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Abstract

We derive non‐asymptotic concentration inequalities for the uniform deviation between

a multivariate density function and its non‐parametric kernel density estimator in stationary

and uniform mixing time series framework. We derive analogous inequalities for their (first)

Wasserstein distance, as well as for the deviations between integrals of bounded functions

w.r.t. them. They can be used for the construction of confidence regions, the estimation of

the finite sample probabilities of decision errors, etc. We employ the concentration results to

the derivation of statistical guarantees and oracle inequalities in regularized prediction prob‐

lems with expected costs exhibiting Lipschitz and strong convexity properties.
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1 Introduction

In the present note we are occupied with the derivation of non‐asymptotic concentration inequal‐

ities for the uniform deviation between amultivariate density function and its non‐parametric ker‐

nel density estimator over the support of the former. We employ a time series setting consisting

of multivariate stationary processes with summable uniform (phi‐) mixing coefficients (see David‐

son [2]). We rely heavily on the iid results of Vogel and Schettler [11], adjusting their proofs via the

use of convenient Hoeffding‐type and covariance inequalities for uniformly mixing processes. Re‐

garding the two underlying probability measures, we readily derive analogous probability bounds

for their (first) Wasserstein distance, as well as for the deviations between integrals of bounded

functions w.r.t. them. Those hold uniformly w.r.t. the sample size. The inequalities can be used for

the construction of confidence regions, the estimation of the finite sample probabilities of false

inclusion of parameter values in level sets of moment conditions, etc. Extension of the results to

other forms of temporal dependence, like absolute regularity or strong mixing, and subsequently,

application to an empirically relevant wider range of time series models is delegated to further

research.

As an example, we employ the concentration results to the derivation of statistical guaran‐

tees and oracle inequalities in regularized prediction problems with Lipschitz and strongly convex

costs over function spaces. The inequalities imply a uniform non‐asymptotic LLN for the deviation

between the empirical (w.r.t. the kernel estimator) and the population cost differences. This cou‐

pled with the relevant sub‐differential calculus in convex programming, implies a non asymptotic

statistical guarantee for the 𝐿2 deviation between the empirical and the population solutions as

long as the regularization parameter is appropriately dominated. The framework is quite general

and allows for dynamic parameter spaces and population solutions. It includes as special cases

non‐linear Support Vector Machines with Hinge costs.

For the remaining note: in Section 2 we derive and discuss the concentration inequalities, and
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in Section 3 we are occupied with the aforementioned regularized prediction problems. Section 4

contains the proofs.

2 Concentration Inequalities for Kernel Density Estimators

The researcher has at her disposal the time series sample of random vectors (𝑥𝑡)𝑡=1,…,𝑇 , and

estimates 𝑓𝑥, the unknown density of 𝑥0, via the kernel estimator 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−⋅
𝑏𝑇

) with 𝑏𝑇 >
0 the bandwidth. We consider the problem of bounding, uniformly in 𝑇 , the probability that

the uniformdeviation sup𝑦∈𝒳 ∣ 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑦
𝑏𝑇

) − 𝑓𝑥 (𝑦)∣ exceeds an asymptotically negligible

deterministic sequence.

We begin the analysis with an assumption that specifies our probabilistic and statistical frame‐

work. The assumption imposes restrictions on the marginal distributions and the dynamics of the

stochastic process involved in the density estimation. It also restricts the properties of the kernel

technology employed:

Assumption 1. (i) The ℝ𝑛‐valued stochastic process (𝑥𝑡)𝑡∈ℤ is strictly stationary and phi‐mixing,

with absolutely square root summable mixing coefficient sequence (𝜙𝑛)𝑛∈ℕ. (ii) 𝒦 is a positive

symmetric bounded, Lipschitz continuous and compactly supported convolution kernel on ℝ𝑛 such

that

∫ℝ𝑛 𝒦 (𝑢) 𝑑𝑢 = 1, ∫ℝ𝑛 ‖𝑢‖2 𝒦 (𝑢) 𝑑𝑢 < +∞, and (iii) the distribution of 𝑥0 has a compact support

𝒳, and a continuous density 𝑓𝑥 (⋅) that is twice differentiable with continuous second derivatives.

An example of a dynamic multivariate process that satisfies Assumption 1.(i) is given by the

solution of the following stochastic recursion equation (SRE):

𝑥𝑡 = ℎ (𝑥𝑡−1) + 𝑧𝑡,

where (𝑧𝑡)𝑡∈ℤ is an iid sequence of 𝑛‐random vectors, the distribution of 𝑧0 has a density, and
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ℎ ∶ ℝ𝑛 → ℝ𝑛 is a contraction (w.r.t. some metric on ℝ𝑛) with compact range. Theorem 2.1.3 of

Doukhan and Ghindes [3] implies then the requiredmixing property for the unique solution of the

SRE. This incorporates the iid as a special case. If 𝑧0 has also bounded support the compactness

of the support of the distribution of 𝑥0 from the first part of Assumption 1.(i) also holds. The

remaining parts impose mostly usual conditions in non‐parametric statistics (see El Machkouri,

Fan, and Reding [7], and references therein). Boundedness of supports can be generalized as long

as𝒦 has an integrable Fourier transform, and the Hessian of 𝑓𝑥 is bounded in the Frobenius norm.

The following theorem summarizes the result. There, 𝒲 (𝐺, 𝐺⋆) denotes the first Wasser‐

stein distance between the arbitrary distributions on 𝒳, 𝐺, 𝐺⋆, defined as

min𝛾∈Γ(𝐺, 𝐺⋆) ∫𝒳×𝒳 𝑑 (𝑧, 𝑧⋆) 𝑑𝛾 (𝑧, 𝑧⋆), where Γ (𝐺, 𝐺⋆) denotes the set of Borel probability dis‐
tributions on 𝒳 × 𝒳 that have respective marginals 𝐺, 𝐺⋆, and 𝑑 denotes the Euclidean distance

(see Gao, Chen, and Kleywegt [4]). 𝜇 denotes the Lebesguemeasure onℝ𝑛 and diam (𝒳) denotes
the Euclidean diameter of 𝒳.

Theorem 1 (Concentration Inequalities). Suppose that Assumption 1 holds:

A. Uniformly in 𝑇 ≥ 1 and for any 𝑘 > 0,

ℙ ( sup𝑦∈𝒳 ∣ 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑦
𝑏𝑇

) − 𝑓𝑥 (𝑦)∣ > 𝛽𝑇 ,𝑘 ) ≤ 2 exp⎛⎜
⎝

− 𝑘2

2𝐶3 (1 + 2 ∑∞
𝑛=1 𝜙𝑛)2

⎞⎟
⎠

,

(1)

where,𝛽𝑇 ,𝑘 ∶= 𝑘√
𝑇 𝑏𝑛

𝑇
+ 𝐶1

(2𝜋)𝑛√
𝑇 √1+2 ∑∞

𝑛=1 √𝜙𝑛𝑏𝑛
𝑇

+1
2𝐶2𝑏2

𝑇 ,𝐶1 ∶= ∫ℝ𝑛 ∣∫supp(𝒦) 𝒦 (𝑢) exp (i𝑦𝑇 𝑢) 𝑑𝑢∣ 𝑑𝑦,

𝐶2 ∶= sup𝑖,𝑗, 𝑦∈𝒳 ∣𝜕2𝑓𝑥(𝑦)
𝜕𝑥𝑖𝜕𝑥𝑗

∣ ∫supp(𝒦) ‖𝑢‖2 𝒦 (𝑢) 𝑑𝑢, and 𝐶3 ∶= sup𝑢∈supp(𝒦) 𝒦2 (𝑢).
B. Let 𝐹 𝑇 denote the cdf of 1

𝑇 𝑏𝑛
𝑇

∑𝑇
𝑡=1 𝒦 (𝑥𝑡−⋅

𝑏𝑇
), and analogously 𝐹 the cdf of 𝑓𝑥 (⋅). Then, uni‐

formly in 𝑇 ≥ 1, and for any 𝑘 > 0,

ℙ (𝒲 (𝐹 𝑇 , 𝐹 ) > diam (𝒳) 𝜇 (𝒳) 𝛽𝑇 ,𝑘) ≤ 2 exp⎛⎜
⎝

− 𝑘2

2𝐶3 (1 + 2 ∑∞
𝑛=1 𝜙𝑛)2

⎞⎟
⎠

. (2)
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C. Suppose that(ℱ, ‖⋅‖ℱ) is an𝑅‐bounded subset of a semi‐normed space of real functions defined

on 𝒳, and there exists some 𝑐⋆ > 0 for which ‖⋅‖∞ ≤ 𝑐⋆ ‖⋅‖ℱ. Then, uniformly in 𝑇 ≥ 1, and for

any 𝑘 > 0,

ℙ (∣𝔼𝐹 𝑇
(𝑓 (𝑦)) − 𝔼𝐹 (𝑓 (𝑦))∣ > 𝑐⋆𝑅𝜇 (𝒳) 𝛽𝑇 ,𝑘) ≤ 2 exp⎛⎜

⎝
− 𝑘2

2𝐶3 (1 + 2 ∑∞
𝑛=1 𝜙𝑛)2

⎞⎟
⎠

. (3)

The results in (1)‐(3) are non asymptotic. Whenever 𝑏𝑇 = 𝑜 (1)while
√

𝑇 𝑏𝑛
𝑇 → +∞, they can

also provide estimates for the rates of convergence of the deviations considered. The derivation

of (1) essentially follows from the proof of (the iid based) Theorem 1 of Vogel and Schettler [11],

by taking into account Hoeffding type inequalities for functions of bounded differences (see Rio

[8]), and covariance inequalities (see Davidson [2]), for uniform mixing processes. Then, (2)‐(3)

follow from the dual functional representation of 𝒲 of Kantorovich [6], the uniform boundedness

of the function space involved in C, and the compactness of 𝒳. The bounding sequence 𝛽𝑇 ,𝑘

depends on the integral of the Fourier transform of the kernel, the second moment of the kernel,

the magnitude of the Hessian of 𝑓𝑥, the mixing coefficients, the sample size, and the bandwidth.

In the last two cases, 𝛽𝑇 ,𝑘 is complemented by the Lebesgue magnitude and the diameter of

𝒳, and/or the uniform bound and the norm properties of the function space considered. The

probability bound depends on the bound of the kernel and the mixing coefficients. It becomes

tighterwhenever𝒦 admits a lowmaximum, and/or themixing coefficients are small and converge

rapidly to zero.

A and C can be used among others in order to construct non‐asymptotic conservative confi‐

dence sets. For example, (3) implies the of at least 1 − 2 exp(− 𝑘2

2𝐶3(1+2 ∑∞
𝑛=1 𝜙𝑛)2 ) probability,

confidence interval (𝔼𝐹 𝑇
(𝑓 (𝑦)) ∓ 𝑐⋆𝑅𝜆 (𝒳) 𝛽𝑇 ,𝑘) for 𝔼𝐹 (𝑓 (𝑦)), uniformly on ℱ. The estima‐

tion of the supremum of the Hessian of 𝐶2 could be facilitated by the derivation of the kernel
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estimator for the estimation of the derivatives of 𝑓𝑥‐see for example Sheather [10]. The esti‐

mation of the mixing coefficient series can be facilitated by the results in Ahsen and Vidyasagar

[1] and truncation. Alternatively, and given further assumptions on the rate of convergence of

the mixing coefficients, the aforementioned series can be replaced by upper bounds at the cost

of further conservatism. B can be used in order to bound from above the probability of includ‐

ing 𝜃⋆ ∈ {sup𝒲(𝐹 𝑇 ,𝐺)≤𝜆𝑇
𝔼𝐺 (𝑔 (𝜃𝑇 𝑦)) ≤ 0}, while 𝜃⋆ ∉ {𝔼𝐹 (𝑔 (𝜃𝑇 𝑦)) ≤ 0}, for 𝑔 ∶ ℝ →

ℝ, and 𝜃⋆ ∈ Θ ⊆ ℝ𝑛. If 𝑔 is 1‐Lipschitz, Θ is bounded in the Euclidean norm, and 𝜆𝑇 ≥
diam(Θ)diam (𝒳) 𝜇 (𝒳) 𝛽𝑇 ,𝑘, then the probability of falsely classifying 𝜃⋆ in the zero level set

of 𝔼𝐹 (𝑔 (𝜃𝑇 𝑦)), via the use of the conservative statistical program sup𝒲(𝐹 𝑇 ,𝐺)≤𝜆𝑇
𝔼𝐺 (𝑔 (𝜃𝑇 𝑦)),

is bounded above by the rhs of (2).

3 Regularized Prediction Problems with Lipschitz costs

In what follows (ℱ, ‖⋅‖ℱ) conforms to the function space in Theorem 1.C, ℒ is a loss function

on ℝ2, and given the sample (𝑥𝑡)𝑡∈{1,⋯,𝑇 } with 𝑥𝑡 ∶= (𝑦𝑡, X𝑡) with 𝑦𝑡 denoting the response

variables, and X𝑡 the predictors, and we consider the regularized prediction (conditional on 𝑧)
empirical program:

𝑓𝑇 ∶= arg min
𝑓∈ℱ

𝔼𝐹 𝑇
[ℒ (𝑓 (𝑥) , 𝑦)] + 𝜆𝑇 ‖𝑓‖ℱ , (4)

with 𝜆𝑇 > 0 a regularization parameter.

We employ the concentration inequalities of the previous section in order to obtain statistical

guarantees for the 𝐿2 distance between 𝑓𝑇 , and the solution to the population analogue of (4):

inf𝑓∈ℱ 𝔼𝐹 [ℒ (𝑓 (𝑥) , 𝑦)]. This is summarized in the following result.

Theorem 2 (Statistical Guarantees). Suppose that Assumption 1 and the conditions of Theorem

1.C hold. Suppose furthermore that (SG.i) ℱ is convex and uniformly 𝑅‐bounded, and (SG.ii) for
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some 𝐿, 𝜅 > 0, uniformly in the second argument, ℒ (⋅, ⋅) is 𝐿‐Lipschitz and 𝔼𝐹 [ℒ] is 𝜅‐strongly
convex. Let 𝑓⋆ be the unique solution of the population statistical program infℱ 𝔼𝐹 [ℒ (𝑓 (𝑥) , 𝑦)]
and suppose that it lies in the interior of ℱ. Then, and if 𝛽𝑇 ,𝑘 > 𝜆𝑇

2𝑐⋆𝜇(𝒳)𝐿 , the following statistical

guarantees hold:

𝜅 ‖𝑓𝑇 − 𝑓⋆‖2 ≤ 4𝑐⋆𝜇 (𝒳) 𝐿𝑅√𝛽𝑇 ,𝑘 +
√

2𝑅√4𝑐⋆𝜇 (𝒳) 𝐿 (𝜅 + 𝐿) 𝛽𝑇 ,𝑘 + 𝜅𝜆𝑇 , (5)

with probability greater than or equal to 1 − 2 exp(− 𝑘2

2𝐶3(1+2 ∑∞
𝑛=1 𝜙𝑛)2 ).

The parameter space convexity and (small sample) boundedness in SG.i and the Lipschitz con‐

tinuity property in SG.ii are not rare statistical applications. Strong convexity of the population

criterion depends crucially on 𝐹 and holds whenever 𝔼𝐹 [ℒ] is convex and two times Frechet dif‐

ferentiable with second order derivative that has a bounded away from zero spectrum uniformly

in ℱ. The statistical guarantees in (5) hold for any 𝑇 . They allow for diverging 𝑅 with 𝑇 → ∞,

hence for cases where the parameter space ℱ becomes asymptotically unbounded. They also al‐

low for the population solution 𝑓⋆ to depend on 𝑇 as well as on the strong convexity parameter 𝜅
to become asymptotically nullified. If 𝑏𝑇 = 𝑜 (1) and

√
𝑇 𝑏𝑛

𝑇 → +∞, they imply that ‖𝑓𝑇 − 𝑓⋆‖2

becomes asymptotically negligible w.h.p. as long as 𝜆𝑇 < 2𝑐⋆𝜇 (𝒳) 𝐿𝛽𝑇 ,𝑘 for some 𝑘 → ∞, and
𝑅
𝜅 (𝑏𝑇 + √ 𝑘√

𝑇 𝑏𝑛
𝑇

) = 𝑜 (1).
An example that adheres to the formulation above, is the one of Support Vector Machines

with Hinge Costs (see Example 14.19 of Wainwright [12]). ℱ is typically the 𝑅‐ball of a Repro‐

ducing Kernel Hilbert Space comprised by discriminant real functions and centered at zero, and

ℒ (𝑓 (𝑥) , 𝑦) ∶= (1 − 𝑦𝑓 (𝑥))+. The latter is clearly 1‐Lipschitz in its first argument, while 𝜅‐
strong convexity holds as long as 𝔼𝐹 [𝑦2𝛿 (1 − 𝑦𝑓 (𝑥))], with 𝛿 denoting the Dirac delta function,

is bounded away from zero uniformly on ℱ.

For amore general to (5) result, if (4) is substitutedwithmin𝑓∈𝒢𝑇
𝔼𝐹 𝑇

[ℒ (𝑓 (𝑥) , 𝑦)]+𝜆𝑇 ‖𝑓‖ℱ,
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with convex 𝒢𝑇 ⊆ ℱ, and such that 𝑔⋆
𝑇 ∶= argmin𝑓∈𝒢𝑇

‖𝑓 − 𝑓⋆‖2, and the sub‐differential

𝜕𝔼𝐹 [ℒ (⋅, 𝑦)] is 𝐿𝜕‐Lipschitz uniformly in 𝑦 (see for example Ch. 9 of Rockafellar and Wetts [9]),

then the following oracle inequality is similarly obtained (see the proof of Theorem 2):

𝜅 ‖𝑓𝑇 − 𝑓⋆‖2 ≤
4𝑐⋆𝜇 (𝒳) 𝐿𝑅√𝛽𝑇 ,𝑘 + (1 + 𝐿 + 𝐿𝜕) ‖𝑔⋆

𝑇 − 𝑓⋆‖2

+
√√√√
⎷

((𝐿 + 𝐿𝜕)2 ‖𝑔⋆
𝑇 − 𝑓⋆‖2 + 8𝐿2𝑐⋆𝜇 (𝒳) 𝑅√𝛽𝑇 ,𝑘) ‖𝑔⋆

𝑇 − 𝑓⋆‖2

+2 (4𝑐⋆𝜇 (𝒳) 𝐿 (𝜅 + 𝐿) 𝛽𝑇 ,𝑘 + 𝜅𝜆𝑇 ) 𝑅

, (6)

whenever 𝜆𝑇 < 2𝑐⋆𝜇 (𝒳) 𝐿𝛽𝑇 ,𝑘 holds, with probability greater than or equal to the probability

bound in Theorem (2). This bounces back to (5) when 𝑓⋆ = 𝑔⋆
𝑇 .

4 Proofs

Proof of Theorem 1. Consider (1). Due to the Hoeffding type inequality for phi‐mixing processes

(see Rio [8]), and working exactly as in the proof of Theorem 1 of Vogel and Schettler [11] (2013)

we obtain that ℙ ( |𝐽𝑇 − 𝔼 (𝐽𝑇 )| > 𝑡 ) ≤ 2 exp(− 𝑡2𝑇 𝑏2𝑛
𝑇

2𝐶3(1+2 ∑∞
𝑛=1 𝜙𝑛)2 ), for any 𝑡 ≥ 0, where

𝐽𝑇 ∶= sup𝑥∈𝒳 ∣ 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑥
𝑏𝑇

) − 𝑓𝑥 (𝑥)∣. Working as in the proof of the first Lemma of Vo‐

gel and Settler (2013), and noting that due to the phi‐mixing covariance inequality (see Corollary

14.5 of Davidson [2]), 1
𝑇 2Var (∑𝑇

𝑡=1 exp (i𝑢T𝑥𝑡)) ≤ 1
𝑇 (1 + 2 ∑∞

𝑛=1 √𝜙𝑛) , we obtain that

𝔼 (sup𝑥∈𝒳 ∣ 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑥
𝑏𝑇

) − 𝔼 ( 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑥
𝑏𝑇

))∣) ≤ 𝐶1
(2𝜋)𝑛√

𝑇 √1+2 ∑∞
𝑛=1 √𝜙𝑛𝑏𝑛

𝑇
. Fi‐

nally, due to the second Lemma of Vogel and Schettler [11], we obtain the inequality

sup𝑥∈𝒳 ∣𝔼 ( 1
𝑇 𝑏𝑛

𝑇
∑𝑇

𝑡=1 𝒦 (𝑥𝑡−𝑥
𝑏𝑇

)) − 𝑓𝑥 (𝑥)∣ ≤ 1
2𝐶2𝑏2

𝑇 . The result follows by choosing 𝑡 ∶= 𝑘√
𝑇 𝑏𝑛

𝑇

in the probability inequality above. (2) follows from Theorem 4 of Gibbs and Su [5], the compact‐

ness of 𝒳 and (1). Analogously, (3) follows from the uniform boundedness of ℱ, the dominance

of ‖⋅‖ℱ, the compactness of 𝒳 and (1).

Proof of Theorem 2. Set𝑅⋆ ∶= 2𝑐⋆𝜇 (𝒳) 𝑅. We have first that for any 𝑓 ∈ ℱ, due to the Lipschitz
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properties of ℒ, the ‖⋅‖ℱ‐boundedness of ℱ‐which implies that ℱ − 𝑓⋆ is 2𝑅 bounded, and (3),

ℙ [ ∣𝔼𝐹𝑇 [ℒ(𝑓(𝑥),𝑦)]−𝔼𝐹𝑇 [ℒ(𝑓⋆(𝑥),𝑦)]−𝔼𝐹 [ℒ(𝑓(𝑥),𝑦)]+𝔼𝐹 [ℒ(𝑓⋆(𝑥),𝑦)]∣
‖𝑓−𝑓⋆‖2+√𝛽𝑇,𝑘

≥ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘]

≤ ℙ [ ∣𝔼𝐹𝑇 [𝑓(𝑥)−𝑓⋆(𝑥)]−𝔼𝐹 [𝑓(𝑥)−𝑓⋆(𝑥)]∣
‖𝑓−𝑓⋆‖2+√𝛽𝑇,𝑘

≥ 𝑅⋆√𝛽𝑇 ,𝑘]

2 exp(− 𝑘2

2𝐶3(1+2 ∑∞
𝑛=1 𝜙𝑛)2 ) .

Let us prove (6). Then (5) follows by assuming 𝑓⋆ = 𝑔⋆
𝑇 , and noting that since 𝑓⋆ is interior, the nor‐

mal cone ofℱ at 𝑓⋆ is {0}, and the optimality of 𝑓⋆ implies that ⟨𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑓⋆⟩2 ∈
{0}, where 𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] denotes the sub‐differential of the population criterion at 𝑓⋆, and

⟨⋅, ⋅⟩2 the𝐿2 inner product. In this case the Lipschitz property of the sub‐differential is redundant.

Towards proving (6), remember that 𝑔⋆
𝑇 ∶= argmin𝑓∈𝒢𝑇

‖𝑓 − 𝑓⋆‖2. Then consider the event

⎧{
⎨{⎩

∣𝔼𝐹 𝑇
[ℒ (𝑓 (𝑥) , 𝑦)] − 𝔼𝐹 𝑇

[ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] − 𝔼𝐹 [ℒ (𝑓 (𝑥) , 𝑦)] + 𝔼𝐹 [ℒ (𝑔⋆

𝑇 (𝑥) , 𝑦)]∣
‖𝑓 − 𝑓⋆‖2 + √𝛽⋆

𝑇 ,𝑘
≤ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘

⎫}
⎬}⎭

,

and notice that the probability of the above is bounded below by 1−2 exp(− 𝑘2

2𝐶3(1+2 ∑∞
𝑛=1 𝜙𝑛)2 ),

due to the previous result (which did not use the fact that 𝑓⋆ is interior). If the event holds then,

and due to that 𝔼𝐹 𝑇
[ℒ (𝑓 (𝑥) , 𝑦)] − 𝔼𝐹 𝑇

[ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] + 𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆

𝑇 ‖ℱ) ≤ 0, then it

must be the case that

𝔼𝐹 [ℒ (𝑓𝑇 (𝑥) , 𝑦)]+𝔼𝐹 [ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)]+𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆

𝑇 ‖ℱ) ≤ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘 (‖𝑓𝑇 − 𝑔⋆
𝑇 ‖2 + √𝛽⋆

𝑇 ,𝑘) .

The 𝜅‐strong convexity of the population criterion then implies that

⟨𝜕𝔼𝐹 [ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆

𝑇 ⟩2 + 𝜅
2 ‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2
2 + 𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆

𝑇 ‖ℱ)
≤ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘 (‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2 + √𝛽𝑇 ,𝑘) .

Now, notice that due to the optimality of 𝑔⋆
𝑇 , 𝜕𝔼𝐹 [ℒ (𝑔⋆

𝑇 (𝑥) , 𝑦)] must lie inside the normal cone
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of 𝒢𝑇 at 𝑔⋆
𝑇 . This and the fact that 𝑓𝑇 satisfies the empirical optimality conditions imply that

⟨𝜕𝔼𝐹 [ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆

𝑇 ⟩2 ≤ 0.

The lhs of the previous display is greater than or equal to

⟨𝜕𝔼𝐹 [ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] − 𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆

𝑇 ⟩2 + ⟨𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆
𝑇 ⟩2

which (due to the sub‐differential inclusion condition) is greater than or equal to

⟨𝜕𝔼𝐹 [ℒ (𝑔⋆
𝑇 (𝑥) , 𝑦)] − 𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆

𝑇 ⟩2

+ ⟨𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓𝑇 − 𝑔⋆
𝑇 ⟩2 + ⟨𝜕𝔼𝐹 [ℒ (𝑓⋆ (𝑥) , 𝑦)] , 𝑓⋆ − 𝑔⋆

𝑇 ⟩2 ,

which in turn, due to Cauchy‐Schwarz inequality and the Lipschitz property of the sub‐differential,

is greater than or equal to

−𝐿𝜕 ‖𝑔⋆
𝑇 − 𝑓⋆‖2 ‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2 − 𝐿 (‖𝑓𝑇 − 𝑔⋆
𝑇 ‖2 + ‖𝑓⋆ − 𝑔⋆

𝑇 ‖2) .

The previous then imply that

−𝐿𝜕 ‖𝑔⋆
𝑇 − 𝑓⋆‖2 ‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2 − 𝐿 (‖𝑓𝑇 − 𝑔⋆
𝑇 ‖2 + ‖𝑓⋆ − 𝑔⋆

𝑇 ‖2) + 𝜅
2 ‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2
2 + 𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆

𝑇 ‖ℱ)
≤ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘 (‖𝑓𝑇 − 𝑔⋆

𝑇 ‖2 + √𝛽𝑇 ,𝑘) ⇒
𝜅
2 ‖𝑓𝑇 − 𝑔⋆‖2

2 − (𝐿 (2𝑅⋆√𝛽𝑇 ,𝑘 + ‖𝑓⋆ − 𝑔⋆
𝑇 ‖2) + 𝐿𝜕 ‖𝑔⋆

𝑇 − 𝑓⋆‖2) ‖𝑓𝑇 − 𝑔⋆
𝑇 ‖2

+ (𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆
𝑇 ‖ℱ) − 2𝐿𝑅⋆𝛽𝑇 ,𝑘) ≤ 0.

The condition that ensures that the quadratic polynomial in the lhs of the previous display has

two distinct roots, one negative and one positive, is 𝛽𝑇 ,𝑘 > 𝜆𝑇
2𝑐⋆𝜇(𝒳)𝐿 , since this and the fact that

‖𝑓𝑇 ‖ℱ − ‖𝑔⋆
𝑇 ‖ℱ ≤ 2𝑅, imply that 𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆

𝑇 ‖ℱ) − 2𝐿𝑅⋆𝛽𝑇 ,𝑘 < 0. Comparing with the
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positive root we obtain that

𝜅 ‖𝑓𝑇 − 𝑔⋆
𝑇 ‖2 ≤ 𝐿 (2𝑅⋆√𝛽𝑇 ,𝑘 + ‖𝑓⋆ − 𝑔⋆

𝑇 ‖2) + 𝐿𝜕 ‖𝑔⋆
𝑇 − 𝑓⋆‖2

+√4𝐿𝑅⋆ (𝜅 + 𝐿) 𝛽𝑇 ,𝑘 + (𝐿 + 𝐿𝜕)2 ‖𝑔⋆
𝑇 − 𝑓⋆‖2

2 + 4𝐿2𝑅√𝛽⋆
𝑇 ,𝑘 ‖𝑓⋆ − 𝑔⋆

𝑇 ‖2 − 2𝜅𝜆𝑇 (‖𝑓𝑇 ‖ℱ − ‖𝑔⋆
𝑇 ‖ℱ)

≤ 2𝐿𝑅⋆√𝛽𝑇 ,𝑘 + (𝐿 + 𝐿𝜕) ‖𝑔⋆
𝑇 − 𝑓⋆‖2

+√4𝐿𝑅⋆ (𝜅 + 𝐿) 𝛽𝑇 ,𝑘 + (𝐿 + 𝐿𝜕)2 ‖𝑔⋆
𝑇 − 𝑓⋆‖2

2 + 4𝐿2𝑅⋆√𝛽𝑇 ,𝑘 ‖𝑓⋆ − 𝑔⋆
𝑇 ‖2 + 2𝜅𝜆𝑇 ‖𝑔⋆

𝑇 ‖ℱ

,

from which the oracle inequality (6) follows by noting that ‖𝑔⋆
𝑇 ‖ℱ ≤ 𝑅.
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