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Abstract

In this paper we study optimal central bank interest rate policy, and com-
pare it to interest rate rules, such as the Wicksell (1898), Fisher (1919) and
Taylor (1993) rules, in an imperfectly competitive DSGE model of aggregate
fluctuations. We demonstrate that in versions of the model with full price
and wage adjustment, or staggered pricing, the optimal policy rule is the
Fisher rule of absolute inflation stabilization. We also analyze a version of
the model with exogenous inflation shocks, in which the ”divine coincidence”
does not apply. In this case, the optimal monetary policy rule takes the form
of a Taylor rule, the parameters of which depend on the structural and policy
parameters of the model.
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1 Introduction

The realization of the instability of the original Phillips curve it the late 1960s
has led to a paradigm shift in the macroeconomics of aggregate fluctuations. The
so called “neoclassical synthesis” was abandoned, in favor of dynamic stochastic
general equilibrium models (DSGE) of aggregate fluctuations.

In one class of such models, all markets are assumed competitive, and wages and
prices are assumed perfectly flexible to equilibrate both product and labor markets.
In such models, only real shocks, such as shocks to productivity, can affect the
fluctuations of output, employment and other real variables. Monetary shocks only
affect nominal variables, such as the price level and inflation, and there are no effects
from inflation to real output, even temporarily. The classical neutrality holds, and
output and employment fluctuations are based on productivity shocks and inter
temporal substitution in labor supply, as nominal shocks or monetary policy cannot
affect fluctuations in real variables.

There is an alternative class of imperfectly competitive DSGE models in which
firms cannot fully adjust prices and/or wages in every period. Thus, prices and/or
wages are adjusted partially and in a staggered fashion. Monetary shocks and,
therefore, monetary policy can affect the fluctuations of both nominal and real
variables in such models, and there is a temporary positive relation between inflation
and deviations of output from its “natural” rate.

In this paper we use an imperfectly competitive dynamic stochastic general equi-
librium model of aggregate fluctuations, in order to study optimal central bank in-
terest rate policy, and compare it to interest rate rules that have been proposed by
monetary economists, such as the Wicksell (1898), Fisher (1919) and Taylor (1993).
The model is a dynamic stochastic general equilibrium model based on monopolistic
competition in product markets. We initially analyze it assuming full flexibility of
prices and, subsequently, assuming staggered price adjustment. We abstract from
distortions in the labor market.

The imperfectly competitive staggered pricing model has two important differ-
ences from the typical perfectly competitive model with perfectly flexible wages and
prices.

First, because of the distortions of imperfect competition, the “natural” rate of
employment, real output, consumption and real wages is determined at a lower level
than in the corresponding competitive model, even when there is complete flexibil-
ity in prices and wages. However, by itself this difference does not result in major
differences from the competitive model regarding the nature of macroeconomic fluc-
tuations.

Second, if it is assumed that firms face price adjustment costs, the imperfectly



competitive model can account for a short run “Phillips” type relation?.

In the case of staggered pricing, it turns out that deviations of output from its
“natural” level cause deviations of inflation from expected future inflation, as higher
aggregate demand and output cause an increase in current nominal marginal costs
and hence prices for firms able to adjust prices in the current period. This results in
a positive short relation between output and inflation, i.e. a type of Phillips curve,
usually referred to as the “new” Phillips curve.

In the model with full flexibility of wages and prices, fluctuations of all real
variables are due to fluctuations of their “natural” rates, and monetary policy affects
only nominal variables such as inflation and nominal interest rates. The optimal
interest rate rule is the one which minimizes deviations of inflation from the central
bank target, i.e. the Fisher rule of absolute inflation targeting.

In the model with staggered pricing there is a “Phillips curve” type relation
between inflation and deviations of output from its “natural” level. Thus, nominal
shocks and monetary policy have real effects on real output and employment, in
addition to the effects of real shocks. However, even in this model, because there
is a “divine coincidence” between inflation and output stabilization, the Fisher rule
again turns out to be the optimal rule?.

We finally analyze a version of the model in which the “divine coincidence” does
not hold, in the sense that, in addition to the usual productivity and monetary
policy shocks, there is an exogenous shock in the inflation process. In this more
general version of the model, the Taylor rule turns out to be the optimal policy.

The parameters of the optimal Taylor rule depend on the slope of the Phillips
curve, itself a function of the deeper structural parameters of the model, the re-
sponsiveness of aggregate demand to the real interest rate, equal to the elasticity
of inter-temporal substitution in consumption, and the preferences of the central
bank over their two objectives of stabilizing deviations of inflation from target and

!'Two observationally equivalent versions of gradual price adjustment have dominated the lit-
erature. The one is the Rotemberg (1982 a,b) model of monopolistic price adjustment, and the
second is the Calvo (1983) model of staggered pricing. In the Rotemberg model, firms balance the
costs of adjusting prices against the costs of deviating from the profit maximizing optimal price.
They end up gradually adjusting prices, so as to gradually approach the optimal price. In the
Calvo model, it is assumed that only a fixed proportion of firms have the freedom to adjust prices
in any given period. This results in the remaining firms not being able to adjust prices. Although
optimal pricing takes this restriction into account in advance, the aggregate price level adjusts
only gradually. These two alternative assumptions lead to models with price level stickiness, that
result in observationally equivalent short run “Phillips” type relations.

2We use the terms “natural rate” or “natural level”, in the sense of Wicksell (1898) and Friedman
(1968). These are the values of real variables that would arise when prices, wages and interest
rates fully adjust to equilibrate product, labor and asset markets. The “divine” coincidence arising
in such models has been noted by, among others, Blanchard and Gali (2007).



deviations of output from its “natural” level.

The imperfectly competitive DSGE model with staggered pricing analyzed in
this paper has the following structure:?

Deviations of inflation from the target of the central bank are determined by a
dynamic “new” Phillips curve, and depend of expected future inflation deviations,
and deviations of real output from its “natural” level, as the latter cause an increase
in nominal marginal costs and hence prices.

The deviations of aggregate demand from the “natural” level of real output
depend on the dynamic “new” IS curve, and, they depend on expected future devi-
ations of aggregate demand and deviations of the current real interest rate from its
“natural” level.

The nominal interest rate is determined by the central bank, which follows an
interest rate rule. According to the interest rate rule, the nominal interest rate
reacts positively to deviations of current inflation from the central bank target, and,
possibly, on deviations of real output from its “natural” level.

After presenting the properties of this model, we analyze the effects of monetary
and real shocks on the fluctuations in real output and the price level (inflation) and
compare the properties of alternative interest rate rules to optimal monetary policy.

2 An Imperfectly Competitive Dynamic Stochas-
tic General Equilibrium Model

In this section we examine in detail the structure of an imperfectly competitive
dynamic stochastic general equilibrium (DSGE) model. The basic model that we
analyze has two important differences from a dynamic stochastic competitive model.

First, instead of perfectly competitive markets for goods and services we assume
that markets are characterized by conditions of imperfect (monopolistic) competi-
tion. Firms do not take prices as given, but have the power to determine prices that
maximize profits. Because of imperfect competition, in an equilibrium with flexible
prices, employment, real output, consumption and real wages are determined at a
lower level than in the corresponding competitive model. However, by itself this
difference does not result in material differences from the competitive model with
respect to the nature of aggregate fluctuations.

3See Gali (2008, 2011) for an analysis of this class of models by numerical simulation methods.
Smets and Wouters (2003) have estimated generalized versions of this class of models and also
simulated the effects of monetary policy.The analysis of the present paper sticks to a version of the
model that can be solved analytically, in order to concentrate on the analytics of the transmission
mechanisms of monetary policy in this class of models.



Second, we assume that there is staggered price adjustment, i.e. that firms do
not have the freedom to change their prices in every period. This assumption is
what accounts for the non-neutrality of monetary shocks and monetary policy, as it
leads to a model in which the price level adjusts gradually towards the equilibrium
price level. As a result of gradual price adjustment, real variables deviate from their
“natural” rates, and monetary shocks can have real effects.

2.1 The Representative Household

The problem of the representative household under monopolistic competition has
one difference from the corresponding problem under perfect competition. The
difference is that because of monopolistic competition, the household consumes dif-
ferentiated products.

The representative household maximizes,
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where C; is consumption, N; is labor supply, and p is the pure rate of time
preference. Consumption consists of all produced goods, which are defined on the
basis of a constant index j in the interval [0,1]. Aggregate consumption is thus given
by,

1
= ([ aw== )
j=0

where ¢ is also a parameter of the preferences of the representative household,
and more precisely, the elasticity of substitution between goods. We assume that
e>1.

The sequence of budget constraints under which the household maximizes inter-
temporal utility is given by,

1

Bii = (14i)Bi+ Wi, + T, — / P()CL(5)dj (3a)
=0

lim E,B, > 0 (3b)
T—00

where P(j) is the price of good j, W the nominal wage, i the nominal interest
rate, B a nominal one period bond, and T an exogenous transfer of nominal income
to the household (dividends, government transfers or taxes).



(3a) is the asset accumulation equation, under the assumption that the only
household asset is one period bonds. Following Woodford (2003) we assume a cash-
less economy. (3b) is the appropriate transversality condition.

Apart from the decision about aggregate consumption and labor supply, the
household must decide on the distribution of its consumption expenditure among
the various goods. This requires the maximization of the consumption bundle (2)
for any level of monetary expenditure. One can easily deduce that this implies,

ai) = (B¢, )

for any good j in the interval [0,1], where P is the average price level, defined as,

1
r=(f nuro (5
j=0
In addition, when the household follows this optimal allocation policy, we also
have that,

/ RU)CL(i)dj = PC, (6)

=0
(6) suggests that total consumption expenditure can be written as the product of

the aggregate consumption index (2) and the aggregate price index (5). Substituting
(6) in the sequence of budget constraints (3a) and (3b), we get,

By =1 +14)B+W,N,+ T, — P.C, (7)

From the first order conditions for consumption and labor supply we get that,

UNt N %
1 1 P,
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The constraint (7) must also hold.

We assume that the utility function is defined by,

Ctl—G Ntl—i—)\
1—0 142

where 1/6 is the inter-temporal elasticity of substitution in consumption, and A
the Frisch elasticity of labor supply.

U(Ct, Nt) =

(10)



Assuming that preferences take the form of (10), the first order conditions (8)
and (9) can be written in log-linear form as,

Wy — Py = Hct -+ )\nt (11)

L.
Ct = Et(Ct+1) - 5(% — Eymi1 — P) (12)
where lower case letters denote the logarithms of the corresponding variables. 7
is the rate of inflation, defined as m,=p;-ps_1.

2.2 The Representative Firm and Optimal Pricing

We assume that output is produced by a set of firms denoted by a continuous index
j defined in the interval [0,1]. Each firm produces a differentiated product under
conditions of monopolistic competition. All firms have access to the same production
technology, denoted by the production function,

Y,(5) = A Ly(5) (13)

where A>0 and 0<a<1 are exogenous technological parameters, common to all
firms. L(j) is employment of labor by firm j. The parameter « is constant, while A
is assumed to follow an exogenous stochastic process.

The optimal price of each firm, if it can choose its price in every period, is given
by the maximization of its profits, under the constraint of the production function
(13) and the demand function for its product (5). Each firm takes the average price
P, the average wage W and the level of total demand C as given.

The per period profits of firm j are given by,

P()Ye(7) — WiL(j) (14)

From the first order conditions for a maximum of (14), under the constraints
(13) and (5), the optimal price is determined as,

e
e—1(1—a)AL(j)
The optimal price is a fixed multiple of the firm’s marginal cost, which equals
the expression in brackets. The multiple depends on the elasticity of substitution
between goods in the preferences of consumers, which determines the price elasticity
of demand of their product, and therefore the profit margin of the firm. In the case
of perfect competition, the elasticity of substitution tends to infinity, and the price

£i(7) (15)



tends to marginal cost. In the case of monopolistic competition with € > 1, as we
have assumed, the optimal price is higher than the marginal cost of labor.

As all firms have the same production function and face the same nominal wage
and the same demand function for their product, they will all choose the same price.
Consequently, the price level is defined as,

€ W,
b= AT oan (16)

e—1
Taking the logarithm of the production function (13) for the representative firm,
and equation (16) for the price level under optimal pricing, we get,

v = a4+ (1 —a)ly (17)

Wy — Py = ag — aly — (18)

where,

€
ar = In Ay, pp = In( 1)—1n(1—@)
g J—
oy is the logarithm of the exogenous productivity shock, and the constant pu is
the logarithm of the markup on marginal cost, minus the logarithm of the coefficient
of decreasing returns to labor.

2.3 Equilibrium with Full Price Flexibility

Solving the model under the assumption of full flexibility of prices, one can show
that fluctuations in employment, output, consumption and real wages are a function
only of the exogenous shocks to productivity, while fluctuations in the real interest
rate are a function of the expected change in productivity, just as in the classical
model with the assumption of perfect competition.

To keep the analysis simpler, we shall assume that there are is no investment
or public consumption. Thus, in equilibrium, labor supply would be equal to labor
demand by firms, and consumption will be equal to output.

ny = lt (19)

Yt = ¢ (20)



The model consists of the behavioral equations (11), (12), (17), (18), and the
equilibrium conditions (19) and (20). The model determines employment, output,
consumption, real wages and the real interest rate as functions of the exogenous
shock to productivity .

The real interest rate is defined by the Fisher equation as,

s = /L.t — Etﬂ-t-i-l (21)

Thus, to determine the rate of inflation, one needs to make an assumption about
the determination of the nominal interest rate.

Solving the model for the five endogenous real variables, we get,

N =nl =¢a,+7 (22)
where, § = m and m = —m

g = =Y +7 (23)
where,lp:l—i-(l—a)ézm and 7= (1—a)n

(w—p) =xa+® (24)

Where,le—oﬁ:% and w=(0(1—a)+ A7

ry = p+ 0PEAay (25)

(22), (23), (24) and (25), along with the equilibrium conditions (19) and (20),
determine the five endogenous real variables as functions of the exogenous produc-
tivity shock. Superscript N (natural) denotes the equilibrium values of the relevant
variables, which, according, to the Friedman (1968) definition, are their “natural”
rates in this model.

Output, consumption and real wages are positive functions of the productivity
shock a4, while employment is a positive function of the productivity shock only if
0<1, i.e. only if the elasticity of inter-temporal substitution is greater than one. If
6>1 employment is a negative function of productivity, while if § = 1 employment is



independent of productivity. This applies because if #<1 the inter-temporal substi-
tution effect dominates on the income effect, following a change in productivity and
real wages. If #>1 the income effect dominates on the inter-temporal substitution
effect, which in the case where § = 1 the two effects cancel each other out, and
employment is not affected.

For example, let us assume that the productivity shock follows a first order
autoregressive process of the form,

Ay = NaQr—1 + &f (26)

where, 0< 7, < 1, and €} is a white noise process.
Then, all real variables follow first order autoregressive processes in this model.

No other factor affects fluctuations in real variables. We see that, as in a compet-
itive real business cycle model, the classical dichotomy holds, and monetary factors
such as nominal interest rates have no effect on the evolution of real variables.

2.4 The Inefficiency of the “Natural” Rate

However, in this model there is a significant difference from a competitive model.
Because of monopolistic competition, which implies a positive margin of prices over
marginal costs of firms, both employment and output, as well as consumption and
real wages, are determined at a lower level than in the case of perfect competition.
Monopolistic competition implies a distortion in the market of goods and services,
which leads to lower equilibrium employment and output and to lower real wages
than under perfect competition.*

If the productivity shock follows a stationary stochastic process with mean zero,
then, from (22), the log of the steady state employment level will be equal to,

o _ In(1 —a) —In(e/(e — 1))
gl —a)+a+ A fl—a)+a+ A

(27)

m=—

If e>1, the steady state employment level will be lower than in the case of perfect
competition.

4See Akerlof and Yellen (1985), Mankiw (1985), Blanchard and Kiyotaki (1987) and Ball and
Romer (1990) for the first generation of dynamic stochastic general equilibrium models that relied
on monopolistic competition.



Under perfect competition, goods are perfect substitutes in the preferences of
consumers. Thus, steady state employment would be equal to,

limn = — In(1 — a)
cmoo (1l —a)ta+ A

(28)

Thus, because of imperfect competition, this model implies under employment
relative to a fully competitive model, even when there is full flexibility of prices
and wages. Through (23) and (24), this under employment implies that steady
state output and steady state real wages will also be lower compared to perfect
competition.

In all other respects, this model resembles a competitive real business cycle model
without capital.

3 The Role of Monetary Policy under Full Price
Flexibility

We next turn to the role of monetary policy, in a model with full price flexibility.
We assume a central bank that intervenes in the bond market to determine the
path of nominal interest rates, so as to minimize an inter-temporal quadratic loss
function that depends on deviations of the price level from a target price level p*,
and deviations of output from its “natural” rate. This is assumed to take the form,

R .
Ay = EEt Z B[(Prys — pt+8)2 + C(Yers — yi]is)Q] (29)
s=0
1 — .
= §Et Z 58[(7Tt+s - 7Tt+s)2 + <(yt+s - yﬁrs)2]
s=0

where f=1/(1+p) is the discount factor of the central bank, and where we have
made use of the definition of inflation to substitute for the target price level. (
measures the cost of deviations of output from its “natural” rate, relative to the cost
of deviations of inflation from target. Under full price flexibility, output is always
equal to its “natural” rate, so the second term of the loss function is always zero.
Essentially, in a model with full price flexibility in all markets the loss function of
the central bank depends only on expected deviations of actual inflation from target
inflation.

10



This implies that in every period, the central bank would seek to ensure that,

Emys=1"= p;rs — DPt—1 (30)

If inflation under the optimal policy follows a stationary stochastic process with
mean 7*, then the losses of the monetary authority are proportional to the variance
of inflation and are given by,

o
2(1-p)

o
2(1-p)

Thus, the optimal monetary policy under full flexibility of prices is the one that
minimizes the variance of inflation in the presence of stochastic shocks.

1 o
Ay = §Et ;/BS(WHS —71)? = Ey(m —m*)* = Var(m)  (31)

3.1 A Non Contingent Nominal Interest Rate Rule

If we assume that the central bank follows an exogenous path for the nominal interest
rate, then, from the Fisher equation (21), it follows that,

Et7Tt+1 =1 — Ty (32)

(32) does not determine inflation, but expected inflation, given the exogenous
path of nominal interest rates. (32) is consistent with any price level path that
satisfies,

Prv1 =D+ — 1+ & (33)
where £ is any shock that satisfies E;&1 = 0.

(33) suggests that there are multiple equilibria for the price level and inflation.
Any zero mean stochastic & could affect inflation and the price level in this case.
Consequently neither the price level, nor inflation can be determined uniquely when
the central bank follows an exogenous path for the nominal interest rate.

However, not all interest rate rules result in price level indeterminacy. As sug-
gested more than a century ago by Wicksell (1898), if the central bank conditions
its nominal interest rate on the price level, or inflation, then price level and inflation
indeterminacy does not necessarily follow.?

5Sargent and Wallace (1975) were the first to formally demonstrate that under rational expecta-
tions, a non-contingent interest rate target leads to price level indeterminacy and instability, citing
similar conclusions by Wicksell (1898). However, it is now accepted that this problem does not

11



3.2 A Simple Wicksell Nominal Interest Rate Rule

Central banks predominantly follow policies according to which the path of nominal
interest rates is not exogenous, but depends on past, current and expected future
economic developments, mainly inflation. For example, if inflation rises, central
banks usually raise nominal interest rates in order to reduce it, and vice versa.

Wicksell (1898) was probably the earliest advocate of a such a stabilizing interest
rate rule. He suggested that to the extent that the price level exceeded the target
price level of central banks, the nominal interest rate should rise above the “natural”
rate of interest, in order to bring the price level back to target, and vice versa. In
what follows, we shall examine the properties of a simple version of the Wicksell rule
consistent with the presence of an inflation target equal to 7*, and the properties of
our model.

Let us therefore assume the following simple rule for determining nominal interest
rates,

w=p+7m 4+ P(m — 1) + 1y (34)

where p+ 7" is the steady state nominal interest rate target of the central bank,
¢ > 0 is the reaction of the current central bank nominal interest rate to deviations
of inflation from its target 7* and v; is a monetary policy shock that follows an
exogenous AR(1) process of the form,

A o (35)

where 0 < 7, < 1, and €} is a white noise process.

From (34) and the Fisher equation (32), inflation is determined by,

(b ; 17'('* + %E{ﬂ't+1 + }b(?} —p— l/t) (36)

where the current equilibrium real interest r depends only on real factors, and is
determined by (25).

Ty =

Solving (36) under rational expectations,

arise in the case of contingent interest rate rules that make the nominal interest rate depend on the
price level (McCallum 1981), or a sufficiently sensitive positive function of inflation. See Clarida,
Gali and Gertler (1999) and Woodford (2003) Ch.1 for a review of the relevant arguments. In
addition, central banks, have been consistently using interest rates as their main monetary policy
instrument.

12



T o= w4+ Z(a)SHEt(rHS —p—Vss), if ¢>1 (37a)
s=0

Tl = (]57Tt+zl—¢)77*—(Tt—P—Vt)‘f‘ftH, if ¢<1 (37b)

where ¢ is any shock that satisfies E;&.1 = 0.

Thus, if the reaction of the central bank nominal interest rates to inflation is
sufficiently pronounced (¢ > 1), there is no indeterminacy problem for inflation.
The fundamental solution is given by (37a). If the reaction of the nominal interest
rates to inflation is not sufficiently pronounced (¢ < 1), then the problem of inflation
indeterminacy remains.

Assuming that ¢ > 1, and using (25) for the real interest rate, and (26) and (35)
for the stochastic processes driving productivity shocks and interest rate shocks,
inflation if determined by,

- t— Vi
¢ = Na &=y
Thus, under a simple feedback rule for the nominal interest rate, with a suffi-
ciently strong response of the current interest rate to deviations of current inflation
from the central bank target for inflation, again depends on both real (productiv-
ity) and nominal (monetary policy) shocks. Using (26) and (35), inflation follows a
stochastic process of the form,

Ty = T

(38)

= (1 =m,)(1 = 0a)7 + (M + Na)Tee1 — NuMaTi—2 + 2t (39)
where,
0Y(1 —na) 1
zp=————5(cf — el ) — ey — Nugl 1) 40
= =T e et ) - - et (10

From (39) and (40), steady state inflation is equal to 7*, the target of the central
bank, and, in the absence of shocks, inflation gradually converges to this mean.
However, although the rule is conditional on inflation, real shocks affect the inflation
process, and there is significant persistence and high variance of inflation under this
rule.

The variance of inflation is given by,

13
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v

1
(1 =n,)(¢—m)

where 02 and o2 are the variances of the innovation in productivity and the
monetary policy shock, respectively.

From (31), the expected welfare losses of the monetary authority under the
simple Wicksell nominal interest rate rule are given by:

1 {[ ew(l — na) 1
2(1_5> (1_77a)(¢_77a) (1_77V)(¢_771/)

where superscript W denotes the monetary policy under the simple Wicksell
nominal interest rate rule.

Therefore, the expected losses of the monetary authority depend on the variance
of both real and nominal shocks. Real shocks are not neutralized by monetary
policy, as the central bank real interest rate does not react to fluctuations in the
equilibrium real interest rate.

However, if the central bank’s reaction to deviations of inflation from target was
infinitely strong, then the expected welfare losses of the monetary authority could
be driven to zero. It is straightforward to see from (42) that letting ¢ — oo would
make the the expected losses of the central bank go to zero.

An interest rate policy of this form was proposed by Fisher (1919) and supported
by Simons (1936). Fisher (1919) went further than Wicksell, by suggesting a policy
of complete stabilization of the price level. In the context of our model this could
be expressed as absolute inflation targeting, i.e. setting the nominal interest rate
so that inflation is always equal to the central bank target 7*. This is the limit of
the Wicksell rule (34), as the response of the central bank nominal interest rate to
deviations of inflation from the central bank target tends to infinity. In this case,
inflation would tend to be equal to 7* at all times.

The functional relation between A}V and ¢ is presented in Figure 1 assuming
that ¢, on horizontal axis, lies between 1 and 4. We have also assumed that the
other structural parameters of the model take the values § = 2/3, a = 1/3, A = 1.7,
1N, = 0.75, n, = 0.5, B = 0.98, corresponding to a pure rate of time preference
p = 0.02 and that ¢ = o2 = 0.01.

A = JPoa+1 Joy} (42)

Thus, in the context of a real business cycle model with full adjustment of wages
and prices, the absolute inflation targeting rule of Fisher (1919) is the optimal
interest rate rule, as it minimizes the variance of inflation and thus the expected
welfare losses of the monetary authority.

14



Figure 1: Expected Losses of the Monetary Authority as a function of ¢ under a
Simple Wicksell Rule
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3.3 An Optimal Wicksell Interest Rate Rule

Could the same result be achieved if the Wicksell rule was conditioned on the equilib-
rium real interest rate instead of taking the simpler form in (34). From our analysis
of the optimal central bank inflation policy, the central bank aims to keep inflation
and expected inflation as close to 7 as possible. Using the Fisher equation (21),
and the central bank optimal inflation target (30), the target nominal interest rate
of the central bank should be equal to,

=7+ (43)

Thus, the optimal nominal interest rate target should reflect the inflation target
of the central bank, but also fluctuations in the equilibrium real interest rate. To
the extent that current inflation deviates from target inflation, and to the extent
that there are monetary policy shocks, the optimal nominal interest rate rule would
thus take the form,

it:gt+¢(77t_7r*)+yt:Tt+7r*+¢(7rt_7r*)+yt (44)

Our objective again is to determine the optimal ¢. We shall call this rule the
optimal Wicksell rule.

15



Combining this rule with the Fisher equation, current inflation is then deter-
mined by,
o—1 1 1

¢ * + &E{ﬂ'ﬂ.l - 5%5 (45)

As can be seen from (45), under the optimal interest rate rule, current inflation
does not depend on real shocks, as the impact of real shocks on current inflation
has been neutralized by the reaction of the nominal interest rate to the current
equilibrium real interest rate.

Assuming that ¢ > 1, the rational expectations solution of (45) is given by,

Ty =

o0

* 1 1 s * 1
Ty = T _5;0(5) Etl/t+1 =T — ¢_nVVt: (46)
1
= (1=—n)m" +n,m_1 — 5 nyat”

Inflation now does not depend on real shocks, but only nominal monetary policy
shocks.

The variance of inflation is given by,

1
(¢ —mn,)(1—m)

Therefore, the expected losses of the monetary authority under the optimal Wick-
sell nominal interest rate rule are given by:

Var(m,) = E(m, — %)% = | P02 (47)

v

_— 1 1 9 9
Mg o= ™ )
where superscript W* denotes the monetary policy under an optimal Wicksell
interest rate rule.

If the central bank were to choose ¢ optimally, it should again allow it to be as
large as possible. The policy that minimizes the variance of inflation and thus the
expected losses of the central bank is the policy that requires that ¢ — oo. Thus,
we are back to the Fisher (1919) rule of absolute inflation targeting. In Figure 2,
we depict the functional relation between A}V and ¢. All the parameters are as in
Figure 1.

We have thus demonstrated that in the context of the model with full price
flexibility, the Fisher rule of absolute inflation targeting is always the optimal policy.
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Figure 2: Expected Losses of the Monetary Authority as a function of ¢ under an
Optimal Wicksell Rule
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4 An Imperfectly Competitive Model with Stag-
gered Price Adjustment

We next introduce the assumption of gradual and not full adjustment of prices to-
wards their equilibrium values. We shall utilize the Calvo (1983) model of staggered
pricing.®

Following Calvo (1983), we shall assume that firms cannot freely adjust their
prices in every period. For each firm, the probability of adjusting prices in any
period is equal to 1-y, which is constant and independent of the length of time that
has elapsed since the last price adjustment by the firm. Thus, in each period, a
proportion 1-y of all firms adjust their prices, and the remaining proportion v do
not adjust their prices. This assumption has critical implications for the properties
of the model, the nature of aggregate fluctuations and the effects of monetary shocks
and monetary policy”.

6 An observationally equivalent model, the Rotemberg (1982 a,b) model of quadratic costs of ad-
justing prices, is analyzed in Appendix A to this paper and is shown to result in an observationally
equivalent “new” Phillips curve with the Calvo (1983) model.

"See Yun (1996) for the first analysis of a dynamic stochastic general equilibrium model under
the assumption that prices are set as postulated by Calvo (1983).
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Under this assumption, in period t, the expected future duration of any price
contract is given by,

[e.e] ) f}/
L=7)) v =—— (49)
s=0 1- v
From the definition of the price level, and the fact that all firms that reset their
prices in period t set the same price, it follows that,

P = (y(Po) + (1 —)(P) )™= (50)

where P is the price level relative to the steady state price level, and P is the
price set by the firms that freely reset their prices in the current period relative to
the steady state price level.

From (50) one can show that the dynamic adjustment of the price level relative
to the steady state price level is given by,

~ J—

S = 1) 61)

(

In the steady state with inflation equal to 7* we have that ﬁt = P, =1 and the
price level evolves as,

P=(1+7")P_, (52)

A logarithmic approximation of (49) around a steady state inflation rate of 7*
yields,

Pt —Di—1 ~ (1 =)D — Pr-1) (53)

From (53) it follows that inflation exceeds it steady state level if firms that set
prices in the current period set them at a higher level than the average price of the
previous period adjusted for steady state inflation.

In order to analyze the adjustment of inflation, one thus has to examine how
firms decide on their optimal price, taking into account the fact that for a period
in the future they may not be able to readjust their prices, while some of their
competitors have the option of readjusting their own prices.
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4.1 Optimal Pricing with Staggered Price Adjustment

The problem of the firm that decides on the price it is about to set in period t is
to set the price that maximizes the expected present value of its profits, given that
the probability of readjusting its price in any future period is equal to 1-vy. Thus,
all firms that readjust their prices in period t maximize,

1 _ —~
Z’Y H 1+ i )(PthtJrs - Wt+sL§+s)) (54)

under the constraints of the production function,

}/tt—s—s = AH—S(LL—S)I_Q (55&)
P €

Vi, = (55) Vs (55b)
Pt+s

where, Y/, and L}, is the volume of output and employment in period t+s,
of the firm that has set its prices in period t. The higher the relative price of the
firm in any period, the lower the demand for its product and thus the volume of its
output and employment.

From the first order conditions for a maximum it follows that,

- ° Ft _ € ﬁt l-ate Wt+s Yieo, 1
v E, e—1)(= Vi — = —a|=0 (56
> B[~ DE) Vs = T (0 G <0 (56)

(56) implies that the expected present value of revenues from the optimal price
is equal to the expected present value of the marginal cost of production, augmented
by the profit margin €/(e-1) of the firm.

It is worth noting that, as we have already shown (equation (16)), if the firm
could determine its prices in every period, the price of the product in each period
would be equal to the marginal cost of production plus the same profit margin.
However, if the firm cannot adjust prices in every period, as is assumed in the Calvo
(1983) model, pricing follows the rule (56).

Assuming that in the steady state inflation is equal to 7*, (56) can be trans-
formed in logarithmic deviations from the steady state level, using a log linear
Taylor approximation. Thus, in logarithms we shall have that,

1
1 —

~ (1= 67) Y (81 ElBies + w(p - Whis = Pris + 7 (s — ars) - (57)
s=0
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l1—a
and w = aicg) < 1.

. _ 1
Where. /B = m

Consequently, firms that reset their prices in period t will choose a price which
corresponds to a weighted average of the current and expected future price levels,
plus a margin i on a weighted average of the current and expected future level of
their real marginal costs. The discount factor of a future period t+s depends on the
probability that the firm will not be able to reset its price in the future period t+s,
which equals v*, times the pure discount factor 8°. Furthermore, the part of pricing
which depends on the expected marginal cost of the firm depends negatively on the
elasticity of demand for the product of the firm, through the parameter w.

Using the future mathematical expectations operator F, (57) can be written as,

_ 1—By .

B 1— By 1
b = 1—5’7Fpt

l—BvF(wt_pt—i_l—oz

+wlp + (ay; — ay)] (58)

Substituting (58) in the equation for the adjustment of the average price level
(53) we get that,

1—06v .

1— By 1
1 _B’YFpt

Ty o Gl s

Multiplying both sides of (56) by 1-5~F, after some rearrangements, we get that,

Pe="p1+(1=7)] +wp+ (ay: — ar))] (59)

(1—v)gl—ﬁv)wmﬂwt_pﬁlia

(1+8)pt —Pi1 — BE P11 = (ay: —ay))] (60)

(60) is the equation of adjustment of the price level towards the steady state
price level, which depends on expected inflation and is a constant markup on the
marginal cost of production.

In order to examine the short run behavior of the model, we must introduce the
equilibrium conditions in the markets for goods and services and labor.

4.2 Equilibrium in the Market for (Goods and Services and
the “new” IS Curve

Equilibrium in the market for good j implies that,
Y, (5) = Ci(j) (61)
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As a result, equilibrium in the market for all goods requires that,

where Y is total output, defined in the same way as total consumption C in
equation (2).

Substituting the Euler equation for consumption (13) in the equilibrium condi-
tion (62), the logarithm of real output is determined by,

1 .
Y = Ey(ye1) — g(zt — Emy —p) (63)

(63) is often referred to as the “new” IS curve, as it is derived from the equilib-
rium condition for the market for goods and services.®

4.3 Labor Market Equilibrium and the “New” Phillips Curve

We next turn to the equilibrium condition in the labor market. We assume that in
contrast to product prices that adjust gradually, nominal wages adjust immediately
in order to equate the demand and supply of labor in each period. Thus, the only
stickiness which is analyzed in this version of the model is the gradual adjustment of
prices rather than wages. This means that fluctuations in employment are the result
of inter-temporal substitution by households and that no involuntary unemployment
exists.”

Due to the gradual adjustment of prices, firms produce so as to satisfy aggregate
demand at the given prices in each period. Aggregate output is determined at the
level which is determined by aggregate demand, and differs from its “natural level”,
which is the level that would prevail if there was immediate price adjustment by all
firms.

As a result, aggregate output, employment, consumption, real wages and the
real interest rate, differ from their “natural levels” and display fluctuations which
depend on nominal as well as real disturbances.

8Compared to the conventional IS curve, (63) contains the rational expectation about the future
volume of output and depends on the real and not just the nominal interest rate. Its advantage over
the conventional IS curve is that it has been derived from firm microeconomic foundations, and
that its parameters depend on deep structural parameters, such as the pure rate of time preference
of the representative household p, and the inter-temporal elasticity of substitution in consumption
1/6.

9Gali (2008, 2011) and others have analyzed this model with the additional assumption of
rigidity not only in prices but also in nominal wages. In this case there are fluctuations in the
unemployment rate due to the fact that wages do not equate the demand with the supply of labor
in each period, as is assumed here.
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From the price adjustment equation (60), we can deduce an equation for fluctu-
ations in inflation. Expressing (60) as an inflation equation we have that,

= (1—=8)7" + BEm 1 + (ay: —ay))] (64)

(1_7)21_B7)w[ﬂ+<wt_pt+1ia

where m; = p; — p;_1 is the rate of inflation.

(64) implies that deviations of current inflation from steady state inflation are
greater than discounted expected future deviations of inflation from its steady state
value, if the current marginal cost of labor, plus the margin p is higher than the
current price level p. The reason is that firms setting prices in the current period
post larger price increases than (discounted) expected future inflation, in order to
offset the higher current marginal cost of labor.

The assumption of equilibrium in the labor market means that we can substi-
tute the real wage in (64) from the first order condition (11) for the representative
household. Using (11), the condition for equilibrium in the market for goods and
services c=y, and the production function (17), (64) can be rewritten as,

T = (1= B)n* + BE w1 + Ky — 4} ) (65)

where yV is the “natural rate” of real output, i.e. the output that would be
produced if there was full flexibility of prices, and is given by (23). The parameter
k is defined as,

R A R S
ol 1—a(l—¢)

(65) is referred to as the new Phillips curve, and constitutes the second impor-
tant behavioral equation of the imperfectly competitive dynamic stochastic general
equilibrium model with staggered pricing.

The reason that deviations of output from its “natural rate” cause inflation to rise
relative to expected future inflation is that higher output implies a higher current
real marginal cost of labor, and thus induces firms that have the opportunity to
change their current price, to post price increases which exceed discounted expected
future inflation.

Like the “new” IS curve, the “new” Phillips curve has been derived from explicit
macroeconomic foundations and labor market equilibrium, and its parameters are
functions of the “deep” structural parameters describing the preferences of house-
holds, the technology of production and the price setting technology.
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4.4 The Structure of the Model with Staggered Pricing

Equations (63) and (65), along with equations (23) and (25) for the “natural level”
of real output and the real interest rate, constitute the basic structure of the imper-
fectly competitive model with staggered pricing.

Deviations of inflation from discounted expected future inflation are determined
by the “new” Phillips curve (65), as a function of deviations of real aggregate demand
and output from the “natural level” of output.

Deviations of real output from its “natural level” are determined by the “new”
IS curve, which depends on deviations of the real interest rate from its “natural
level”. The “new” IS curve can be expressed as,

1.
Y — ?va = Ey(ye1 — ytNH) - 5(% — By — Tiv) (66)

where the natural levels of output and the real interest rate y», r"¥ are determined

by (23) and (25).

In order to close the model we must consider the determination of the nomi-
nal interest rate. In contrast to the model with immediate price adjustment, in
the model with staggered price adjustment, fluctuations in real variables cannot be
determined without reference to monetary factors. The classical dichotomy breaks
down during the adjustment towards the “natural” rate. Monetary factors and mon-
etary policy determine not only the price level and inflation, but also fluctuations
in real variables such as real output, consumption, employment, real wages and the
real interest rate.

5 The Role of Monetary Policy under Staggered
Pricing

Monetary policy will in this case determine not only the price level and inflation, but
also deviations of real output and employment from their “natural” rates. In order
to determine optimal monetary policy the central bank will thus need to consider
both inflation and real variables. The second term in the loss function (29) will
thus come into operation, as now output deviates from its “natural” level, and this
deviation depends on nominal interest rates.

The central bank will thus seek to minimize (29) subject to the dynamic Phillips
curve (65) and the dynamic IS curve (66).

From the first order conditions for a minimum, this implies that in every period
it will seek to ensure that,
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Ey(mpq — ") + %Et(ytﬂ — Y1) =0 (67)

The optimum policy, because of the trade-off between inflation and output, im-
plies that the marginal cost of an expected deviation of inflation from target plus
the marginal cost of an expected positive deviation of output from its “natural”
rate must be equal to zero. At the optimum, the central bank will only choose
to achieve its inflation target, if that is consistent with the equality of output to
its “natural” rate. If output is lower than its “natural” rate the central bank will
increase inflation above its target and vice versa.

Substituting this policy rule in the dynamic Phillips curve (65), it follows that
the central bank should again seek to set inflation to 7* in all periods, as this would
eliminate deviations of output from its “natural” rate. Substituting the 7* inflation
target in the Fisher equation for the nominal interest rate, this implies a nominal
interest rate target equal to,

w=rN (68)
Thus, the optimal nominal interest rate target should reflect fluctuations in the
“natural” real interest rate, plus the inflation target of the central bank.

5.1 A Non Contingent Nominal Interest Rate Rule

If we assume that the central bank follows an exogenous path for the nominal interest
rate, then, the analysis is exactly the same as in section 3.1, for the model with
perfectly flexible prices. From the Fisher equation (21), it follows that,

Et(ﬂ't+1> =1 =Ty (69)

As we have already mentioned, (69) does not determine inflation, but expected
inflation, given the exogenous path of nominal interest rates. It is consistent with
any price level path that satisfies,

Per1 = Pe+ i — T+ S (70)

where ¢ is any shock that satisfies E;&;.1 = 0.
(70) suggests that there are multiple equilibria for the price level and inflation.
Any zero mean stochastic £ could affect inflation and the price level in this case.

Consequently neither the price level, nor inflation can be determined uniquely when
the central bank follows an exogenous path for the nominal interest rate.
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5.2 The Taylor Interest Rate Rule with a Constant Inter-
cept

We shall next analyze the model under the assumption that the central bank follows
a standard constant intercept Taylor (1993) rule of the form,

ib=p+ 7+ op(m — )+ Oy — v ) + 1 (71)

where ¢, and ¢, are positive coefficients, and v is an exogenous stochastic dis-
turbance in the nominal interest rate. It is worth noting that because the constant
in this rule is equal to p+ 7*, this rule is consistent with steady state inflation 7*.1°

This rule implies a countercyclical monetary policy. When inflation is positive,
the central bank increases nominal interest rates in order to reduce it. When em-
ployment is low, i.e. when output is lower than its “natural” level, the central bank
reduces nominal interest rates in order to increase aggregate demand and employ-
ment and nudge output towards its “natural” level. As is well known, this feedback
interest rate rule does not result in inflation and price level indeterminacy if the
Taylor principle is satisfied, i.e. if the reaction of nominal interest rates to inflation
is sufficiently strong.!!

Having fully determined the model with staggered pricing, we can analyze how
nominal and real disturbances produce aggregate fluctuations under the standard
Taylor (1993) rule (71).

The full model consists of the “new” Phillips and IS curves (65) and (66), the
Taylor rule (71), and the equation for the determination of the “natural” real interest
rate (25). Thus, the model can be written as,

T = PET 1 + Ky (72)

~ ~ 1 . * ~ N
U = By — 5(% — 7" = BT — 1)) (73)
it =p+ T+ QaT + Oy + 1 (74)

where, 7y = m — 7, iy = y; — v~ denote the deviations between current and
target inflation, and between current (log) real output and its “natural” level.

1%Note that the Taylor rule (71) is simpler than the optimal nominal interest rule (68). The
nominal interest rate does to react to shocks that change the current real rate of interest, such as
productivity on monetary policy shocks, and thus productivity shocks turn out to affect deviations
of inflation from the central bank target and deviations of output from its “natural rate”.

See Woodford (2003), for an extensive analysis of the Taylor principle.
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The percentage deviation between current real output and its “natural” level
is often referred to as excess output, and its opposite is referred to as the output
gap. When excess output is positive, the economy produces more than its “natural”
level, while when it is negative (the output gap is positive) it produces less than its
“natural” level.

The “natural” real rate of interest r is determined by (25) and depends only on
the expected change in the productivity shock and the pure rate of time preference.

The model can be solved by substituting the Taylor rule for the nominal interest
rate in the “new” IS curve (73) and solving for excess output. This substitution
results in an aggregate demand function of the form,

. 0 o~ 1
Tz, + —

= B B — 1
Yt 514, Y41 0+ 0, 610, t7t41 6+¢y(9¢( Na)ar + 1) (75)

Combined with the “new” Phillips curve (72), the model can determine excess
output and inflation, as functions of the productivity shocks affecting the “natural”
real rate of interest, and the monetary shocks, affecting the nominal interest rate.

One can then solve the two equation system (72) and (75) by substituting out
for excess output from (75) into (72). This will, after some re-arrangement, result
in an inflation equation of the form,

~ BO+¢y)+0+K 50 R
- -7 F
it 0+ ¢y + Kx e (76)
K

_m(0¢(1 — o)t + V)

As can be seen from (76), inflation depends on expectations about future in-
flation, productivity shocks, which affect the “natural” real rate of interest, and
nominal interest rate shocks. Recalling the definition of x, one can see that the
parameters determining the inflation process depend on the preferences of the rep-
resentative household, (0, A\, € and p), the technology of production («), market
structure (¢), the price adjustment mechanism () and the parameters of the Taylor
rule (¢, and ¢,).

Since inflation is a non predetermined variable, both roots of (76) must be less
than unity (inside the unit circle), which requires that the sum of the coefficients
of the future expectations of inflation in (76) is less than one. Thus, for a stable
inflation process a necessary and sufficient condition is that,

BO+d)+0+r—p0 _
0+ ny + KNz

1 (77)
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Under the assumption that the coefficients of the Taylor rule ¢, and ¢, are
positive, after some rearrangement of (77), one can see that a necessary and sufficient
condition for a stable inflation process is,

6o>1- 00, (78)

Thus, for a stable inflation process, the Taylor principle, as implied by (78) must
hold. The reaction of nominal interest rates to current inflation must be sufficiently
high to satisfy (78). For example, if the reaction of the nominal interest rate to excess
output is zero (¢, =0), then the reaction of nominal interest rates to inflation must
exceed unity.

Assuming that the central bank policy satisfies (78), (76) can be solved forward
for inflation, which is a non pre-determined variable. Inflation will be determined
by,

o0 oo

~ ko1 ) 1
T = T B0 SZ )\—2 — o)At 1q + Vitq) (79)

q=0

where 1/A\; and 1/)q are the two roots of the inflationary process (76), which
are both lower than one, if the Taylor principle (78) is satisfied, and will be defined
by,

Bl +¢y)+0+k

M4 = 49 > 2 (80a)
Mo = ii%gf&>1 (80D)

Inflation will depend on future expectations of deviations of the “natural” real
rate of interest from p and future expectations about nominal interest rate shocks
v. The solution for inflation, assuming that the two shocks follow AR(1) processes
as in (26) and (35), takes the form,

Ty = —0YRr(1 — ng) Aoy — kALY, (81)
where:
A, = ! (82)
“ (1 - ﬁna)(gby + 9(1 - na)) + ’{(wa - na)
A, = ! (83)

(1 - 5771/)(% + 9(1 - 771/)) + H(gbw - 771/)
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Note that the coefficients A, and A, depend negatively on the Taylor rule pa-
rameters ¢, and ¢, which are in the denominator of both fractions. The higher
the Taylor rule parameters, the lower the impact of real and nominal shocks on
deviations of inflation from the central bank target.

By substituting the solution for inflation in the “new” Phillips curve (72), one
can get the corresponding solution for the evolution of excess output. Excess output
will be given by,

f/g\t = _91/}(1 - 77a)(1 - ﬁna)AaOét - (1 - BnV)AVVt (84>

From (84), because the coefficients A, and A, depend negatively on the Taylor
rule parameters ¢, and ¢, , the higher are the Taylor rule parameters, the lower the
impact of real and nominal shocks on deviations of output from its “natural” level.

From (81) and (84), the variances of inflation and of deviations of output from
its “natural” level will be given by,

Var(t,) = BE(m, — %)% = (0YrA,)?0? + ( A,)%o? (85)

v

1—mn,
1_ﬁ7711
1—n,

Therefore, the expected losses of the monetary authority under a Taylor interest
rate rule with constant intercept are given by:

A,)%o? (86)

v

Var(G:) = E(y: — yi*)* = (0¢(1 — Bna)Aa)?or + (

AT = %“Tp (O A2 + C(1 = Bl + (5 f”n J2IK2 + C(1 — Bn,)?Jo2) (87)

where superscript T denotes the monetary policy under a Taylor interest rate
rule with a constant intercept.

Thus, the losses of the central bank, which depend on these two variances, will
be affected by the variances of both real and nominal shocks. Real shocks are not
neutralized by monetary policy, as the central bank real interest rate does not react
to fluctuations in the equilibrium real interest rate.

However, if the central bank were to let ¢, — oo or ¢, — 00, or both, then the
variances of deviations of inflation from the central bank target, and of deviations
of output from its “natural” level, would be driven to zero. The Fisher rule of
absolute inflation targeting would thus be the optimal policy even in the presence
of staggered pricing.

In Figure 3, we depict the functional relation between A7 and the two coefficients
of the Taylor rule (71), ¢, and ¢, . We distinguish three cases. First, we keep ¢,
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Figure 3: Expected Losses of the Monetary Authority as a function of ¢,; and ¢,
under a Taylor Rule with constant intercept
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fixed at value 1.5, as Taylor (1993) suggested, and we let ¢, lie between 1 and 4.
Second, we keep ¢, fixed at value 0.5, as Taylor (1993) suggested, and we let ¢,
lie between 1 and 4. Finally, we let both ¢, and ¢, lie between 1 and 4. We have
assumed a portion of the firms that do not adjust their prices v = 2/3, and a weight
of output relative to inflation { = 0.25. The other parameters are as in Figure 1.
It is apparent that the optimal monetary policy is the one under the Fisher rule of
absolute inflation targeting.

5.3 An Optimal Taylor Interest Rate Rule

From our analysis of the optimal central bank inflation policy, the central bank aims
to keep inflation and expected inflation as close to 7* as possible. Using the Fisher
equation (21), and the central bank optimal inflation target (30), the target nominal
interest rate should be equal to,
Et = TtN + 7T*

Thus, the optimal nominal interest rate target should reflect the inflation target
of the central bank, but also fluctuations in the natural real interest rate. Would
this make any difference in the model?
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To the extent that current inflation deviates from target inflation, that current
output deviates from its “natural” level, and to the extent that there are monetary
policy shocks, the optimal nominal interest rate rule would thus take the form,

i = Gt Gnlm— )+ Sylye — ) + (88)
e T (T =)+ Gy =y ) + v

Our objective is to determine the optimal ¢’s. We shall call this rule the optimal
Taylor rule.

Combining this rule with the Fisher equation, and the “new” Phillips and IS
curves (72) and (73), deviations of inflation from the central bank target are then
determined by,

R BO+o,)+0+kK .
= E —
i 0+ ¢y + KPr BT+

—ﬁﬂ By — ——
0+, +rds P 04y + Kby |

(89)

As can be seen from (89), under the optimal Taylor rule, current inflation does
not depend on real shocks, as the impact of real shocks on current inflation has
been neutralized by the direct reaction of the nominal interest rate to the current
equilibrium real interest rate.

Assuming that the Taylor principle, in the form of equation (78), holds, the
rational expectations solution of (89) is given by,

o0

k1 11,
T = —@mEtZ(A—l) Z()\—Q) Vitq (90)

s=0 q=0

Inflation now does not depend on real shocks, but only nominal monetary policy
shocks.

Solving for inflation and output, we get that,

/ﬂ\-t = _K'Auyt (9]‘)

?//\t = _(1 - ﬁﬁu)Ath (92)

The variances of inflation and output are given by,
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Figure 4: Expected Losses of the Monetary Authority as a function of ¢,; and ¢,
under an Optimal Taylor Rule

0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

0.0000

== (1) fixed, ¢(y) f =®=(y) fixed, () free =8=Both ¢(n 1¢(y) f
Var(7,) = E(m — %) = (kA,)%0? (93a)
Var(t) = Ely—y)* = ((1-Bn)A,) %0, (93b)

Now the variances of inflation and output depend only on monetary policy
shocks, as the impact of real shocks is neutralized through the dependence of the
optimal Taylor rule on the current real interest rate.

Therefore, the expected losses of the monetary authority under an optimal Taylor
interest rate rule are given by:

ATt L1t
t 9 0
where superscript T* denotes the monetary policy under an optimal Taylor in-
terest rate rule.

{x* + (1= Bm)*IAJ0) (94)

However, even in this case, if the central bank were to choose the ¢’s optimally,
it should allow them to be as large as possible. The policy that would minimize the
variances of inflation and output and hence the expected losses of the central bank
is the policy that requires that ¢, — oo or that ¢, — oo, or both. The functional
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relation between AI™ and the coefficients of the Taylor rule (88) are depicted in
Figure 4. All the parameters are as in Figure 3.

Thus, the Fisher rule of absolute inflation targeting would be optimal under the
optimal Taylor rule specification too.

These results should not be too surprising. Absolute inflation targeting is opti-
mal because of the “divine coincidence” that rules in this model. From the “new”
Phillips curve specification (72), stabilizing inflation around the target of the central
bank, immediately stabilizes output around its “natural” level. Thus, the policy of
absolute inflation targeting also minimizes deviations of output from its “natural”
level.

6 Optimal Monetary Policy in the Absence of the
“Divine Coincidence”

Following Blanchard and Gali (2007), among others, we shall analyze a version of
the model in which the divine coincidence does not hold.

Instead of the “new” Phillips curve (72), we shall now assume that,

T = BET1 + Ky + 2 (95)

where x is an exogenous inflation shock, following an AR(1) process of the form,

Ty = NpTi1 + € (96)

It is assumed, as with the other exogenous shocks that 0<n,<1, and that €} is
a white noise process.

We shall analyze the model under the “optimal” Taylor rule (88) and the “new”
IS curve (73). Substituting the Taylor rule (89) in the “new” IS curve (73), and
then using the “augmented new” Phillips curve (95), deviations of inflation from
the central bank target are determined by,

_ BO+dy)+0+k . 36 R
— - E
t 9+¢y+ﬁ¢n tT 41 9+¢y+/€¢7r D) (97)
K 9(1_77$)+¢y

_6+¢y+n¢ﬂ% 0+ ¢, + Kox o
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Now, both monetary policy shocks and exogenous inflation shocks affect the
inflationary process.

Solving (97) under rational expectations, assuming that the Taylor principle
holds, one gets,

Te = —kAv + (0(1 — 12) + ¢y) Auy (98)

where:

1
b = T B0y 1 60— 1) + ~l0r — 1) (%9)

A, is defined as in (83).

From (98) the inflationary process now depends on both monetary policy and ex-
ogenous inflation shocks. Substituting the inflation process (98) in the “augmented
new” Phillips curve (95), we can solve for deviations of output from its “natural”
level as,

Driving the parameters of the Taylor rule to infinity would no longer be optimal,
as this would no longer eliminate deviations of output from its “natural” level. Even
if A, and A, are driven down to zero, the variance of deviations of output from its

“natural level would be positive, and given by,

~ 1 2
Var(y,) = 21— B (101)
From (67), the optimal policy requires that,
Thus, from (98), (100) and (102), the “optimal” Taylor rule parameters should
be such as to ensure that,

A, = < (103)

T (dy + 01 =) (K2 + Q)

From (99) and (103) it follows that the parameters of the optimal Taylor rule
should satisfy,

K2+ (B,

0+ 01— y)) > 1 (104)

¢7r:77:c+
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The two key parameters of the “optimal” Taylor rule are thus not uniquely
defined, but must satisfy the unique linear relationship (104), which depends on
all the structural parameters of the model. This is the same result as the non-
uniqueness result derived in Alogoskoufis (2016, 2017), who analyzed the optimality
of the Taylor rule in a different “new” Keynesian model, with competitive product
markets and periodically determined nominal wage contracts.

To facilitate the interpretation of (104), let us assume that the persistence of the
inflation shock x is equal to zero, i.e. that 1,=0. Then, (104) can be written as,

K
S

From (105), the response of the optimal Taylor rule to deviations of inflation
from target, relative to deviations of output from its “natural” level, should be
higher the higher the slope of the “new” Phillips curve k, the lower the weight of
output relative to inflation in the preferences of the central bank (, and the lower
the inter temporal elasticity of substitution in consumption 1/6, which determines
the semi-elasticity of aggregate demand with respect to the real interest rate in the
“new” IS curve.'?

In Figure 5 we present the optimal responses of nominal interest rates to inflation
¢r, measured on the vertical axis, as a function of the weight of output relative to
inflation in the preferences of the Central Bank, (, measured on the horizontal axis.
We have assumed a response to output ¢, = 0.5, as suggested by Taylor (1993), and
an intertemporal elasticity of substitution of consumption 1/6 = 1.5. A response of
nominal interest rates to inflation equal to 1.5, as suggested by Taylor (1993), would

be optimal if the Central Bank attached a weight of output relative to inflation equal
to about 0.125.

O+ 6,) > 1 (105)

For the Taylor principle to be satisfied, ¢, must be greater than one, and the
response of the nominal interest rate to excess output ¢, should satisfy,

¢

>__
Py >

For a sufficiently low weight of output relative to inflation (, the optimal policy
could thus be parametrized as a Wicksell rule, with ¢, equal to zero.

0 (106)

12The parameters of the optimal Taylor rule in this model have the same properties with re-
gard to the structural parameters of the model, as the parameters of the optimal Taylor rule in
Alogoskoufis (2016, 2017), who relied on a different “new” keynesian model, with periodically
determined nominal wage contracts, in which the “divine coincidence” does not arise. Thus, the
analysis appears to be quite robust to model specification, as long as the “divine coincidence” is
not present.
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Figure 5: Optimal Response of Nominal Interest Rates to Inflation as a Function
of the Weight of Output relative to Inflation in the preferences of the Central Bank

0.2

0.0

7 Conclusions

In this paper we use an imperfectly competitive dynamic stochastic general equilib-
rium model of aggregate fluctuations, in order to study optimal central bank interest
rate policy, and compare it to interest rate rules that have been proposed by mone-
tary economists, such as the Wicksell (1898), Fisher (1919) and Taylor (1993).

The model is a dynamic stochastic general equilibrium model based on monopo-
listic competition in product markets. We initially analyze it assuming full flexibility
of prices and, subsequently, assuming staggered price adjustment.

We demonstrate that in versions of the model with full price and wage adjust-
ment, or staggered pricing, the optimal policy rule is the Fisher rule of absolute
inflation targeting, which is a special case of the other two. The reason is the
“divine coincidence” characterizing the model with staggered pricing, according to
which inflation stabilization automatically results in stabilization of fluctuations of
output around its “natural” level.

We also analyze a more general version of the model, with exogenous inflation
shocks, in which the“divine coincidence” does not apply. In this case, the optimal
policy rule takes the form of a Taylor rule. The parameters of the optimal Taylor rule
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depend on the slope of the Phillips curve, itself a function of the deeper structural
parameters of the model, the responsiveness of aggregate demand to the real interest
rate, equal to the elasticity of inter-temporal substitution in consumption, and the
preferences of the central bank over their two objectives of stabilizing deviations of
inflation from target and deviations of output from its “natural” level.
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Appendices

A Appendix: The Rotemberg Model of Convex
Costs of Price Adjustment

An alternative model of sluggish price adjustment is the Rotemberg (1982 a,b) model
of costly price changes.

For the representative monopolistically competitive firm, as the one examined
in section 2.2, the optimal price is given by,

- g Wt
Pt n g — 1<<1 — (Z)At[zt—a)

The optimal price is a constant markup on marginal costs. Marginal costs are
equal to wage costs over the marginal productivity of labor. Note that because
of decreasing returns to employment, increasing employment and output implies
declining marginal productivity of labor and increasing marginal costs of production.
Using the production function to substitute out for labor, (A1) can also be expressed
as,

(A1)

— £ W, (Y;) e
Pt — 1
L (- a4y
An increase in output increases the marginal costs of production for given wages,
because of the declining marginal productivity of labor. Hence, with higher output

the optimal price must rise.
In logs, (Al) and (A1’) imply,

(AT)

Dy =p+w—a+aly = p+w + (G?Jt—at) (AQ)

1—a

where:

ay = lnAt,,u:ln(Eil) —In(1 —a)

« is the logarithm of the exogenous productivity shock, and the constant p is the
logarithm of the markup on marginal cost, minus the logarithm of the coefficient
implying decreasing returns to labor.

All firms, are assumed to be facing convex costs of adjusting prices. Rotemberg
(1982 a,b) assumes that firms balance the costs of deviating from their optimal price
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against the costs of adjusting prices. In the model that follows, following Rotemberg,
we assume that firms set current prices minimizing a quadratic cost function which
penalizes both deviations of prices from the optimal price, and the adjustment of
prices over steady state inflation from period to period. This takes the form,

[o¢] 1 _ .
Ay = E; Z 5S<§(pt+s - pt+s)2 + g(pm — Ptys—1 — T )2 (A3)
s=0

where p is the log of the actual price of the representative firm. ¢ is a parameter
measuring the cost of price adjustment relative to the cost of deviations from the
optimal price and 7* is steady state inflation.

From the first order conditions for the minimization of (A3), it follows that,

e
Tl T 1rearpltt
& E1+p)

T Trea e P T T By

The current price, in logs, is a weighted average of the optimal price, the past
price, the expected future price and steady state inflation. The firm is forward
looking, and anticipates the future costs of adjusting prices, so its current price
depends not only on its past price, but on its expected future price as well. Since
this is the representative firm, we can take its price to be equal to the log of the
price level.

Expressing (A4) as an inflation equation, one gets,

2
(A4)

m— = B(Ermos — 1) + %(@ ) (A5)

where: m; = p; — py_1 is the rate of inflation.

Deviations of inflation from steady state inflation deviate from expected future
deviations of inflation, to the extent that the optimal price exceeds the current price.
Substituting for the optimal price from (A2), one gets,

~ N 1
Ty = BEm1 + E(# + wy — ay + aly — py) (A6)
where, 7, = T, — 7.

From (A6), deviations of inflation differ from discounted expected future devi-
ations, to the extent that the marginal cost of production plus the optimal price
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markup exceeds the current price. Using the labor and product market equilib-
rium conditions to substitute out for the real wage and employment, as well as the
definition of the “natural rate” of output, we can express (A6) as,

T = PET 1 + Ky (A7)

6(1—a)+A+a

where kK = )

>0 and g =y — y,"

(A7) has exactly the same form as the “new” Phillips curve (40) derived from
the Calvo (1983) model of staggered pricing. The only difference is in the definition
of k which is now in terms of the parameter £ of the Rotemberg model, instead
of the parameter v of the Calvo model. Thus, the two models of sluggish price
adjustment, the Rotemberg model of costs of adjustment of prices and the Calvo
model of staggered pricing are observationally equivalent at the aggregate level.
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B Appendix: Expressing the “New Keynesian”
Model in Matrix Form

A second way of solving the “new” Keynesian model (68), (69) and (70), is to write
it in matrix form, and use a simultaneous equations solution method, such as the
Blanchard Kahn (1980) method.

After substituting the Taylor rule (70) in (68) and (69), the model can be written
in matrix form, as,

(?/\t) _ 1 (9 1 — Box ) <Et?7t+1) n Y —p—u (1) (B1)
T _9+¢y+/f¢7r Ok K+ B0+ d,)) \EFi 0+ ¢y + Kdr \K

We can confirm from (B1) that the fluctuations of excess output and inflation
are driven by both types of shocks. Real shocks which affect ¥ — p, and the nominal
interest rate shock v.

Recalling the definition of x, one can also confirm that the parameters determin-
ing aggregate fluctuations depend on the preferences of the representative household,
(0, A\, € and p), the technology of production («), market structure (), the price
adjustment mechanism (7) and the parameters of the monetary policy rule (¢, and
0)):

Given that both excess output and inflation are non predetermined variables,
the solution will be unique only if the matrix of coefficients of future expectations
has both eigenvalues inside the unit circle.

Under the assumption that the coefficients of the Taylor rule ¢, and ¢, are
positive, one can show that a necessary and sufficient condition for a unique solution

iS,lB

£(fr = 1)+ (1= B)dy >0 (B2)

(B2) is the same as (73). It requires a sufficiently pronounced reaction of nominal
interest rates to inflation, as, solving for ¢, , (B2) can be expressed as,
1-p
x> 1= ——9,
K
which is non other than (74).

13See Bullard and Mitra (2002).
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