67.40) (58.94) (54.27) (35.92) (33.10) (19.55) (9.03) (7.50)
S 0.0652 0.0614 0.0530 0.0315 0.0305 0.0133 0.0072 0.0059 0.0015
(t) (18.89) (14.30) (11.33) (11.07) (10.39) (5.99) (1.21) (0.91) (0.46)
R2 0.6857 0.5824 0.5330 0.4996 0.3270 0.3237 0.2736 0.2666 0.2618

VPIN -0.0832 -0.2839 -0.0336 -0.0176 -0.0200 -0.1905 -0.0154 -0.0117 -0.0118
(t) (-44.03) (-62.08) (-79.31) (-57.89) (-50.86) (-47.91) (-29.92) (-4.12) (-2.93)
S 0.0742 0.0682 0.0422 0.0357 0.0321 0.0276 0.0166 0.0129 0.0089
(t) (36.35) (27.82) (23.23) (16.01) (13.26) (4.05) (1.10) (0.76) (0.67)
R2 0.6709 0.5751 0.5264 0.4967 0.3239 0.3221 0.2722 0.2644 0.2589

iVPIN 0.7577 0.7051 0.6616 0.4254 0.3848 0.3378 0.2617 0.2037 0.1965
(t) (94.85) (85.83) (52.59) (49.44) (45.87) (36.78) (24.82) (11.33) (8.56)
S 0.0651 0.0608 0.0529 0.0312 0.0304 0.0132 0.0072 0.0058 0.0015
(t) (18.71) (14.26) (11.23) (11.03) (10.32) (5.95) (1.20) (0.91) (0.46)
R2 0.6912 0.5872 0.5323 0.5043 0.3307 0.3278 0.2772 0.2670 0.2613

Table 8 presents the estimates of the model in Eq. 19, V ariancetbucket
= c0 + c1Metrictbucket−n +

cCVtbucket−n + f.e. + ϵtbucket
, where Matric = (Si,PIN,VPIN, iPIN, iVPIN)′ and CV =

(spread,#orders, average duration)′. Variance is the sum of squared price changes. Each panel
presents, the estimates, the t-statistics in (:) and the R2.

of UEE’s (Table 9). We observe that Si is strongly and positively correlated with both,

but its impact decays fast with time. Interval frequencies longer than 5’ seem to have

a minimal impact, suggesting that reflexivity might become a short term systematic risk.

Looking only at the first panel of these tables, higher reflexivity leads to significantly higher

variance and UEE’s, within maximum 15’.21. This effect does not disappear when we consider

private information (e.g., PIN,VPIN, iPIN, iVPIN). Heuristically, our findings suggest that

when the market depends more on the arrival of events (durations) rather than on other

observable market conditions (Ji), it is more likely to enter into a higher reflexivity state,
21Following Johnson et al. (2013) and Aquilina et al. (2022), this time frame is rather long for AT standards,

which might even reach micro-second durations. However, it is rather consistent with the time length of
significant ”flash”-events, like the May 2010 (US) or the May 2022 (Europe) flash-crashes, which lasted less
than 20’, but longer than the trading frequencies of AT.
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Table 9: Reflexivity and subsequent trading: UEE’s
U

EE
’s

S 1.3551 0.4076 0.5690 0.4728 0.2833 0.2485 0.1852 0.1586 0.0523
(t) (37.62) (32.90) (26.60) (14.78) (4.88) (4.03) (0.92) (0.33) (0.22)
R2 0.0630 0.0535 0.0489 0.0460 0.0303 0.0299 0.0253 0.0246 0.0240

PIN 0.0281 0.0432 0.0529 0.0379 0.0304 0.0297 0.0142 0.0153 0.0135
(t) (3.86) (28.89) (24.87) (22.02) (14.34) (13.36) (8.91) (7.18) (4.89)
S 1.2988 0.3893 0.5466 0.4566 0.2720 0.2402 0.1762 0.1533 0.0503
(t) (36.10) (31.26) (25.50) (14.05) (4.65) (3.85) (0.88) (0.32) (0.21)
R2 0.0681 0.0576 0.0527 0.0498 0.0327 0.0326 0.0275 0.0259 0.0243

iPIN 0.0513 0.0309 0.0296 0.0245 0.0205 0.0176 0.0146 0.0099 0.0070
(t) (44.34) (35.13) (30.85) (28.49) (18.70) (17.19) (12.78) (8.85) (7.14)
S 1.1538 0.3527 0.4860 0.4091 0.2422 0.2128 0.1598 0.1364 0.0452
(t) (32.15) (28.52) (22.85) (12.70) (4.21) (3.48) (0.79) (0.29) (0.19)
R2 0.0706 0.0603 0.0546 0.0514 0.0335 0.0334 0.0282 0.0272 0.0269

VPIN 0.0310 0.1359 0.1647 0.0936 0.0910 0.8869 0.0707 0.0670 0.0656
(t) (2.85) (30.17) (35.88) (28.04) (20.96) (18.50) (12.56) (7.99) (5.97)
S 1.2255 0.3674 0.5215 0.4307 0.2583 0.2240 0.1700 0.1438 0.0474
(t) (34.11) (29.75) (23.99) (13.51) (4.45) (3.68) (0.84) (0.30) (0.20)
R2 0.0657 0.0583 0.0531 0.0500 0.0324 0.0327 0.0274 0.0266 0.0260

iVPIN 0.0566 0.0408 0.0375 0.0255 0.0229 0.0203 0.0149 0.0119 0.0114
(t) (48.42) (39.20) (30.51) (25.72) (18.08) (15.58) (14.33) (13.14) (9.99)
S 1.0196 0.3099 0.4345 0.3588 0.2130 0.1886 0.1411 0.1192 0.0397
(t) (28.27) (25.15) (20.29) (11.14) (3.67) (3.04) (0.70) (0.25) (0.17)
R2 0.0733 0.0627 0.0569 0.0539 0.0352 0.0349 0.0295 0.0285 0.0281

Table 9 presents the estimates, the t-statistics in (:) and the R2 of the model in Eq. 19, UEEtbucket
=

c0 + c1Metrictbucket−n + cCVtbucket−n + f.e. + ϵtbucket
, where Matric = (Si,PIN,VPIN, iPIN, iVPIN)′ and

CV = (spread,#orders, average duration)′. UEE’s are defined according to Johnson et al. (2013).

which eventually can increase the variance and lead to UEE’s. Consequently, Si can be used

as and HFT-adopted metric for reflexivity, which can act as a sign for when the market might

enter into a state where market conditions are not fully reflective of information and trading

(speed) might become endogenous. To an extend that might lead to intraday crashes.

5 Simulations and Alternative Uses

Section 4 provides some empirical evidence in favor of the intensity-based estimates. In order

to assert that this inference is not circumstantial, Section 5 investigates their robustness in

simulated data, where the ”true” probabilities are known. We focus on the impact of mis-
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specification in the main text and develop the theoretical properties in Appendix C.22

The regressions in Section 4.1, are easily interpretable when both the regression model

and the specification in Table 2 are well-specified. Then the estimators for iPIN/iVPIN differ

from the latent PIN due to the sample variation of the estimated coefficients, but converge

faster than their interval-based counterparts (Appendix C.1). When, however, the model

is misspecified, this comparison becomes a bit more complicated, as it also depends on the

(potentially non-asymptotically vanishing) dependence between the regression error, and the

misspecification error provided by the difference between the latent true iPIN (resp. iVPIN)

and the model iPIN (resp. iVPIN) evaluated at the pseudo-true value of the parameter.

We investigate the impact of various types of misspecificiation on the estimate of the

probabilities. conducting the following experiments. In Section 5.1 we assess the perforance

of the intensity- versus interval-based estimates in the case when the conditional mean spec-

ification for the DGP of duration is misspecified. In Section 5.2 we test the robustness of

the findings when the assumed number of agents is misspecified and we discuss alternative

uses of iRP. In Section 5.3 we investigate mis-specification in the type of mixture of agents,

allowing a linear (MOD) versus non-linear (MoE) specification.

5.1 Misspecification and Trade Arrival Data Contamination

In order to disentangle the evaluation of the quality of the approximation of the latent PIN

by the intensity-based procedures compared to the interval-based ones, from the correct

specification of a predictive regression, we perform a Monte Carlo experiment that enables

control of the latent PIN. The duration process (”volume clock” for VPIN) (χi) is assumed

to conform to the specification of Table 2. The latent PIN is thus explicitly known. We

construct a subordinated (Ghysels et al., 1995) to (χi) stochastic volatility process for the
22Appendix C investigates the statistical theory of the plug-in estimator for the iRP, through the limit

theory of the maximum likelihood estimator. Section C.1 provides (pseudo-) consistency considerations and
shows that the application of iRP captures adequately well the true PIN under correct specification. Section
C.2 discusses rates and asymptotic distributions that enable the validity of asymptotic inference. This is
highly relevant in HFT because of the scale difference between the intensity- and interval-based estimators.
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logarithmic returns of the underlying asset in the spirit of Feng et al. (2015) as:

lnPi − lnPi−1 = α0 + a1χi + exp(ω0 + ω1χi + Vi)zi, (20)

Vi = bVi−1 + ηi−1, (zi, ηi)
T ∼ N(0,

1 ρ

ρ 1

), |ρ| < 1, |b| < 1. (21)

The Gaussian random vector (zi, ηi)T , is also considered independent of ϵi−j, for all i, j. Given

initial values P0, V0, and for realistic sample sizes T , and choice of parameter values, artificial

sample paths of (pi, χi) can be created. Given such a path, PIN,VPIN, iPIN and iVPIN are

estimated according to Section 4.1 and are evaluated according to their MSE’s. Specifically,

T is allowed to assume the values of 100,000 events (trades), which is the equivalent of 1 day

trading in the most liquid asset in the sample, i.e., AAPL. 100 paths are considered, which

is the equivalent of 100 trading days. In total, this resembles the trading activity of a very

liquid asset over a calendar quarter. This, according to previous literature, is a reasonable

time frame that does not introduce bias in the PIN or VPIN estimates. Furthermore, the

true underlying parameter values are chosen according to the estimates in Table 4. For

the price change and price change variance parameters, the following values are assumed,

α0 = −0.001, α1 = 0.9, ω0 = −3.5, ω1 = 0.05 and β = 0.98.23

Table 10 presents the results of the simulation, following the main scenario. The first

line of top panel of the table presents the on-average ”true” values of the (P)robability

of (IN)formed trading and it is organized in columns according to the sampling frequency

that varies from 1” to 60’. The following 4 lines present the average estimates of all the

metrics considered, following to empirical procedure described in Section 4.2, namely PIN,

VPIN, iPIN and iVPIN. The second (middle) panel presents the MSE for each on the
23The robustness of the findings are tested against different setups. For threshold values between 1 and

1.9. The findings remain qualitatively the same, but are stronger when a higher threshold is employed. In
addition, different values for T are considered, as well as a different number of sample paths. The number of
sample paths does not change qualitatively the results, but a higher number of observations exhibits slightly
less (but still) significant differences. The main scenario considers a strong negative correlation ρ = −0.8.
The results do not change with different values, but are relatively weaker with lower correlation.
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Table 10: Simulation: Performance of metrics-Probability of Informed Trading
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Average Estimates
TRUE 0.3065 0.3384 0.3453 0.3471 0.3480 0.3487 0.3489 0.3489 0.3488
PIN 0.2659 0.2108 0.2053 0.2056 0.2059 0.2062 0.2062 0.2062 0.2062
iPIN 0.2957 0.3262 0.3326 0.3343 0.3351 0.3357 0.3359 0.3358 0.3358
VPIN 0.2372 0.2285 0.2254 0.2249 0.2248 0.2282 0.2417 0.2640 0.2933
iVPIN 0.2633 0.2904 0.2962 0.2977 0.2985 0.2991 0.2992 0.2992 0.2991

MSE
PIN 0.0719 0.0658 0.0585 0.0576 0.0571 0.0567 0.0566 0.0566 0.0565
iPIN 0.0307 0.0288 0.0264 0.0261 0.0260 0.0259 0.0259 0.0258 0.0258
VPIN 0.1129 0.0983 0.0792 0.0779 0.0768 0.0742 0.0642 0.0518 0.0357
iVPIN 0.0207 0.0187 0.0161 0.0161 0.0157 0.0156 0.0156 0.0156 0.0156

MSE Ratios
PIN/iPIN 2.3413 2.2857 2.2142 2.2065 2.1988 2.1909 2.1898 2.1882 2.1855

VPIN/iVPIN 5.4629 5.2443 4.9083 4.8283 4.8986 4.7669 4.1276 3.3302 2.2906
iPIN/iVPIN 1.4869 1.5347 1.6363 1.6174 1.6554 1.6617 1.6608 1.6602 1.6588
PIN/VPIN 0.6373 0.6689 0.7381 0.7391 0.7431 0.7637 0.8811 1.0909 1.5826
PIN/iVPIN 3.4813 3.5078 3.6230 3.5687 3.6401 3.6405 3.6369 3.6327 3.6253

Table 10 presents the performance of PIN, VPIN, iPIN and iVPIN in capturing the real PIN. The first line is
the true average proportion of informed agents in the simulated data, estimated based on different sampling
frequencies (in columns). The following four lines are the average estimates according to PIN, iPIN, VPIN
and iVPIN. The second panel of Table 10 presents the (M)ean (S)quared (E)rror (MSE) of each estimate
and the bottom panel presents the ratio of MSE’s of the different metrics.

metrics in each sampling frequency. The bottom panel reports the ratios of MSE’s for visual

reference. The findings reported here are fully in line and confirm the basic findings of

the empirical analysis presented in Section 4.1. In summary, the intensity-based metrics

outperform consistently the interval-based metrics in accurately capturing the ”true” PIN,

by a factor of at least 2. This is consistent in all sampling frequencies, and, although it

shows a decreasing trend, the intensity-based metrics are by far a better measure for private

information. The second finding that is confirmed, is that volume does indeed contribute

to capturing private information, but only when its aggregation properties are considered

(iVPIN is consistently better than iPIN). Otherwise, it might introduce noise (VPIN in

sampling frequencies>15’).
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5.2 Misspecification in the Number of agent-types

The empirical setup proposed in Eqq.(3)-(10) can be used to either estimate the probability

of a specific agent-type to enter the market, or, alternatively to assess the number and the

type of agent present in the market. Section 4 estimates the proportion of informed agents as

an example of the former and Section 5.1 investigates its performance under mis-specification

in the DGP of duration. In this section we illustrate the latter use of iRP by investigating

whether it can i)detect the right number of agents in the case that there are more (assumed)

regimes than real agents (i.e., K > Kreal) and ii) assess properly the probability of an

agent-type when the (assumed) regimes are less than the real number of agents (K < Kreal).

Table 11 presents the estimates of the specification in Table 2, with q = 2 and q = 3

regimes, assuming an equivalent number of agents. There are two scenarios, where the true

DGP consists of 2 or 3 agents. The model might under- ((q = 2) < (KTrue = 3)) or over-

((q = 3) < (KTrue = 2)) estimate the true number of agents. The former investigates the

performance of our modeling in assessing the true probability of an agent-type, when K is

less than actual. The latter, investigates an overfit scenario, where the true number of agents

is lower than the one imposed by the model. iRP performs very well in all scenarios.

More specifically, when the model under-estimates the number of agents (second column)

one of the regimes becomes redundant. In this particular scenario, the middle regime becomes

largely indistinguishable from the third. The Wald tests at the bottom show that neither the

threshold value (j1 ̸= j2) nor the shape parameter (τm=2 ̸= τm=3) are significantly different.

The value of the shape parameters for the (true) two regimes are somewhat diluted, but

they remain within the bounds that define similarly shaped hazard functions (identify two

agent-types). The first (second) regime gest an estimate of τ ≈ 1 (τ < 1), which is associated

with a flat (decreasing) hazard function and thus, with uninformed (informed) trading. The

derivation of PIN in the right panel shows that the intensity-based estimates, especially

when the volume-clock is employed, clearly outperform their interval-based counterparts,

even under mis-specification in the number of agents ((q = 3) > (KTrue = 2)).
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Table 11: Mis-specification in the number of agents
DGP q = 2 q = 3 q = 2 q = 3
Model q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

= KTrue > KTrue < KTrue = KTrue = KTrue > KTrue < KTrue = KTrue

τm=1 1.3828 1.4103 1.3816 1.0113

U
ni

nf
or

m
ed

TRUE 0.4876 0.4211
(0.03) (0.04) (0.03) (0.04) PIN 0.5322 0.6031

τm=2 0.6390 5.6133 MSE 0.0582 0.0962
(0.05) (0.51) VPIN 0.5025 0.5641

τm=3 0.5296 0.5079 0.5619 0.5066 MSE 0.0550 0.0899
(0.11) (0.04) (0.10) (0.04) iPIN 0.4680 0.5481 0.5591 0.5012

g1 1.0852 1.0832 0.8528 1.0822 MSE 0.0217 0.0474 0.0648 0.0227
(0.08) (0.03) (0.06) (0.03) iVPIN 0.4859 0.4468 0.4554 0.4196

g2 1.0294 1.0337 MSE 0.0167 0.0386 0.0587 0.0107
(0.03) (0.03)

In
fo

rm
ed

TRUE 0.5124 0.48242
j1 1.1968 0.9636 PIN 0.4678 0.3969

(0.24) (0.01) MSE 0.0512 0.0633
j2 1.3883 1.3944 1.3057 1.3803 VPIN 0.4975 0.4359

(0.03) (0.03) (0.04) (0.03) MSE 0.0467 0.0521
τm=2 ̸= τm=3 1.67 9.86 iPIN 0.5320 0.4519 0.4409 0.4988

(0.05) (0.00) MSE 0.0218 0.0406 0.0601 0.0213
j1 ̸= j2 0.98 6.49 iVPIN 0.5141 0.4610 0.4538 0.4837

(0.16) (0.00) MSE 0.0177 0.0398 0.0584 0.0123
Table 11 presents the estimation results for the regimes and the performance of VPIN and iVPIN. Each
panel has 2 sections with 2 columns each. The DGP stands for the true data generation process of duration.
The conditional mean specification follows a FIACD according to Table 2. The true distribution consists
of either 2 (q = 2) or 3 (q = 3) agent-types (i.e., 3 regimes). The model might be mis-specified, either
assuming a higher (q > Kreal) or a lower (q < Kreal) number of agents. The left panel presents the
estimates of the distributional parameters with three regimes. For each market setup (q = 1 or q = 3) there
are two estimations; one assuming 2 agent-types (τm=1 = τJi<j1 and τm=3 = τJi>j2) and one assuming 3
(τm=1 = τJi<j1 , τm=2 = τji<Ji<j2 and τm=3 = τJi>j2). The estimates are cross-sectional averages and the
values in () are cross-sectional standard deviations. The bottom part presents wald tests with p-values in ().
The right panel presents the true values (probabilities) for uninformed (top) and informed (bottom) agents,
as well as the estimates with PIN,VPIN, iPIN and iVPIN. MSE is the cross-sectional mean squared error.

The third and fourth columns, present the estimates for the scenario when the true

number of agents is higher than the number of regimes. In this case, the threshold value is

somewhat lower, but still distinguishes a top regime, where the shape parameter identifies

informed trading (τ < 1). The estimates of both regimes are biased estimates, but not far

from the estimates of the model, when the correct (q = 3) number of regimes is employed.

The Wald tests show a significant difference between the middle and top regime, suggesting

that the model identifies correctly the number of agent-types. This is also reflected in the

performance of the intensity-based estimates of PIN, which, even under wrong specification

outperform the inteval-based estimates.
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The implications of these findings are twofold. First, they show that the interval based

estimates are more suitable for estimating the probability of an agent-type in HFT, since

they exhibit a superior performance, even under mis-specification. Second, our estimation

framework is flexible enough to capture the number of agents in the market, as well as

their probability. This highlights an alternative use for our model, which can be used in a

completely agnostic manner, where there is no prior in the number or type of agents present

in the market. Using a higher number of regimes (q > KTrue) can identify the number of

agent-types and then the differentials in the hazard functions can capture the type of the

agent. iRP can then estimate the probability.

5.3 Mis-specification in the Mixture of Agents Types

Eq.(2) considers that all agent-types interact in a highly non-linear manner, either with

their presence, or their absence, and their combined actions shape the overall distribution

of the market, as this is reflected on the shape parameter of the distribution of market

durations. In order to assess this empirically, a certain distribution must be assumed for

the DGP of market durations, in order to link its shape/scale parameters, τi, to certain

agent-types as in Eq.(6). This approach has the notable benefit of being completely data

driven, but at the expense of requiring a specific distribution function, like the one sug-

gested in Eq.(11). In order to investigate the impact of mis-specification in the distribu-

tional assumptions, we consider a scenario where, the point process of the market is the

superposed process of K agent-types of the form: E(N(t)−N(s)|Fs) = E
(∫ t

s
λ(u) du

∣∣∣Fs

)
=∑K

k=1 E
(∫ t

s
λk(u) du

∣∣∣Fs

)
=
∑K

k=1 E
(∫ t

s
(pkt |Fs)λ

k
0(u) du

)
. We refer to this specification as a

(M)ixture (o)f (D)istributions (MoD), as opposed to MoE, where the counting of the market

events (E(N(t)−N(s)|Fs)) is the superposed process (E
(∫ t

s
λ(u) du

∣∣∣Fs

)
), defined as a linear

combination (sum:
∑K

k=1 E
(∫ t

s
λk(u) du

∣∣∣Fs

)
) of the arrival rates of k agent-types (λk(u)).

To arrive at λk(u) in a data driven manner, λk(u) is defined as (pkt |Fs)λ
k
0(u). (pkt |Fs) is the

weighting, which acts as the prior probability (Li in our setup) and λk0(u) is the baseline
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intensity of agent-type k. In both MoD and MoE we assume a FIACD specification. For

MoE we follow Table 2 and in MoD, we assume an infinite mixture of two Weibul distribu-

tions with shape parameters 1 (flat hazard function) for the uninformed and 0.6 (decreasing

hazard function) for the informed. Then we estimate iVPIN following Eq.(18).

Table 12: Mixture of Experts versus Mixture of Distributions
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Tr
ue

:
M

oE
M

EA
N TRUE 0.3065 0.3384 0.3453 0.3471 0.3480 0.3487 0.3489 0.3489 0.3488

iVPINMoE 0.2633 0.2904 0.2962 0.2977 0.2985 0.2991 0.2992 0.2992 0.2991
iVPINMoD 0.5603 0.5920 0.5989 0.6070 0.6016 0.6024 0.6026 0.6025 0.6025

M
SE

iVPINMoE 0.0207 0.0187 0.0161 0.0161 0.0157 0.0156 0.0156 0.0156 0.0156
iVPINMoD 0.0528 0.0330 0.0298 0.0291 0.0297 0.0284 0.0283 0.0288 0.0284

iVPINMoD/iVPINMoE 2.5555 1.7576 1.8467 1.8008 1.8943 1.8247 1.8207 1.8518 1.8195

Tr
ue

:
M

oD
M

EA
N TRUE 0.4369 0.4788 0.4882 0.4908 0.4921 0.4929 0.4913 0.4933 0.4934

iVPINMoE 0.4032 0.4378 0.4454 0.4475 0.4485 0.4491 0.4493 0.4495 0.4496
iVPINMoD 0.4395 0.4616 0.4663 0.4776 0.4688 0.4685 0.4689 0.4690 0.4691

M
SE

iVPINMoE 0.0216 0.0192 0.0176 0.0159 0.0158 0.0157 0.0145 0.0137 0.0138
iVPINMoD 0.0165 0.0142 0.0137 0.0137 0.0136 0.0136 0.0136 0.0136 0.0136

iVPINMoD/iVPINMoE 0.7617 0.7376 0.7773 0.8575 0.8636 0.8671 0.9350 0.9932 0.9862
Table 12 presents the true probability of informed trading (PIN), as well as the estimates with the MoD
(iVPINMoD) and MoE (iVPINMoE) approaches. Mean is the average across seeds, ane MSE is the mean
squared error. iVPINMoD/iVPINMoE is the ratio of the MSE’s of each approach. The sampling frequency varies
from 1” to 1h, according to Section 4.2. The true DGP is a MoE in the top and a MoD in the bottom.

Table 12 presents the performance of iRP when the mixture of agents is mis-specified.

The MEAN and MSE estimates show that iVPIN performs better when the distributional

assumptions match the true DGP. More precisely, iVPINMoE (iVPINMoD) performs better

when the market distribution follows a MoE (MoD) specification, since it exhibits average

estimates closer to the TRUE values and lower MSE’s. However, when the MoE frame-

work is mis-specified, the ratio iVPINMoD/iVPINMoE takes values that are proportionally smaller

compared to when the MOD framework is mis-specified. Especially on lower sampling fre-

quencies. When the sampling frequency is beyond 1’, iVPINMoE outperforms iVPINMoD by

a factor of around 1.8, while in the opposite case it under-performs by a factor of around

0.9. This shows that the non-linearity imposed by the MoE framework is flexible enough to

capture the true PIN, even with wrong distributional assumptions.
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6 Conclusion

Who is trading in the market? This latent piece of information becomes an increasingly rele-

vant question as trading frequencies increase. At HFT algorithms dominate trading and their

reaction times are far shorter than those of humans (Johnson et al., 2013). This acceleration

challenges the human-centric notion of efficient markets, which implies that fundamental

information is incorporated into prices (Fama, 1965) instantaneously and unanimously. At

these trading speeds, either due to market frictions (Madhavan, 2000), or simply because

there is not enough time for the conventional information acquisition/processing/acting-upon

cycle, AT relies on ”trading” information as a noisy signal of ”fundamental” information.

But what costitutes a trading signal? Early literature (Madhavan, 2000) points towards

trade direction for market makers to infer the informational content of trades and condi-

tion their liquidity and adverse selection (Madhavan et al., 1997) costs. However, with the

continuing rise of AT, market reflexivity (Soros, 1994, 2013) intensifies too, which makes

trade direction less relevant due to signal propagation. So, ‘‘If one cannot learn from buys

and sells, what should be looked at to infer underlying information? The high frequency

world gives clues in that HFT algorithms draw inferences from trade sequences and time

patterns (...)”. In these words, O’Hara (2015) argues that ”time” itself becomes a source of

information concerning the trading motives behind market events.

Motivated by this view, we introduce a new empirical framework to estimate the number,

the type and the probability of the different agent-types at any point in time, as well as

at any interval. We introduce the idea that the intrinsic trading motives (e.g., learning

patterns, technology used, access to information, etc.) of each agent-type are reflected

on her tangible actions and, in particular on her arrival rate, which we capture with the

conditional intensity (hazard function) of a point process Daley and Vere-Jones (2003). We

assume that this is time invariant and thus it becomes detectable. Furthermore, we consider

that each agent-type contributes to the overall market activity as ”experts”, either with
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their presence (intensity function) or their absence (survival function), in a manner that,

collectively, they resolve incoming information through liquidity patterns. We model their

interactions as a function of market conditions (they enter the market upon suitable market

conditions (time variant) at an time invariant rate). This creates a highly non-linear infinite

”Mixture of Experts” that accounts for their intrinsic motivation and for market reflexivity,

simultaneously, which exhibits superior theoretical properties and empirical performance.

This approach exhibits several advantages. First, unlike previous literature (Easley et al.,

2014), which focuses on the aggregated characteristics of observable variables to detect the

presence of various agent-types, our approach focuses on the aggregation process itself and,

thus, it provides point, rather than interval estimates, without suffering from sampling bias.

In addition, it links the presence of agent-types to a statistical measure (intensities), rather

than to a variable (Easley and O’hara, 1992) and therefore, it can be used, not only to

estimate the probability, but also the number and the type of different agents, as long as, their

motivation is reflected on tangible actions. Finally, since AT intensifies market reflexivity

(Soros, 2013), it might propagate noise (Johnson et al., 2013) too, with detrimental effects

to market stability (Zhang and Zhang, 2025), because they might render the order flow toxic

(Easley et al., 2014), ultimately leading to higher variance and/or extreme events (Johnson

et al., 2013), such as flash crashes. In the spirit of Filimonov and Sornette (2012, 2015),

Hardiman et al. (2013), our approach enables a direct assessment of how much trading is

affected by arrival rates (endogeneity) versus other market conditions, based on which we

develop a local measure for HFT reflexivity that is found to be highly correlated with both

variance and extreme events.

Collectively, we extract information about the, otherwise hidden, presence of different

agent-types, based on time, and from this, we derive a metric for the propensity of the

market to enter into a ”stress” state due to reflexivity. To the question: ”Who trades in the

market?”, we respond:

Time will tell!…
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Appendix A Supplementary Tables

This appendix presents more information on the descriptive statistics of the dataset employed

in the empirical application of the iRP metric, as well as the estimation results for further

applications of the iRP, introduced in Appendix B.3.

• Table A.1 presents the descriptive statistics for the full sample period.

• Table A.2 presents the estimation results for two further applications of the iRP in-

troduced in sections B.3.1 and B.3.2.

The sample consists of rather liquid stocks like AAPL with average duration 0.21 sec

(1.21 minus 1 sec added for computational reasons) to relatively less liquid stocks, like AXP

with average duration of 1.41 sec (2.41 minus 1 sec). The average volume per trade also

varies from relatively low values, like in TRV with 115.7 stocks per trade, to almost triple

volume, like in PFE with 393.2 stocks per trade. In addition, price change variance exhibits

a wide range of values from 0.01 in KO or VZ to 0.12 in BA covering stocks with different

intensities of price discovery. Besides the relative variation that is to be expected due to the

presence of cross-sectional fixed effects, no major outliers are observed, while min and max

values are comparable across stocks. This implies that the sample is relatively homogeneous,

but with adequate variation, in order to provide a sample with minimal trading biases or

extreme events.
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Table A.2: Estimation Results

iPTT iPTT (wating)
low high low high

ω 0.6746 ω 0.6962
(0.01) (0.01)

β 0.4295 β 0.4183
(0.01) (0.01)

ϕ 0.4324 ϕ 0.4419
(0.01) (0.01)

δ 0.0656 δ 0.0811
(0.01) (0.01)

(q|E(rt)) 0.8503 1.0807 (q|E(rt)) 0.7242 1.4298
(0.03) (0.02) (0.02) (0.03)

(τ |ti) 1.1275 0.9522 (τ |ti)duration<jduration 1.0942 0.6065
(0.01) (0.05) (0.01) (0.06)

(τ |ti)duration<jduration 1.6323 0.9048
(0.02) (0.06)

gti 0.9999 gti 0.9958
(0.02) (0.02)

gduration 1.0001
(0.02)

gE(rt) 0.9665 gE(rt) 0.9950
(0.02) (0.03)

jti 1.0046 jti 1.0023
(0.03) (0.05)

jduration 0.9966
(0.04)

jE(rt) 1.0090 jE(rt) 1.1052
(0.04) (0.02)

The top panel of Table A.2 presents the estimation results for the conditional mean specification parameters,
assuming a FI-ACD specification ω + βψi−1 + (χi − βχi−1) − (χ̃i − ϕχ̃i−1). The bottom panel presents
the distribution parameter estimates, assuming a q−Weibull distribution for χ, i.e., f (χi|Fi−1) = (2 −

τ q=1)
τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
, τ q=2

i =
(
Gq=2
m=1,i −Gq=2

m=2,i

)
τ q=2
m=1 +

Gq=2
m=2,iτ

q=2
m=2 and Gq=2

m=2,i =
(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

. The collumns of Table A.2 present the estimates
for the specifications of iPTT introduced in Section B.3. All estimates are cross-sectional averages, with
standard deviations in (:).
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Appendix B iRP and Further Applications

This appendix provides supplementary material that highlights the qualitative characteristics

of iRP, as well as it discusses further potential applications.

• Section B.1 discusses how the new metric is aligned with the attributes of the marked

viewed as a complex system.

• Section B.2 presents the theoretical properties of our measure for informational gain.

• Section B.3 presents further ”indicative” applications of iRP. Section B.3.1 presents

an empirical specification that can identify the presence of technical trading alongside

information, while Section B.3.2 presents another customization that can identify a

finer (sub-)classification of technical trading that considers waiting costs.
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B.1 The market as a complex system

The formulation in Eq.(2) is also inspired and consistent with designing the market as a

complex system. Johnson et al. (2003) argue that financial markets are more than “compli-

cated” systems. They are “complex” systems, in the sense that the observable outputs of the

interactions of market participants (agent-types) are more than the sum of their actions; a

concept known as emergence properties. This becomes increasingly relevant at higher trad-

ing frequencies, where trading is dominated by AI-agents. These agents observe the market

continuously and infer “fundamental” information from observable “trading” information,

depending on their processing capacity. In parallel, their actions also generate “trading”

information (information propagation) and the market is a dynamic equilibrium between

information storage and propagation (MacKay, 2003). Shannon and Weaver (1949) suggests

that there is an optimal balance between information propagation and information storage

capacity that maximizes reward per unit of effort, a concept known as maximum informa-

tional entropy. Arthur (2013) argues that this optimal level is an emergence property, which

should be modelled alongside the actions of individual agents.

This specific point is a major contribution over previous approaches of Eq.(2), which

indirectly addresses all the properties of a complex system (e.g., Johnson et al., 2003):

Multiple interacting agents: Eq.(2) proposes a market design where multiple agents with

intensities λk0(t) interact and their actions collectively create the market wide intensity

λk(t|Fs). Consequently, the overall market activity is the output of the actions of all agents

present in the market, λk0(t), as well as their interactions, (pkt |Fs), which are conditional on

the market as a whole. This is because the information set that determines the overall market

activity does so through the conditional probabilities of each agent entering the market.

Adaptation: Adaptation refers to the ability of individual agents to adjust their behavior

in order to improve their performance. This is directly modelled in Eq.(2) with the weighting

probabilities, (pkt |Fs). (pkt |Fs)’s are conditional on market conditions, (: |Fs), and define the

probability of a specific agent-type with intensity λk0(t) to enter the market. This is done in
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a manner conditional on market activity and not independently of it and, therefore, different

agent-types can adapt their behavior, i.e., adjust the weight of λk0(t), according to market

conditions, (: |Fs), which include the actions of all agents.

Feedback: The adaptive learning described above is designed in way that also considers

information propagation. (pkt |Fs)’s are conditional on observable information, which accord-

ing to Eq.(2) is necessarily the collective output of all interacting agents. This way, Eq.(2)

establishes a feedback mechanism that considers learning and information processing through

the conditional set, (: �Fs), as well as through the constraint that overall market activity,

λk(t|Fs), is necessarily the output of individual agent actions, λk0(t), i.e.,
∑K

k=1(p
k
t |Fs) = 1.

Evolution: The information set (: |Fs) does not necessarily contain only endogenous

information, i.e., λk(t|Fs), but it can also contain other exogenous variables. This way, ex-

ogenous, as well as endogenous, shocks can affect the probabilities of different agent-types to

enter the market, (pkt |Fs), without necessarily imposing a mean reversion property.24 Conse-

quently, the market activity, λ(t|Fs), can evolve, continuously searching for an equilibrium,

and can even exhibit ‘extreme behavior’, such as crashes or bubbles. This would happen

when λk(t|Fs) takes extreme values, which would then be also fed back to the system through

(: |Fs)’s, potentially leading to market failures.

Non-stationarity: This evolution does not have to be stationary, i.e., system properties

observed in the past do not necessarily remain unchanged in the future. Eq.(2) operates

at a trade-off with respect to stationarity. The agent-specific characteristics λk0(t), i.e., the

way agent-types act given a specific attribute, such as learning, speed, processing capacity

etc., are assumed to be stationary. This is done for traceability reasons and not because it

represents better complex system properties. This is an explicit assumption, which implies
24Bacry et al. (2015) provides a martingale representation of Hawke’s processes, while Engle and Russell

(1998) suggest a way to model the the innovations of inter-event waiting times, i.e., durations. These two are
the two most popular approaches employed in finance to model time and both have an innovation component
embedded. This way endogenous or exogenous shocks can affect the arrival rate of either agent-specific or
market-wide events. In this paper, due to its empirical focus, the approach of Engle and Russell (1998) is
preferred due to the explicit modeling of the innovations, which will be the main tool to distinguish among
different agent-types.
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that an agent-type reacts to the same stimuli in a way that does not change over time.

According to the formulation in Eq.(2), this is what makes her actions distinguishable and

thus, traceable. This is definitely a constrain in the modeling, but Eq.(2) can accommodate

time variant agent-type characteristics, albeit in a rigid way. Assuming that the information

processing capacity of an agent-type changes due to a structural break, such as changes in

technology. This would necessarily imply a change of the baseline intensity, λkA0 (t) → λkB0 (t).

Eq.(2) would be able to identify λkB0 (t) (i.e., as a new intensity) and also (pkBt |Fs), making

at the same time (pkAt |Fs) = 0.

B.2 Informational Gain

Figure 1: Information Gain

Figure 1 illustrates the value of Information Gain (Si in Eq. 16) for different estimates of the prior (Lki )
and posterior (Pki ) probabilities.

Figure 1 illustrates how Si changes across different estimates of prior and posterior prob-

abilities. In the cases where the prior over- or under-estimates the probability significantly,
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Si gets values closer to 1, indicating that trading does revise strongly the probability. We

interpret this as a strong impact of arrival rates associated with market reflexivity.

B.3 Further Applications: Beyond Information

This section presents an application of the iRP through various extensions of the framework

presented in Eq.(3)-(10). More precisely, Section 3.2 employs a different modelled variable,

i.e., the speed of volume accumulation, in order to capture order flow toxicity, similar to

VPIN. Section B.3.1 expands the interpretation of iPIN by dissecting the shape and the

scale parameter simultaneously in order to investigate technical trading. Finally, Section

B.3.2 dissects the shape parameter further, i.e., in two dimensions, in order to investigate

the behavioral bias of ”patient traders” (e.g., Foucault et al., 2005). In brief, the following

sections employ different specifications of Eq.(3)-(10) and link them indicatively to different

agent-types, as an illustration of the flexibility of the framework.

B.3.1 Information and Market-Wide Learning: Technical Trading

Access to private information might not be synchronous to all traders and, therefore, the

classification of informed versus uninformed (e.g., Kyle, 1985) might be unrealistic. Previous

literature recognizes the existence of other groups under the general notion of discretionary

liquidity traders (e.g., Admati and Pfleiderer, 1986), usually referred to as “technical” traders.

Although there are many sub-classifications according to their way/speed of learning or

access to information (e.g., O’Hara, 2015), they tend to exhibit some common characteristics.

They are generally understood as a challenge to weak-form market efficiency. They observe

the market and “learn”, in the sense of inferring exploitable patterns from trading history.

They enter the market when they extract price-relevant information, in a discretionary way

by selecting the timing and the volume of their trading. Unlike the uninformed agents,

whose arrival rate is time invariant, these partially uninformed agents try to become better

informed (learn). Consequently, their arrival rate depends on market conditions.
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Kalaitzoglou and Ibrahim (2013) suggest that technical traders, due to their learning

time-related cost, react to information with a delay compared to better informed agents.

Consequently, their probability of entering the market, following an information signal in-

creases with time, resulting in a hazard function with an increasing shape. Other studies,

however, focus on market signals that might instigate technical trading, with expected re-

turn being probably the strongest indicator. For example, Bauwens and Giot (2003) imply

that the trading activity of technical traders increases after large price changes are expected

and therefore, their probability to enter the market is higher closer to the events that result

in higher expected price changes and, then, it decreases over time. This implies that when

Ji := E(Ri|Fi−1) > jtechnical, then the hazard function should exhibit a decreasing shape.

Both approaches imply a monotonic hazard function and are constrained by the use of the

distributions employed, as well as the observable threshold variables.

Eq.(14) provides a versatile tool for identifying technical trading, using multiple observ-

able factors. Combining both approaches, technical traders are understood to observe past

price changes and formulate expectations about the presence of information signals that mo-

tivate their discretionary interaction with the market. Naturally, they should be expected

to act as soon as they can, before the informational advantage expires by becoming public

information. This should result in a hazard function with a decreasing shape. However,

they cannot enter the market immediately after the arrival of new information because they

do not possess it from the beginning. They have to extract it first and, therefore, their

probability of entering the market after the arrival of information should increase over time,

resulting in a hazard function with increasing shape. Consequently, the trading behavior of

technical traders should be a combination of the two different shapes of the hazard function

– first increasing (enter the market with a delay) and then decreasing (act timely on newly

acquired information) until it reaches zero when information becomes public – implying a

unimodal shape.25

25In the absence of information, the probability of technical traders should be low or zero. In the presence
of ”extracted” information they should act within its ”life span”, implying a decreasing hazard function.
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Eq.(11) is flexible enough to capture non-monotonic hazard functions and the one that

matches the unimodal shape is when τ q=1 ≥ 1 and τ q=2 ≥ 1. Following, the formulation

of iPIN and iVPIN, the actions of technical traders are assumed to be expressed primar-

ily in trading intensity, prior to any significant price change that would incorporate the

new information. They act on information with a delay, because they have to “learn”

first, and therefore, their hazard function should exhibit mostly an increasing shape, at

least during the “life span” of the information. In line with the formulation of of iPIN

and iVPIN, trading intensity is assumed to be a primary characteristic that expresses the

actions of different agent-types and therefore, it is also used here as a major determinant

of the shape of the hazard function, i.e., flat/increasing/decreasing. Following the nota-

tion in Eq. (11) and the example in Table 2 the shape parameter ,i.e.,
(
τ q=2
i

∣∣Jq=2
v=1,i = tii

)
,

is conditional on trading intensity. Considering that a decreasing hazard function is as-

sociated with informed trading (e.g., iPIN), a milder or increasing (e.g., Kalaitzoglou and

Ibrahim, 2013) shape of the hazard function should be associated with less informed trad-

ing that is more consistent with the presence of technical traders. This on its own is not

sufficient and a secondary signal is also considered. The magnitude of the reaction of tech-

nical traders is proportional to the magnitude of the inferred information and this is in lined

with the impact (extensivity) of the entropy parameter on the shape of the hazard func-

tion. The “informativeness” of the magnitude of an observation and its subsequent impact

on the shape of the hazard function is captured by the entropy parameter, τ q=1
i , which is

assumed to be conditional on the magnitude of the (information) signal, here assumed to be

only (but this is only indicative) expected returns, i.e.,
(
τ q=1
i

∣∣Jq=1
v=1,i = E(Ri|Fi−1)

)
. Higher

values should be associated with higher presence of technical trading. It follows that the

intensity-based probability of technical traders, i.e., iTT, can be defined following Eq.(14)

However, because they have to ”learn” first, they cannot act as fast as the informed agents and their actions
are expressed with a delay. This implies an increasing hazard function upon the arrival of information.
When inforamtion is price-resolved there is no monetary benefit and, therefore, their probability of entering
the market returns to zero. Collectively, the probability of technical traders follows a unimodal shape that
cannot be captured by single-shape parameter distributions.
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as: iTT =
(
iRPtechnical

t

∣∣Fs

)
=

E(
∫ t
s λ

Z=technical(u) du|Fs)∑K
k=1 E(

∫ t
s λ

k(u) du|Fs)
=

(pZ=technical
t |Fs)HZ=technical(t|Fs∑K

k=1((pkt |Fs)Hk(t|Fs)
, which can

then be expressed in terms of the regimes of shape parameters, τ qi , in Eq.(11) as:

iTTi =

∑
Q
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)

{∏
Q
⊗
M W q

m,iH
Q
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

(B.1)

In this formulation, the regimes, m of τ q=1 and τ q=2 that lead to a unimodal shape

of the hazard function, identify technical trading (k = technical). Then, the aggregated

number of technical traders is the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of inter-

sections Q
⊗

(m (1 < τ q=1
m ≤ 2, τ q=2

m > 1) : k) in the contingency table, where 1 < τ q=1
m ≤ 2

and τ q=2
m > 1, times the respective cumulative hazard functions of these intersections, i.e.,

HQ
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)(t). This is then compared to the expected number of all trades.

Technical trading in Eq.(B.1) can be estimated in parallel with iPIN. Different regimes of

τ q=1
m and τ q=1

m that lead to a decreasing hazard function would identify informed trading.

The regimes that exhibit a unimodal shape would indicate the presence of technical trading.

Table A.2 reports the cross-sectional estimates of the specification in this table that

intends to identify technical trading. In particular, the interest lies in the middle panel under

iPTT, which reports the estimates for the distribution of χ with both the scale and the shape

parameter being an infinite mixture of two regimes. Focusing on the shape parameter τ q=2
i ,

noted as τti, it takes values higher than one when tii < jti (noted as ti < j(ti), while it

takes values less than 1 when tii > jti (noted as ti > j(ti). In consistence with the iPIN

and iVPIN estimations higher trading intensity is associated with higher presence of private

information (decreasing hazard function). However, lower trading intensity that leads to

τti > 1 and higher E(rt) that leads to τ q=1
i > 1 (noted as qE(rt)>j(E(rt))) make the hazard

function take a unimodal shape. This matches the characteristics of technical trading. At

the bottom panel, their cross-sectional average over the sample period is estimated around

30%.
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ψi = ω + βψi−1 + (χi − βχi−1)− (χ̃i − ϕχ̃i−1), where χi = ∆t∗i

f (χi|Fi−1) = (2− τ q=1
i )

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
τ q=1
i =

(
1−Gq=1

m=2,i

)
τ q=1
m=1 +Gq=1

m=2,iτ
q=1
m=2 and τ q=2

i =
(
1−Gq=2

m=2,i

)
τ q=2
m=1 +Gq=2

m=2,iτ
q=2
m=2

for Gq=1
m=2,i =

(
1 + e−g

q=2
m=2(E(rt)i−jq=2

m=2)
)−1

, and Gq=2
m=2,i =

(
1 + e−g

q=2
m=2(tii−j

q=2
m=2)

)−1

The remaining regimes that exhibit differently shaped hazard functions could be asso-

ciated with different agent-types. As an indications, previous literature (e.g., Kalaitzoglou

and Ibrahim, 2013) suggest that a flat hazard function can be associated with uninformed

agents. Of course, there are different shapes and/or different combinations. The next section

(Section B.3.2) discusses indicatively a variation of the potential shapes the hazard function

can take.

B.3.2 Information Diffusion and Learning: Waiting Costs

The discussion above is based on market-wide learning and uniform access to information.

However, technical traders are a diverse collection of agents (e.g., O’Hara, 2015) motivated by

a variety of factors, such as investment style and behavioral biases. These differences would

instigate different trading styles that thus, different accumulation rates (hazard functions).

A potential (indicative) factor is waiting costs (e.g., Foucault et al., 2005). Lower-frequency

traders (“patient”) trade according to their portfolio-re-balancing needs (e.g., Keim and

Madhavan, 1995). They are more likely to wait until a sufficiently strong signal or submit

a limit order trying to secure a better price (e.g., Foucault et al., 2005); actions that lead

to delayed execution. In contrast, faster, e.g., algorithmic, traders (“impatient”) profit from

accessing and acting on information faster than the remaining uninformed agents. They

are more likely to submit a market order as soon as it is profitable. Both types can be

considered uninformed and their actions are associated with a unimodal hazard function.

However, (im-)patient traders face a (higher) lower waiting cost and therefore, the degree of

the curvature of the hazard function should be (sharper) milder (e.g., Foucault et al., 2005),
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even monotonically (decreasing) increasing in the limit.

An extension of Eq.(B.1) can capture this dissection of technical traders. Consider the

setup, in Eq.(B.1), i.e.,
(
τ q=2
i

∣∣∣Jq=2
v=2,i =

volumei
durationi

)
and

(
τ q=1
i

∣∣Jq=1
v=1,i = E(Ri|Fi−1)

)
. Impatient

traders act faster than patient traders and this can be captured by distinguishing the trades

that result into τ q=2 > 1, i.e., technical trading, into relatively high or low duration. To

capture this, τ q=2 is dissected into levels of trading intensity, i.e., Jq=2
v=2,i, as well as of du-

ration, i.e., Jq=2
v=3,i = durationi. This conditions the shape parameter on two variables,(

τ q=2
i

∣∣Jq=2
v=2,i, J

q=2
v=3,i

)
, and dissects it into four cases; high (low) trading intensity and long

(short) durations.

τ q=2
i =

(1−Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

)) (
1−Gq=2

v=3,m=2,i

(
Jq=2
v=3,i

))︸ ︷︷ ︸
W

low J
q=2
v=2,i

, long J
q=2
v=3,i

,i

τ q=2

low Jq=2
v=2,i, long Jq=2

v=3,i

+Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

) (
1−Gq=2

v=3,m=2,i

(
Jq=2
v=3,i

))︸ ︷︷ ︸
W

high J
q=2
v=2,i

, long J
q=2
v=3,i

,i

τ q=2

high Jq=2
v=2,i, long Jq=2

v=3,i



(1−Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

))
Gq=2
v=3,m=2,i

(
Jq=2
v=3,i

)︸ ︷︷ ︸
W

low J
q=2
v=2,i

, short Jq=2
v=3,i

,i

τ q=2

low Jq=2
v=2,i, short Jq=2

v=3,i

+Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

)
Gq=2
v=3,m=2,i

(
Jq=2
v=3,i

)︸ ︷︷ ︸
W

high J
q=2
v=2,i

, short Jq=2
v=3,i

,i

τ q=2

high Jq=2
v=2,i, short Jq=2

v=3,i

 (B.2)

The formulation above dissects the shape parameter, τ q=2
i , into four regimes. Different

combinations of trading intensity and duration will result in different levels of τ q=2
i and,

consequently, in different shapes of the hazard function. The shapes of interest are the
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variations of a unimodal shape, i.e., τ q=2
i > 1, that might vary from a marginally decreasing

shape to a marginally increasing. In particular, when expected return is high, τ q=1
i is expected

to be 1 < τ q=1
i ≤ 2. In combination with a τ q=2

i > 1, this would lead to a unimodal shape.

The identification that is pursued here goes one step further and distinguishes different levels

of τ q=2
i according to different levels of duration. In particular, (shorter) longer duration

should be associated with (im-)patient trading, resulting in a hazard function that exhibits

a (sharper, i.e., τ q=2
i

+−→ 1) milder, i.e., τ q=2
i > 1, decrease, which in the limit could even

reach a (decreasing) increasing shape. This identifies impatient technical traders (iITT) and

patient technical traders (iPTT) (see e.g., Foucault et al., 2005), with a relative proportion

that can be defined as:

iITTi =

∑
Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
{∏

Q
⊗
M W q

m,iH
Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

iPTTi =

∑
Q
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)

{∏
Q
⊗
M W q

m,iH
Q
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

(B.3)

The regimes, m of τ q=1 and τ q=2 that lead to a unimodal shape of the hazard func-

tion identify the technical trading, while the different degrees of curvature are associated

with the magnitude of waiting costs. The aggregated number of impatient (or patient in

(:)) technical traders, is the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of intersections

Q
⊗(

m
(
1 < τ q=1

m ≤ 2, τ q=2
m

+−→ 1
)
: k
)

(or Q
⊗

(m (1 < τ q=1
m ≤ 2, τ q=2

m > 1) : k) for patient

traders) in the contingency table, where 1 < τ q=1
m ≤ 2 and τ q=2

m
+−→ 1 (or 1 < τ q=1

m ≤ 2 and

τ q=2
m > 1, times the respective cumulative hazard functions, H

Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
(t)

(or HQ
⊗
(m(1<τq=1

m ≤2,τq=2
m >1):k)(t)). This is then compared to the expected number of all

trades.

As a final example, the specification below follows the one in Section B.3.1 but with a
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higher refinement of the shape parameter, which is now split across an additional dimension.

More specifically, consider the following model:

ψi = ω + βψi−1 + (χi − βχi−1)− (χ̃i − ϕχ̃i−1), where χi = ∆t∗i

f (χi|Fi−1) = (2− τ q=1
i )

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
τ q=1
i =

(
1−Gq=1

m=2,i

)
τ q=1
m=1 +Gq=1

m=2,iτ
q=1
m=2

τ q=2
i =

(
1−Gq=2,a

v=2,i

) (
1−Gq=2,b

v=3,i

)
τ q=2

Jq=2
v=2,m=1,iJ

q=2
v=3,m=1,i

+Gq=2,a
v=2,iG

q=2,b
v=3,iτ

q=2

Jq=2
v=2,m=2,i,J

q=2
v=3,m=2,i

+Gq=2,a
v=2,i

(
1−Gq=2,b

v=3,i

)
τ q=2

Jq=2,a
v=2,i ,J

q=2
v=3,m=1,i

+
(
1−Gq=2,b

v=2,i

)
Gq=2,a
v=3,i τ

q=2

Jq=2
v=2,m=1,i,J

q=2
v=3,m=2,i

for Gq=1
m=2,i =

(
1 + e−g

q=2
m=2(E(rt)i−jq=2

m=2)
)−1

,

Gq=2,a
m=2,i =

(
1 + e−g

q=2
v=2,m=2(tii−1−jq=2

v=2,m=2)
)−1

and Gq=2,b
m=2,i =

(
1 + e−g

q=2
v=3,m=2(durationi−jq=2

v=3,m=2)
)−1

In this specification, the entropy parameter, q = τ q=1
i , is split into two regimes, m = 1, 2,

defined by the threshold variable, E(rt), as it is compared to the threshold, jq=1
m=2. The

shape parameter though is split into a 2x2 dimension matrix, defined by two variables,

Jq=2
v=2,i = durationi−1 and Jq=2

v=3,i = tii. The first one captures the market conditions that

might be associated with technical trading (trading intensity associated with an increasing

hazard function), while the second distinguishes this level of trading intensity into faster-

bigger (shorter duration-higher volume) and slower-smaller (longer duration-lower volume)

trades, which is intended to capture the execution strategy (fast or slow). Each threshold

variable has its own threshold, jq=2
v=2,m=2 for Jq=2

v=2,i and . The magnitude of the threshold

variables, Jq=2
v=2,i = tii−1 and Jq=2

v=3,i = tii, relative to their thresholds, jq=2
v=2,m=2 and jq=2

v=3,m=2,

define four different combinations, with the shape of the hazard functions being defined by

the related shape parameters:

Jq=2
v=3,i ≤ jq=2

v=3,m=2 Jq=2
v=3,i > jq=2

v=3,m=2

Jq=2
v=2,i ≤ jq=2

v=2,m=2 τ q=2

Jq=2
v=2,m=1,iJ

q=2
v=3,m=1,i

τ q=2

Jq=2
v=2,m=1,i,J

q=2
v=3,m=2,i

Jq=2
v=2,i > jq=2

v=2,m=2 τ q=2

Jq=2,a
v=2,i ,J

q=2
v=3,m=1,i

τ q=2

Jq=2
v=2,m=2,i,J

q=2
v=3,m=2,i

These parameters have been indicatively been estimated in the left side of Table A.2,

in the right column under iPTT. The middle part of this column reports the estimates
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of the parameters of the distribution, which are inline with expectations and previous es-

timations. More precisely, in accordance with Section B.3.1, the values of τ q=2 are be-

low 1 when Jq=2
v=2,m=2,i > jv=2,m2 (noted as ti > j(ti)), which indicates informed trading.

However, the shape parameter, τ q=2 takes values that are consistently higher than 1 when

Jq=2
v=2,m=2,i ≤ jv=2,m2 (noted as ti < j(ti)), which in combination with a scale parameter,

τ q=1 = q, that takes values higher than 1 when E(rt) > jv=3,m2 (noted as E(rt) > j(E(rt))),

imply a unimodal shape for the hazard function. This is consistent with technical trading.

On a deeper dissection, when duration is low (shaded areas) the shape parameter takes a

value closer to 1, while longer durations are associated with higher values. This is consis-

tent with impatient and patient technical trading. These quantities can be then estimated

following Eq. (B.3) and they are reported in the bottom panel and take values aroung 15%.
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Appendix C Technical Appendix

The definition and the limit theory of the maximum likelihood estimator (MLE) for the

parameters of interest are presented and derived in this section. The statistical model is

allowed to be misspecified. The point processes involved assume their values in an interval

of the form [0, T ]. The asymptotics operate as T → +∞. ⇝ denotes convergence in

distribution. ”w.h.p.” abbreviates the phrase ”with probability tending to one”.

The latent conditional duration process (ψi)i∈Z is assumed to be a solution of a stochastic

recurrence equation (SRE-see Ch.2 of Straumann, 2006) of the form ψi = Ψ(θ0, ψi−l, χi−j, l =

1, . . . , q, j = 1, . . . , p), where Ψ is a real function, θ0 is an unknown value of a Euclidean

parameter θ that belongs to some known Θ ⊆ Rl, while p is allowed to assume the value

+∞ to incorporate ARCH(∞)-type of elements associated for example with the FIACD

model used in the empirical section (e.g., Section 4). We also have that for each i ∈ Z,

χi−l, εi−l,Ji−l+1, l ≥ 1, are measurable w.r.t. Fi−1. The parameters of interest are collected

in the Euclidean vector ϕ := (θT , τT )T , that assumes its values in a known subset Φ of

the Euclidean space Rl+3MQ, where τ := vec(τ qm, gqm, jqm)
q=1,...,Q
m=1,...,M . The sample realizations of

the observable processes y := (χi,Ji)i=1,...T are known, with T ≥ max(p⋆, q), for p⋆ a finite

truncation of any non trivial ARCH(∞) component, and a-potentially random-initialization

ψ̂0(θ), θ ∈ Θ constructs a recurrent filter of the latent conditional duration defined by:

ψ̂i(θ) :=


ψ̂0(θ), i = 0,

Ψ⋆((θ; ψ̂i−l, xi−j, l = 1, . . . ,min(i,max(p⋆, q)), j = 1, . . . ,min(i, p⋆)), 0 < i ≤ T,

where for the modified SRE that appears in the previous display we have that Ψ⋆((θ; ψ̂i−l, χi−j, l =

1, . . . ,max(p⋆, q), j = 1, . . . ,min(i, p⋆)) := Ψ((θ; ψ̂i−l, χi−j/ψ̂i−j, l = 1, . . . ,min(i, q), j =

1, . . . ,min(i, p⋆)). Then, the log-likelihood function is defined by ℓT (y;ϕ) := 1/T
∑T

i=1 ℓi(ψ̂i, τi;ϕ),

where the likelihood contributions are ℓi(ψ̂i, τi;ϕ) := ln f(χi; ψ̂i, τi;ϕ)). The MLE, say ϕT , is
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defined via the variational problem

ℓT (y;ϕT ) ≤ inf
Φ
ℓT (y;ϕ) + ϵT ,

with ϵT almost surely non-negative that admits the role of optimization error. The specifi-

cation appearing in Table 2 is readily conformable to the above.

Maximization of the likelihood function produces the MLE ϕT as well as the filtered

estimate ψ̂s+1(ϕT ) for the latent duration. Plugging those into Eq.(??) or Eq.(18) produces

estimators for the iPIN and iVPIN respectively (empirical iRP). For example, the resulting

estimator of iPINt,s at time t, given Fs, is denoted iPINt,s(ϕT , ψ̂s+1). The quality of the

approximation of iPINt,s by its empirical counterpart iPINt,s(ϕT , ψ̂s+1) is derived in the

following paragraphs via the asymptotic properties of the MLE and of the empirical filter.

Similar derivations can be made for the plug-in estimator of the iVPIN, which are discussed

here briefly for the sake of brevity, as well as for other estimators in Appendix C.4.

C.1 (Pseudo-)Consistency of the new estimator

This section examines (pseudo-)consistency of the plug-in estimator of iRP. The frame-

work employed ensures the existence of an approximating likelihood function with station-

ary and ergodic contributions, so that locally uniform versions of the ergodic Law of Large

Numbers (LLN) are applicable. The assumptions also posit that the limiting likelihood

is uniquely minimized at a parameter value ϕ⋆ that implies minimization of the Kullback-

Leibler (KL) Kullback and Leibler (1951) divergence between the true conditional density

of χi and f(χi;ψi, τi;ϕ⋆). These conditions enable the investigation of the limiting behavior

of the MLE estimate of iRP, even in cases of model misspecification. Consistency is derived

when the intensity-based statistical model at hand is well-specified. A general framework is

thus provided, that ensures the approximation of the true latent PIN by the empirical iRP.

The framework is exemplified for the specification that appears in Table 2. In this context,
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consider the following assumptions:

A1: The joint process (χi,Ji)i∈Z is stationary and ergodic. The density of χi conditionally

on Fi−1 exists and has an integrable logarithm.

Remark 1. Stationarity and ergodicity for (χi)i∈Z would follow from stationarity and ergod-

icity of (εi)i∈Z and conditions that ensure existence and uniqueness (up to modification) of

a solution to the Ψ-SRE defined via an almost sure limit of backward substitutions (Ch.2

of Straumann, 2006). If the specification appearing in Table 2 is correct, this would follow

as long as max(|β0|, |ϕ0|) < 1 and δ0 ∈ [0, 1/2), where β0, ϕ0, and δ0 denote the unique true

values for the auto-regressive and the fractional differencing parameters respectively-see the

assumption that follows (Jasiak, 1999). If the remaining parts of the process satisfy SREs,

then analogous considerations would suffice. If the elements of the remaining components

are measurable transformations, fixed with respect to i, of the underlying stationary and

ergodic processes, then these components will also exhibit stationarity and ergodicity.

A2: There exists a ϕ⋆ ∈ Φ such that E(ℓ0(ϕ⋆)) > E(ℓ0(ϕ)) for all Φ ∋ ϕ ̸= ϕ⋆.

Remark 2. This is an identification condition for the (pseudo-) true value of the parameter

involved. In the case of the specification in Table 2, and if the model is well specified, this

follows from the fact that the conditional distribution of χi has a density (Par. 5.4.2 of

Straumann, 2006). In the case of misspecification, the previous would also suffice due to

Proposition 2.3 of Jenkinson (2019).

In what follows, Θ⋆ denotes an arbitrary compact subset of Θ.

A3: Suppose that: (i). E(supθ∈Θ⋆ |Ψ⋆(·)|) < +∞. (ii). Ψ⋆(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j =

1, . . . , p) is almost surely Lipschitz continuous in (ψi−l, l = 1, . . . ,max(p, q)), with Lipschitz

coefficient Λi(θ), and such that, (a). the map Θ⋆ ∋ θ → Λ0(θ) is almost surely continu-

ous and, (b). E(supθ∈Θ⋆ log+ Λ0(θ)) < 0, where log+ is the positive part of the logarithmic

function.

Remark 3. The assumption implies the continuous invertibility (Par. 3 and Prop. 3.1 of
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Blasques et al., 2018) of the filter (ψ̂i(θ)); this is equivalent to the existence of a stationary

and ergodic process (say (fi(θ))i∈Z), that approximates appropriately fast, almost surely, and

(locally) uniformly over (δ, θ), the original duration process as i → ∞. In the specification

of Table 2, it is ensured whenever max(|β0|, |ϕ0|) is bounded below 1.26

A4: Φ⋆ denotes any compact subset of Φ such that if Φ⋆ ∋ ϕ = (θ, η), then θ ∈ Θ⋆. Suppose

that there exists a stationary non-negative process process (mi)i∈Z, with E(log+m0) < +∞,

such that almost surely supϕ∈Φ |ℓi(ψ̂i, τi;ϕ)− ℓi(fi, τi;ϕ)| ≤ mi supθ∈Θ⋆ |ψ̂i−fi| for any i ∈ N,

where fi(θ) as in the previous remark.

Remark 4. Given the continuous invertibility, the assumption allows the approximation of

the likelihood function by a stationary and ergodic version that is constructed via the limiting

filtering process (fi)i∈Z. In the specification of Table 2 it holds when the elements of the

(τi) process are almost surely bounded from above and away from zero, x0 has a logarithmic

moment (see also 1), and fi is uniformly over θ bounded away from zero (Jasiak, 1999).

A5: The elements of τ0 are almost surely continuous and bounded on Ψ, and

E(supΦ⋆ max(ℓ0(χ0; f0, τ0;ϕ), 0)) < +∞.

Remark 5. Given the stationary and ergodic version of the likelihood function, the assump-

tion implies the applicability of the locally uniform version of Birkhoff’s LLN so that the

function converges almost surely to its expectation which is well defined. Similarly to the

previous remark, in the specification of Table 2, or more generally in models where the (q)-

Weibull density is used, it holds whenever the elements of the (τi) process are almost surely

bounded from above and away from zero, and χ0 has enough moments; moment orders that

approximate from above the essential supremum of the τ0 suffice.

A1-A5 imply then pseudo consistency; the estimator converges almost surely to the unique

pseudo-true value described in A2:

26For more complicated filters this may not be the case (Par. 6 of Blasques et al., 2018).
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Theorem 1. Suppose that A1-A5 hold, there exists a γ > 1 such that γT |p⋆ − p| → 0,

and ϵT → 0, P a.s. Then, (i). the expectation of the Kullback-Liebler divergence between

the density in A1 and f(χi;ψi, τi;ϕ) is well defined, and uniquely minimized at ϕ⋆. (ii).

ϕT → ϕ⋆, P a.s. for any ψ̂0.

The existence of a γ > 1 that validates the condition γT |p⋆ − p| → 0 in the case of

the specification of Table 2 is ensured by the meromorphic continuation of the Barnes’ Zeta

function (Ruijsenaars, 2000) and the fact that that δ is not allowed to lie outside [0, 1/2).

The result along with the identification Assumption A2 imply that the pseudo-true value

ϕ⋆ has a variational characterization; it is the unique minimum of the expected Kullback-

Liebler divergence (Amari, 2016) between the conditional distributions that appear in the

statistical moment at hand, and the DGP distribution of χi.

When the model {f(χi;ψi, τi;ϕ);ϕ ∈ Φ}, is well-specified, Theorem 1 implies that there

exists some ϕ0 ∈ Φ such that the density in A1 is f(χi;ψi, τi;ϕ0). Then necessarily ϕ⋆ = ϕ0:

Corollary 1. If the model is well-specified then ϕT → ϕ0, P a.s. for any ψ̂0.

Consequently, the empirical duration process assumed (e.g., in Table 2) converges to the

true DGP of duration. This is a fundamental block in discussing the convergence properties

of iRP because, unlike interval estimators, iRP is derived from the aggregation properties

of variables used to construct it, and the conditional intensity is the means by which this

becomes feasible. The following result regarding iPIN is easily established via the continuous

mapping theorem (CMT) and Corollary 1:

Proposition 1. Suppose that (i). assumptions A1-A5 hold and ϵT → 0,P a.s., (ii). each

element of τi is almost surely continuous in ϕ, (iii). the cumulative hazard functions employed

are continuous functions of the shape and scale parameters, (iv) E(log+ supθ f0(θ)) < +∞

and (v). the statistical model is well specified. Then as s+1 ≤ T → ∞, |iPINt,s(ϕT , ψ̂s+1)−

iPINt,s| → 0, P a.s. conditionally on Fs.
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The continuity properties for the conditional shape parameters as well as condition (iv) of

the proposition, hold trivially for the specification in Table 2. The compactness of Φ implies

a uniform integrability argument that in turn implies that iPINt,s(ϕT , ψ̂s+1) converges to

iPINt,s in the L2 mode, conditionally on Fs. An analogous result holds for iVPIN due time

deformation and the volume clock (e.g., Barndorff-Nielsen and Shiryaev, 2015, Kalaitzoglou

and Ibrahim, 2015) and shows that the empirical iRP can be a consistent estimator of the

latent probability of informed trading. It follows that parametric statistics, such as t-tests,

can be employed for goodness-of-fit and comparability reasons (see also Section C.2 for a

discussion of the derivation of confidence sets).27

C.2 Rate of Convergence and Weak Gaussian Approximation

The present section derives the rate of convergence and a subsequent Gaussian approximation

in distribution for the MLE and subsequently for the empirical iRP. The derivations validate

the inference in Section 4.2. The analysis is based on the asymptotics of the first order

conditions for the optimization of the log-likelihood function. In a similar manner to the case

of consistency, invertibility issues for the SREs that might emerge via differentiation of the

filters that appear in the likelihood are addressed by introducing the following assumptions:

B1: ϕ⋆ lies in the interior of Φ.

Remark 6. This enables the w.h.p. use of f.o.c.s. for the analysis. It can be easily dis-
27The same is true for the smoothed versions of the conventional estimates of PIN and VPIN for fixed n. In

order to illustrate that the intensity-based estimates are better than their interval-based counterparts it would
suffice to show that they exhibit a higher convergence rate (the rate of convergence for iRP is discussed in
Section C.2). This would be, in principle, the case due to the different scale in the number of observations.
Under correct specification and negligible data contamination, and if the interval based estimators have
standard rates, the intensity measures would converge more rapidly to the latent probability of informed
trading when the competing interval measures utilize sample sizes of smaller order due to the use of large
intervals. The intensity based measures could also be better approximations of the latent probability even in
cases of misspecification (see section 5.1) for the duration processes, whenever the data used in the interval
measures are adequately contaminated. The analysis of these situations and the development of inferential
methodologies for comparing the effectiveness of empirical intensity-based versus empirical interval-based
measures in approximating the probability of informed trading are deferred to future research. However,
although a reasonable comparison between the two would require either a correct specification or a precise
measurement of the impact of noise in the estimates, still a Monte Carlo simulation (Section 5.1) can provide
meaningful insides on their performance/convergence, even when the models are misspecified.
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carded (Andrews, 1999) if-among others-the parameter space can be locally approximated

by a convex cone. Even though the assumption essentially precludes the weak dependence

case (δ0 = 0) in the model appearing in Table 2-if well specified, we do not pursue this

generalization to avoid clutter.

B2: There exists an open neighborhood, say Bϕ⋆, of ϕ⋆ such that: (i) Ψ⋆ is twice con-

tinuously differentiable w.r.t. (θ, ψ) on Bϕ⋆ × Rp, for almost every value of its remaining

arguments. τ0 is twice continuously differentiable w.r.t. ϕ on Bϕ⋆ for almost every value

of its remaining arguments. (ii). Ψ⋆
∂θ denotes the SRE obtained by recursive differentia-

tion of Ψ⋆ w.r.t. θ, partially via the chain rule through the derivatives of its ψ arguments

w.r.t. θ. Then E(supϕ∈Bϕ⋆
||Ψ⋆

∂θ(·)||) < +∞, where || · || denotes the Euclidean norm. (A).

Ψ⋆
∂θ is almost surely Lipschitz continuous in (∂θψi−l, l = 1, . . . ,max(p, q)), with Lipschitz

coefficient Λ(∂θ)
i (θ), and such that, (B). the map Bϕ⋆ ∋ θ → Λ

(∂θ)
0 (θ) is almost surely contin-

uous and, (C). E(supθ∈Bϕ⋆
log+ Λ

(∂θ)
0 (θ)) < 0. (iii). Analogously, Ψ⋆

∂θ∂θT denotes the SRE

obtained by recursive differentiation of Ψ⋆
∂θ w.r.t. θ, partially via the chain rule through the

derivatives of its ψ and ∂θψ arguments w.r.t. θ. Then E(supϕ∈Bϕ⋆
||Ψ⋆

∂θ∂θT (·)||) < +∞,

where || · || denotes the Frobenius norm. (A). Ψ⋆
∂θ∂θT is almost surely Lipschitz con-

tinuous in (∂θ∂θTψi−l, l = 1, . . . ,max(p, q)), with Lipschitz coefficient Λ
(∂θ∂θT )
i (θ), and

such that, (B). the map Bϕ⋆ ∋ θ → Λ
(∂θ∂θT )
0 (θ) is almost surely continuous and, (C).

E(supθ∈Bϕ⋆
log+ Λ

(∂θ∂θT )
0 (θ)) < 0.

Remark 7. The assumption implies among others the continuous invertibility of the filter

((̂ψ)i(θ)) derivatives. In the specification of Table 2, it follows whenever max(|β0|, |ϕ0|) is

bounded below 1.

B4: There exists a stationary non-negative process process (m∂i)i∈Z, with E(log+m∂0) < +∞,

such that almost surely supϕ∈BΦ⋆
||∂θℓi(ψ̂i, ∂θψ̂i, τi;ϕ) − ∂θℓi(ψθi, ∂θψθi, τi;ϕ)||

≤ m∂i supθ∈B(ϕ⋆)(|ψ̂i − ψi| + ||∂θψ̂i − ∂θψi||) for any i ∈ N, and,

supϕ∈BΦ⋆
||∂θ∂Tθ ℓi(ψ̂i, ∂θψ̂i, ∂θ∂Tθ ψ̂i, τi, ∂ητi;ϕ) − ∂θ∂

T
θ ℓi(ψθi, ∂θψθi, ∂θ∂

T
θ ψ̂i, τi, ∂ητi;ϕ)||

≤ m∂i supθ∈B(ϕ⋆)(|ψ̂i − ψi|+ ||∂θψ̂i − ∂θψi||+ ||∂θ∂θT ψ̂i − ∂θ∂θTψi||) for any i ∈ N.
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Remark 8. Again, given the continuous invertibility, the assumption allows the approxima-

tion of the score and the Hessian of the likelihood function by a stationary and ergodic

version that is constructed via the limiting filtering process and its derivatives. For the spec-

ification appearing in Table 2, it holds whenever the elements of the (τi) process are almost

surely bounded from above and away from zero, x0 has a logarithmic moment (see also 1),

and fi is uniformly over θ bounded away from zero-the latter holds trivially in the particular

example.

B5: E(supϕ∈Bϕ⋆
∥∂ϕℓ0)∥ + E(supϕ∈Bϕ⋆

∥∂ϕ∂ϕT ℓ0)∥) < +∞, and for some δ > 0,

E(∥∂ϕℓ0(ϕ⋆)∥1+δ) < +∞, for the stationary and ergodic versions of the derivatives. Fur-

thermore, the elements of the stationary and ergodic version of the Hessian are linearly

algebraically independent.

Remark 9. The assumption implies the applicability of the locally uniform version of Birkhoff’s

LLN on the stationary and ergodic version of the Hessian, the identification of the limiting

focs via dominated convergence, and-in conjunction with B1 and B3 the applicability of

the aforementioned CLT. Similarly to the previous remark, in the specification of Table 2,

it holds whenever the elements of the (τi) process are almost surely bounded from above

and away from zero, and x0 has enough moments; orders that approximate from above the

essential supremum of the τ0 on the power of 1 + δ suffice.

Utilizing the aforementioned assumptions while regulating the speed at which the opti-

mization error reduces to zero, we arrive at the subsequent result.

Theorem 2. Under the premises of Theorem 1, and if moreover B1-B5 hold and
√
TϵT ⇝ 0,

then
√
T (ϕT − ϕ⋆)⇝ N(0, (∂ϕ∂ϕT ℓ0(ϕ⋆))−1(∂ϕℓ0(ϕ

⋆)∂ϕℓ
T
0 (ϕ

⋆))(∂ϕ∂ϕT ℓ0(ϕ
⋆))−1),

for the stationary and ergodic versions of the associated derivatives.

The existence of γ, that ensures the exponentially fast approximation of the part of the

truncated filter (that depends on the derivatives w.r.t. δ of the ARCH(∞) component) is
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ensured by the meromorphic continuation of the Barnes’ Zeta function (Ruijsenaars, 2000),

the fact that δ is not allowed to lie outside a compact subset of (0, 1/2), and the asymptotic

representation of the series’ coefficients as Cj1−δ for some C > 0 independent of j, δ.

The limit theory produces a standard rate and asymptotic normality with the usual

sandwich form for the asymptotic variance. Consistent estimators of the terms that appear

in there can be easily obtained via the non-stationary versions of the derivatives evaluated

at the MLE, due to consistency and Assumptions B1, B3-B5. This can be useful for the

construction of Wald-type tests for parameters of interest. When the statistical model is well-

specified, then due to B1-B5 and dominated convergence, the information matrix equality

yields-as expected:

Corollary 2. Under the premises of Theorem 2 and if the statistical model is well specified,

then:
√
T (ϕT − ϕ0)⇝ N(0, (∂ϕℓ0(ϕ0)∂ϕℓ

T
0 (ϕ0))

−1).

The above is then used in order to derive, using the Delta method, the limit theory of

iPIN. In what follows dW denotes any metric that metrizes weak convergence-see for example

Par. 1.12 of Vaart and Wellner (2023):28

Proposition 2. Under the premises of Theorem 2 and if the cumulative hazard functions

employed are continuous functions of the shape and scale parameters, and the statistical model

is well specified, then as s+1 ≤ T → ∞, dW (
√
T (iPINt,s(ϕT , ψ̂s+1(ϕT ))− iPINt,s), y) → 0, P

a.s. conditionally on Fs, where y ∼ N(0, ∂ϕiPIN(ϕ0)
T (∂ϕℓ0(ϕ0)∂ϕℓ

T
0 (ϕ0))

−1∂ϕiPINt,s(ϕ0)).

The latter can be used as the basis for the construction of confidence sets. An analogous

derivation obviously holds for the estimated iVPIN. The construction of confidence sets for

the plug-in estimators of iPIN and iVPIN can be also performed via Monte Carlo methods,

due to the parametric nature of the statistical model at hand-when this is well specified.
28The notation used here is abusive; dW is actually evaluated at the relevant distributions and not on the

random elements that follow them.
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Specifically, the limiting (unconditional) variance of the estimators, can be consistently es-

timated via the MC variance of the resulting iPIN (or iVPIN) estimator, when the DGP

is evaluated at the originally estimated parameters. This is due to the CMT, the locally

(w.r.t. ϕ) uniform convergencies mentioned above, and the consistency of MLE. A similar

(yet possibly less accurate) approximation can be available from the cross sectional averaging

of the iPIN (or iVPIN) estimators, when the cross sectional DGPs are similar, and satisfy

some form of exchangeability property, or more generally invariance of the underlying joint

distributions under groups of transformations (Austern and Orbanz, 2022).

C.3 Proofs

Proof of Theorem 1. The condition γT |p⋆−p| → 0 ensures the exponentially fast almost sure

approximation of the truncated at p⋆ filter Ψ⋆(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p)

by Ψ⋆(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) uniformly over Θ. The proof is then

identical to the proof of Theorem 4.3 of Blasques et al. (2018).

Proof of Proposition 1. Follows from the CMT, Corollary 1, and Proposition 3.2 of Blasques

et al. (2018).

Proof of Theorem 2. As in Theorem 1, the condition γT |p⋆ − p| → 0 ensures the exponen-

tially fast almost sure approximation of the first and second derivatives of the truncated

at p⋆ filter Ψ⋆(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) by the analogous derivatives

of Ψ⋆(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) locally uniformly over Θ. Notice that

irrespective of the pseudo-true value of q, the first derivative of the likelihood contributions

evaluated at ϕ⋆ conditionally on the filtration, lies in the normal domain of attraction of

a zero mean Gaussian distribution (see Theorem 2.6.5 in Ibragimov and Linnik (1971)).

Then stationarity and ergodicity and second order integrability of the limiting filter of the

first derivatives as well as the almost sure boundedness of the derivatives of the remaining

processes along with the principle of conditioning (see Jakubowski, 2012), implies Op(
√
T )
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asymptotic tightness and limiting zero mean Gaussianity for the score. The locally uniform

version of the ergodic theorem takes care the relevant a.s. convergence of the Hessian, and

the result follows from a Mean Value expansion of the f.o.c.s. of the optimization problem

that defines the estimator, which hold w.h.p. due to B1.

C.4 Convergence of Alternative Agent-Types

The CMT and the Delta method, along with the limit theory derivations for the estimated

parameters of interest, directly imply analogous results to Propositions 1, and 2 for the iTT

and iPTT. Those are reported below for completeness of exposition:

Proposition 3 (C.2.1). Suppose that (i). assumptions A1-A5 hold and ϵT → 0,P a.s.,

(ii). each element of τi is almost surely continuous in ϕ, (iii). the cumulative haz-

ard functions employed are continuous functions of the shape and scale parameters, (iv)

E(log+ supθ f0(θ)) < +∞ and (v). the statistical model is well specified. Then as s + 1 ≤

T → ∞, |iTTt,s(ϕT , ψ̂s+1)− iTTt,s(ϕ0)|+ |iPTTt,s(ϕT , ψ̂s+1)− iPTTt,s(ϕ0)| → 0, P a.s. con-

ditionally on Fs.

Proposition 4 (C.2.2). Under the premises of Theorem 2 and if the cumulative hazard

functions employed are continuous functions of the shape and scale parameters, and the

statistical model is well specified, then as s + 1 ≤ T → ∞, we have for the iTT case that

dW (
√
T (iTTt,s(ϕT , ψ̂s+1(ϕT ))−iTTt,s(ϕ0)), N(0, ∂ϕiTT(ϕ0)

T (∂ϕℓ0(ϕ0)∂ϕℓ
T
0 (ϕ0))

−1∂ϕiTTt,s(ϕ0))) →

0, P a.s. conditionally on Fs, and furthermore likewise for the iPTT case we have that,

dW (
√
T (iPTTt,s(ϕT , ψ̂s+1(ϕT )) − iPTTt,s(ϕ0)), y

⋆) → 0, P a.s. conditionally on Fs, where

y⋆ ∼ N(0, ∂ϕiPTT(ϕ0)
T (∂ϕℓ0(ϕ0)∂ϕℓ

T
0 (ϕ0))

−1∂ϕiPTTt,s(ϕ0)).

The arguments that lead to the proofs are analogous to the ones of Propositions 1, and

2 respectively. The continuity of the hazard functions assumed holds for the specification

used above. The first proposition implies consistency for both the iTT and the iPTT under
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correct specification. The second implies standard rates and asymptotic normality that could

be useful for statistical inference.
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