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Abstract

Concepts are introduced and applied for analyzing and selecting arbitrage portfo-
lios in the face of ambiguity about risk preferences and initial positions. A Stochastic
Arbitrage Opportunity is defined as a zero-cost overlay that enhances every feasible
benchmark portfolio for all admissible utility functions. The alternative to the exis-
tence of such opportunities is the solvability of a dual system of asset pricing restrictions
based on a class of stochastic discount factors. Feasible approaches to numerical opti-
mization and statistical inference are discussed. Empirical results suggest that equity
factor investing is appealing for all risk-averse stock investors with sufficiently low
transactions costs, by mixing multiple factor portfolios with high after-cost Informa-
tion Ratio, low mutual correlation and negative downside beta. The findings weaken
the case for risk-based explanations for the profitability of factor investing.
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1 Introduction

Arbitrage portfolios play a pivotal role in Investments. Arbitrageurs can exploit mis-

pricing without making a net investment by buying underpriced securities and short selling

overpriced securities. Arbitrage portfolios are also useful for creating financial leverage and

hedging systematic risk exposures through short selling. The present study introduces and

applies new concepts and methods for analyzing and selecting arbitrage portfolios.

The standard concept of a Pure Arbitrage Opportunity (PAO) is based on self-financing

portfolios with payoffs that are never non-positive but sometimes non-negative. Although

this concept is generally accepted, it often lacks discriminatory power. PAOs are rare in

many applications and their non-existence is generally places only loose restrictions on asset

prices. To improve the power of the analysis, generalized arbitrage concepts have been

developed.

Bernardo and Ledoit (2000) and Cochrane and Saa-Requejo (2000) propose pricing

bounds for a new base asset which are based on bounds on the gain-loss ratio and bounds

on the Sharpe ratio, respectively. Dybvig (1987), Constantinides, Jackwerth and Perrakis

(2009), Beare (2011) and Post and Rodŕıguez Longarela (2021) consider joint restrictions

on the prices of the base assets which ensure that the market index is not dominated by

Stochastic Dominance criteria.

The present study proposes a more general approach based on partial information about

investor risk preferences and initial portfolio positions (endowments). In the proposed frame-

work, a Stochastic Arbitrage Opportunity (SAO) is a zero-cost overlay portfolio that en-

hances all benchmark portfolios that can be constructed from a set of base assets, for all

admissible utility functions.

The analysis acknowledges possible ambiguity about existing portfolio holdings or bench-

mark portfolios of investors in addition to ambiguity about risk preferences. Such ambiguity

notably arises for hedge fund managers and empirical researchers of market efficiency.

Hedge funds (as opposed to mutual fund managers) generally do not have an explicit
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benchmark and invest opportunistically in a broad universe. In addition, estimates of a

hedge fund’s investment style based on historical returns tend to be inaccurate, due to the

use of concentrated and dynamic positions, limited disclose, and valuation problems for

illiquid assets owned by the fund.

Academic researchers generally have only partial information about the portfolio holdings

of individual investors. The adverse effect of benchmark error on hypothesis testing in

empirical asset pricing research is well known. The S&P500 stock index (SPX) is an imperfect

proxy for the global market portfolio, as it ignores bonds, real estate and international

securities. It also does not represent domestic stock investors who actively deviate from

the passive market capitalization weights, focus on certain stock market segments or eschew

certain market segments.

The SAO concept is based on Expected Utility and allows for general classes of utility

functions, including the general Second-degree Stochastic Dominance (SSD) class used in

Constantinides, Jackwerth and Perrakis (2009) and Post and Rodŕıguez Longarela (2021).

By allowing for general specifications of the risk preferences and return distribution, the

analysis can account for asymmetric risk and tail risk. This feature is particularly relevant

for arbitrage portfolios (as opposed to standard portfolio), because long-short positions can

feature extreme levels of skewness and excess kurtosis, through financial leverage effects.

By contrast, Korkie and Turtle (2002) analyze arbitrage portfolios by considering only

the mean and the variance of the distribution. The mean-variance approach is analytically

convenient but it can lead to false conclusions and suboptimal choice if returns are not

Gaussian.

The analysis also allows for general investment restrictions on the benchmarks and over-

lays. The restrictions may be externally defined by regulators and clients of money managers.

They may also be used to model proportional transaction costs, as in Jouini and Kallal

(2001), enhance the robustness for estimation error, as in DeMiguel, Garlappi, Nogales and

Uppal (2009), or mitigate default risk and price impact, as in Post and Rodriguez Longarela
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(2021).

The SAO concept is designed for the analysis of incomplete capital markets with mar-

ket frictions; the analysis therefore eschews assumptions about the existence of a unique

Stochastic Discount Factor (SDF) and risk-neutral distribution. The existence of SAOs de-

fies equilibrium in a class of asset pricing models. A novel system of asset pricing restrictions

is derived which is satisfied if and only if SAOs do not exist. These pricing restrictions define

a class of SDFs which obey economic regularity conditions for representative investor models.

The focus is on the cross-sectional choice from a multitude of risky base assets in a

single-period model. Multi-period models can be represented or approximated through the

inclusion of conditional portfolios (Hansen and Richard (1987)) and/or timing portfolios

(Brandt and Santa-Clara (2006)) as base assets in a single-period problem. Furthermore,

the existence of arbitrage opportunities in a single-period model generally is a sufficient

condition for the existence of arbitrage opportunities in a multi-period model, as investors

generally can pursue buy-and-hold strategies even when portfolio rebalancing is allowed.

For practical implementation, we will demonstrate that methods for numerical optimiza-

tion and statistical inference which have been tried and tested for simpler portfolio problems

can also be used to evaluate overlays and identify SAOs. For discrete estimators of the

joint distribution function, empirical SAOs can be identified by solving finite and convex

optimization problems. In addition, Empirical Likelihood Ratio tests can be used to test

whether a given overlay is a SAO or to test whether an empirical SAO is a population SAO

out of sample.

The proposed framework is applied to equity factor investing. The empirical asset pricing

literature forwards a number of factor portfolios such as the ubiquitous Small-Minus-Big

(SMB) and High-Minus-Low (HML) portfolios by Fama and French (1996). A question of

theoretical and practical importance is whether the investment returns to these portfolios

reflect active trading opportunities or systematic risk premiums. We analyze whether existing

factor portfolios are SAOs for a broad class of risk preferences and initial positions. Following
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DeMiguel, Martin-Utrera, Nogales and Uppal (2020), we also take a portfolio perspective

and ask whether multiple factor portfolios can be combined to form a SAO.

In this application, PAOs do not occur (which motivates the use of a generalized arbitrage

concept), and, in addition, skewness and non-linear dependence play an important role

(which motivates the use of Expected Utility in addition to the mean-variance approach).

The analysis accounts for trading costs (Frazzini, Israel and Moskowitz (2015), Novy-Marx

and Velikov (2016), Patton and Weller (2020)) and declining profitability over time (McLean

and Pontiff (2016) and Jacobs and Müller (2020)).

2 Analytical Framework

In this section, the concept of SAO is introduced (Section 2.2) together with a system

of dual restrictions on the market prices of the base assets (Section 2.3), and discussion of

overlay choice (Section 2.4). Subsection 2.5 discusses empirical counterparts of the theoretical

concepts. The Appendix includes the proofs of Thm 2.3.1 and Lemma 2.4.3.

2.1 Preliminaries

The focus is on a single-period investment problem with N base assets with payoffs at the

investment horizon, x := (x1 · · ·xN)T ∈ RN , N < ∞. The base assets may be individ-

ual securities or portfolios of securities. To represent or approximate certain multi-period

problems, the base assets may include dynamic portfolios which are periodically re-balanced

based on conditioning information. Riskfree base assets may be included.

The joint probability distribution function of the payoffs is given by F : X → [0, 1], where

X := [a, b], −∞ < a < b < ∞,1 includes the supports of all base assets. The distribution

1Gross investment returns are naturally bounded from below by zero (a ≥ 0), and net returns by -100%
(a ≥ −1). An upper bound b < ∞ is assumed here for numerical purposes, and the empirical application
uses a discrete distribution estimator FT with upper bound b equal to the sample maximum return. The
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function is generally conditional on the prevailing stage of the business cycle and/or financial

market conditions.

The prices of the base assets are taken as given, and are collected in the price vector

p ∈ RN . Payoffs may be converted to gross returns r := diag−1 (p)x. The analysis can

account for proportional transaction costs in the form of a bid-ask spread by introducing two

sets of prices, pBid and pAsk , as in Jouini and Kallal (2001) and Constantinides, Jackwerth

and Perrakis (2009); see the end of this subsection.

Risk preferences are represented by utility functions u : R → R. Instead of specifying a

particular functional form, a set of functions, U , is defined using general functional properties.

The functions are assumed to be continuously differentiable, strictly increasing and strictly

concave. Additional assumptions can be employed to improve the discriminatory power,

e.g., the assumptions about higher-order risk aversion properties for higher-degree SD rules.

For numerical purposes, it is generally useful to transform the utility functions to avoid that

u(x) ≈ c for all x ∈ X .

The set U is assumed to be uniformly bounded and convex. This assumption is not very

restrictive, given that the support of the payoff distribution is bounded and the proposed

stochastic order is invariant to linear transformation and mixing of utility functions. For

example, the set of all aforementioned utility functions can be represented using U2, the

bounded set of strictly positive mixtures of elementary Russell and Seo (1989) functions

v2;φ(x) = − (φ− x)+, φ ∈ X .

The portfolio possibilities are described by two distinct portfolio sets: a set of benchmark

portfolios, K ⊆ RN , and a set of arbitrage portfolios, ∆ ⊆ RN . Korkie and Turtle (2002) use

a similar dichotomy and refer to the two portfolio sets as the Investment Opportunity Set

and the Self-Financing Investment Opportunity Set, respectively. The asset positions κ ∈ K

and δ ∈ ∆ translate into portfolio payoffs xTκ and xTδ.

The benchmark set K is assumed to be closed and bounded but it need not be convex.

statistical theory however does not require an upper bound for the population distribution F , and the
assumption b <∞ can be relaxed by placing second moment existence conditions for the return process.
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It may consist of a single benchmark index, e.g., a general market index or a tailor-made

style index. It could also include a multitude of benchmarks, e.g., the universe of all passive

mutual funds for a specific asset class. The benchmark set could also consist of a continuum

of convex mixtures of the base assets. In that case, we use K(0) to denote the set of extreme

elements. Since the benchmarks are standard portfolios, the position vector κ ∈ K must

obey the budget restriction pTκ = c, for budget c > 0. Asset positions may be converted to

portfolio weights λ := c−1 (p� κ).

The overlays δ ∈ ∆ are combinations of short and long positions with a net investment

of zero, or pTδ = 0. The overlays can be added to a benchmark κ ∈ K to form a combined

portfolio λ = (κ+δ) that is a standard portfolio (pTλ = c). Overlay portfolio positions may

equivalently be expressed using weights in the combined portfolio, or γ := c−1 (p� δ). An

overlay could be constructed using active investing by the owner or manager of the benchmark

portfolio or, alternatively, by an external specialized intermediary such as a hedge fund.

It is assumed that the overlay set is a bounded and convex polytope which is characterized

by R linear restrictions: ∆ :=
{
δ ∈ RN : Aδ ≤ a

}
; here, A is a (R × N) matrix of left-

hand-side coefficients, and a is (R× 1). For example, proportional transactions costs can be

modeled by replacing the self-financing constraint pTδ = 0 with a system of inequalities that

preempts buying at bid prices or selling at ask prices: δT
1 p

Ask − δT
2 p

Bid = 0; δ = δ1 + δ2;

δ1, δ2 ≥ 0N . The overlay set is assumed to include the ’passive’ solution, or 0N ∈ ∆; this

solution is assumed to be the default choice if qualified arbitrage opportunities do not exist.

The set of all feasible combined portfolios is given by the vector subspace sum Λ0 := K+∆.

The analysis does not attempt to identify individual standard portfolios λ ∈ Λ0 which stand

out as being particularly appealing, for two reasons. First, it is generally not possible to

identify a combined portfolio which is superior to all benchmarks for all relevant utility

functions. Second, the benchmark set is a superset of the relevant portfolios for multiple

investors; some elements of this superset may be infeasible for some of the investors. Instead,

the analysis identifies arbitrage portfolios δ ∈ ∆ which are appealing overlays for all feasible
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benchmarks and all relevant utility functions.

2.2 Stochastic Arbitrage Opportunities

Definition 2.2.1 (Pure Arbitrage Opportunities). An overlay δ ∈ ∆ is a pure arbitrage

opportunity if its payoff is positive with certainty and non-negative with non-zero probability.

The set of all feasible PAOs is given by

∆PA
F := {δ ∈ ∆ : PF [x′δ ≥ 0] = 1;PF [x′δ > 0] > 0} . (1)

The set of PAOs is based on minimal assumptions and it avoids specification error for risk

preferences and/or initial investment positions. The flip side is that it is empty or small in

many applications. To improve the discriminatory power, generalizations can be developed

based on general assumptions about preferences and endowments.

A partial order for arbitrage portfolios is introduced here to generalize the notion of

PAO to SAO. To allow for compact notation, the expected utility increment is denoted by

D(u,κ, δ,F) := EF
[
u(xT (κ+ δ))

]
− EF

[
u(xTκ)

]
, for (u,κ, δ) ∈ U ×K×∆.

Definition 2.2.2 (Strict Stochastic Arbitrage Opportunities). An overlay δ ∈ ∆ (strictly)

stochastically enhances a given benchmark κ ∈ K, or (κ+ δ) �(U ,F) κ, if D(u,κ, δ,F) > 0

for all u ∈ U . It is a (strict) stochastic arbitrage opportunity if such enhancement is achieved

for all κ ∈ K. The set of all feasible (strict) SAOs is given by

∆�(U ,K,F) := {δ ∈ ∆ : D(u,κ, δ,F) > 0 ∀ (u,κ) ∈ U ×K} . (2)

If a SAO δ ∈ ∆�(U ,K,F) exists, then every benchmark κ ∈ K, regardless of its efficiency

inside the benchmark set K, is inefficient in the combined portfolio set Λ0, in the sense that
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it is not optimal for any utility function, and inferior to the combined portfolio κ+ δ.

The set of SAOs naturally increases as the restrictions on the overlays (∆) are loosened

and/or the restrictions on the benchmarks (K) and/or risk preferences (U) are tightened.

If a riskless benchmark asset is feasible, then the SAO set equals the PAO set, under

general conditions. Let U2(c) := {u ∈ cl(U2) : u(x) < u(c)∀x < c;u(x) = u(c)∀x ≥ c}, c ∈

R. This set includes the aforementioned elementary utility functions v2;φ(x), φ ∈ [a, b] as

well as all increasing and concave transformations of those functions.

Proposition 2.2.3 (SAO vs. PAO). If the benchmark set includes a riskless alternative

κ0 ∈ K with riskless return x′κ0 = c ∈ [a, b], and cl (U) ∩ U2(c) 6= Ø, c ∈ R, then the set of

SAOs set reduces to the set of PAOs, or ∆�(U ,K,F) = ∆PA
F .

The condition cl (U) ∩ U2(c) 6= Ø obviously holds for U = U2, as cl (U2) includes the

elementary utility functions v2;φ(x), φ ∈ [a, b].

In case of the singleton specification K = {κ} and U = U2, the enhanced portfolios

λ ∈
(
{κ}+ ∆�(U ,K,F)

)
dominate the benchmark by SSD, or λ �(U2,F) κ, and the simpler

risk arbitrage concept of Post and Rodriguez Longarela (2021) is obtained as a special case.

The definition of SAO is more general and can expand the set of arbitrage opportunities by

imposing additional risk preference assumptions, and avoid specification error for the initial

positions by using multiple benchmarks.

The analysis is invariant to the inclusion of convex mixtures of the benchmark portfolios,

that is, ∆�(U ,K,F) = ∆�(U ,conv(K),F), due to the convexity of the stochastic enhancement relation

with respect to the benchmark portfolio positions.2 This property facilitates a convenient

discretization of the problem of searching for SAOs; see Section 2.4.

Perhaps surprisingly, the analysis is not invariant to the inclusion of non-optimal elements

in K.3 For this reason, the benchmark set generally cannot be replaced without consequences

2Using the Independence Axiom for Expected Utility, the two pairwise relations λ (κ1 + δ) ?(U,F) λκ1

and (κ2 + δ) ?(U,F) κ2 imply (λκ1 + (1− λ)κ2 + δ) ?(U,F) (λκ1 + (1− λ)κ2), for any λ ∈ [0, 1].
3The transitivity of the dominance relation entails

(
(κ1 + δ) �(U,F) κ1

)
∧
(
κ1 �(U,F) κ2

)
⇒(

(κ1 + δ) �(U,F) κ2

)
, but not

(
(κ1 + δ) �(U,F) κ1

)
∧
(
κ1 �(U,F) κ2

)
⇒
(
(κ2 + δ) �(U,F) κ2

)
, as the en-

hancement relation relies on the dependence structure between the overlay and the benchmark in addition
to the two marginal distributions.
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by the subset of its optimal elements. Nevertheless, non-optimal elements may deliberately

be excluded to sharpen the analysis, if the relevant benchmarks are believed to be constructed

using optimization. Riskless alternatives are a case in point. Although some base assets and

arbitrage portfolios may be riskless, it is generally desirable to exclude riskless benchmarks

(and avoid the set reduction ∆�(U ,K,F) = ∆PA
F ), because riskless alternatives are generally not

optimal for any investor in the face of risk premiums or pricing errors.

A SAO should not be confused with a stochastic bound (Arvanitis, Post and Topaloglou

(2021)), or a combined portfolio λ ∈ Λ0 which dominates every benchmark, or λ �(U2,F) κ

for all κ ∈ K. A SAO is an arbitrage portfolio δ ∈ ∆, while a bound is a standard portfolio

λ ∈ Λ0. In addition, exact bounds generally do not exist if K includes multiple portfolios with

diverse risk profiles, which is the reason for the use of approximate bounds in Arvanitis, Post

and Topaloglou (2021). The definition of SAO is much less demanding than the definition of

a stochastic bound, because the benchmark portfolio of a SAO enters both on the left-hand

side and the right-hand-side of the pairwise order (κ+ δ) �(U ,F) κ, so that the combined

portfolio is ’updated’ if the benchmark is changed. Instead of looking for a standard portfolio

which is superior to every benchmark, the search is for a portfolio adjustment which is an

improvement for every benchmark. This subtle adjustment yields a large improvement in

discriminatory power in relevant applications.

2.3 Asset pricing restrictions

One of the first principles of asset pricing states that a PAO does not exist (∆PA
F = Ø)

if and only if a non-negative SDF m : RN → R exists; see, e.g., Dybvig and Ross (2008).

This section extends this principle from PAOs to SAOs. The non-existence of SAOs can be

shown to be equivalent to the existence of a SDF which obeys economic regularity conditions

beyond non-negativity.

Some additional concepts are introduced to facilitate the derivation and interpretation.
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A common specification of the SDF takes the shape of an Intertemporal Marginal Rate of

Substitution: m(x) = d(u,κ)u′(xTκ), (u,κ) ∈ U ×K, where the scalar d(u,κ) > 0 captures

time preferences and the marginal utility function u′(xTκ) captures risk preferences. The

setM(U ,K) :=
{
m(x) = d(u,κ)u′(xTκ); (u,κ) ∈ U ×K

}
includes all candidate SDFs which

take this shape for some permissible utility function and some feasible benchmark. To invoke

standard results from game theory and duality theory, the analysis uses the convex hull

conv
(
M(U ,K)

)
and the polar cone ∆∗ :=

{
q = ATσ : aTσ ≤ 0;σ ≥ 0R

}
, which restricts

the shadow prices of the investment constraints Aδ ≤ a.

Theorem 2.3.1 (Existential Condition). (Strict) SAOs do not exist for a given utility

function class U , benchmark set K and overlay set ∆, or ∆�(U ,K,F) = Ø, if and only if

(EF [m(x)x] ∈ ∆∗) for some m ∈conv
(
M(U ,K)

)
. (3)

In other words, the Present Value of the base asset payoffs, or EF [m(x)x], must lie inside

the polar cone ∆∗, for some permissible SDF which take the shape of the IMRS of investors

with the assumed preferences and endowments or mixtures of the IMRS of multiple investors,

if SAOs do not exist.4

The investment constraints relax the pricing restrictions. For example, in the case with

proportional transactions costs, the polar cone is ∆∗ =
{
q ∈ RN

+ : pBid ≤ q ≤ pAsk
}

and the

Present Values must lie inside the bid-ask intervals.

The pricing restriction (3) reduces to existence of a non-negative SDF m : RN → R if

a riskless benchmark κ0 ∈ K with riskless return c ∈ [a, b] is feasible and some elementary

utility function u ∈ U2(c) is admissible, as in Proposition 2.2.3. Else, the pricing restriction

is tighter due to the restrictions placed on preferences and endowments.

Since the SDF is not unique, the pricing restrictions could possibly be tightened further

4The convex hull conv
(
M(U,K)

)
is used here instead of M(U,K), to establish a general necessary and

sufficient condition. Without the convexification, a duality gap may arise between the arbitrage conditions
and pricing conditions.
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by extending the single-period portfolio problem to a multi-period portfolio problem. This

approach is particularly useful in applications with a small number of base assets for which

the joint stochastic process can be estimated with reasonable accuracy, for example, the index

option pricing problems considered by Cochrane and Saa-Requejo (2000, Section III), Con-

stantinides, Jackwerth and Perrakis (2009, Appendix A) and Perrakis and Oancea (2022).

An common approximation to multi-period problems in high-dimensional applications is to

include managed portfolios as base assets. For example, the benchmark portfolios and factor

portfolios in our empirical application are periodically re-balanced and introduce risk-return

combinations and pricing restrictions which are not feasible in a pure single-period model.

2.4 Overlay choice

The attention is now turned to the selection of a specific SAO which optimizes a given

objective function. Using the strict SAO set ∆�(U ,K,F) as the feasible set can be analytically

inconvenient, as it may be an empty set or an open set, as a result of the definition based on

strict inequalities and strict risk aversion. To facilitate numerical analysis, the feasible set is

closed by using weak inequalities (D(u,κ, δ,F) ≥ 0) and closure of the utility function class

(cl (U)) using an alternative definition based on weak inequalities and weak risk aversion.

Definition 2.4.1 (Weak Stochastic Arbitrage Opportunities). An overlay δ ∈ ∆ (weakly)

stochastically enhances a given benchmark κ ∈ K, or (κ+ δ) ?(U ,F) κ, if D(u,κ, δ,F) ≥ 0

for all u ∈ cl(U). It is a (weak) stochastic arbitrage opportunity if such enhancement is

achieved for all κ ∈ K. The set of all feasible (weak) SAOs is given by

∆?

(U ,K,F) := {δ ∈ ∆ : D(u,κ, δ,F) ≥ 0 ∀ (u,κ) ∈ cl (U)×K} . (4)

By construction, the weak set is a superset of the strict set: ∆?

(U ,K,F) ⊇ ∆�(U ,K,F). It is

convex and closed. Since the passive solution {0N} is included, the weak SAO set is non-

empty (∆?

(U ,K,F) 6= ∅). Furthermore, δ ∈ ∆�(U ,K,F) ⇒ cδ ∈ ∆�(U ,K,F) for all c ∈ [0, 1] , so that

SAOs are not disconnected portfolios but part of a continuous neighborhood of SAOs.
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The enlargement (∆?

(U ,K,F) − ∆�(U ,K,F)) is inconsequential for the analysis. One specific

subset consists of trivial solutions: ∆=
F :=

{
δ ∈ ∆ : xTδ = 0 ∀x : F(x) > 0

}
, which includes

the passive solution {0N}.5 Including these trivial solutions is inconsequential, as they cannot

be optimal if strict SAOs exist; moreover, if strict SAOs do not exist, then the default choice

is the passive solution {0N} which is equivalent to any trivial solution δ ∈ ∆=
F . Including

the non-trivial weak SAOs
(

∆?

(U ,K,F) −∆�(U ,K,F) −∆=
F

)
is also inconsequential. Any of these

portfolios is accompanied by strict SAOs its close proximity which are indistinguishable from

it in terms of the value for continuous objective functions.6

By Def. 2.4.1, (weak) SAOs are solutions to the following inequality system:

D(u,κ, δ,F) ≥ 0 ∀ (u,κ) ∈ cl(U)×K; (5)

δ ∈ ∆.

This system is analytically challenging for two reasons. First, closed-form solutions gen-

erally do not exist for the portfolio payoff distribution Fλ(x) :=
∫
{x:xTλ≤x} dF (x) and the

portfolio-level expected utility EF
[
u(xTλ)

]
=
∫
u(x)dFλ(x), even for relatively simple dis-

tributions such as the multivariate log-normal distribution. Second, the system has a semi-

infinite structure due to the need to evaluate the first set of model restrictions for every

(u,κ) ∈ cl(U)×K, although the number of decision variables (M) is finite.

These complications generally call for some sort of discretization of F , U and K to

allow for numerical analysis using finite mathematical programming problems. A number of

5In fact, the passive solution {0N} is the only element of ∆=
F if the payoffs to the base assets are linearly

independent, as is true in our empirical application.
6Mixing δ ∈

(
∆?(U,K,F) −∆�(U,K,F) −∆=

F

)
with 0N always yields a feasible strict SAO: for any (u, c) ∈

U × (0, 1), we have that D (u,κ, ((cδ + (1− c)0N ) ,F) > cD (u,κ, δ,F) ≥ 0, and thus, (cδ + (1− c)0N ) ∈
∆�(U,K,F). As a result,

(
∆?(U,K,F) −∆=

F

)
6= /O ⇔∆�(U,K,F) 6= ∅. In addition, as c ↑ 1, the mixture becomes

indistinguishable from the real thing.
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general approaches are discussed below.

Continuous distributions F can be discretized using, e.g., Monte-Carlo simulation meth-

ods or lattice models. The trade-off between the achieved accuracy and the required com-

puter burden naturally depends on the dimensions of the distribution.

If the benchmark set K is continuous, then it may be replaced without loss by its set of

extreme elements K(0), for example, the vertices of a polytope. This replacement is allowed

due to the convexity property of the stochastic enhancement relation with respect to the

benchmark portfolio positions; see Section 2.2.

Since expected utility is a linear function of u ∈ cl(U), and cl(U) is a convex set, cl(U)

may be replaced with the set of its extreme elements, or U (0) : cl(U) = conv
(
U (0)

)
, without

loss of generality. For many relevant specifications of U , the extreme elements u ∈ U (0) are

low-dimensional functions, which reduces the numerical complexity of searching over cl(U).

For SSD, the elementary function set U (0)
2 consists of the elementary Russell and Seo

(1989) utility functions v2;φ(x) = − (φ− x)+, φ ∈ [a, b]. The one-dimensional parameter

space [a, b] can easily be discretized with an arbitrary level of precision. The enhancement

constraints D(v2;φ,κ, δ,F) ≥ 0 are not smooth. However, they can be relaxed to an equiv-

alent system of linear inequalities, for discrete distributions, as in Rockafellar and Uryasev

(2000), Kuosmanen (2004) and Dentcheva and Ruszczynski (2006), or, evaluated using iter-

ative Mixed-Integer Linear Programming algorithms as Fábián, Mitra and Roman (2011).

Hodder, Jackwerth and Kolokolova (2015) and Constantinides, Czerwonko and Perrakis

(2020) are examples of large-scale applications of this approach.

Similarly, for general n-th degree Stochastic Dominance, the elementary utility functions

are vn;φ(x) = − (φ− x)n−1
+ , and D(vn;φ,κ, δ,F) ≥ 0 is a convex non-smooth polynomial

constraint which can be relaxed to set of Convex Polynomial Programming constraints.

Combining these insights, the semi-infinite system of inequalities (5) can be reduced to

the following system:
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D(u,κ, δ,F) ≥ 0 ∀ (u,κ) ∈ U (0) ×K(0); (6)

δ ∈ ∆.

This system is finite in our application, due to the finite number of elements of K(0) and

U (0)
2 .

Maximizing a concave objective function G(δ,F) subject to this system yields a finite

convex optimization problem. The choice of the objective function naturally is application

specific, just as the choice of U and K.

In our empirical application, the objective is the expected payoff of the overlay: G1(δ,F) :=

EF [x]′ δ. The optimal value G1(δ∗,F) seems a natural measure of risk-adjusted or abnor-

mal performance, as it measures the largest improvement of expected payoff that can be is

achieved without deteriorating expected utility for any admissible utility function and bench-

mark portfolio. This measure is comparable with standard alphas, or expected abnormal

returns, computed relative to risk factor models. Clearly, G1(δ∗,F) > 0 implies that δ∗ is a

weak SAO; G1(δ∗,F) = 0 implies that strict SAOs do not exist.

One possible alternative specification based on ambiguity aversion uses the maxmin ob-

jective G2(δ,F) := minU ,KD(u,κ, δ,F) or the smallest improvement across all utility func-

tions and benchmark portfolios. Clearly, G2(δ∗,F) > 0 implies that δ∗ is a strict SAO;

G2(δ∗,F) = 0 implies that strict SAOs do not exist. For numerical purposes, this ap-

proach requires that the utility functions are normalized to avoid that u(x) ≈ c for.all

x ∈ X to avoid that G2(δ∗,F) ≈ 0 even if strict SAOs exist. If K(0) and U (0)
2 are dis-

crete, then this approach could be implemented by using the finite formulation G2(δ,F) :=

min
{
θ : θ ≤ D(u,κ, δ,F), ∀(u,κ) ∈ U (0) ×K(0)

}
or an equivalent dual maximization prob-

lem.
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2.5 Empirical counterparts

Empirical counterparts are introduced for the theoretical concepts. We discuss how the

asymptotic statistical theory of Post, Karabatı and Arvanitis (2018) for optimization with

SSD constraints (that is, the special case with K = {κ} and U = U2) can be generalized to

SAO choice for a general benchmark set K and utility class U ⊆ U2. We also discuss how

statistical inference about membership to the SAO set can be performed using an Empirical

Likelihood Ratio (ELR) test in the spirit of Davidson and Duclos (2014), Post and Poti

(2017) and Post (2017).

Sampling variation with high probability does not cause violations of inequalities which

are not binding under the population distribution. An important role in the statistical the-

ory of the estimation of SAO sets is therefore played by equivalence relations, or binding

weak stochastic enhancement relations D(u,κ, δ,F) = 0, (u,κ) ∈ U × K. Introducing mul-

tiple benchmarks increases the occurrence of such equivalence relations, which requires an

extension of the original theory from a single benchmark to a benchmark set.

2.5.1 Empirical SAO set properties

Following Post, Karabatı and Arvanitis (2018), we assume that the latent CDF F is es-

timated by the empirical CDF (ECDF) FT from a time series sample (xt)t=1,...,T , as in

the empirical application in Section 3. Since payoffs generally are non-stationary random

variables, the analysis can benefit from transforming payoffs to returns r := diag−1 (p)x

and positions to weights λ := c−1 (p� κ) and γ := c−1 (p� δ), which does not alter the

economic meaning. In order to focus on the effect of sampling variation on the stochastic

enhancement constraints, it is furthermore assumed that the constraints in K and ∆ are de-

terministic, as is true in our empirical application to factor investing. Extensions are briefly

discussed at the end of this subsection.

The following empirical weak SAO set is constructed using the ECDF:
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∆?

(U ,K,FT ) :=
{
δ ∈ 4 : (κ+ δ) ?(U ,FT ) κ, ∀κ ∈ K

}
. (7)

This empirical set can be shown to possess a number of favorable consistency properties

under two high-level assumptions which are motivated using detailed lower-level assumptions

in footnotes below. The first assumption concerns the limiting properties of the relevant

empirical processes: (i) the process mTD(u,κ, δ,FT − F) is convergent in distribution, for

some positive real sequence mT → ∞, and (ii) the process G(δ,FT ) − G(δ,F) converges

uniformly to zero with high probability.7

The second high-level assumption is that the goal G(δ,F) is Lipschitz continuous as a

function of δ, and, furthermore, the neighborhood of every weak SAO δ1 ∈ ∆?

(U ,K,F) contains

strict SAOs δ2 ∈ ∆�(U ,K,F) whenever strict SAOs exist, so that the strict SAO set ∆�(U ,K,F) is

equivalent to the larger weak SAO set ∆?

(U ,K,F) in terms of the feasible values of the objective

function. 8

Under these two assumptions, it can be shown that the empirical optimal value of the goal

function G(δ∗,FT ) approximates its latent population value G(δ∗,F) with high probability,

and that any portfolio at which the empirical solutions accumulate will be a population

optimal SAO. Among other things, these consistency results imply that the probability of

two relevant types of decision errors vanishes asymptotically: (I) selecting an empirical SAO

which is not a population SAO and (II) selecting a suboptimal SAO due to the false exclusion

7Low-level statistical assumptions that are standard in empirical finance can be used in order to ensure (i)
and (ii). Stationarity and ergodicity of the return process, coupled with the compactness of X ×∆ and the
Lipschitz continuity of G with continuous modulus, would imply the uniform convergence required in (ii),
due to Birkhoff’s ULLN. If ergodicity is strengthened to strong mixing with sufficiently rapidly vanishing
mixing coefficients, then along with the compactness of X , the subsequent boundedness of D(·, ·, ·,F) and
the uniform (in u) Lipschitz continuity property of D(u, ·, ·,F), it would imply that (i) holds with mT being
the standard

√
T rate and with limiting Gaussianity.

8A mild sufficient condition for the neighborhood assumption can be obtained by generalizing the Weak
Independence assumption of Post, Karabatı and Arvanitis (2018) to the assumption that, for any non
constant, locally linear v, there exists some δ(v)∈ ∆?(U,K,F), such that D(v,κ, δ(v),F) > 0, for any κ ∈ K.

This ’Joint Enhancement’ condition is much weaker than the strict SAO condition, as it allows for different
overlays δ(v) for different utility functions v on the boundary of cl (U).
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of better SAOs.

For Type I error, the reasoning is as follows. An overlay which is not a weak SAO, or

δ /∈ ∆�(U ,K,F), features at least one strict inequality D(u,κ, δ,F) < 0, for some (u,κ) ∈ U×K.

Since strict inequalities are robust to sampling variation, the probability that such an overlay

is falsely included in the empirical SAO set, or δ ∈ ∆�(U ,K,FT ), is asymptotically negligible.

For analyzing Type II error, we face a non-vanishing probability of false exclusion of popu-

lation non-strict SAOs δ ∈
(

∆�(U ,K,F) −∆�(U ,K,F)

)
, which feature equivalence D(u,κ, δ,F) =

0, for some (u,κ) ∈ U ×K. However, these non-strict SAOs can be approximated by equiv-

alent sequences of strict SAOs δT ∈ ∆�(U ,K,F) which feature asymptotically strict (scaled)

empirical inequalities mTD(u,κ, δT ,FT ) > 0 for all (u,κ) ∈ U × K, and are therefore

included in ∆�(U ,K,FT ) with high probability. Convergence of G(δ,FT )−G(δ,F) and the con-

tinuity of the goal imply then that the relevant approximating sequences of optimal elements

of ∆?

(U ,K,F) are also approximately empirically optimal.

The statistical theory can be extended to cases where F is a conditional distribution

and/or estimated using alternative non-parametric methods or (semi-)parametric models.

The estimation may be based on a well-specified (semi-)parametric model or a fully non-

parametric method, depending on the data properties and available side information. (Quasi)

Maximum Likelihood or Nadaraya-Watson type estimators could be employed respectively.

Standard assumptions that involve smoothness of the associated likelihood function, or reg-

ularity properties of the unknown densities involved and the associated kernels, would suffice

to obtain consistency.

It is also possible to include stochastic constraints in K and ∆, for example, constraints

on Value-at-Risk and risk factor loadings. The statistical analysis can be extended to cover

such additional constraints incorporating in the asymptotic analysis the additional sources

of stochasticity.

18



2.5.2 Empirical Likelihood Ratio (ELR) test

Beyond consistent set estimation, our framework can also be used for statistical inference

about the set of SAOs. The null hypothesis H0 : δ ∈ ∆?

(U ,K,F) can be tested in sample for

a given arbitrage portfolio δ ∈ ∆?

(U ,K,F) or out of sample for an arbitrage portfolio which

is optimal in a given sample. A consistent and asymptotically conservative test about H0

can be based on an ELR statistic, in the spirit of Davidson and Duclos (2014), Post and

Poti (2017) and Post (2017). The ELR test is based on the smallest adjustments to the

probability mass of the ECDF which suffice to qualify the evaluated arbitrage portfolio as

a weak SAO, using the Kullback-Leibler divergence from the optimal distribution to the

historical ECDF.

The test statistic can be computed by solving the following Minimum Relative Entropy

problem:

min KL (FT ||F ) (8)

s.t. δ ∈∆?

(U ,K,F );

F ∈ Φ.

Here, the divergence is defined as KL (FT ||F ) :=
∑T

t=1 fT (xt) ln(fT (xt)/f(xt)), where Φ

is the set of discrete distributions with the same support as the ECDF. Since the distribution

function F is discrete, only the probability mass levels f(xt), t = 1, · · · , T , need to be

determined, and the Minimum Relative Entropy problem reduces to a standard, finite Convex

Optimization problem, if also U (0) and K(0) are discrete.

The test statistic is defined as ELR = 2T · KL (FT ||F (δ)), with F (δ) the solution of

(8). The exact null distribution of ELR is not known, but we obtain an asymptotically

conservative test using the central chi-squared distribution with degrees of freedom equal to
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NK := card(K(0)), the number of extreme points of K. The number of degrees of freedom

reflects that stochastic enhancement of the vertices of the benchmark set is a necessary and

sufficient condition for being a SAO.

The χ2
NK

distribution is the exact asymptotic distribution for an ELR test statistic for

standard moment equalities D(u,κi, δ,F) = 0 i = 1, · · · , NK , for a given arbitrage portfolio

δ ∈ ∆ and given utility function u ∈ U , if the data are serially IID distributed. This known

distribution majorizes the latent distribution of the ELR test statistic in large samples, and

can be used for conservative inference, if the moment conditions are inequalities and the

utility function is endogenously selected from U .

When the number of vertices is large, a potentially less conservative test can be obtained

by choosing the degrees of freedom by moment selection procedures; see for example Andrews

and Soares (2010). Exact tests can be constructed by combining moment selection and

bootstrap resampling in the spirit of Canay (2010).

In our application to monthly returns of diversified equity portfolios, temporal depen-

dence seems limited compared to mutual dependence. For applications with more pro-

nounced temporal dependence, the ELR test can be efficiently modified using a blockwise

approach.

Smoothed Empirical Likelihood and parametric Likelihood Ratio tests can respectively

replace the ELR test used for statistical inference, in cases where F is estimated using kernel

based non-parametric methods or parametric models.

3 Factor Investing

Our framework is used to analyze historical investment returns to equity factor portfolios

from the empirical asset pricing literature. We analyze whether individual factor portfolios

are SAOs and whether multiple factor portfolios can be combined to form SAOs. The focus
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is on all risk-averse investors, or U = U2, or the SSD criterion.

Monthly percentage total returns to various benchmark portfolios and factor portfolios

are taken from Kenneth French’ online library.9 The sample period is from July 1963 through

December 2021 (702 months), the longest period for which data for all factor portfolios is

available at the time of writing. The CDF is estimated using the ECDF, FT . The analysis

considers three non-overlapping sub-periods (1963-1982, 1983-2002, 2003-2021), to perform

statistical tests out of sample.

3.1 Equity benchmark portfolios

Three alternative specifications of the benchmark set are used: K1,K10 and K49. K1 considers

only the value-weighted market index – the traditional approach to enhanced benchmarking.

The two alternative specifications consider all convex mixtures of multiple standard portfolios

that are formed and annually re-balanced by grouping individual stocks based on their

four-digit Standard Industrial Classification (SIC) codes. K10 considers 10 value-weighted

industry portfolios; K49 considers 49 value-weighted industry portfolios.

We will distinguish between the benchmark set K = K1,K10,K49 that is used for con-

structing SAOs and the benchmark set K′ = K1,K10,K49 that is used for evaluating whether

a given overlay is a SAO. This dichotomy allows us to analyze how far an overlay that is

constructed for one benchmark set (K) is from being a SAO for another benchmark set

(K′ 6=K).

Table 1 gives summary statistics for the 10 industry portfolios; for brevity, statistics for

the 49 industry portfolios are not tabulated here. The portfolios show substantial variation in

average return, standard deviation, skewness and annualized Sharpe Ratio (SR), and hence

represent a diverse range of initial positions. A SAO will have to enhance expected utility

for all combinations of these portfolios.

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.
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Table 1: Equity Industry Benchmark Portfolios: 1963-2021
NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

Marg. Mean 1.043 1.046 0.989 0.977 1.104 0.851 1.085 1.083 0.832 0.961

Distr. StDev 4.235 6.803 4.914 5.933 6.336 4.615 5.115 4.799 4.003 5.289

(Net) Skew -0.298 0.677 -0.498 0.064 -0.240 -0.198 -0.218 0.030 -0.140 -0.492

SR (ann.) 0.553 0.344 0.437 0.356 0.401 0.364 0.485 0.517 0.403 0.388

Corr. NoDur 1 0.63 0.81 0.49 0.59 0.63 0.82 0.75 0.62 0.82

Matrix Durbl 0.63 1 0.80 0.49 0.66 0.57 0.73 0.51 0.40 0.76

Manuf 0.81 0.80 1 0.63 0.77 0.65 0.82 0.71 0.52 0.90

Enrgy 0.49 0.49 0.63 1 0.44 0.44 0.44 0.43 0.51 0.60

HiTec 0.59 0.66 0.77 0.44 1 0.61 0.72 0.62 0.31 0.71

Telcm 0.63 0.57 0.65 0.44 0.61 1 0.63 0.54 0.50 0.68

Shops 0.82 0.73 0.82 0.44 0.72 0.63 1 0.68 0.46 0.82

Hlth 0.75 0.51 0.71 0.43 0.62 0.54 0.68 1 0.46 0.70

Utils 0.62 0.40 0.52 0.51 0.31 0.50 0.46 0.46 1 0.56

Other 0.82 0.76 0.90 0.60 0.71 0.68 0.82 0.70 0.56 1

(Down) ALL 0.78 1.21 1.03 0.87 1.23 0.77 0.99 0.82 0.51 1.10

Market Perc50 0.78 1.16 1.04 0.94 1.13 0.79 0.93 0.73 0.53 1.14

Beta Perc25 0.81 1.20 1.04 0.92 1.13 0.80 0.94 0.74 0.52 1.12

Perc10 1.01 1.41 1.22 0.98 1.01 0.58 1.11 0.74 0.54 1.14

The correlation matrix shows generally high positive correlations, as is typical for diver-

sified long-only portfolios in the same asset class and the same country. The possibilities

for risk reduction through diversification across the benchmarks are therefore limited. Neg-

ative correlations could however be introduced through short positions, notably by adding

properly chosen arbitrage portfolios as overlays to the benchmarks.

The table also shows the regular market beta and the downside beta for the 50%, 25%

and 10% of worst market returns. A SAO will have to enhance both benchmarks for cyclical

industries such as Consumer Durables (Durbl) and benchmarks for non-cyclical industries

such as Utilities (Utls). It will also have to account for the non-linear dependency that is

reflected in the divergence between the downside betas and the regular betas.
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3.2 Equity factor portfolios

The overlay set ∆ consists of all convex combinations of seven factor portfolios. The fac-

tor portfolios are arbitrage portfolios which consist of long positions in one equity market

segment and short positions in another segment. The market segments are defined as the in-

tersections of two groups of stocks based on market capitalization of equity and three groups

based on a particular second stock characteristic (which is different for different factor port-

folios).

The first four factor portfolios are based on the non-market factors of Fama and French

(2015): Small Minus Big (SMB), High Minus Low (HML), Robust Minus Weak (RMW)

and Conservative Minus Aggressive (CMA).10Three additional factor portfolios are based on

the research on trading strategies based on past realized return by Jegadeesh (1990), Je-

gadeesh and Titman (1993), and De Bondt and Thaler (1987): Short-Term Reversal (STR),

Intermediate-Term Momentum (ITM) and Long-Term Reversal (LTR). We were reluctant

to include a larger number of factor portfolios, to limit the risk of overfitting to the data.

Since factor portfolios take positions in small cap stocks and are periodically rebalanced,

trading costs must be taken into account for practical implementation; see, for example,

Frazzini, Israel and Moskowitz (2015), Novy-Marx and Velikov (2016), and Patton and Weller

(2020). The costs naturally depend on the portfolio size and the trading infrastructure and

brokerage services available to a specific investor.

In this study, we use cost estimates by Frazzini, Israel and Moskowitz (2015, Table VIII

Panel A). They use proprietary transaction data to estimate the lowest costs at which factor

portfolios can be replicated. For a Net Asset Value of USD 100 million, the minimum costs

to replicate SMB, HML, STR and ITM subject to a 1% tracking error restriction is estimated

at 0.21%, 0.57%, 2.14% and 6.17% per annum, respectively. We assume here that RMW,

CMA and LTR have the same costs as HML (0.57%), because these portfolios have similar

10The market factor (RMRF) is not included here, as it can only be used to change the level of financial
leverage and market exposure and not to take concentrated positions in a particular stock market segment.
Unreported results show that including RMRF does not affect our results and conclusions.
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turnover. We study the robustness of our results to doubling, tripling or quadrupling the

cost estimates.

It should be stressed that the trading costs of a mixture of multiple factor portfolios is

likely to be lower than computed using linear interpolation, because individual stocks may

appear in the long leg of some factor portfolios and in the short leg of other factor portfolios,

which reduces the overall portfolio turnover and trading costs, as pointed out by DeMiguel,

Martin-Utrera, Nogales and Uppal (2020).

Table 2 gives summary statistics for the seven factor portfolios. Also included is the

Equal-Weighted Portfolio (EWP) which can be seen as a heuristic and robust solution to the

arbitrage portfolio selection problem. The average return, standard deviation, skewness and

annualized Information Ratio (IR) vary considerably across the factor portfolios. CMA and

STR stand out among these portfolios, with an appealing combination of positive skewness

and high IR. The low correlations point at significant possibilities for risk reduction through

diversification across multiple factors. Indeed, the EWP achieves an impressive IR of 1.013

(before tradings costs).

Attractively, RMW and CMA have negative downside betas. These factor portfolios are

expected to reduce downside risk when they are added as an overlay to a standard stock

portfolio. By contrast, the other factor portfolios and the EWP have a positive downside

beta, which makes these portfolios less suitable for downside risk reduction.

The bottom panel shows p-values for the ELR test for being a SAO (after trading costs)

for K′ = K1,K10,K49 and the full sample period. If the value-weighted index is the only

benchmark (K′ = K1), RMW and CMA are the only factor portfolios that do not significantly

violate the SAO conditions. If the benchmark set is enlarged to K′ = K49, then only CMA

passes the ELR test (p-value: 0.133). The EWP is a borderline case which comes close to

being a SAO (p-value: 0.099). Despite its high gross IR, the positive downside beta and

relatively high trading costs limit the appeal of this arbitrage portfolio. Of course, it is

possible that transactions costs for EWP are lower than assumed here after the netting of
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Table 2: Equity Factor Portfolios: 1963-2021
SMB HML RMW CMA STR ITM LTR EWP

Marg. Mean 0.229 0.269 0.270 0.262 0.481 0.629 0.204 0.335

Distr. StDev 3.034 2.901 2.210 1.977 3.133 4.208 2.572 1.145

(Gross) Skew 0.343 0.007 -0.296 0.324 0.431 -1.281 0.548 0.950

IR (ann.) 0.262 0.321 0.423 0.460 0.532 0.518 0.275 1.013

Corr. SMB 1 -0.02 -0.35 -0.09 0.17 -0.06 0.34 0.40

Matrix HML -0.02 1 0.09 0.67 0.04 -0.22 0.48 0.60

RMW -0.35 0.09 1 -0.03 -0.09 0.09 -0.28 0.09

CMA -0.09 0.67 -0.03 1 -0.11 -0.03 0.48 0.54

STR 0.17 0.04 -0.09 -0.11 1 -0.31 0.12 0.30

ITM -0.06 -0.22 0.09 -0.03 -0.31 1 -0.11 0.28

LTR 0.34 0.48 -0.28 0.48 0.12 -0.11 1 0.65

(Down) ALL 0.192 -0.138 -0.097 -0.168 0.215 -0.151 0.011 -0.019

Market Perc50 0.285 -0.057 -0.121 -0.169 0.241 -0.021 -0.002 0.022

Beta Perc25 0.277 -0.065 -0.090 -0.174 0.264 -0.042 -0.030 0.020

Perc10 0.404 0.062 -0.042 -0.093 0.266 0.019 0.113 0.104

Costs (ppa) 0.21 0.57 0.57 0.57 2.14 6.17 0.57 1.54

P-values K′ = K1 0.000 0.368 1 1 0.000 0.072 0.011 0.157

K′ = K10 0.001 0.050 0.191 0.256 0.000 0.057 0.060 0.120

K′ = K49 0.000 0.000 0.004 0.133 0.000 0.001 0.000 0.099

off-setting stock positions.

Table 3 summarizes results for the three subperiods. The appeal of the factor portfolios

clearly declines over time. In the third subperiod, five out of seven portfolios have nega-

tive average returns, and none of the portfolios is a SAO for K′ = K49. This pattern is

consistent with existing evidence about out-of-sample and post-publication decline of return

predictability in the US stock market due to data snooping effects and/or increased arbitrage

activity; see for example, McLean and Pontiff (2016) and Jacobs and Müller (2020).

3.3 Optimized overlay portfolios

The next question is whether the factor portfolios can be combined to form robust SAOs,

given the low correlation between the factor portfolios. To answer this question, we engineer
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Table 3: Equity Factor Portfolios: Three Subperiods
SMB HML RMW CMA STR ITM LTR EWP

Marg. Mean 0.541 0.404 -0.018 0.269 0.292 0.741 0.464 0.385

Distr. StDev 3.195 2.602 1.627 2.003 2.688 3.639 2.568 0.974

(Net) Skew 0.207 -0.156 0.062 0.027 0.956 -0.480 0.875 0.446

’63-’82 IR (ann.) 0.586 0.537 -0.037 0.465 0.377 0.706 0.626 1.369

P-values K′ = K1 0.000 1 0.048 1 0.007 0.165 1 1

K′ = K10 0.011 0.593 0.012 1 0.010 0.139 0.727 0.952

K′ = K49 0.000 0.216 0.000 1 0.000 0.078 0.106 0.241

Marg. Mean -0.044 0.418 0.490 0.399 -0.039 0.758 0.258 0.320

Distr. StDev 3.274 3.208 2.883 2.297 3.583 4.462 2.466 1.282

(Net) Skew 0.524 0.321 -0.647 0.331 0.309 -0.730 0.702 2.105

’83-’02 IR (ann.) -0.046 0.451 0.589 0.602 -0.037 0.588 0.363 0.865

P-values K′ = K1 0.077 1 1 1 0.013 0.261 0.337 0.739

K′ = K10 0.046 0.017 0.286 0.173 0.001 0.063 0.254 0.393

K′ = K49 0.000 0.003 0.032 0.173 0.000 0.063 0.013 0.177

Marg. Mean 0.140 -0.174 0.188 -0.035 -0.364 -0.172 -0.270 -0.098

Distr. StDev 2.543 2.824 1.870 1.515 3.028 4.426 2.639 1.100

(Net) Skew 0.184 -0.379 0.207 0.376 0.329 -2.301 0.181 -0.482

’03-’21 IR (ann.) 0.190 -0.213 0.347 -0.080 -0.417 -0.135 -0.354 -0.310

P-values K′ = K1 0.012 0.037 1 0.570 0.002 0.288 0.001 0.060

K′ = K10 0.001 0.016 0.320 0.208 0.000 0.156 0.000 0.005

K′ = K49 0.000 0.000 0.031 0.001 0.000 0.001 0.000 0.000
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empirical SAOs using numerical optimization.

The objective is to maximize the average return subject to the empirical SAO conditions

and the position limits δi ≥ 0, i = 1, · · · , 7, and
∑7

i=1 δi ≤ 1. The position limits are imposed

to enhance the robustness of the solutions and the comparability with the individual factor

portfolios (which obey the same restrictions). Since the factor portfolios already include

short positions in particular stock market segments, negative positions are not required to

allow for short sales in this application.

The overlay choice problem is solved for K = K1,K10,K49. We use the numerical strategy

for U = U2 and polyhedral K that is described in Section 2.4.11Transactions costs for mixed

factor portfolios are computed in a conservative way using linear interpolation (ignoring the

netting of off-setting stock positions). The ELR test that is described in Section 2.5.2 is

used to test whether the overlays that are constructed for K = K1,K10,K49 are SAO for

K′ = K1,K10,K49.

For the sake of comparison, a second set of overlays is formed based on the Mean-Variance

Dominance (MVD) criterion by maximizing average return subject to lowering the standard

deviation for every benchmark portfolio. Comparison is also made with the ’naive’ EWP.

Table 4 summarizes the results for the full sample period. Shown are the overlay com-

position, performance measures, market betas, and p-values for the ELR test for K′ =

K1,K10,K49.

If the value-weighted market index is the only benchmark (K = K1), the optimal SSD

overlay diversifies across four factor portfolios: HML, RMW, CMA and ITM. As the bench-

mark set is enlarged to K = K10,K49, the optimal overlay becomes more concentrated in

RMW and CMA, the results become more negatively skewed and downside beta becomes

11The full optimization problem is max
{
EFT

[x′δ] : δ ∈ ∆�(U,K,FT )

}
. The continuous benchmark set K =

K1,K10,K49 is replaced by the set of its extreme elements K(0), that is, the 1, 10 or 49 benchmark portfolios.

The utility function set U2 is replaced by U (0)
2 , the set of elementary Russell and Seo (1989) utility functions

v2;φ(x) = − (φ− x)+, φ ∈ [a, b], where the sample range [a, b] is discretized using 50 equally-spaced grid
points. The non-smooth enhancement constraints D(v2;φ,κ, δ,FT ) ≥ 0 are relaxed to an equivalent system
of linear inequalities, for discrete distributions, as in Rockafellar and Uryasev (2000).
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negative.

The MVD overlays differ in important ways from the SSD overlays. For K = K10,K49,

the MVD overlay struggles to reduce the risk of non-cyclical industries such as Utilities.

Instead of mixing RMW and CMA, the MVD overlay lowers variance by shrinking the

overlay portfolio; the sum of the weights is only 0.28. The resulting arbitrage portfolio has

a lower mean, lower skewness and lower IR than the SSD overlay.

The above analysis uses fixed portfolio weights for the entire sample period and, in

addition, the statistical tests were performed in sample which has the effect of inflating the

p-values. To explore robustness and statistical significance, the overlay choice problem for

K = K10 was also solved for each of the three subperiods. For the first two subperiods (1963-

1982 and 1983-2002), we can test whether the optimal overlay is a SAO for K′ = K1,K10,K49

in the subsequent subperiod (1983-2002 and 2003-2021, respectively).

The results are shown in Table 5. Despite the general decline in profitability of factor

investing, the SSD overlay is a SAO out of sample; even in the third subperiod (2003-2021)

and for K′ = K49, the ELR test cannot be rejected (p-value: 0.267). The composition of

the overlay changes substantially over time, with less focus on past-return factors (STR and

ITM) and more focus on fundamental factors (RMW and CMA). Despite these changes,

the overlays which are optimized in a given subperiod do not significantly violate the SAO

conditions in the subsequent period. Since the individual factor portfolios are not SAOs (see

Table 3), the results critically depend on diversification across multiple factors.

The MVD overlay trails the SSD overlay in terms of average return in every subperiod.

The table also reveals that the MVD portfolio for the second subperiod is not a SAO for

K′ = K49 out of sample (p-value: 0.000). In the third subperiod, the MVD criterion struggles

to find arbitrage opportunities and the optimal overlay becomes small.

The cost estimates by Frazzini, Israel and Moskowitz (2015) can be seen as a lower

bound for the costs of replicating the individual factor portfolios, for most investors. Table

6 analyzes the robustness of the results to doubling, tripling or quadrupling the estimated
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Table 4: Optimized Overlay Portfolios: 1963-2021
U SSD MVD EWP

K K1 K10 K49 K1 K10 K49

Weights SMB 0.05 0.00 0.02 0.14

HML 0.32 0.01 0.02 0.22 0.00 0.14

RMW 0.09 0.34 0.34 0.13 0.00 0.14

CMA 0.16 0.30 0.28 0.21 0.05 0.17 0.14

STR 0.03 0.14

ITM 0.43 0.16 0.13 0.57 0.13 0.11 0.14

LTR 0.02 0.00 0.11 0.14

Sum 1 0.91 0.78 1 0.44 0.28 1

Marg. Mean 0.319 0.228 0.201 0.352 0.120 0.086 0.206

Distr. StDev 1.996 1.146 1.109 2.452 0.669 0.560 0.145

(Net) Skew -0.951 0.436 0.440 -1.256 -0.464 -0.847 0.950

IR 0.554 0.689 0.627 0.497 0.622 0.533 0.624

(Downside) ALL -0.15 -0.09 -0.10 -0.15 -0.04 -0.05 -0.02

Market Perc50 -0.07 -0.07 -0.09 -0.06 -0.02 -0.03 0.02

Beta Perc25 -0.08 -0.07 -0.09 -0.07 -0.03 -0.03 0.02

Perc10 0.01 -0.01 -0.03 0.01 0.01 -0.01 0.10

P-values K′ = K1 1 1 1 0.448 0.841 1 0.322

K′ = K10 0.272 1 1 0.218 0.325 0.846 0.120

K′ = K49 0.163 0.361 1 0.161 0.295 0.342 0.099

costs. As the trading costs increase, and the net IRs of all factor portfolios fall, the SSD

overlay becomes more concentrated in CMA, which maintains positive IR, positive skewness

and negative downside beta, for every cost level. The MVD overlay becomes more similar

to the SSD overlay as costs are increased, by reducing the relative weight of the high-cost

ITM, but it increases the relatively weight of the negatively-skewed RMW.

The profitability of both overlays goes to zero for the highest cost level (four times the

original estimates), which underlines the importance of cost-efficient implementation. Both

overlays are however superior to the EWP which is partly committed to the high-turnover

strategies based on past returns (STR and ITM).
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Table 5: Out-of-sample tests for in-sample SAOs (K = K10)
U SSD MVD EWP

Period ’63-’82 ’83-’02 ’03-’21 ’63-’82 ’83-’02 ’03-’21 ’63-’82 ’83-’02 ’03-’21

Weights SMB 0.17 0.00 0.14 0.14 0.14

HML 0.07 0.14 0.14 0.14

RMW 0.26 0.85 0.16 0.10 0.20 0.14 0.14 0.14

CMA 0.34 0.15 0.10 0.14 0.14 0.14

STR 0.40 0.21 0.06 0.03 0.14 0.14 0.14

ITM 0.60 0.20 0.15 0.30 0.08 0.07 0.14 0.14 0.14

LTR 0.25 0.12 0.14 0.14 0.14

Sum 1 1 1 1 0.61 0.28 1 1 1

In-sample Mean 0.875 0.574 0.200 0.543 0.228 0.049 0.385 0.320 -0.098

Distr. StDev 1.987 1.505 1.792 1.213 0.878 0.517 0.974 1.282 1.100

(Net) Skew 0.000 0.973 -0.224 -0.518 1.185 -0.674 0.446 2.105 -0.482

IR 1.525 1.322 0.386 1.550 0.902 0.325 1.369 0.865 -0.310

Out-of-sample Mean 0.753 0.097 0.577 0.029 0.320 -0.098

Distr. StDev 2.641 1.092 1.776 0.679 1.282 1.100

(Net) Skew 0.230 -2.046 0.224 0.040 2.105 -0.482

IR 0.988 0.307 1.126 0.149 0.865 -0.310

P-values K′ = K1 0.284 1.000 0.533 0.305 0.739 0.060

Out-of-sample K′ = K10 0.209 0.321 0.360 0.159 0.393 0.005

K′ = K49 0.153 0.267 0.314 0.000 0.177 0.000

Table 6: The Effect of Trading Costs: 1963-2021; K = K10

U SSD MVD EWP

Costs 1x 2x 3x 4x 1x 2x 3x 4x 1x 2x 3x 4x

Weights SMB 0.05 0.09 0.07 0.026 0.02 0.03 0.05 0.06 0.14 0.14 0.14 0.14

HML 0.01 0.01 0.14 0.14 0.14 0.14

RMW 0.34 0.28 0.13 0.087 0.13 0.14 0.14 0.12 0.14 0.14 0.14 0.14

CMA 0.30 0.35 0.30 0.251 0.05 0.06 0.08 0.09 0.14 0.14 0.14 0.14

STR 0.03 0.14 0.14 0.14 0.14

ITM 0.16 0.11 0.08 0.012 0.13 0.12 0.10 0.06 0.14 0.14 0.14 0.14

LTR 0.02 0.01 0.11 0.10 0.07 0.03 0.14 0.14 0.14 0.14

Sum 0.91 0.84 0.58 0.38 0.44 0.45 0.43 0.36 1 1 1 1

Marg. Mean 0.228 0.156 0.072 0.028 0.120 0.083 0.049 0.020 0.206 0.078 -0.051 -0.179

Distr. StDev 1.146 1.006 0.721 0.517 0.669 0.633 0.561 0.416 0.145 1.145 1.145 1.145

(Net) Skew 0.436 0.874 0.720 0.809 -0.464 -0.291 0.021 0.577 0.950 0.950 0.950 0.950

IR 0.689 0.537 0.348 0.189 0.622 0.455 0.301 0.169 0.624 0.235 -0.145 -0.543

(Down) ALL -0.09 -0.09 -0.06 -0.05 -0.04 -0.04 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02

Market Perc50 -0.07 -0.07 -0.05 -0.05 -0.02 -0.02 -0.02 -0.02 0.02 0.02 0.02 0.02

Beta Perc25 -0.07 -0.06 -0.05 -0.05 -0.03 -0.02 -0.02 -0.02 0.02 0.02 0.02 0.02

Perc10 -0.01 -0.01 -0.01 -0.02 0.01 0.01 0.02 0.01 0.10 0.10 0.10 0.10

P-values K′ = K1 1 1 1 1 0.841 0.771 0.724 0.821 0.322 0.226 0.000 0.000

K′ = K10 1 1 1 1 0.325 0.307 0.301 0.300 0.120 0.086 0.000 0.000

K′ = K49 0.361 0.317 0.311 0.508 0.295 0.273 0.218 0.138 0.099 0.001 0.000 0.000
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4 Concluding Remarks

The application to factor investing uncovers robust SAOs for all risk-averse investors who

are endowed with an equity portfolio with an arbitrary industry composition and who have

sufficiently low tradings costs. Combinations of multiple factor portfolios are more likely

to be a SAO than individual factor portfolios, due to the low correlation between factor

portfolios.

Particularly appealing seems the combination of the RMW and CMA factor portfolios

due to their favorable properties of high IR, weak mutual correlation and negative downside

beta. SMB, HML and LTR don’t play a significant role due to their lower IR and positive

downside beta. STR and ITM also play a limited role due to the relatively high trading costs;

they may however become more important if the cost calculation takes into account the effect

of the netting of offsetting positions in individual stocks in the various factor portfolios.

The results point at active trading opportunities for investors with the assumed prefer-

ences, endowments and cost levels. The results also suggest that admissible SDFs for the

factor portfolios do not take the shape of the IMRS for a risk-averse stock investor, which

challenges a class of equilibrium models, unless sufficiently high transactions costs are as-

sumed. Given that the optimal overlays are not PAOs, the results are however consistent

with the existence of non-negative SDFs with non-standard shapes.

Given the out-of-sample and post-publication decline in return predictability, naive ex-

trapolation should however be avoided and active investors in search of SAOs are probably

well-advised to periodically update the investment universe of factor portfolios based on the

prevailing economic conditions and contemporaneous research findings.

The analysis also shows that skewness and non-linear dependence play an important role

for factor portfolios, and that an analysis based on mean and variance alone may lead to

false conclusions and suboptimal choice (witness the results for the subperiods 1983-2002

and 2003-2021 in Table 5). The SSD overlays are also superior out of sample to a heuristic

equal-weighted strategy which ignores average returns, risk levels, trading costs and the
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dependency structure of the factor portfolios.

An earlier version of this study included an empirical application to S&P500 equity

index (SPX) options combinations in the spirit of Constantinides, Czerwonko and Perrakis

(2000) and Post and Rodriguez Longarela (2001). In that application, the case for multiple

benchmarks is weaker than for the present application to factor investing, for a number of

reasons. First, the S&P500 index seems an obvious benchmark in that case, as SPX options

are generally used for altering the risk profile of stock portfolios which resemble the S&P500

equity index. Second, the payoffs of SPX options depend only on the S&P500 index, and

hence the SDF for options is also expected to depend on the index. Third, the SPX options

market is relatively close to being dynamically complete (which limits the possible shapes

of the SDF) due to the possibility to replicate index options using dynamic combinations of

stocks and bills.
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Appendix: Proofs

Proof of Proposition 2.2.3. Proof by contradiction. If some δ ∈ ∆ is a SAO but not a

PAO, then it must have either (i) PF [x′δ = 0]=1 or (ii) PF [x′δ < 0]>0. Case (i) contradicts

strict stochastic enhancement of any κ ∈ K; case (ii) implies PF [x′ (κ0 + δ) < c] > 0 and

EF [u(x′ (κ0 + δ))] < u(c), which contracts stochastic enhancement of the riskfree κ0, for all

u ∈ cl (U) ∩ U2(c).�

Proof of Theorem 2.3.1. By Definition 2.2.2, δ is not a strict SAO, δ /∈ ∆�(U ,K,F), iff(
EF
[
u(xT (κ+ δ))− u(xTκ)

]
≤ 0
)
, for some (u,κ) ∈ U×K. Due to concavity of the utility

function, this condition is equivalent to λ = κ being the optimum for supλ∈Θ EF
[
u(xTλ)

]
,

for feasible set Θ := {λ ∈ Λ0 : λ = κ+ θδ; θ ∈ [0, 1]}. The necessary and sufficient Karush-

Kuhn-Tucker condition therefore implies δ /∈ ∆�(U ,K,F) iff EF
[
u′(xTκ)x

]T
δ ≤ 0 for some
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(u,κ) ∈ U ×K. Since the scaling of marginal utility by the scalar d(u,κ) does not affect the

optimality condition, this condition is equivalent to EF
[
m(x)xTδ

]
≤ 0 for somem ∈M(U ,K).

Hence, ∆�(U ,K,F) = Ø if and only if

sup
∆

inf
M(U,K)

(
EF
[
m(x)xT

]
δ
)
≤ 0⇔ (9)

sup
∆

inf
conv(M(U,K))

(
EF
[
m(x)xT

]
δ
)
≤ 0⇔ (10)

inf
conv(M(U,K))

sup
∆

(
EF
[
m(x)xT

]
δ
)
≤ 0⇔ (11)

inf
conv(M(U,K))

{
aTσ : EF [m(x)x] = ATσ;σ ≥ 0R

}
≤ 0⇔ (12)

(EF [m(x)x] ∈ ∆∗) for some m ∈conv
(
M(U ,K)

)
. (13)

The convexification of the feasible set of inner minimization problem, M(U ,K), in (10) is

allowed because the objective function is a bilinear map ∆ ×M(U ,K) → R. The reversal

of the order of the optimization operators in (11) is allowed by the Kneser-Fan Minimax

Theorem, because the feasible sets for both optimization operators are convex. The equiva-

lent formulation (12) is based on the dual formulation of the embedded, linear maximization

problem over ∆.�
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