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Abstract

Missing data or missing values are a common phenomenon in applied panel data
research and of great interest for panel data unit root testing. The standard approach
in the literature is to balance the panel by removing units and/or trimming a com-
mon time period for all units. However this approach can be costly in terms of lost
information. Instead, existing panel unit root tests could be extended to the case of
unbalanced panels, but this is often di¢ cult because the missing observations a¤ect the
bias correction which is usually involved. This paper contributes to the literature in
two ways; it extends two popular panel unit root tests to allow for missing values, and
secondly, it employs asymptotic local power functions to analytically study the impact
of various missing-value methods on power. We �nd that zeroing-out the missing ob-
servations is the method that results in greater test power, and that this result holds
for all deterministic component speci�cations, such as intercepts, trends and structural
breaks.

JEL classi�cation: C22, C23
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1 Introduction

It is almost always the case in applied panel data research that some values will be missing,

leading to unbalanced panels. Missing observations can happen for various reasons. In

macroeconomics, the available data do not start at the same date for all countries, or the

frequency of data collection for many variables changed over time; for example, where data

were available on an annual basis, now they are also available every quarter, and therefore

there are missing values at the quarter dates for the time that only annual observations

were available. Firm and bank-level data are plagued by mergers and bankruptcies or the

introduction of new banks and firms in the sample. “Windsorising” the data (trimming the

outliers), which is standard practice in corporate finance, also creates missing values. In

household survey data, many households drop out with time. In financial data, there are

missing values on certain days, for example, holidays and weekends.

This paper examines the problem of missing values in panel data unit root testing. Miss-

ing observations were first studied in a time series framework with stationary data. Many of

the early contributions can be found in Harvey (1989), but the first was by Savin and White

(1978), which examined the Durbin–Watson (1950, 1951, 1971) test for serial correlation.

Their main result was that ignoring the missing values by closing up the observations leads

to a Durbin-Watson statistic that has the same null limiting distribution, and the bounds

critical values are still valid. Bhargava (1989) examined the impact of missing values on the

power of the Durbin–Watson test using an approximation of the power function and found

that in the presence of an intercept in the model, and without very large gaps in the data,

it is still reasonable to use the test. For non-stationary data, the first contributions were

those of Shin and Sarkar (1994a, 1994b), which examine the impact of missing values on the

instrumental variables unit root tests of Hall (1989) and the Dickey-Fuller test of Dickey and

Fuller (1979). Shin and Sarkar (1994b) find that under the null hypothesis of a unit root,

the estimator and t-statistics have the same distribution as in the non-missing data case.

However, the sampling pattern does affect the power of the tests.

Ryan and Giles (1998) re-examine the two schemes for dealing with missing observations

in Dickey-Fuller unit root tests found in Shin and Sarkar (1994b), and propose a third one.

The first scheme simply removes the gaps from the series and assumes that the existing

observations are continuous. The second scheme replaces the missing values with the last

recorded observation before the gap, and the third scheme uses linear interpolation to fill

in the missing data by taking the average of two observations, the last one before the gap

and the first one after the gap. They first confirm the findings of Shin and Sarkar (1994b)

that the first two schemes leave the unit root test null distributions unchanged but show
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that the third scheme introduces additional terms in the limiting distribution. Furthermore,

using extensive Monte Carlo simulations they show that the first scheme delivers the highest

power, while linear interpolation provides some empirical size gains but significant power

loss. However, the second scheme leads to more power in the augmented Dickey-Fuller test

which deals with serial correlation (Dickey and Fuller (1981)).

The first contribution of this paper is to extend the popular panel unit root tests of

Harris and Tzavalis (1999) and Karavias and Tzavalis (2014) to unbalanced panels. This is

the first paper that considers how to adjust panel data unit root tests to unbalanced panels.

It is not straightforward to adapt the single time series results in panels because most panel

unit root tests require bias corrections which will be affected by the pattern and location of

the missing values, see e.g., Levin, Lin and Chu (2002) and Im, Pesaran and Shin (2003),

among others. The problem is even more serious when the bias correction is estimated by

simulations.

The tests of Harris and Tzavalis (1999) and Karavias and Tzavalis (2014) are fixed-T

tests with a wide range of deterministic component specifications including, individual unit

intercepts, linear trends and common structural breaks. This allows us to study the impact

of missing values on various settings. We focus on panel unit root tests with a large number

of cross-section units N , and a small number of time series observations T because this was

the original dynamic panel data framework introduced by Holtz-Eakin, Newey and Rosen

(1988) and the framework of the first panel data unit root test, that of Breitung and Meyer

(1994). It is also one of the most common in terms of applications, see e.g., Karavias et

al. (2021). The panel data unit root tests of Harris and Tzavalis (1999) and Karavias and

Tzavalis (2014) are popular in applied research and have been implemented in statistical

software.1 They have several advantages beyond being applicable to short panels; they are

invariant to the initial conditions, they allow for flexible and general trend functions, and

they allow for cross-section heteroskedasticity.

We adjust the above test statistics for missing values by providing new bias correction

formulas and deriving their asymptotic limiting distributions. The adjustment allows for

general patterns of missing values that can differ across individuals and leads to excellent

test size properties. Under the null hypothesis, the distribution of the adjusted test statistics

remains identical to the case without missing values. This result holds for any missing-value

correction scheme, unlike the single time series results of Ryan and Giles (1998).

The paper’s second contribution is to employ the Harris and Tzavalis (1999) and Karavias

1In Stata, the test by Harris and Tzavalis (1999) has been implemented in the official “xtunitroot”
command, while the test of Karavias and Tzavalis (2014), which allow for structural breaks, have been
implemented by the community contributed command of “xtbunitroot” by Chen, Karavias and Tzavalis
(2021).
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and Tzavalis (2014) tests and the fixed-T framework to study which method for dealing with

missing data results in tests with greater power. The power properties of these tests have

been studied previously in Madsen (2010), and Karavias and Tzavalis (2016, 2017). In this

paper, we extend the local power functions of Karavias and Tzavalis (2016, 2017) to allow

for missing values, and then use these functions to theoretically compare the three missing

value schemes from Ryan and Giles (1998). The results show that the zeroing-out scheme

leads to the greatest power for all types of deterministic components. This is also the first

paper that examines the nexus between missing values and structural breaks. We find that

zeroing-out once more leads to greater power, but the ranking of the other two schemes

depends on the relative locations of the missing values and the structural breaks.

The paper is structured as follows. Section 2 presents the tests of Harris and Tzavalis

(1999) and Karavias and Tzavalis (2014). Section 3 introduces missing values and describes

how they can be analysed in the fixed-T framework. Section 4 presents the missing-value-

adjusted statistics and their limiting distributions under the null and under local alternatives.

Section 5 compares the impact of popular schemes for dealing with missing values, for various

deterministic specifications. Section 6 concludes the paper.

2 Panel Unit Root Tests Without Missing Values

Assume that there are N cross-section units and T time series observations and consider the

following data generating processes:

yi,t = ai + ui,t, (1)

yi,t = ai + bit+ ui,t, (2)

yi,t = a1,iI(t ≤ T0) + a2,iI(t > T0) + ui,t, (3)

yi,t = a1,iI(t ≤ T0) + a2,iI(t > T0) + b1,iI(t ≤ T0)t+ b2,iI(t > T0)t+ ui,t, (4)

for i = 1, ..., N and t = 1, ..., T . For notational convenience, we further assume that the initial

observation is yi,0 and it is observed resulting in a total of T + 1 time series observations per

unit.

Model (1) is includes individual (or incidental) intercepts and model (2) includes individ-

ual intercepts and individual trends. The models in (3) and (4) consider a single structural

break in the intercepts and trends of the series, at time T0. The break is assumed to be

common for all units as in Bai (2010). The parameters a1,i and b1,i are the intercept and

trend individual effects before the break and a2,i and b2,i are those after the break. The first

two models have been considered in Harris and Tzavalis (1999), while models (3) and (4)
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have been considered in Karavias and Tzavalis (2014).

The error term ui,t is assumed to be an autoregressive process of order one, as follows:

ui,t = ρui,t−1 + εi,t, (5)

for i = 1, ..., N and t = 1, ..., T . The key parameter of interest is the autoregressive parameter

ρ, which determines the stationarity of the panel process.

For models (1) and (2) the null hypothesis of non–stationarity is given by H0 : ρ = 1,

while the alternative of stationarity is H1 : ρ < 1. For models (3) and (4) the null hypothesis

depends on whether there is a structural break under the null or not. Both choices are

considered in Karavias and Tzavalis (2014) and could have been considered here, however,

the results in terms of missing values do not change qualitatively and in the following we will

only consider the case where a structural break occurs only under the alternative. Explicitly

stated, the null hypothesis is H0 : ρ = 1 & a1,i = a2,i for (3), and H0 : ρ = 1 & a1,i =

a2,i & b1,i = b2,i for (4). We will further assume that the date of the break is known to the

researcher, as the missing values analysis also does not change if the date of the break is

unknown.

To remove the individual effects from yi,t we employ the annihilator matrices Qm, where

m = 1, 2, 3, 4 corresponds to models (1)-(4). We introduce the following notation: let IT be

a T ×T identity matrix, e be a T × 1 vector of ones, and τ = (1, 2, 3, ..., T )′. Also, let e1 and

τ 1 be T × 1 vectors such that e1,t = et and τ 1,t = τ t if t ≤ T0 and 0 otherwise, and let e2 and

τ 2 be T ×1 vectors such that e2,t = et and τ 2,t = τ t if t > T0 and 0 otherwise. The vectors ej

and τ j are effectively “breaking” versions of e and τ . Qm is an annihilator matrix with the

general formula Qm = IT − Zm(Z ′mZm)−1Z ′m, and where Zm depends on the model. Define

Z1 = e, Z2 = {e, τ}, Z3 = {e1, e2} and Z4 = {e1, e2, τ 1, τ 2}. By premultiplying models

(1)-(4) with the corresponding Qm, the least-squares estimator of the transformed model is

given by:

ρ̂m =

(
N∑
i=1

y′i,−1Qmyi,−1

)−1( N∑
i=1

y′i,−1Qmyi

)
, (6)

where yi,−1 = (yi,0, yi,1, ..., yi,T−1)
′ and yi = (yi,1, yi,2, ..., yi,T )′.

The estimator (6) is inconsistent because it suffers from the well known Hurwicz-Nickell

bias.2 Harris and Tzavalis (1999) and Karavias and Tzavalis (2014) derive expressions for

this bias when ρ = 1 and show that it depends on the deterministic component specification.

2In the current context the term “bias” is frequently used to describe inconsistency. This happens because
when the time series dimension is assumed fixed, the autoregressive parameter estimator bias (Hurwicz
(1950), Nickel (1981)) persists asymptotically and creates inconsistency.
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Furthermore, they show that the bias can be estimated and ρ̂ be bias-corrected. The following

test statistic, and its asymptotic distribution, is then used for testing the null hypotheses:3

tm =
ρ̂m −Bm − 1√

V ar (ρ̂m)

d−→ N(0, 1), (7)

where Bm is the bias correction and it is given by the probability limit of ρ̂m − 1. Harris

and Tzavalis (1999) and Karavias and Tzavalis (2014) provide explicit formulas for Bm and

V ar (ρ̂m), for models (1)-(4). For (3) and (4), the expressions of tm, Bm and ρ̂m, also

depend on the date of the break. This dependence is suppressed in our notation because the

date of the break does not have an impact on the theoretical results of the paper.

The first contribution is to examine how the above statistic and its limiting distribution

change in the presence of missing values. Missing values are introduced in the next section.

3 Missing Values

So far we have assumed that there are T + 1 observations of yi,t for every i ∈ 1, ..., N .

Let the data spawn from t = {0, 1, ..., T}, and let there be a missing value at time t∗,

where 1 < t∗ < T . Under the null hypotheses that H0 : ρ = 1 for models (1)-(2) and

H0 : ρ = 1 & a1,i = a2,i for (3), and H0 : ρ = 1 & a1,i = a2,i = ai & b1,i = b2,i = bi for (4),

(1)-(4) imply the following data generating process:

yi = yi,−1 + εi (8)

yi = yi,−1 + bie+ εi, (9)

3The assumptions under which this result holds are presented in Section 4 below.
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where εi = (εi,1, ..., εi,T )′. In matrix form, the above equations (presenting only the first, to

save space) become: 

yi,1
...

yi,t∗−2

yi,t∗−1

yi,t∗

yi,t∗+1

yi,t∗+2

...

yi,T



=



yi,0
...

yi,t∗−3

yi,t∗−2

yi,t∗−1

yi,t∗

yi,t∗+1

...

yi,T−1



+



ui,1
...

ui,t∗−2

ui,t∗−1

ui,t∗

ui,t∗+1

ui,t∗+2

...

ui,T



.

When there is a missing value yi,t∗ , the dynamic nature of the system results in yi,t∗ appearing

in two equations of the system, the t∗ and the t∗ + 1. This means that one missing value

plagues two equations of the system as can also be seen from the above representation.

There is a fundamental difference in the way that missing values are treated in a fixed-T

framework compared to single time series analysis. In single time series, it is assumed that

the data generating process is based on the index t, as in models (1)-(4), but only a subset

of these observations is available, t1, t2, ..., tT . A new pseudo series is created based on the

index ti, i.e., xk = ρxk−1 +αk, where k = t1, t2, ..., tT and the estimation of ρ is based on xk.

This approach is reasonable when T is asymptotic because the impact of the index change

is asymptotically negligible. When T is fixed as it is here, the idea is to work with a fixed

set of equations, see e.g. Hayashi (2000, Section 5.3). We will examine methods that keep

the asymptotic distribution of the test the same, but we wish to find which method results

in maximum power.

Define Di to be a deterministic matrix that reshuffles the data to deal with missing values

in the unit i. Notice that Di allows for the pattern and number of missing values to differ

across units. If there are no missing values, Di = IT . If there is a missing value for unit

i at time t∗, then [Di]t∗,t∗ = 0, which is how missing values are introduced into the model.

Effectively, Di multiplies the missing value with 0 and we assume that the outcome of this

algebra is 0. Because this is a dynamic model and two equations are affected by a missing

value at time t∗, it must also be [Di]t∗+1,t∗+1 = 0. The rest of the diagonal elements of Di

are equal to 1, while the off-diagonal elements are the ones performing the missing-value

correction scheme.

The different schemes for dealing with missing values, see e.g., Ryan and Giles(1998), such
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as closing the gaps, using linear interpolation and using the last available observation, dictate

different versions of Di. In the following section, we will derive the asymptotic distribution

of the statistic in (7) and the asymptotic local power without assuming a specific type of

Di. This means that the analysis can be used for comparing other methods for dealing with

missing values, beyond the ones in Section 5.

4 Asymptotic Distribution and Local Power Function

The main idea behind the asymptotic analysis comes from Hayashi (2000, page 338), and to

demonstrate it we consider (1), which can be quasi-differenced according to equation (5) and

be written as yi,t = ρyi,t−1 + (1− ρ)ai + εi,t. Stacking the model across the time dimension,

it becomes:

yi = ρyi,−1 + (1− ρ)aie+ εi. (10)

Then, we premultiply the model byDi, which is the transformation matrix that deals with the

missing values in each unit, and apply a second transformation, the within transformation,

to remove the deterministic components. The removal of the individual effects is based on:

QD
1,i = IT − (Die)(e

′
iD
′
iDie)

−1(e′Di). (11)

Notice how QD
1,i now depends on the individual i, since individuals are allowed to differ

in terms of the number and location of missing values. The general expression of QD
m,i is

QD
m,i = IT − (DiZm)(Z ′mD

′
iDiZm)−1(Z ′mDi). Then, ρ̂ is the estimator which minimises the

least squares criterion in the transformed model and it equal to:

ρ̂Dm =

(
N∑
i=1

y′i,−1D
′
iQ

D
m,iDiyi,−1

)−1( N∑
i=1

y′i,−1D
′
iQ

D
m,iDiyi

)
. (12)

The asymptotic analysis is based on the following set of assumptions. These are not the

weakest assumptions possible, however, they are useful for allowing us to study the problem

of missing values analytically.

Assumption 1 (Errors/No Selectivity Bias): (i) ui, for i = 1, ..., N, is a sequence of inde-

pendent random vectors with E(ui|Di) = 0 and E(uiu
′
i|Di) = σ2IT , where σ2 < ∞. (ii) ui

follows a multivariate normal distribution.

Assumption 2 (Variable Independence): ui,t, for i = 1, ..., N, and t = 1, ..., T, is indepen-
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dent of ai, bi, a1,i, a2,i, b1,i, b2,i and yi,0, and V ar(yi,0) <∞.

Assumption 3 (Invertibility): For m ∈ {1, ..., 4}, N−1
∑N

i=1 y
′
i,−1D

′
iQ

D
mDiyi,−1 > 0 with

probability 1 for all possible break points, T and N .

Assumption 4 (Missing Values): As N →∞,

1

N

N∑
i=1

E(D′iQ
D
i Di)

p−→ ΦD, (13)

where ΦD is positive definite.

Assumption 1 is standard in the literature, see e.g. Verbeek and Nijman (1992). It

implies that the errors are not correlated with the missing values, in other words there is no

selectivity bias. Still, the individual effects can be correlated with missing observations. The

assumption also implies that conditionally on the missing values, the errors are homoskedastic

across both the time series and cross-section dimensions and not serially correlated. Cross-

section dependence is not allowed, and finally, the second part imposes normality, which helps

in simplify the formulas below. Assumption 2 is also standard and necessary for deriving

the asymptotic local power function. Assumption 3 is an invertibility assumption that also

restricts the presence of the structural breaks to locations that allow the existence of Q3 and

Q4. Effectively, it is a high-level assumption that implies the need for trimming the sample

at the beginning and the end. For more information, see also Karavias and Tzavalis (2014).

Assumption 4, is a regularity condition that allows the existence of the estimator bias in the

presence of missing values.

We are now able to present the limiting distribution of ρ̂m in the presence of missing

data:

Proposition 1 Let Assumptions 1, 3 and 4 hold. Furthermore, for models (3) and (4) let

the date of the break be known. Then, under H0, and as N →∞:

tm =
ρ̂m −Bm − 1√

Vm/N

d−→ N(0, 1). (14)

The quantities Bm and Vm are defined as:

Bm =
tr(Λ′ΦD)

tr(Λ′ΦDΛ)
, (15)
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Vm =
2tr(ΩD)

[tr(Λ′ΦDΛ)]2
, (16)

where ΩD is such that,

1

N

N∑
i=1

A2
m,i

p−→ ΩD, (17)

and Am,i = (1/2)(Λ′D′iQm,iDi + D′iQm,iDiΛ) − Bm(Λ′D′iQm,iDiΛ). Finally, Λ is a matrix

with elements [Λ]i,j = 1 for i < j and [Λ]i,j = 1 otherwise, for i, j ∈ {1, ..., T}.

Proposition 1 derives the asymptotic distribution of ρ̂ under the null hypothesis and

under a general pattern of missing value treatment. The proof of the proposition is based on

Harris and Tzavalis (1999) and Karavias and Tzavalis (2014) and is omitted. Expressions

(15) and (16) make clear how the bias and variance of the estimator should be adjusted in

the presence of missing values. The result in (14) differs from those in Harris and Tzavalis

(1999) and Karavias and Tzavalis (2014) in that it contains the matrix Di. Proposition

1 demonstrates that the limiting distribution of a statistic adjusted for the missing values

remains the same as in the case without missing values. This finding is in line with part

of the previous literature, see, e.g. Shin and Sarkar (1994b). Unlike Ryan and Giles (1998)

however, the limiting distribution does not change in the case of linear interpolation, because

the distribution does not depend on the type of Di.

When the date of the break is unknown, Karavias and Tzavalis (2014) suggest computing

the minimum of tm for models m = 3, 4, over every permissible break date, as determined by

Assumption 2. The limiting distribution in this case will depend on the correlations between

the tm for different break dates, which will be affected by the missing values. Therefore, the

critical values of Karavias and Tzavalis (2014) are no longer valid in this case. Instead, one

can use the bootstrap proposed in Karavias and Tzavalis (2019) to derive the appropriate

critical values. The case of unknown breaks will not be pursued in the analysis below because

the impact of missing values is qualitatively the same as in the case of known breaks.

To employ the statistic in (14), it is necessary to a employ consistent estimator of Bm,

which is given by:

B̂m =

∑N
i=1 Λ′D′iQm,iDi∑N
i=1 Λ′D′iQm,iDiΛ

, (18)

and a consistent estimator for Vm, which is given by:

V̂m =
1
N

∑N
i=1 2tr(Â2

m,i)[
1
N

∑N
i=1 Λ′D′iQm,iDiΛ

]2 , (19)

where Âm,i = (1/2)(Λ′D′iQm,iDi +D′iQm,iDiΛ)− B̂m(Λ′D′iQm,iDiΛ).
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The following proposition examines the behaviour of the tm statistics under local alter-

natives, as in Karavias and Tzavalis (2016, 2017). The main advantage of the local power

theory is that it allows us to examine analytically the impact of each type of missing value

correction, and this is more transparent than doing Monte Carlo simulations, where the re-

sults depend also on other parameters in the experimental design. The local power function

is an approximation of the power function in a N−1/2 neighbourhood of the null hypothesis.

The local alternatives are defined as ρN = cN−1/2, where c > 0, because N is the only

increasing data dimension.

Proposition 2 Let Assumptions 1-4 hold. Furthermore, for models (3) and (4) let the date

of the break be known. Then, under H1 : ρN = cN−1/2, and as N →∞:

tm =
ρ̂m −Bm − 1√

Vm/N

d−→ N(−cKm, 1). (20)

The quantity Km is given by:

Km =
tr(FΛ′ΦD) + tr(Λ′ΦDΛ)− 2Bmtr(FΛ′ΦD)

2tr(ΩD)
, (21)

where F = [dΘ/dρ]ρ=1 and Θ is a T × T matrix that has elements: [Θ]i,j = 0 if i = j or

i < j, and [Θ]i,j = ρ(i−j−1).

Proposition 2 states the limiting distribution of tm under local alternatives. The proof of

the proposition is based on Karavias and Tzavalis (2016, 2017) and is omitted. The result

is elegant and states that the probability of rejecting the null when it is not true (c > 0)

is a monotonic function of Km. It suffices therefore to examine the sign and magnitude of

Km; the larger the Km, the more powerful the test. Km = 0 means that the test has trivial

power, while if Km < 0, the test is biased.

5 Dealing with Missing Values

In this section we evaluate Km for various types of Di to see which way of dealing with

missing values results in greater test power. We will consider the three schemes which have

previously appeared in the single time series literature (see e.g. Ryan and Giles (1998)):

closing the gaps, filling in the previous available value, and using linear interpolation.

With respect to interpolation, there are various methods can produce estimates of the

missing values, but we follow Ryan and Giles (1998) and only use the average of the two

observations before and after the missing values. There are other methods available, which
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ultimately introduce a bias-variance trade-off problem, but we leave this direction for future

research.

The first option that we examine is zeroing-out the missing observations, which is equiv-

alent to “closing the gaps”. The zeroing-out happens by creating Di to be a diagonal matrix

with diagonal elements [Di]t∗,t∗ = [Di]t∗+1,t∗+1 = 0 if observation yi,t∗ is missing, and equal

to [Di]t,t = 1 for t 6= t∗. The second option in the literature is to substitute the missing value

with the previous available value, i.e., yi,t∗ = yi,t∗−1. This is possible by defining the matrix

Di as:

Di =



1i,1
. . .

1i,t∗−1

0i,t∗ 1i,t∗ 0i,t∗ 0i,t∗

1i,t∗+1 0i,t∗+1 0i,t∗+1 0i,t∗+1 0i,t∗+1

1i,t∗+2

. . .

1i,T


Finally, the third option is to substitute the missing value with the average of yi,t∗−1 and

yi,t∗+2. This is possible by creating Di as:

Di =



1i,1
. . .

1i,t∗−1

0i,t∗ 1/2i,t∗ 0i,t∗ 0i,t∗ 1/2i,t∗

1/2i,t∗+1 0i,t∗+1 0i,t∗+1 1/2i,t∗+1 0i,t∗+1

1i,t∗+2

. . .

1i,T


In unreported Monte Carlo simulations it is found that all three above transformations have

size very close to the nominal.4 It is therefore of interest which transformation results in

higher power.

Table 1 below compares the three methods in terms of local asymptotic power, based

on the theoretical results of (21). We consider the case of a single missing value and where

Di = D, that is, the missing value appears in all units and at the same place. This is a

4Ryan and Giles (1998) find size distortions under the null which leads them to consider size-adjusted
power. This is not needed here.

12



simplifying assumption, but our interest is not on the power of tests per se, but rather in

determining the relative power of the three ways of dealing with missing values. We allow

the missing value to appear towards the beginning, the middle, and the end of the sample

at times b0.25T c, b0.5T c and b0.75T c. We further set T = 20, and for the Karavias and

Tzavalis (2014) we allow the dates of the breaks to take place at the same dates as the

missing values. Table 1 below reports Km from equation (21), for m = 1, 3. A higher value

of Km means higher test power.

Table 1: Asymptotic local power of the Harris and Tzavalis (1999) and Karavias and Tzavalis
(2014) tests for the model with incidental intercepts and a single missing value.

Harris and Tzavalis (1999)

Missing Value Location Zo Pr Li
b0.25T c 8.545 8 8.26
b0.5T c 8.559 8.276 8.423
b0.75T c 8.544 8.126 8.26

Karavias and Tzavalis (2014)

Break fraction: b0.25T c
Missing Value Location Zo Pr Li
b0.25T c 6.32 6.304 6.107
b0.5T c 6.825 6.384 6.637
b0.75T c 6.825 6.506 6.637

Break fraction: b0.5T c
Missing Value Location Zo Pr Li
b0.25T c 5.835 5.624 5.798
b0.5T c 5.319 5.094 4.692
b0.75T c 5.835 5.624 5.798

Break fraction: b0.75T c
Missing Value Location Zo Pr Li
b0.25T c 6.825 6.384 6.637
b0.5T c 6.825 6.507 6.637
b0.75T c 6.32 6.101 6.107

Notes : The above table provides the values of Km for one missing value in the sample.
The missing value appears at the same place for all units at the locations b0.25T c, b0.5T c
and b0.75T c, for T = 20. For the Karavias and Tzavalis (2014) test, three break dates
are also considered, again at the locations b0.25T c, b0.5T c and b0.75T c. “Zo” stands for
zeroing-out, “Pr” stands for previous observed value and “Li” stands for linear interpo-
lation. A larger value of Km indicates higher power.
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The results of Table 1 demonstrate that the Harris and Tzavalis (1999) test performs best

when the missing value is zeroed-out, and the next best method in terms of power is the

linear interpolation. The worse method is substituting the missing value with the previous

observation. This is the first result in the panel unit root test literature on the impact and

treatment of missing values. The fact that zeroing-out produces the highest power agrees

with the single time series results of Ryan and Giles (1998). However, they find that linear

interpolation performs worst, which is contrary to what is found here, as linear interpolation

outperforms the previous value substitution.

In the presence of structural breaks the results are less clear-cut. The zeroing-out method

dominates the other two, for all combinations of structural break and missing value dates.

However, the ranking between the other two methods depends on the relative location of the

missing value and the date of the structural break. If the missing observation, or the next,

coincides with the date of the structural break, then the substitution of the last available

observation leads to higher power than linear interpolation. For the rest of the cases, linear

interpolation leads to greater power.

The presence of linear trends in m = 2, 4 results in Km = 0 in (21). This is the known

problem of trivial local power in the presence of incidental trends, see e.g., Moon et al.

(2007) and Karavias and Tzavalis (2016, 2017). This result demonstrates that panel unit

root tests do not have power in the presence of incidental trends in a neighbourhood of the

null hypothesis. For the purposes of the analysis here, this means that the asymptotic local

power functions cannot be used to show which method is the best. However, unreported

Monte Carlo simulations show that for alternatives far from the null, the results for the case

without trends still hold.

The results of Table 1 allow for a comparison of the relative power of the three missing

value methods. The absolute powers can be calculated from T (vα + cKm), where T is

the cumulative distribution function of the standard normal distribution, and vα is the α-

level percentile of said distribution. The absolute power gains of zeroing-out over the other

methods are greater when T is smaller, c is closer to 0, and when the number of missing

values is larger.

The above conclusions extend to settings with multiple missing values, and in cases

where the number and locations of missing values differ across units. To save space, we do

not present these results but are available upon request. The Harris and Tzavalis (1999) and

Karavias and Tzavalis (2014) tests can accommodate cross-section dependence in the form of

an additive time effect, however, that does not change the above analysis or its conclusions.
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6 Conclusions

This paper examined the impact of missing value correction methods in panel data unit

root tests. The analysis focused on the fixed-T tests of Harris and Tzavalis (1999) and their

extension in the presence of structural breaks by Karavias and Tzavalis (2014).

The first contribution of the paper is the extension of the aforementioned tests to allow

for missing observations in the data. The fixed effects estimators in dynamic panel data

models are inconsistent and need to be bias-corrected; the present paper shows how this bias

correction can be done and provides the appropriate formulas for using the tests in practice.

The second contribution is a study of the power properties of the tests under various

methods for dealing with missing data. To carry out this analysis, we derived asymptotic

local power functions which can be used to analytically compare different methods. We used

the new formulas to compare the methods of zeroing-out (which is equivalent to closing the

gaps in the data), replacing the missing value with the last available observation and using

linear interpolation in the form of the average of the two adjacent observations. Overall, the

results show that the zeroing-out or “closing gaps” methodology dominates the other two

and should be the preferred method in practice.
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