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Abstract
Model selection and estimation are important topics in econometric analysis which

can become considerably complicated in high dimensional settings, where the set of

possible regressors can become larger than the set of available observations. For large

scale problems the penalized regression methods (e.g. Lasso) have become the de facto

benchmark that can effectively trade off parsimony and fit. In this paper we introduce

a regularized estimation and model selection approach that is based on sparse large

covariance matrix estimation, introduced by Bickel and Levina (2008) and extended by

Dendramis, Giraitis, and Kapetanios (2018). We provide asymptotic and small sample

results that indicate that our approach can be an important alternative to the penalized

regression. Moreover, we also introduce a number of extensions that can improve the

asymptotic and small sample performance of the proposed method. The usefulness of

what we propose is illustrated via Monte Carlo exercises and an empirical application

in macroeconomic forecasting.

Keywords: large dimensional regression, sparse matrix, thresholding, shrinkage,

model selection.
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1 Introduction

In this paper, we study the problem of model selection and estimation for high dimensional

datasets. The recent advent of large datasets has made this problem particularly important
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as the information which is extracted from large datasets is a key to various scientific dis-

coveries or policy suggestions. In large datasets, conventional statistical and econometric

techniques such as regression estimation fail to work consistently due to the dimensional-

ity of the examined economic relationships. For instance, in a linear economic relationship

we frequently have T observations of a dependent variable (y) as a function of many poten-

tial predictors (p predictors). When the number of predictors (p) is large or larger than the

temporal dimension (T) then a regression with all available covariates becomes extremely

problematic if not impossible. In this paper we suggest new, theoretically valid techniques

to handle situations like the former.

Two main strands have dominated the relevant literature, so far: Penalized regression

methods (see e.g. Tibshirani (1996), Fan and Li (2001), Zhou and Hastie (2005), Lv and

Fan (2009), Efron et al. (2004), Bickel et al. (2009), Candes and Tao (2007), Zhang (2010),

Antoniadis and Fan (2001), Fan and Lv (2013), Fan and Tang (2013), Hunter and Li (2005),

Zou and Zhang (2009), Zhang and Huang (2008), Fan et al. (2014)) and greedy methods

(see e.g. Friedman (2001), Friedman et al. (2000), Buhlmann (2006), Bühlmann and Hothorn

(2007), Hothorn et al. (2010)), whose origins come from the machine learning literature. In

penalized regression methods all the available regressors are considered at the same time,

while a penalty function shrinks the estimated parameter coefficients, though a choice of a

tuning parameter. The main drawback of this approach is that the applied researcher has

to choose a specific penalty function and a tuning parameter. Different penalty functions

lead to diverse theoretical and small sample performance, while in applied research there

is no way to choose in advance an optimal penalty function.

For greedy methods, the idea is to screen in advance some covariates which are consid-

ered as more likely to explain the dependent variable. This is done based on their individ-

ual ability of the regressors to explain the dependent variable. Machine learning methods

such us boosting, regression trees, and step wise regressions are casted in this category.

The main drawback of this strand of literature is the scarcity of theoretical results for most

of the methods. Other important sequential methods for model selection are Fithian et al.

(2015), Fithian et al. (2014), and Tibshirani et al. (2014).

In a recent paper, Fan and Lv (2008) have proposed a combination of the two previous

strands. They propose a two step procedure in which, in the first step all regressors are

ranked according to their absolute correlations with the dependent variable, and a fixed

proportion of regressors is selected. This is referred to as sure independence screening

(SIS). In the second step a penalized regression approach is applied on the selected subset

of regressors. Similar variable screening mechanisms have been developed in Hall et al.
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(2009), Hall and Miller (2009), Fan et al. (2011), Li et al. (2012b) Li et al. (2012a), Huang

et al. (2008), Fan and Song (2010), and Fan et al. (2009).

Most of the above literature assumes regressors which are either independent and iden-

tically distributed (IID) or deterministic processes. Generalizations to stochastic regressors

is not straightforward, requiring conditions such as the spark condition of Donoho and

Elad (2003) and Zheng et al. (2014).

The main idea of our approach is to first propose a theoretically valid regularized or-

dinary least squares (OLS) estimator, on the full set of available regressors. This is done

through a regularized, threshold estimator of covariance and precision matrices, that is

applicable to large datasets.

Several regularization techniques for improved estimation of large covariance matrices

have been proposed in the literature. These include the works of Chen et al. (2013), Zhou

et al. (2010), Kolar and Xing (2011), Fan et al. (2013), Fan et al. (2016), Han and Liu (2017),

Bickel and Levina (2008), Cai and Liu (2011), Ledoit and Wolf (2004), and Abadir et al.

(2014). All this work assumes that the volatility process is a deterministic function or a

constant. Stochastic volatility is considered in Bickel et al. (2013), and Dendramis et al.

(2018) while for structure free estimators see Pourahmadi (2013) .

Our proposed estimator retains good theoretical properties, even in the case that the

number of available regressors is large, allowing the extraction of true signal covariates.

Crucially, all the available regressors are considered in a single regression step. To enhance

the small sample performance of this estimator we provide extensions related to the hy-

pothesis testing literature. To this end, and following the work of Chudik et al. (2018),

we provide an asymptotically attractive testing procedure which can be used as an ex-

tended screening mechanism that can extract true signals, and significantly improve the

small sample performance of the benchmark estimator. This is done through a Bonferroni

type critical value, designed to minimize the Type I error of the multiple testing procedure.

As a final step, all covariates that are considered as significant can be added as joint de-

terminants of the dependent variable in a final multiple regression step. Similar multiple

testing approaches in high dimensional settings have been also studied in Fan and Han

(2017), Fan et al. (2012), Guo et al. (2019), van de Geer and Stucky (2015) and Wasserman

and Roeder (2009).

Our approach provides some important advantages over the alternatives. First we do

not need to rely and choose a penalty function from the large set of proposals which are

available in the literature. Second we do not need to examine each regressor separately,

as with greedy methods. Third, our method does not need standardized regressors, as in
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penalized regression methods. Fourth, it can be extended to an inferential procedure that

can be directly linked to classical statistical analysis.

In its most general, our preferred approach is eclectic as it combines powerful features

of existing methods such as screening and multiple testing, which have been shown to

have excellent properties in high dimensional regression settings, with our newly proposed

regularized OLS. The latter provides a crucial added element of jointly considering all the

available regressors which allows for a more refined multiple testing analysis.

The paper is structured as follows: Section 2 introduces the basic estimator for the large

dimensional regression problem and presents its asymptotic properties. Section 3 extends

the basic estimator, by proposing a testing approach that is able to enhance the performance

of the model selection and estimation mechanism. Theoretical results are also derived in

this section. Section 4 presents a number of further extensions and improvements that can

be useful in diverse real world situations. Section 5 presents in detail the cross validation

schemes which are essential for the application of the proposed methodologies. Section

6 gives the details of the Monte Carlo experiments and the simulation results. Section 7

presents the empirical application, and Section 8 concludes. Technical proofs are relegated

to appendices.

2 Estimation by regularization

Consider the case that we observe a sample from a dependent variable {yt}t=1,..,T and a

p-variate sample {xt}t=1,..,T of possible regressors of yt. Some of them truly explain the

dependent yt. Given the increased availability of large datasets, it is possible to have p

and T increasingly large, and even p >> T. In this setting, the dependent variable yt is

assumed to be explained by a relatively small subset of regressors on the set {xit}i=1,..,p,

where xit is the t-th observation (t ∈ {1, 2, .., T}) for covariate i (i ∈ {1, 2, .., p}). In vector

notation, the dependent variable y and the full set of possible regressors {xi}i=1,..,p are T

dimensional column vectors, the {xt}t=1,..,T are p-dimensional row vectors, while the T× p

matrix x includes all available potential covariates.

Our intention is to find the subset of covariates {xi}i=1,..,p that truly explain the de-

pendent y, and estimate their corresponding regression coefficients. This is classified as a

model selection and estimation problem, for high-dimensional regression and focuses on

the estimation of a sparse regression model of the form
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yt =
p

∑
i=1

βixit + ut, t = 1, ., T, (1)

where ut is the error with mean zero and variance σ2
u. Without loss of generality we assume

that the first k regressors truly explain the dependent variable yt ({βi}k
i=1 6= 0) and the last

p − k are poor noise variables ({βi}
p
i=k+1 = 0). Estimating the parameter vector βi for

each regressor i in model (1) by classical OLS is not a feasible option. This is because all

the theoretical properties of OLS rely on the assumption that p is small and fixed. This

problem can be further complicated when we allow for cross sectional correlation, that is

frequently observed in large panels comprised of macroeconomic and/or financial series.

Non-sparse correlation structures of xt will inflate the correlation between the dependent

variable y and a possible regressor xi, which does not truly explain yt, exacerbating the

uncertainty about the true regression model.

Our approach starts from the simple fact that, under mild existence and regularity con-

ditions, β = (β1, ..., βp)′ = Σ−1
x Σxy, where Σx and Σxy denote the variance of xt and the

covariance of xt and yt, respectively. Therefore the large regression problem is converted

into a large covariance matrix estimation problem, which is addressed by a large portion

of existing literature. Our approach, relies on the estimation of the large dimensional co-

variance of the pz (= p + 1)-dimensional random vector zt = (yt, xt), denoted as Σz, of

dimension pz × pz. When pz increases with T, estimation of Σz is particularly demand-

ing since the number of estimated objects rises as a square of the dimension of the dataset,

leading to a large amount of aggregated estimation error. Naturally, the sample estimate Σ̂z

of Σz, defined as Σ̂z = T−1 ∑T
t=1 (zt − z)′ (zt − z), z = T−1 ∑T

t=1 zt, performs very poorly

in this case. Several regularization techniques for improved estimation of large covariance

matrices have been proposed. For an excellent review of structure-based estimators of co-

variance and precision matrices see the paper by Fan et al. (2016).

We consider pz-dimensional vectors zt whose variance, Σz, is assumed to belong to the

following class of sparse covariance matrices

Σz ∈ Q
(
npz , K

)
=

{
Σ : σii ≤ K,

pz

∑
i=1

1
{

σij 6= 0
}
≤ npz

}
(2)

The sparsity parameter, npz , is the maximum number of non zero row elements of Σz and

it is assumed that it does not grow too fast with pz. When zt is iid and light tailed random

variable, hard and adaptive thresholding introduced by Bickel and Levina (2008) and Cai

and Liu (2011) are the two standard approaches to regularize the Σz. For instance, regu-
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larization by hard thresholding is based on the idea of setting the elements of Σz, whose

absolute values are smaller than some value (a threshold), equal to zero. Regularising the

sample covariance matrix Σ̂z by hard thresholding yields the estimate

Tλ

(
Σ̂z

)
=
(
σ̂ij I

(
|σ̂ij| > λij

))
(3)

with σ̂ij =
[
Σ̂z

]
ij

, and I
(
|σ̂ij| > λij

)
= 1 when |σ̂ij| > λij and 0 otherwise. Estimator (3)

sets a lower bound for the elements of the estimated covariance Σ̂z. Elements of Σ̂z bellow

that bound are set equal to zero. In Bickel and Levina (2008) the λij is universal for all i,j,

with

λij = λ = κ

√
log pz

T
, κ > 0 (4)

A universal thresholding rule essentially treats the problem as if all σii = K, when selecting

the λ. In adaptive thresholding, introduced by Cai and Liu (2011), the λij depends on

the i, j-th entry of the matrix Σ̂z, capturing the variability of individual variables, instead of

selecting a universal upper bound. Entry-dependent thresholds that automatically adapt to

the variability of the individual entries of the sample covariance matrix Σ̂z, are particularly

useful when the diagonal elements of Σz vary over a wide range, and there is no a priori,

obvious upper bound for them. In this case thresholding becomes

λij = κ

√
θ̂ij log pz

T
, κ > 0 (5)

θ̂ij =
1
T

T

∑
t=1

[
(zi,t − zi)

(
zj,t − zj

)
− σ̂ij

]2
where the introduction of θ̂ij accounts for the variability of the diagonal elements of Σz.

Both universal and adaptive threshold λij depends on a tuning parameter, κ, which does

not affect the asymptotic performance of the estimator, but it can have significant impact

on the small sample performance. In practice, κ can be chosen through cross validation,

as discussed later in the paper. Procedures based on other thresholding operators can be

defined (e.g. soft, lasso, etc), but they have similar properties to the hard thresholding,

asymptotically, although they may differ in finite samples.

Extending the results on thresholding estimators, Dendramis et al. (2018) show that the

nice theoretical results of Bickel and Levina (2008) are also valid when zt is a stationary

a-mixing process. Moreover, it is proven that zt can be also allowed to be a heavy tailed

random variable. The last result comes at a cost on the rate at which pz is allowed to
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increase, compared to T.

Given the theoretically valid regularized covariance matrix estimator of zt, for large pz

and T dimensions, the regularized estimator of β is defined as

β̂λ = Tλ

(
Σ̂x
)−1 Tλ(Σ̂xy) (6)

with Tλ

(
Σ̂x
)
, Tλ(Σ̂xy) being the submatrice and subvector of thresholded estimate Tλ

(
Σ̂z

)
that correspond to the regressors xt covariance matrix, and covariance vector of yt with xt,

respectively. The Tλ (.) is defined in (3). As we will show in the next section, estimator (6),

be theoretically valid at the large p, T setting.

3 Theoretical properties

In this section, we consider the asymptotic properties of β̂λ defined in (6). We show that

under a mild set of assumptions, β̂λ can achieve consistency with optimal convergence

rates. Consistency is subject to the following set of assumptions:

Assumption 1 The error term ut in model (1) is a martingale difference sequence (MDS) with

respect to the filtration Fu
t−1 = σ(ut−1, ut−2, ..) with zero mean and a constant variance 0 < σ2 <

C < 8.

Assumption 2 There exist sufficiently large positive constants D0, D1, D2, D3 and su, sz > 0

such that zit and ut satisfy the following conditions

Pr(|zit| ≥ ζ) ≤ D0 exp(−D1ζsz) (7)

Pr(|ut| ≥ ζ) ≤ D2 exp(−D3ζsu) (8)

This can be weakened to a polynomial rate, following Dendramis et al. (2018) but at a cost of smaller

p.

Assumption 3 Regressors are uncorrelated with the errors E(xitut|Ft−1) = 0 for all t = 1, 2, .., T, i =

1, .., p and Ft−1 = Fu
t−1∪Fx

t−1 = σ(ut−1, ut−2, ..) ∪ {∪p
j=1σ(xjt−1, xjt−2, ..)}.

Assumption 4 The number of true regressors k is finite.

Assumption 5 E(xitxjt − E(xitxjt)|Ft−1) = 0, for all i, j.
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Assumption 1 allows for some dependence through e.g. an arch process but no se-

rial correlation. Assumption 2 can be relaxed to allow the vector zt to be heavy tailed

distributed. This is a departure from the usual in the literature exponentially declining

bound for the probability tails but this comes at the cost of smaller rates in dimension

pz. In Dendramis et al. (2018) both exponentially and polynomially declining bounds are

studied. Assumption 3 is a MDS assumption on the xitut with respect to Ft−1. The require-

ment in Assumption 4, can be relaxed to k < T. The rest of the assumptions are technical

requirements which are necessary for the proof of Theorem 1 and are analogous to the

assumptions needed in the recent literature (see e.g. Chudik et al. (2018)).

Theorem 1 Consider the DGP defined in (1), and suppose that assumptions 1-5 hold. Then for

sufficiently large κ, the regularized estimator β̂λ satisfies∥∥∥β̂λ − β
∥∥∥ = Op

(
n3/2

pz λpz

)
(9)

A probability bound for
∥∥∥β̂λ − β

∥∥∥ is given by

Pr
(∥∥∥β̂λ − β

∥∥∥ > n3/2
pz λpz

)
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
(10)

for sufficiently large constants D1, D2, D3, and D4.

Theorem 1 states that under reasonable assumptions on the DGP of model (1), the pro-

posed estimator converges to the true β. This means that asymptotically we will be able

to extract the true signals (βi 6= 0) and discard the noise variables (βi = 0). Theorem 1

holds for n3/2
pz λpz = o(1), which can happen when npz is a fixed constant, or when it is an

increasing sequence with npz < (T/ log pz)1/3.

4 Methodological refinements using multiple testing

In order to further boost the performance of our basic regularized estimator β̂λ we in-

troduce a testing procedure. To this end, given the estimate β̂λ, for each covariate xi,

i ∈ {1, .., p} we define the following ratio

ξλ,i =
β̂λ,i

γ̂λ,i
(11)
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with γ̂λ,i =

√
s2
[(

T × Tλ

(
Σ̂x

))−1
]

ii
, s2 = 1

T ∑T
t=1 û2

t , ût = yt − xt β̂λ and [A]ij is the i,j-th

element of the matrix A, for i = 1, .., p. The data implied parameter γ̂λ,i is a normalization

constant and it is the vehicle that allow us to introduce the testing procedure. When p is

small relative to T (e.g. when p < T−1/2) the γ̂λ,i is the standard error of the estimate β̂i,

but in general it is not. Then, the testing procedure is defined as

I
(

̂βλ,i 6= 0
)
=

{
1 when ξλ,i > cp

0 otherwise
(12)

with cp = Φ−1
(

1− α
cpπ

)
, cp = O

(
(π log (p))1/2

)
= o (Tc0 ), ∀c0 > 0, Φ−1 (.) is the quan-

tile function of the normal distribution and α is the nominal size of the individual test, to

be set by the researcher (e.g. α = 1% or 5%), and the constants π, c satisfy π > 0, c < ∞.

The critical value cp is a Bonferroni type critical value controlling the family wise error of

the multiple testing problem to be at the level of α%. The constants c, π do not affect the

asymptotic results but in small samples the testing performance can be boosted by these

parameters. In practise on can set them both 1, or choose them through cross validation. In

our empirical and simulation exercise we set them both equal to 1. Of course, other cp val-

ues can be used, such as those proposed by Holm (1979), Benjamini and Hochberg (1995),

or more recently by Gavrilov et al. (2009), which are designed to control the family-wise

error rate, and are expected to work similarly.

The introduced testing procedure works as follows: When ξλ,i is bounded in T , then xit

is considered as a noise variable. In the opposite case, the ξλ,i diverges in T, meaning that

xit has power in explaining the yt, i.e. xit can be considered as a true signal variable.

In the large dimensional regression literature two critical measures of how reasonable a

method can separate the true regressors from the noise variables are the true positive rate

(TPR) and false positive rate (FPR) defined bellow

TPRp,T =
#
{

i : β̂λ,i 6= 0 and βi 6= 0
}

# {i : βi 6= 0} (13)

FPRp,T =
#
{

i : β̂λ,i 6= 0 and βi = 0
}

# {i : βi = 0}

The TPRp,T measures the percentage of true signals that we correctly identify as true

signals (should converge to 1) while the FPRp,T measures the percentage of noise vari-

ables that we incorrectly identify as true signals (should converge to zero). We enrich our

methodological contribution of Theorem 1 by proposing the following algorithm.
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Algorithm 1: Support Recovery

1. Estimate the parameter vector of model (1) by the basic estimator β̂λ,i defined in
(6);

2. Filter the covariates {xi}
p
i=1 that truly explain yt by the testing approach (12);

Theorem 2 proves that the previous two step procedure can result to TPRp,T, FPRp,T

that asymptotically converge to 1 and 0 respectively, meaning that for suitable rates of p

and T we can correctly identify the true model.

Theorem 2 Consider the DGP defined in (1), and suppose that assumptions 1-5 hold. Then, Al-

gorithm 1 can identify the true model, or equivalently, for sufficiently large constants D1, D2, D3,

D4, for the true positive rate we have that

E
[
TPRp,T

]
= k−1

k

∑
i=1

Pr [ |ξλ,i| > cT | βi 6= 0]

≥ 1−O
(

p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
or equivalently TPRp,T →p 1, and the false positive rate

E
[
FPRp,T

]
= (p− k)−1

p

∑
i=k+1

Pr [ |ξλ,i| > cT | βi = 0]

=
1

p− k
O
(

p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
= O

(
pzD1 exp

(
−D2Tλ2

pz

)
+ D3 exp

(
−D4Tλpz

))
or equivalently FPRp,T →p 0

As a final theoretical contribution we also provide theorem 3, which states that if the

previously defined two step procedure is followed by a final regression step, the selected

covariates and parameter vector converges to the true one, asymptotically. [GK take the

algorithm mout of theorem 2 and put it separate before the theorem, YD not sure what you

mean]

Theorem 3 Consider the DGP defined in (1), and suppose that assumptions 1-5 hold. Then, Algo-

rithm 2, for sufficiently large constants D1, D2, D3, D4, results to consistent parameter estimates,
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Algorithm 2: Filtering and Estimation

1. Estimate the parameter vector of model (1) by the basic estimator β̂λ,i defined in
(6);

2. Filter the covariates {xi}
p
i=1 that truly explain yt by the testing approach (12). Let

xt,−J denote the xt, excluding columns J =
{

j : I
(

̂βλ,j 6= 0
)
= 0

}
. These are

considered as the important covariates of model (1).;

3. Run a final regression on the x̃t,−J covariates, β̂λ, f =
(

x′T,−JxT,−J

)−1
xT,−Jy;

with rates of convergence given by

∥∥∥β̂λ,2s − β
∥∥∥ = Op

(
1√
T

)
+ Op

(
p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))

5 Further extensions

5.1 The sure screening extension

The Sure Independence Screening (SIS) developed by (Fan and Lv (2008)) is a simple, pow-

erful method for variable selection when p and T are large. According to this, marginal

correlations of potential covariates {xi}
p
i=1 with the dependent variable yt are ranked in

ascending order. The k∗ covariates with the highest absolute correlation are considered as

the most likely true regressors of dependent variable yt, with k∗ << p. As a final step

the researcher can use a penalized regression method (e.g. Lasso) to estimate the param-

eter vector β in (1). In practice the researcher has to choose the threshold k∗, which sets

an upper limit on the number of likely covariates and the final step penalized regression

method.

In our framework the SIS can result to the dimensionality reduction which is important

for better small sample performance. To this end, we first screen the important variables by

SIS for a predetermined level of k∗. Then, we apply the basic estimator β̂λ,i defined in (6),

on the selected k∗ regressors from the set {xi}
p
i=1 and the dependent variable yt. Instead of

this, one can also apply the developed testing methodology (see Theorem 2) and the final

regression step (see Theorem 3).
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5.2 Non sparse covariance matrix estimator

The proposed basic estimator β̂λ,i defined in (6), depends crucially, on the large dimen-

sional covariance matrix of zt = (yt, xt) which is assumed to be sparse. Sparsity of Σz, is

an essential assumption, necessary for acceptable rates of convergence of β̂λ,i. In the litera-

ture there have been proposed other consistent covariance matrix estimators which do not

need the condition (2) for Σz. This is an important development as there are applications

in economics in which the sparsity belief might be inappropriate, owing to the presence

of common factors of zt. In (Fan et al. (2013)) the leading assumption for Σz is that the

first q eigenvalues are spiked enough and grow fast, at a rate O (p). Then, the common

and idiosyncratic components of zt can be identified, and in addition, principal compo-

nent analysis (PCA) on the sample covariance matrix can consistently estimate the space

spanned by the eigenvectors of Σz. Let µ̂1 ≥ µ̂2 ≥ ..µ̂p be the ordered eigenvalues of the

sample covariance matrix Σ̂z and
{

ν̂j
}p

j=1 be their corresponding eigenvectors. The sample

covariance of zt has the following spectral decomposition

Σ̂z =
q

∑
i=1

µ̂iν̂iν̂
′
i + R̂q (14)

where R̂q = ∑
p
i=q+1 µ̂iν̂iν̂

′
i =

(
r̂ij
)

p×p is the principal orthogonal complement, and q is

the number of diverging eigenvalues of Σz. When R̂q is sparse the estimator of Σz is then

defined as

Σ̂z,q =
q

∑
i=1

µ̂iν̂iν̂
′
i + Tλ

(
R̂q

)
(15)

with Tλ (.) being the regularized estimator defined in (3) and the threshold λij defined ac-

cording to (4) or (5). In this setting, for a given value of q the basic estimator β̂λ defined in

(6), can be trivially adjusted for the large covariance estimator Σ̂z,q, given in (15) by replac-

ing the (3) with (15). When q is unknown, then it can be calibrated via cross validation, or

use information criteria for the optimal q̂ (see e.g. Bai and Ng (2002)).

Preliminary simulations for this extension do not suggest significant improvements

over the basic estimator and testing as it is defined in sections 2 and 3.

5.3 Time varying parameter extension

Interestingly, our approach for estimating the large parameter vector can be extended to

the case of time varying parameter models. Assuming a time varying parameter structure,
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for the dependent {yt}t=1,..,T and the set of possible regressors {xt}t=1,..,T, such as

yt =
p

∑
i=1

βitxit + ut, ut ∼ N
(

0, σ2
u

)
, t = 1, ., T (16)

where {βi}k
i=1 6= 0, {βi}

p
i=k+1 = 0, and p,T are large, as in our basic model (1), suggests an

additional difficulty: the large parameter vector βt =
(

β1t, β2t, .., βpt
)

is non constant over

time. Following our previous exposition, under mild existence and regularity conditions,

we are able to define true parameter vector as βt = Σ−1
x,t Σxy,t, where Σx,t and Σxy,t denote

the time varying variance of xt and the time varying covariance of xt and yt, respectively.

Now, the problem of estimating a large time varying parameter vector, is equivalent to the

estimation of a large time varying covariance matrix Σz,t = cov (zt), for zt = (yt, xt) which

has been particularly addressed in Dendramis et al. (2018). In this paper, it is shown that a

large Σzt that belongs to the class of sparse large dimensional matrices, as it is given in (2),

for each time t, can be be estimated for cases in which p and T are increasingly large, with

even p > T. Then, the testing results of Theorem 2 and 3 can be also altered to allow for

large time varying covariance cases. The latter extensions constitute topics in our current

research agenda.

6 Implementation and Cross Validation Schemes

The application of the proposed methods require the selection of a number of tuning pa-

rameters. For instance, the basic estimator β̂λ given in (1) depends on the value of κ, while

extensions of it, adapted to the (15) or (19), require selection of additional tuning parame-

ters. Moreover in the developed testing approach one can also calibrate the π parameter,

of the Bonferroni critical value (see (12)), as it is often done in the literature, in order obtain

better small sample performance.

As is well known, estimating a model as well as calibrating tuning parameters, on the

same dataset leads to over-fitting. Cross validation (CV) is designed to address this issue,

starting from the remark that evaluating a model on new data yields a better estimate of its

performance (see Stone (1977) or Geisser (1975)). The main idea in CV is to split data once,

or several times, for estimating the outcome of each possible value for the tuning param-

eter. Part of data (the training sample) is used for model training, and the remaining part

(the validation sample) is used for estimating its performance. The validation sample plays

the role of new data. Then, CV selects the tuning parameter with the best performance on

the validation sample. CV avoids over-fitting because the training sample is independent

13



from the validation sample (at least when data are i.i.d.). CV assumes that data are iden-

tically distributed, and training and validation samples are independent, although both

assumptions can be relaxed. When data are dependent, CV can be modified, in order to

account for this. Interested readers are referred to the review by Opsomer et al. (2001) on

model selection in non-parametric regression with dependent data.

To obtain values for all these parameters we propose a simple CV scheme, whose the CV

objective function focuses directly on the linear regression model (1). This is done through

K-fold cross validation. According to this, the original sample is randomly partitioned into

K roughly equally sized subsamples. Let ζi, i ∈ {1, .., K} denote the relevant subsamples.

Pick up a partition ζi, and use the K − 1 partitions ζ j, j 6= i for j ∈ {1, .., K} to estimate

the regression coefficient, β̂γ,j, where γ denotes the tuning parameter (e.g. κ or π). The

discarded partition ζi is then used as a testing sample, on which we compute the average

squared error

ei,γ =
1

{# obs. in part. ζi} ∑
t∈ζi

(
yt − xt β̂γ,j

)2
(17)

This is repeated for all partitions ζi, i ∈ {1, .., K}. The optimal tuning parameter is obtained

as the one the minimizes the average error on all the validation samples considered, that is

γ̂ = arg min
γ∈Γ

1
K

K

∑
i=1

ei,γ (18)

over a suitable parameter vector space Γ for the vector of interest, γ. When K = T − 1,

with T being the total number of observations, we have the leave on out cross validation.

For instance, in the basic estimator β̂λ we set γ ≡ λ and the parameter space Γ includes

κ-points which imply invertibility for Tλ

(
Σ̂x
)

(see also discussion in section 7).

7 Computational aspects and invertibility conditions

The proposed basic estimator β̂λ involves several computational challenges. The main

challenge involves the estimation of the large inverse covariance matrix Tλ

(
Σ̂x
)−1. When

p > T the Tλ

(
Σ̂x
)

does not necessitate positive definiteness (PD) and thus existence of

Tλ

(
Σ̂x
)−1. When the tuning parameter κ of the threshold λij in (4) or (5) is unknown,

and needs to be calibrated via a cross validation method, then conditions on the minimum

eigenvalues of Tλ

(
Σ̂x
)

can be adopted ad hoc. For instance, for a given grid of points for

κ ∈ {κ1, κ2, .., κN}, one can consider only the points which result to PD matrices Tλ

(
Σ̂x
)
.

This will ensure existence of Tλ

(
Σ̂x
)−1. In the case that κ is known or when there is no a
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priori reason to discard specific values for κ, an alternative that results to PD Tλ

(
Σ̂x
)

is to

consider convex combination of Tλ

(
Σ̂x
)

and a well-defined target matrix which is known

to result to PD matrix. In the literature there have been proposed simple target matrices like

the identity matrix Ip, or the diagonal matrix diag
(
Σ̂x
)
. The shrinking to a target matrix

approach is formally given as

Tλ,s
(
Σ̂x
)
= ρsΣtar + (1− ρs) Tλ

(
Σ̂x
)

(19)

with Σtar being the target matrix, and ρs ∈ (ρinv, 1), 0 < ρinv < 1, with ρinv being the

minimum shrinkage parameter that ensures the PD of Tλ,shr
(
Σ̂x
)
.

Moreover, the problem of inverting a large covariance matrix, which is essential for

the proposed β̂λ can be tackled through another interesting direction. Cai and Liu (2011)

suggest a constrained l1 minimization method for estimating a sparse inverse covariance

matrix. The authors provide interesting theoretical and simulation results for data which

are iid random variables, while they show that their method is fast and easily implemented

by linear programming.

Preliminary simulations for the (19) and Cai and Liu (2011) extensions do not suggest

significant improvements over the basic estimator and testing as it is defined in sections 2

and 3.

8 A Monte Carlo study

To examine the small sample performance of our methodological contributions we carry

out an extensive Monte Carlo study. To do so, we allow for a wide set of covariate de-

signs, which are considered as plausible for macroeconomic and/or financial time series.

Then, we examine the ability of each method to determine the true regressors, and the true

parameter vector.

The literature on large dimensional regression has been dominated by penalized re-

gression methods. Top among them are the Lasso and Adaptive Lasso methods, whose

theoretical properties have been extensively analysed in e.g. Zou (2006), Zhao and Yu

(2006), and Meinshausen and Bühlmann (2006). These are considered as refinements of

multiple regression, where the vector of regression coefficients is obtained as a solution to

the following optimization problem

β̂ = arg min
β

T

∑
t=1

(
yt −

p

∑
i=1

βixit

)2

+ P (β, λ) (20)
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where P (β, λ) is a function of the tuning parameter λ that penalizes the complexity of

coefficient β. In empirical applications, the tuning parameter λ is calibrated by cross vali-

dation. For Lasso regression, P (β, λ) is the L1 norm of the vector β. The L1 geometry of the

solution implies that Lasso is performing variable selection in the sense that an estimated

component can be exactly zero. For adaptive lasso (see e.g. Zhou and Hastie (2005)) the L1

norm is replaced by a re-weighted version which diminishes the estimation bias implied

by Lasso.

In our simulation experiment we generate the data from model (1) assuming that yt is

generated by the first 4 columns of xt (i.e. k = 4) and βi = 1, for i = 1, .., 4. Since most

economic data support the inclusion of a constant, in model (1), we also set β0 = 1. In

all methods the inclusion of the constant is assumed to be known, that is, for all methods

the TPR and FPR do not account for the constant but only for the rest of the p possible

regressors.

The tuning parameters of the methods are calibrated using the CV methods presented

in the previous section. The Lasso and Adaptive Lasso parameters are calibrated using

10-fold cross validation, as this is considered as a benchmark, in the literature, while for

the rest of the proposed methods, T − 1-fold cross validation is used, which is also known

as leave one out cross validation. The Adaptive Lasso method is applied, as described in

section 2.8.4 of Buhlmann and van de Geer (2011).

We then use 500 simulation experiments to measure average values of TPR and FPR

defined in (13), average RMSE of the parameter vector defined as

RMSE =

√√√√ 1
p

p

∑
i=1

(
β̂i − βi

)2
, (21)

average probability of observing exactly the true model, defined as

TM = I

({
k

∑
i=1

I
(

β̂i 6= 0
)
= k

}
∩
{

p

∑
i=k+1

I
(

β̂i 6= 0
)
= 0

})
(22)

with I
(

β̂i 6= 0
)

= 1 when β̂i 6= 0 and zero otherwise, and average out of sample mean

squared forecast error, computed at the T + 1-th simulated observation and defined as

RMSFE =

√
(yT+1 − ŷT+1)

2 (23)

For all these measures of performance the large set of covariates xt are generated accord-
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ing to a wide range of distributional designs, presented bellow, and a rich set of T, p, R2

parameters.

8.1 Designs for regressors

8.1.1 IID covariates

In this naive case we assume that covariates are generated from xt ∼ N
(
0, Ip

)
, for t =

1, .., T. This is the simplest case that we examine in which the regressors are uncorrelated.

8.1.2 Temporally uncorrelated, weakly collinear covariates

For the temporally uncorrelated, weakly collinear covariates we assume the true signals

are generated by

xit = (εit + gt) /
√

2, for i = 1, .., 4, (24)

and the noise variables by

x5t = ε5t

xit = (εit + εi−1t) /
√

2, for i > 5, gt ∼ NIID (0, 1) , εit ∼ NIID (0, 1)

In this case, there is correlation among the true signal variables, and among the noisy

variables, but there is no correlation between the true signal and the noisy regressros. This

implies a 50% correlation among the true signal variables.

8.1.3 Pseudo signal variables

For the pseudo signal variable case we assume that the true signals are generated by

xit = (εit + gt) /
√

2, for i = 1, .., 4 (25)

and the noise variables are generated by

x5t = ε5t + κx1t, x6t = ε6t + κx2t for κ = 1.33

xit = (εit + εi−1t) /
√

2, for i > 6, gt ∼ N (0, 1) , εit ∼ N (0, 1)

Now, we allow for all types of correlations between the variables. Correlations among

the true signals, correlation among the noisy variables and correlation between the true
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signals and the noisy variables. This process implies that there are two pseudosignal vari-

ables, namelly, the x5t and x6t, with a correlation among signals and pseudosignals of 80%.

8.1.4 Strongly collinear noise variables

For the strongly collinear noise variables, using a persistent and unobserved common fac-

tor, we assume that the true signals are generated as

xit = (εit + gt) /
√

2, for i = 1, .., 4, (26)

while the noise variables are generated as

x5t = (ε5t + bi ft) /
√

3

xit =
(
(εit + εi−1t) /

√
2 + bi ft

)
/
√

3, for i > 5, bi ∼ N (1, 1)

ft = 0.95 ft−1 +
√

1− 0.952vt, vt ∼ N (0, 1)

8.1.5 Temporally correlated and weakly collinear covariates

For the temporally correlated and weakly collinear covariate case, we assume that the true

signals are generated as

xit = (εit + gt) /
√

2, for i = 1, .., 4 (27)

while the noise variables are generated as

x5t = ε5t

xit = (εit + εi−1t) /
√

2, for i > 5

εit = ρεit−1 +
√

1− ρ2vit, vt ∼ N (0, 1) ,

where we set ρ = 0.5 for all i.

8.1.6 All covariates are collinear with the true signals

Finally, we examine the case in which all variables are collinear with the true signals

xt ∼ N
(
0, Σp

)
18



with the i, j-th element of Σp defined as σij = 0.5|i−j|, 1 ≤ i, j ≤ p.

8.2 Summary of simulation results

In tables 1 to 6 we present simulation results for the DGPs of the covariate vector, xt, which

are presented in the previous section. We report results for the RMSE of the parameter

vector β, the RMSFE of the one step ahead forecast, the TPR, FPR as these are defined

in equations (13), as well as the TM, which measures the number of times that a method

exactly detects the correct model, that is TPR=1 and FPR=0, at the same time. In our

comparisons, we focus on Lasso and adaptive Lasso since these are the main penalized

regression methods used in the literature and also because they tend to perform better

than other important methods like Boosting or other penalized regression methods, as it is

highlighted in the literature.

Comparing Lasso with adaptive Lasso, it is evident that the former performs over-

whelmingly better than the latter in the majority of the experiments, in terms of RMSE

of the parameter vector β. The very slight decreases in the FPR which are delivered by the

adaptive Lasso method, come at the significant cost of expanding RMSE. This implies that

if our main aim is model selection, adaptive Lasso might be more suitable than Lasso. On

the other hand, the method that minimizes the small sample bias, in estimation vector β, is

the Lasso. For this reason we choose Lasso as our benchmark model for comparison. In all

tables the RMSE of the parameter vector β, and the RMSFE of the one step ahead forecast,

are reported as ratios from the Lasso performance. This means that values higher 1 imply

that the Lasso performs better in these metrics than the method which is compared with.

Focusing, first, on the uncorrelated covariates case, we see that the probability that

the Lasso and/or adaptive Lasso methods identify the truth is very close to zero. This

result is not surprising as it is known that these two methods are choosing larger than the

truth models. Contrarily, we see that our basic regularized estimator (R-BL and R-CL in

the tables) performs satisfactory compared to Lasso and adaptive Lasso. For large and

medium R2 (= 0.9, 0.6) as well as large and medium T (T = 200, 300) the improvements in

RMSE over the benchmark are between 15% and 40%. The stronger the signal (higher R2)

and larger the T, the more significant is the improvement. It is reasonable to believe that

the power of our set of proposals, increases with the T and the R2. This can be also seen

by the better TPR, FPR, TM measures, which are presented in the tables and support our

theoretical findings of Theorem 1. When we enhance this estimator by the sure screening

approach, the observed improvements are slight and non significant, indicating that in

the uncorrelated covariates case, the basic estimator does not need the support of the sure
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screening enhancement to work satisfactory. Adaptive thresholding seems to be important,

in this case, even though all σii = 1, suggesting that this type of thresholding should not

be necessary. The R-CL delivers larger improvements over the Lasso, than the one that

is provided by R-BL, in terms of RMSE, although when the signal deteriorates (the R2

diminishes), this method (R-CL) fails to result to FPR which is close to zero. The multiple

testing enhancements that we consider, also provide large gains. The three step procedure

(R-CL-t-r or R-BL-t-r) are the best performing methods with gains in RMSE of order 40-50%

over the Lasso method and this is partially affected by the choice of R2 and T. This is also

visible in the TPR, FPR metrics, which indicate that the model selection is also improved

considerably, compared to the basic estimator. The adaptive thresholding (CL) now does

not provide significant gains over the global thresholding (BL). This supports the view that

testing, improves considerably the screening mechanism, making the specific thresholding

approach not so important. The performance of the two step approach (R-CL-t or R-BL-t)

is also significantly better than the Lasso method and in between the other two proposals

considered. Again, entry specific thresholding is not so important while the sure screening

extension is not important, also here. Overall, in this experiment there is a plethora of

proposed methods that perform better than the Lasso and adaptive Lasso, with the R-CL-

t-r or R-BL-t-r being the most successful.

Moving now to less sparse covariance matrices for the vector xt, as the one that is con-

sidered in the case of temporally uncorrelated and weakly collinear covariates, it is visible

that the basic estimator (R-BL and R-CL) provides improvements over the benchmark only

when the adaptive threshold is considered, while in both cases these deteriorate, compared

to the uncorrelated covariates case, that we considered before. Now, the R-CL provides ad-

vancements in RMSE of order 15-20% over the Lasso, while the sure screening does not

affect significantly the performance in both R-CL and R-BL. Moving to the multiple testing

enhancements, it is visible that the three step approach (R-CL-t-r or R-BL-t-r) is the best

performing method again. Now the R-BL-t-r seems to provide some gains over the R-CL-

t-r, in the case of medium and low R2(= 0.3, 0.6), while comparing R-CL-t-r with R-CL we

see that the source of this deterioration is the testing and not the estimation of β, as the

RMSE of R-CL is lower than that of R-CL-t-r. Remarkably, this is not the case for R-BL-t-r

and R-BL, where testing improves the performance of the basic estimator, as expected, in

both model selection (TPR-FPR) and estimation bias (RMSE). This finding suggests that

even when σii’s are not constant across i, the estimation error that is induced because of the

adaptive thresholding, may cancel any gains from it. This can result to poor estimates of

β, or poor estimates of its variance, as it is the case here, deteriorating the testing results.
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In the case that the xt includes pseudo signal variables, as in the case of pseudo signal

variables, the proposed methods that outperform the Lasso methods, shrink considerably.

Now, the that performs better than the Lasso, in terms of RMSE, is the R-BL-t-r. The highest

the T and R2 the better the performance. The maximum improvement is of order 10%,

which is considerably lower than the improvements that we considered in the previous

cases. Remarkably, while Lasso delivers TPR equal to 1 and FPR above zero, our proposal

provides its gains through a reverse behavior: TPR below 1 and FPR close to zero, meaning

that with R-BL-t-r it is more likely that you miss some true covariates, but you will discard

all the false covariates of the model, in contrast to the Lasso’s behavior. Here, it is also

evident, that the small T (= 150) needs the enhancement of the sure screening in order to

beat the Lasso, in terms of RMSE. This is one of the few cases, in which the sure screening

is necessary in order to enhance the performance of our proposals.

Focusing in the case in which all variables are collinear with the true signals, we see

that most of the results discussed in the previous case, hold also here. The R-BL-t-r is the

most credible method for parameter estimation and variable selection. Again, it might

miss some of the true regressors, but it is more unlikely than it is with Lasso, to choose

false covariates, as true regressors. The sure screening enhancement, in this case does not

provide significant gains over the basic R-BL-t-r.

Finally, the good results of R-BL-t-r or S-R-BL-t-r in terms of RMSE, remain in strongly

collinear noise variables due to a persistent unobserved common factor case, and the tem-

porally correlated and weakly collinear covariates case. In the latter, the adaptive regular-

ization, version of the regularized estimator seems to work well, as it has also be seen in

the case of temporally uncorrelated and weakly collinear covariates.

Overall the basic estimator R-CL or R-BL provide gains over the benchmark in our sim-

plest cases, while the multiple testing enhancements, results to significant improvements

in most of the cases considered. When the covariance of xt becomes less sparse, the adap-

tive thresholding gains are cancelled, probably due to the increased estimation error that it

induces. The sure screening approach does not provide significant gains here. While, this

approach has been considered as a good enhancement for the penalized regression meth-

ods, this is not true for our regularization and testing proposals. This might attributed to

the fact that in our proposals, we consider explicitly the structure of the covariance matrix,

accounting for zero elements in the estimation and testing procedure, making this type of

screening unnecessary.
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9 Empirical illustration

As an empirical illustration, we perform an out of sample forecasting evaluation of our

models, for five key macroeconomic series using a large set of available covariates. We

consider the monthly data from the FRED-MD database which consists of a dataset of 124

macroeconomic and financial series of the US economy. With this set of possible regres-

sors augmented with 4 lags of the dependent variable, we forecast 5 key macroeconomic

series, namely, industrial production index, housing price index, inflation, unemployment

and the unfilled orders for durable goods (see table 7 for the list of forecasted variables).

Our dataset starts at 01-Jan-1993 and ends at 01-Dec-2015. For each dependent variable

we use a rolling estimation window of 140 monthly observations, to forecast the last 136

monthly observations of our sample. That is, the forecasting evaluation starts at 01-Sep-

2004. To assess whether the relative performance of a model is stable over time, we also

evaluate models over the recent recession event period. This will indicate if some models

can perform better during crisis periods.

As in the Monte Carlo section, the tuning parameter for our methods, is also calibrated

by the leave one out cross validation, while now since our main aim is forecasting we do

this over the last 12 observations, of each estimation window considered. For Lasso and

Adaptive Lasso we consider again the 10-fold cross validation. We compare our results

with the autoregressive model of order d, (AR(d)), where d is selected by the Bayesian

information criterion (BIC), and the factor augmented AR(d), (FAAR(d)), where the number

of factors is chosen by the Bai and Ng (2002) information criterion. In the latter, the factors

are extracted through principal component analysis (PCA) on the large set of available

regressors.

The forecasting performance of the alternative models is evaluated relative to that of

the benchmark (the AR(d) model) using the relative root mean squared forecast error (r-

RMSFE). For each model m and target series s, it is:

r-RMSFE(m,s) =

√
∑T

t=t0

(
e(m,s)

t

)2

√
∑T

t=t0

(
e(AR(d),s)

t

)2
, (28)

where e(m,s)
t = y(s)t − ŷ(m,s)

t is the 1-step ahead forecast error of model m for series s, and

e(AR(d),s)
t = y(s)t − ŷ(AR(d),s)

t is the counterpart for the benchmark AR (d) model. When the

r-RMSFE(m,s) is less than one, model m out performs the benchmark AR (d) for macroeco-

nomic variable s. To assess the significance of the forecast evaluation, we use the common
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Diebold and Mariano (1995) test 1 as well as the forecast fluctuation test developed by

Giacomini and Rossi (2010).2

A number of interesting conclusions could be drawn from table 8 and figures 1 to 5. In

all series examined our proposals are either the best performing methods or among the 3

best performing ones. Focusing one the full sample evaluation, we see that in HOUSTNE

series the R-BL-t-r is the best performing one, while in all other cases the evaluation of our

methods differs slightly from the best performing one. In most of the cases, this is the Lasso

method, supporting the view that this is the leading benchmark in the large dimensional

regression literature. Unsurprisingly, the proposed three step procedure (R-BL-t-r or R-CL-

t-r) seems to be the most reliable and steady performing method, from our proposals. They

perform remarkably in UNRATE, AMDMNOx, and of course, HOUSTNE, with or without

the sure screening extension. This is in accordance with our monte Carlo findings, were we

have seen that when the Σz becomes less sparse, this method performs remarkably better

than our other proposals. The only exemption is the INDPRO in which the sure screening

extension of the R-BL-t enables it to be in the top 3 performing methods. Interestingly,

in this full sample evaluation, the AR(d) and the Factor Augmented Ar(d) do not qualify

in the best three methods, in any of the five series examined. Concluding, in this full

sample evaluation the penalized regression are the most successful methods, while their

performance is comparable to the R-BL-t-r or R-CL-t-r, which perform steadily well. The

sure screening affects significantly the results only in the INDPRO case.

Turning into the crisis period evaluation interval we see that our proposals qualify as

the best performing in more cases. Now the Lasso and Adaptive Lasso fails to enter in the

top three performing methods in 4 out of 5 series examined, while our proposals with or

without the sure screening extension qualify first in the 4 out of 5 cases. Again, the R-BL-t-r

or R-CL-t-r are the most reliable and steady performing methods.

10 Conclusion

In this paper, we have considered the problem of model specification and estimation where

there is a large set of potential predictors, for a dependent variable yt. We provide alterana-

tives to and variations of penalized regression and greedy methods, which are related to

1Since our out of sample period contains a large number of observations, the small sample correction of
the DM test proposed by Harvey et al. (1997) is not necessary, as it would lead to very minor modifications
of the original DM statistic.

2In the empirical exercise we set the rolling windows size at ν = 50, as it is recommended by Giacomini
and Rossi (2010).
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statistical inference. A fundamental component of our theoretical contribution is sparsity

of the covariance matrix of the regressor matrix. Our theoretical, simulation and empiri-

cal results provide evidence in favour of the methods we propose, compared to existing

methods.

Letter Explanation

S SIS

R-BL Regularized estimator with Bickel and Levina

R-CL Regularized estimator with Cai and Liu

t testing procedure

r final regression on important covariates

Table A: Method names in the tables. Each row stands for a method. Two or more rows result to a
combined method. E.g. S-R-BL-t-r is a sure screening method (S), combined the basic regularized

estimator (R-BL), with testing (t) and a final regression (r). R-BL-t-r is the basic regularized
estimator (R-BL), with testing (t) and a final regression (r). R-BL-t is the basic regularized

estimator. (R-BL), with testing (t). R-BL is the basic regularized estimator (R-BL).
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R2 = 0.7

TPR 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FPR 0.08 0.08 0 0 0 0 0.01 0 0 0 0 0 0 0.08

RMSE(β) 1 1.32 0.65 0.55 0.82 0.7 0.68 0.68 0.67 0.53 0.82 0.67 0.55 0.7
TrueModel 0 0 0.98 0.67 0.72 0.88 0.35 0.94 0.98 0.75 0.72 0.95 0.56 0.84

RMFSE 1 1.05 0.97 0.98 0.99 0.98 1 0.97 0.97 0.98 0.99 0.98 0.98 0.98

R2 = 0.5

TPR 1 1 0.99 1 0.97 1 1 1 0.99 0.99 0.97 0.99 0.99 0.99
FPR 0.08 0.08 0 0 0 0 0.01 0 0 0 0 0 0 0.27

RMSE(β) 1 1.34 0.67 0.6 0.87 0.76 0.73 0.73 0.67 0.57 0.87 0.69 0.59 0.75
TrueModel 0.01 0.01 0.82 0.6 0.52 0.63 0.29 0.7 0.82 0.66 0.52 0.79 0.57 0.55

RMFSE 1 1.06 0.98 0.97 0.99 0.97 0.97 0.98 0.98 0.97 0.99 0.99 0.97 1

R2 = 0.3

TPR 0.99 0.99 0.86 0.89 0.87 0.89 0.9 0.89 0.77 0.78 0.87 0.78 0.8 0.88
FPR 0.07 0.07 0 0.01 0.01 0 0.01 0.01 0 0 0.01 0 0 0.59

RMSE(β) 1 1.26 0.98 0.88 1.1 0.96 0.87 1.04 1.04 0.98 1.1 1.03 0.94 1.06
TrueModel 0 0 0.24 0.21 0.17 0.25 0.2 0.21 0.21 0.21 0.17 0.24 0.24 0.07

RMFSE 1 1.04 1 0.99 1.01 1.01 1 1 1 1 1.01 1 0.99 1.01

T=300, p=200
R2 = 0.7

TPR 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FPR 0.08 0.08 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01 0.05

RMSE(β) 1 1.34 0.68 0.69 0.71 0.73 0.74 0.7 0.66 0.61 0.71 0.7 0.65 0.7
TrueModel 0 0 0.94 0.35 0.91 0.82 0.27 0.93 0.98 0.53 0.91 0.92 0.39 0.89

RMFSE 1 1.02 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97

R2 = 0.5

TPR 1 1 1 1 0.99 1 1 1 1 1 0.99 1 1 1
FPR 0.08 0.08 0 0.01 0 0 0.01 0 0 0 0 0 0 0.15

RMSE(β) 1 1.38 0.65 0.67 0.69 0.76 0.76 0.68 0.62 0.59 0.69 0.64 0.62 0.65
TrueModel 0.01 0.01 0.85 0.44 0.82 0.66 0.27 0.8 0.91 0.6 0.82 0.87 0.51 0.74

RMFSE 1 1.05 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

R2 = 0.3

TPR 1 1 0.98 0.99 0.95 0.99 0.99 0.99 0.95 0.96 0.95 0.96 0.97 0.98
FPR 0.07 0.07 0 0.01 0 0 0.01 0.01 0 0 0 0 0 0.48

RMSE(β) 1 1.34 0.76 0.71 0.81 0.8 0.76 0.81 0.71 0.66 0.81 0.7 0.66 0.77
TrueModel 0 0 0.54 0.4 0.52 0.42 0.27 0.49 0.66 0.59 0.52 0.68 0.57 0.34

RMFSE 1 1.01 0.99 0.98 1 0.98 0.99 1 0.99 0.98 1 0.98 0.98 1

T=150, p=200
R2 = 0.7

TPR 1 1 0.99 1 0.99 1 1 1 0.99 1 0.99 0.99 1 0.99
FPR 0.08 0.08 0 0 0 0 0.01 0 0 0 0 0 0 0.17

RMSE(β) 1 1.28 0.74 0.54 1 0.72 0.63 0.76 0.76 0.53 1 0.76 0.52 0.83
TrueModel 0.01 0.01 0.91 0.66 0.49 0.83 0.4 0.85 0.88 0.64 0.49 0.85 0.61 0.66

RMFSE 1 1.04 0.95 0.93 0.98 0.96 0.94 0.95 0.94 0.93 0.98 0.95 0.94 0.96

R2 = 0.5

TPR 1 1 0.94 0.97 0.93 0.97 0.98 0.95 0.93 0.94 0.93 0.93 0.94 0.93
FPR 0.08 0.08 0 0.01 0 0 0.01 0 0 0 0 0 0 0.41

RMSE(β) 1 1.29 0.88 0.72 1.01 0.84 0.72 0.9 0.87 0.72 1.01 0.88 0.73 0.99
TrueModel 0 0 0.54 0.4 0.33 0.51 0.33 0.47 0.53 0.45 0.33 0.54 0.47 0.24

RMFSE 1 1.03 1.02 0.99 1.03 0.99 0.98 1.02 1.03 0.99 1.03 1.03 0.99 1.03

R2 = 0.3

TPR 0.97 0.97 0.73 0.77 0.79 0.77 0.78 0.77 0.61 0.62 0.79 0.61 0.63 0.77
FPR 0.07 0.07 0 0.01 0.01 0 0.01 0.01 0 0 0.01 0 0 0.55

RMSE(β) 1 1.24 1.13 1.02 1.19 1.09 1.02 1.17 1.16 1.12 1.19 1.17 1.1 1.21
TrueModel 0 0 0.09 0.08 0.06 0.09 0.07 0.06 0.08 0.08 0.06 0.08 0.08 0.02

RMFSE 1 1.05 1.03 1.01 1.04 1.01 1 1.05 1.03 1.03 1.04 1.03 1.02 1.05

Table 1: Simulation results for iid covariates. Method names are given in Table A. The
number of simulations is 500. The MSE and the RMSFE are given as ratios from the Lasso
method.
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R2 = 0.7

TPR 1 1 0.74 0.99 0.86 0.99 0.99 1 0.65 1 0.78 0.99 0.99 1
FPR 0.04 0.04 0 0 0.06 0 0 0 0 0 0.01 0 0 0

RMSE(β) 1 1.36 2.73 0.82 4.83 0.79 0.91 0.75 5.09 0.74 5.65 0.75 0.79 0.74
TrueModel 0.1 0.1 0.09 0.91 0.01 0.94 0.7 0.98 0.02 0.98 0.14 0.97 0.95 1

RMFSE 1 1.01 1.14 0.97 1.46 0.98 0.97 0.97 1.46 0.97 1.6 0.97 0.97 0.97

R2 = 0.5

TPR 1 1 0.55 0.97 0.78 0.79 0.85 0.99 0.6 0.99 0.75 0.8 0.9 1
FPR 0.04 0.04 0 0 0.05 0 0 0 0 0 0 0 0 0.01

RMSE(β) 1 1.35 2.57 0.83 3.5 1.48 1.32 0.89 3.26 0.77 3.5 1.32 1.08 0.76
TrueModel 0.06 0.06 0 0.85 0 0.19 0.35 0.82 0 0.94 0.11 0.24 0.55 0.99

RMFSE 1 1.01 1.14 0.98 1.32 1.02 1 0.98 1.2 0.97 1.33 1.01 0.99 0.97

R2 = 0.3

TPR 0.95 0.95 0.49 0.9 0.74 0.52 0.55 0.94 0.5 0.89 0.73 0.49 0.76 1
FPR 0.03 0.03 0 0 0.02 0 0 0 0 0 0 0 0 0.02

RMSE(β) 1 1.34 2.07 0.93 2.48 1.56 1.7 1.09 2.2 0.91 2.4 1.64 1.2 0.81
TrueModel 0.07 0.07 0 0.57 0.09 0 0 0.41 0 0.59 0.13 0.02 0.43 0.98

RMFSE 1 1.03 1.06 0.98 1.17 1.04 1.02 0.99 1.05 0.99 1.15 1.05 1.01 0.99

T=300, p=200
R2 = 0.7

TPR 1 1 0.98 1 1 1 1 1 0.89 1 0.82 1 1 1
FPR 0.03 0.03 0 0.01 0.06 0 0.01 0 0 0 0.11 0 0 0

RMSE(β) 1 1.38 1.09 0.97 3.63 0.81 1.06 0.75 2.77 0.87 14.43 0.74 0.78 0.74
TrueModel 0.08 0.08 0.77 0.56 0 0.93 0.43 0.99 0.52 0.76 0.03 1 0.97 1

RMFSE 1 1 0.99 0.97 1.22 0.98 0.98 0.98 1.12 0.98 1.55 0.98 0.98 0.98

R2 = 0.5

TPR 1 1 0.81 0.97 0.98 0.93 0.94 1 0.67 0.99 0.77 0.94 0.96 1
FPR 0.03 0.03 0 0 0.1 0 0 0 0 0 0.02 0 0 0

RMSE(β) 1 1.38 1.82 0.96 3.49 1.24 1.21 0.91 2.82 0.83 5 0.97 0.95 0.75
TrueModel 0.09 0.09 0.1 0.74 0 0.5 0.42 0.82 0.04 0.88 0.07 0.71 0.8 1

RMFSE 1 1.01 1.02 0.99 1.26 1 1.01 0.99 1.14 0.98 1.3 0.98 0.99 0.98

R2 = 0.3

TPR 0.99 0.99 0.53 0.94 0.85 0.64 0.67 0.97 0.54 0.95 0.75 0.62 0.88 1
FPR 0.03 0.03 0 0 0.12 0 0 0 0 0 0.01 0 0 0.02

RMSE(β) 1 1.39 2.1 0.94 3.33 1.62 1.74 1.13 2.44 0.9 3.07 1.62 1.09 0.79
TrueModel 0.08 0.09 0 0.67 0 0.01 0.01 0.48 0 0.77 0.14 0.01 0.67 0.98

RMFSE 1 1.01 1.04 0.98 1.17 1.02 1.01 1.01 1.08 0.98 1.19 1.03 1 0.98

T=150, p=200
R2 = 0.7

TPR 1 1 0.56 0.99 0.79 0.96 0.97 1 0.6 1 0.78 0.96 0.98 0.99
FPR 0.04 0.04 0 0 0.04 0 0 0 0 0 0 0 0 0

RMSE(β) 1 1.34 3.73 0.76 4.48 0.91 0.91 0.75 4.22 0.74 4.59 0.91 0.84 0.8
TrueModel 0.08 0.08 0 0.97 0.05 0.79 0.72 0.98 0.01 0.99 0.17 0.81 0.88 0.98

RMFSE 1 1.02 1.37 0.97 1.73 0.99 0.99 0.98 1.45 0.98 1.92 0.99 0.98 0.98

R2 = 0.5

TPR 0.99 0.99 0.51 0.97 0.77 0.69 0.78 0.99 0.48 0.97 0.77 0.68 0.84 1
FPR 0.03 0.03 0 0 0.02 0 0 0 0 0 0 0 0 0.01

RMSE(β) 1 1.35 2.76 0.82 3.21 1.65 1.44 0.88 2.81 0.8 3.15 1.59 1.23 0.83
TrueModel 0.09 0.09 0 0.83 0.13 0.05 0.19 0.83 0 0.85 0.19 0.06 0.35 0.98

RMFSE 1 1.03 1.19 0.99 1.45 1.03 1.01 1 1.23 0.99 1.45 1.02 1 0.99

R2 = 0.3

TPR 0.91 0.91 0.43 0.87 0.75 0.48 0.51 0.91 0.43 0.83 0.75 0.46 0.7 0.99
FPR 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0.04

RMSE(β) 1 1.34 1.98 0.94 2.21 1.55 1.63 1.05 1.97 0.95 2.21 1.79 1.23 1.17
TrueModel 0.06 0.06 0 0.56 0.16 0 0 0.42 0 0.45 0.17 0.01 0.29 0.93

RMFSE 1 1.02 1.03 0.97 1.14 1.03 1.02 0.99 1.05 0.97 1.15 1.08 1 0.99

Table 2: Simulation results for temporally uncorrelated and weakly collinear covariates.
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R2 = 0.7

TPR 1 1 0.56 1 0.77 0.9 0.97 1 0.51 0.99 0.45 0.65 0.94 0.98
FPR 0.03 0.03 0 0 0.08 0 0 0.01 0 0 0.02 0 0.01 0.68

RMSE(β) 1 1.31 3.57 0.86 4.57 1.49 0.96 1.04 4.92 0.86 5.05 3.16 1.26 4.21
TrueModel 0.06 0.06 0.01 0.51 0 0.49 0.57 0 0.04 0.6 0 0.07 0.07 0

RMFSE 1 1.01 1.37 0.97 1.45 1.04 0.98 0.99 1.53 0.98 1.53 1.2 0.98 1.07

R2 = 0.5

TPR 1 0.99 0.48 0.97 0.5 0.66 0.8 1 0.56 0.92 0.38 0.5 0.83 0.99
FPR 0.04 0.04 0 0 0.05 0 0 0.01 0 0 0.01 0 0.01 0.65

RMSE(β) 1 1.37 2.8 0.92 3.42 1.99 1.43 1.06 3.07 1.04 3.36 2.78 1.46 2.87
TrueModel 0.05 0.05 0.03 0.44 0 0.03 0.2 0.06 0.03 0.48 0 0 0.01 0

RMFSE 1 1.02 1.17 0.98 1.31 1.06 0.98 0.98 1.12 0.96 1.25 1.14 0.99 1.02

R2 = 0.3

TPR 0.92 0.92 0.49 0.85 0.35 0.5 0.52 0.94 0.52 0.72 0.34 0.35 0.65 0.99
FPR 0.03 0.03 0 0 0.02 0 0 0.01 0 0 0.01 0 0.01 0.69

RMSE(β) 1 1.35 2.04 1.07 2.34 1.59 1.62 1.13 2.1 1.26 2.32 2.35 1.49 6.23
TrueModel 0.04 0.04 0 0.25 0 0 0 0.13 0 0.08 0 0 0 0

RMFSE 1 1.02 1.09 1 1.14 1.04 1.05 1.01 1.06 1.01 1.12 1.15 1.02 1.29

T=300, p=200
R2 = 0.7

TPR 1 1 0.87 1 1 0.98 0.98 1 0.66 1 0.69 0.77 0.98 1
FPR 0.04 0.04 0.01 0.01 0.07 0 0.01 0.01 0 0 0.15 0 0.01 0.86

RMSE(β) 1 1.33 2.41 0.92 3.51 1.08 1.02 0.97 3.76 0.86 15.36 2.83 1.11 4.65
TrueModel 0.06 0.06 0.11 0.4 0 0.8 0.42 0 0 0.48 0 0.15 0.08 0

RMFSE 1 1.01 1.08 0.98 1.24 0.99 0.98 0.98 1.27 0.99 1.52 1.11 0.99 1.03

R2 = 0.5

TPR 1 1 0.63 0.99 0.94 0.81 0.89 1 0.55 0.99 0.54 0.58 0.92 0.99
FPR 0.04 0.04 0 0.01 0.11 0 0 0.01 0 0 0.02 0 0.01 0.83

RMSE(β) 1 1.37 2.48 0.96 3.44 1.71 1.28 1.08 3.17 0.92 4.12 2.87 1.34 3.29
TrueModel 0.05 0.05 0.01 0.33 0 0.24 0.31 0.1 0.04 0.45 0 0.01 0.01 0

RMFSE 1 1.03 1.12 0.99 1.23 1.03 1.02 1 1.19 0.99 1.23 1.13 1.01 1.02

R2 = 0.3

TPR 0.98 0.98 0.47 0.95 0.63 0.59 0.62 0.98 0.56 0.92 0.4 0.37 0.7 1
FPR 0.03 0.03 0 0 0.11 0 0 0.01 0 0 0.02 0 0.01 0.88

RMSE(β) 1 1.38 2.22 1.02 3.11 1.67 1.71 1.1 2.38 1.01 2.87 2.44 1.6 4.62
TrueModel 0.04 0.04 0.02 0.34 0 0.01 0.01 0.2 0.03 0.39 0 0.01 0.01 0

RMFSE 1 1.01 1.1 1 1.16 1.05 1.03 0.99 1.09 1 1.14 1.13 1.05 1.03

T=150, p=200
R2 = 0.7

TPR 1 1 0.47 0.99 0.42 0.8 0.93 1 0.56 0.88 0.37 0.57 0.89 0.92
FPR 0.04 0.04 0 0 0.02 0 0 0.01 0 0 0.01 0 0.01 0.38

RMSE(β) 1 1.35 4.06 0.85 4.4 1.92 1.11 1.22 4.04 1.39 4.43 3.26 1.45 4
TrueModel 0.06 0.06 0.01 0.61 0 0.22 0.53 0 0.01 0.43 0 0.04 0.07 0

RMFSE 1 1.03 1.48 0.97 1.51 1.06 0.98 0.99 1.34 0.99 1.52 1.31 0.99 1.2

R2 = 0.5

TPR 0.99 0.98 0.49 0.89 0.34 0.58 0.74 0.98 0.53 0.7 0.34 0.44 0.76 0.92
FPR 0.04 0.04 0 0 0.01 0 0 0.01 0 0 0.01 0 0.01 0.38

RMSE(β) 1 1.31 2.62 1.05 2.92 2 1.44 1.14 2.62 1.49 2.92 2.63 1.5 2.94
TrueModel 0.06 0.06 0.01 0.41 0 0.01 0.12 0.05 0 0.1 0 0 0.01 0

RMFSE 1 1.04 1.19 0.99 1.23 1.12 1.03 0.99 1.16 1.04 1.2 1.16 0.99 1.07

R2 = 0.3

TPR 0.89 0.89 0.48 0.76 0.37 0.45 0.46 0.88 0.34 0.4 0.37 0.34 0.6 0.99
FPR 0.04 0.04 0 0 0.01 0 0 0.01 0 0 0.01 0 0.01 0.39

RMSE(β) 1 1.35 1.92 1.11 2.12 1.56 1.58 1.2 1.79 1.51 2.11 2.74 1.46 4.6
TrueModel 0.03 0.03 0 0.09 0 0 0.01 0.11 0 0 0 0 0.01 0

RMFSE 1 1.02 1.02 0.98 1.16 1.03 1.04 1 1.05 1.06 1.15 2.07 1.05 1.22

Table 3: Simulation results for pseudo signal variables.
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R2 = 0.7

TPR 1 1 0.82 0.99 0.88 0.97 0.98 1 0.65 0.99 0.74 0.67 0.98 0.69
FPR 0.03 0.03 0 0 0.02 0 0.01 0.02 0 0 0 0 0 0

RMSE(β) 1 1.43 3.2 0.86 3.58 1.67 1.12 2.05 4.47 0.76 4.69 4.39 0.8 4.41
TrueModel 0.08 0.05 0.08 0.7 0.01 0.34 0.26 0.01 0 0.93 0.16 0.07 0.91 0.1

RMFSE 1 0.99 1.18 0.92 1.21 0.93 0.88 0.93 1.46 0.96 1.86 1.42 0.94 1.47

R2 = 0.5

TPR 1 1 0.64 0.99 0.81 0.77 0.81 1 0.64 0.96 0.73 0.68 0.84 0.82
FPR 0.03 0.03 0 0 0.02 0 0 0.02 0 0 0 0 0 0

RMSE(β) 1 1.43 2.86 0.74 3.17 1.8 1.52 1.94 3.15 0.78 3.3 3.09 1.28 3.22
TrueModel 0.15 0.12 0 0.9 0.08 0.03 0.16 0.01 0.02 0.9 0.16 0.14 0.35 0.44

RMFSE 1 1.01 1.1 0.93 1.21 1.03 1.03 1.03 1.22 0.97 1.37 1.13 0.94 1.2

R2 = 0.3

TPR 0.96 0.95 0.6 0.98 0.72 0.49 0.48 0.98 0.66 0.95 0.72 0.49 0.59 0.99
FPR 0.02 0.02 0 0 0 0 0 0.01 0 0 0 0 0 0

RMSE(β) 1 1.47 2.27 0.76 2.4 1.51 1.84 1.34 2.36 0.82 2.39 1.88 1.56 1.09
TrueModel 0.1 0.07 0 0.91 0.06 0 0 0.47 0 0.78 0.1 0.07 0.05 0.94

RMFSE 1 1.03 1.24 0.94 1.22 1.01 1.04 0.98 1.18 0.99 1.21 1.1 1 1

T=300, p=200
R2 = 0.7

TPR 1 1 0.98 1 0.98 1 1 1 0.67 1 0.74 0.64 1 0.64
FPR 0.02 0.02 0 0 0.04 0 0 0.02 0 0 0.01 0 0 0

RMSE(β) 1 1.37 1.98 0.82 3.04 1.47 1.02 2.3 6.12 0.73 6.38 6.04 0.73 6.11
TrueModel 0.16 0.13 0.43 0.74 0 0.52 0.41 0.02 0 0.94 0.15 0.03 1 0.01

RMFSE 1 0.97 1.08 0.94 1.1 1.01 0.98 1.1 1.62 0.93 1.7 1.4 0.97 1.42

R2 = 0.5

TPR 1 1 0.84 0.99 0.95 0.9 0.91 1 0.63 0.99 0.73 0.74 0.87 0.79
FPR 0.02 0.02 0 0 0.05 0 0 0.02 0 0 0.01 0 0 0

RMSE(β) 1 1.45 2 0.85 2.97 1.67 1.4 2.16 3.99 0.8 4.17 4.06 1.35 4.1
TrueModel 0.07 0.03 0.24 0.79 0.01 0.24 0.2 0.02 0 0.91 0.09 0.21 0.44 0.36

RMFSE 1 1.02 1.08 0.99 1.24 1.04 1.04 1.02 1.24 0.97 1.34 1.24 0.98 1.29

R2 = 0.3

TPR 0.99 0.99 0.57 0.97 0.83 0.6 0.61 1 0.63 0.94 0.72 0.6 0.7 1
FPR 0.02 0.02 0 0 0.03 0 0 0.01 0 0 0.03 0 0 0

RMSE(β) 1 1.48 2.34 0.82 2.93 1.56 1.79 1.54 2.66 0.85 2.76 1.72 1.49 0.98
TrueModel 0.07 0.06 0.01 0.84 0.02 0 0 0.34 0 0.79 0.08 0.05 0.13 0.99

RMFSE 1 1.02 1.09 1.01 1.13 0.97 0.98 1.01 1.1 0.99 1.19 1 0.96 1.01

T=150, p=200
R2 = 0.7

TPR 1 1 0.7 1 0.77 0.94 0.95 1 0.66 1 0.74 0.68 0.97 0.73
FPR 0.03 0.03 0 0 0 0 0 0.01 0 0 0 0 0 0

RMSE(β) 1 1.45 3.81 0.68 4.11 1.84 1.22 2.09 4.18 0.68 4.39 4.15 0.88 4.17
TrueModel 0.09 0.07 0.01 0.94 0.05 0.21 0.16 0 0.02 1 0.12 0.06 0.84 0.16

RMFSE 1 1.01 1.47 0.97 1.95 1.06 1.03 1.13 1.73 0.99 2.06 1.82 1.01 1.91

R2 = 0.5

TPR 0.99 0.99 0.64 1 0.77 0.66 0.71 1 0.66 0.97 0.77 0.66 0.78 0.84
FPR 0.02 0.03 0 0 0 0 0 0.01 0 0 0.02 0 0 0.01

RMSE(β) 1 1.45 2.69 0.72 2.92 1.95 1.67 1.86 2.8 0.79 2.94 2.83 1.34 2.82
TrueModel 0.07 0.06 0.01 0.98 0.13 0 0.05 0.02 0.01 0.88 0.17 0.06 0.22 0.47

RMFSE 1 1 1.11 1.02 1.34 1.11 1 1.05 1.13 0.99 1.34 1.13 1.02 1.16

R2 = 0.3

TPR 0.92 0.92 0.58 0.96 0.73 0.42 0.42 0.98 0.64 0.86 0.74 0.53 0.56 0.98
FPR 0.03 0.03 0 0 0 0 0 0.01 0 0 0.05 0 0 0.01

RMSE(β) 1 1.53 1.88 0.77 1.99 1.36 1.58 1.17 1.91 0.83 1.97 2.03 1.28 1.27
TrueModel 0.02 0.01 0 0.8 0.12 0 0 0.52 0 0.49 0.13 0.12 0.06 0.93

RMFSE 1 1.05 1.08 0.99 1.13 1.01 1.04 0.95 1.08 0.99 1.12 1.13 1.06 1.01

Table 4: Simulation results for strongly collinear noise variables due to a persistent unob-
served common factor.
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R2 = 0.7

TPR 1 1 0.61 1 0.77 1 1 1 0.66 1 0.78 1 1 1
FPR 0.04 0.04 0 0 0.02 0 0 0 0 0 0 0 0 0

RMSE(β) 1 1.41 3.77 0.74 5.23 0.76 0.81 0.75 5.13 0.74 5.41 0.78 0.76 0.75
TrueModel 0.02 0.02 0 0.99 0.06 0.98 0.83 0.98 0 1 0.19 0.98 0.99 1

RMFSE 1 1 1.18 0.91 1.37 0.91 0.96 0.92 1.35 0.92 1.62 0.91 0.92 0.91

R2 = 0.5

TPR 1 1 0.52 1 0.71 0.8 0.8 1 0.62 1 0.71 0.8 0.83 1
FPR 0.04 0.03 0 0 0.01 0 0 0 0 0 0 0 0 0

RMSE(β) 1 1.29 2.77 0.75 3.37 1.31 1.45 0.73 3.21 0.73 3.37 1.27 1.33 0.74
TrueModel 0.09 0.06 0 1 0.06 0.22 0.22 0.99 0 1 0.1 0.24 0.3 1

RMFSE 1 1 1.1 0.95 1.46 0.96 1.02 0.94 1.17 0.95 1.45 0.96 0.98 0.93

R2 = 0.3

TPR 0.96 0.95 0.49 0.96 0.75 0.49 0.51 0.95 0.52 0.96 0.75 0.47 0.66 1
FPR 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0.01

RMSE(β) 1 1.34 2.35 0.82 2.53 1.59 1.84 0.84 2.34 0.78 2.53 1.81 1.49 1.04
TrueModel 0.03 0.01 0 0.79 0.15 0 0 0.78 0.01 0.79 0.15 0.03 0.16 0.99

RMFSE 1 1.05 1.06 1 1.28 1.05 0.98 1.02 1.04 1.02 1.28 1.08 1.01 1.03

T=300, p=200
R2 = 0.7

TPR 1 1 0.97 1 0.98 1 1 1 0.67 1 0.75 1 1 1
FPR 0.03 0.03 0 0 0.07 0 0 0 0 0 0.01 0 0 0

RMSE(β) 1 1.33 1.41 0.84 4.36 0.72 0.83 0.72 6.42 0.76 6.73 0.72 0.72 0.72
TrueModel 0.09 0.05 0.56 0.69 0 1 0.74 1 0.01 0.88 0.06 1 1 1

RMFSE 1 0.98 0.94 0.98 1.25 0.99 0.96 0.99 1.47 0.99 1.65 0.99 0.98 0.99

R2 = 0.5

TPR 1 1 0.72 1 0.85 0.94 0.94 1 0.64 1 0.74 0.95 0.93 1
FPR 0.04 0.04 0 0 0.07 0 0 0 0 0 0 0 0 0

RMSE(β) 1 1.42 2.11 0.8 3.85 1.02 1.08 0.73 4.06 0.74 4.27 0.9 1.06 0.72
TrueModel 0.06 0.07 0 0.87 0 0.64 0.55 1 0 0.97 0.1 0.76 0.67 1

RMFSE 1 0.99 1.03 1.03 1.21 1.04 1.04 1.03 1.27 1.03 1.45 1.04 1.03 1.03

R2 = 0.3

TPR 0.99 0.98 0.5 0.99 0.75 0.64 0.65 0.98 0.62 1 0.71 0.64 0.76 1
FPR 0.03 0.03 0 0 0.04 0 0 0 0 0 0 0 0 0

RMSE(β) 1 1.38 2.25 0.81 3.04 1.56 1.76 0.79 2.8 0.79 2.95 1.51 1.43 0.75
TrueModel 0.05 0.02 0 0.88 0.06 0 0 0.88 0.01 0.95 0.12 0 0.23 1

RMFSE 1 1.02 0.93 0.98 1.18 0.99 1 0.97 1.09 0.95 1.11 1 0.96 0.95

T=150, p=200
R2 = 0.7

TPR 1 1 0.56 1 0.78 0.97 0.97 1 0.63 1 0.77 0.93 0.97 1
FPR 0.04 0.04 0 0 0.01 0 0 0 0 0 0 0 0 0.01

RMSE(β) 1 1.35 4.42 0.75 4.85 0.94 0.93 0.81 4.55 0.75 4.89 1.19 0.94 1.08
TrueModel 0.02 0.01 0 1 0.13 0.8 0.79 0.95 0 1 0.2 0.74 0.85 0.98

RMFSE 1 1.01 1.69 1 2.06 1.04 1.02 1.05 1.73 1 2.27 1.05 1.07 1.08

R2 = 0.5

TPR 0.99 0.99 0.51 0.99 0.75 0.66 0.7 0.99 0.54 0.99 0.75 0.65 0.77 1
FPR 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0.03

RMSE(β) 1 1.32 2.82 0.81 3.12 1.6 1.71 0.87 2.84 0.79 3.12 1.6 1.46 0.93
TrueModel 0.06 0.06 0 0.91 0.16 0 0.02 0.9 0 0.94 0.16 0.01 0.17 0.95

RMFSE 1 0.95 1.16 0.99 1.29 1.04 1.09 0.98 1.16 0.98 1.29 1.02 1 0.97

R2 = 0.3

TPR 0.9 0.89 0.41 0.94 0.74 0.44 0.47 0.85 0.44 0.83 0.74 0.46 0.61 1
FPR 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0.02

RMSE(β) 1 1.28 1.91 0.84 2.16 1.5 1.64 0.97 1.94 0.93 2.16 1.98 1.34 1.79
TrueModel 0.07 0.02 0 0.69 0.14 0 0 0.49 0 0.38 0.14 0.05 0.12 0.97

RMFSE 1 1.02 1.11 0.96 1.23 0.97 0.93 0.99 1.12 0.99 1.23 1.06 0.95 1

Table 5: Simulation results for temporally correlated and weakly collinear covariates.
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R2 = 0.7

TPR 1 1 0.69 1 0.8 0.99 1 1 0.69 1 0.74 0.81 0.97 0.89
FPR 0.04 0.04 0 0 0.02 0 0 0 0 0 0 0 0 0.45

RMSE(β) 1 1.37 3.25 0.72 4.47 1.26 0.84 1.28 4.49 0.69 4.67 2.83 1.01 2.92
TrueModel 0.01 0 0 0.67 0.02 0.66 0.58 0.48 0.01 0.9 0.07 0.2 0.49 0.19

RMFSE 1 1.06 1.21 1.08 1.62 1.12 1.06 1.12 1.77 1.05 1.78 1.15 1.07 1.18

R2 = 0.5

TPR 1 1 0.61 1 0.75 0.85 0.86 1 0.6 1 0.75 0.6 0.84 0.83
FPR 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0.45

RMSE(β) 1 1.32 2.37 0.71 2.86 1.38 1.29 0.99 2.76 0.66 2.82 2.43 1.33 2.26
TrueModel 0.07 0.03 0 0.74 0.12 0.3 0.29 0.56 0.01 0.95 0.16 0.01 0.2 0.07

RMFSE 1 1.03 1.03 0.97 1.11 0.97 0.98 0.99 1.06 0.95 1.11 1 0.98 1.01

R2 = 0.3

TPR 0.97 0.96 0.53 0.96 0.73 0.59 0.63 0.96 0.53 0.93 0.73 0.43 0.72 0.93
FPR 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0.77

RMSE(β) 1 1.35 1.96 0.77 2.08 1.57 1.55 1.11 2.02 0.8 2.08 2.08 1.3 2.48
TrueModel 0.06 0.02 0 0.67 0.07 0 0 0.47 0 0.64 0.07 0 0.08 0.01

RMFSE 1 1.01 0.99 0.91 0.98 0.98 0.96 0.91 1.02 0.89 0.98 1.02 0.97 0.99

T=300, p=200
R2 = 0.7

TPR 1 1 0.93 1 0.99 1 1 1 0.81 1 0.78 0.97 1 1
FPR 0.04 0.04 0 0.01 0.04 0 0.01 0.01 0.01 0 0 0 0 0.86

RMSE(β) 1 1.37 1.71 0.85 4.08 1.11 0.95 1.22 3.51 0.75 5.45 1.89 0.79 2.35
TrueModel 0.07 0.05 0.58 0.28 0 0.71 0.34 0.22 0.03 0.66 0.05 0.58 0.53 0.12

RMFSE 1 0.99 1.04 0.93 1.2 0.97 0.96 0.97 1.23 0.93 1.43 0.98 0.93 0.98

R2 = 0.5

TPR 1 1 0.77 1 0.93 0.96 0.97 1 0.63 1 0.73 0.77 0.91 0.99
FPR 0.04 0.04 0 0 0.06 0 0 0.01 0 0 0 0 0 0.88

RMSE(β) 1 1.34 2.17 0.82 3.48 1.21 1.09 1.11 2.95 0.76 3.68 2.22 1.33 2.08
TrueModel 0.06 0.02 0.03 0.45 0 0.52 0.37 0.36 0.02 0.72 0.07 0.1 0.24 0.08

RMFSE 1 1.04 1.04 1.02 1.18 1.04 1.03 1.04 1.02 1.01 1.26 1.03 0.94 1.03

R2 = 0.3

TPR 0.99 0.98 0.59 0.97 0.78 0.72 0.72 0.99 0.52 0.98 0.74 0.57 0.75 1
FPR 0.04 0.04 0 0 0.02 0 0 0.01 0 0 0 0 0 0.99

RMSE(β) 1 1.33 1.91 0.83 2.5 1.53 1.55 1.05 2.19 0.77 2.41 2.16 1.45 1.78
TrueModel 0.02 0 0 0.62 0.06 0 0 0.38 0.01 0.79 0.07 0 0.06 0

RMFSE 1 1.05 1.1 1.11 1.23 1.13 1.09 1.1 1.16 1.09 1.23 1.08 1.05 1.09

T=150, p=200
R2 = 0.7

TPR 1 1 0.66 1 0.75 0.97 0.99 1 0.66 1 0.74 0.76 0.93 0.83
FPR 0.05 0.04 0 0 0 0 0 0 0 0 0 0 0 0.21

RMSE(β) 1 1.33 3.27 0.69 3.89 1.28 0.84 1.22 3.78 0.65 3.89 2.76 1.15 2.73
TrueModel 0.01 0.01 0.01 0.84 0.08 0.7 0.71 0.65 0 0.98 0.08 0.15 0.44 0.21

RMFSE 1 1.04 1.32 0.98 1.77 1.03 0.95 1.05 1.69 0.97 1.77 1.23 1.02 1.17

R2 = 0.5

TPR 1 0.99 0.54 0.99 0.75 0.75 0.79 1 0.52 0.98 0.75 0.56 0.77 0.7
FPR 0.04 0.04 0 0 0 0 0 0 0 0 0 0 0 0.15

RMSE(β) 1 1.28 2.37 0.73 2.51 1.6 1.44 1.09 2.51 0.7 2.51 2.26 1.46 2.29
TrueModel 0.06 0.05 0 0.74 0.14 0 0.08 0.63 0.01 0.9 0.14 0 0.08 0.08

RMFSE 1 1.08 1.2 0.99 1.3 1.02 1.01 1.02 1.13 1 1.3 1.08 1.04 1.09

R2 = 0.3

TPR 0.92 0.93 0.46 0.92 0.77 0.54 0.55 0.86 0.47 0.8 0.77 0.36 0.61 0.87
FPR 0.03 0.03 0 0 0 0 0 0 0 0 0 0 0 0.26

RMSE(β) 1 1.31 1.78 0.84 1.84 1.56 1.52 1.29 1.79 0.98 1.84 1.92 1.34 3.29
TrueModel 0.05 0 0 0.55 0.14 0 0 0.29 0 0.27 0.14 0 0.03 0.06

RMFSE 1 1.03 1.11 0.98 1.06 1.02 1.05 0.99 1.06 0.99 1.06 1.09 1.04 1.17

Table 6: Simulation results for the case that all variables are collinear with the true signals.
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series name sort explanation

AMDMUOx unfilled orders for durable goods
INDPRO IP index
UNRATE civilian unemployment rate
CPIAUCSL CPI: all items
HOUSTNE housing starts, northeast

Table 7: Macroeconomic series used in the out of sample forecasting exercise. These are monthly
series included in the FRED-MD dataset.
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Out of Sample Forecasting Exercise

INDPRO UNRATE HOUSTNE

Sel.Var.
r- RMSFE
full sample

r- RMSFE
crisis period

Sel.Var.
r- RMSFE
full sample

r- RMSFE
crisis period

Sel.Var.
r- RMSFE
full sample

r- RMSFE
crisis period

Lasso 12.46 0.93�� 0.86 13.34 0.89∗∗�� 0.87 9.81 0.89∗∗�� 0.9
Ad. Lasso 12.02 0.99� 0.85 12.94 0.89∗∗�� 0.79 9.53 0.87∗∗� 0.87

FA-AR 1.02 0.9 0.92∗ 0.74 0.9∗∗� 0.86
AR 1 1 1 1 1 1

S-R-BL-t 2.29 0.94 0.81 2.52 2.64 3.69 2.21 1.48 1.54
S-R-BL-t-r 16.41 1.06 0.85 17.4 0.95 0.89 14.57 0.88∗∗ 0.87

S-R-BL 7.63 0.97�� 0.86 6.79 0.96 0.92 15.1 0.97 0.98
S-R-CL-t 3.06 0.94�� 0.82 2.06 1.05 0.92 2.3 9.45 1.2

S-R-CL-t-r 15.93 1 0.89 15 0.93∗ 0.83 12.79 0.9∗ 0.84
S-R-CL 9.52 1.14�� 0.84 12.79 0.92∗� 0.83 17.43 1.58 2.72

R-BL-t 3.23 5.1 3.33 3.78 3.67 3.62 6.82 3.03 3.4
R-BL-t-r 17.3 1.08 1 17.08 0.91∗� 0.78 14.88 0.87∗∗ 0.86

R-BL 128 2.78 1.66 128 2.6 4.24 77.28 2 2.78
R-CL-t 8.85 7.11 2.96 10.95 10.15 18.58 6.9 78.25 6.13

R-CL-t-r 16.86 0.98 0.84 16.49 0.96 0.77 14.86 0.89∗∗ 0.9
R-CL 121.06 6.71 2.42 119.29 4.93 7.56 46.9 3.81 7.23

AMDMNOx CPIAUCSL

Sel.Var.
r- RMSFE
full sample

r- RMSFE
crisis period

Sel.Var.
r- RMSFE
full sample

r- RMSFE
crisis period

Lasso 20.94 0.9�� 0.67 18.21 0.97 1.03
Ad. Lasso 19.89 0.91 0.66 17.93 0.99 1.02

FA-AR 0.97�� 0.76 1.06 1.02
AR 1 1 1 1

S-R-BL-t 2.91 2.33 2.07 2.79 15.85 0.94
S-R-BL-t-r 16.77 0.93�� 0.77 13.07 1.1 1.22

S-R-BL 7.26 1.06 0.74 7.37 1.02 0.97
S-R-CL-t 3.86 6.74�� 0.7 4.43 1.08 1.27

S-R-CL-t-r 13.85 0.91�� 0.56 11.42 1 0.99
S-R-CL 10.15 1.18�� 0.72 11.68 1.06 0.96
R-BL-t 2.43 4.29 3.68 3.32 7.56 5.52

R-BL-t-r 16.48 0.98�� 0.62 16.72 1.18 1.28
R-BL 128 2.27 3.27 127.61 2.72 2.65

R-CL-t 6.87 13.4 4.53 2.52 1.9 1.02
R-CL-t-r 16.32 0.92�� 0.68 15.8 1.17 1.23

R-CL 92.38 9.4 11.11 103.71 3.58 2.11

Table 8 : Out of sample forecasting evaluation for 5 key macroeconomic series, using the FRED-
MD, 124 monthly, macroeconomic and financial series. The evaluation is performed over the last
136 observations, that is, from 01-Sep-2004, until the 01-Dec-2015. The crisis period corresponds to
observations from 01-Sept-2007 until the 01-Dec-2008. The RMSE are relative to the AR(p) model,
with p selected by the BIC. The table presents in blue the 3-best methods for each series, and in red
the best performning one. The Sel.Var. corresponds to the average number of selected variables
over the forecasting interval. The one star ( *) (two stars (**)) denotes statistically different forecasts
from the AR(1) model at the 10% (5%) significance level, according to the Diebold and Mariano test.
The one rhombus (�) (two rhombus (��)) denotes statistically different forecasts from the AR(1)
model at the 10 (5%) significance level, according to the forecast fluctuation test.
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11 Appendix

11.1 Auxiliary Lemma

The following Lemma provides supporting results for the main Theorems of the paper.

Lemma 1 Let AT =
(
aijT
)

be a symmetric p× p matrix with eigenvalues µ1 ≤ µ2 ≤ ... ≤ µp

such that for ε > 0 independent of p, ε ≤ µ1 ≤ µp ≤ 1/ε < ∞.Then ||AT||2 = O (1) and

||A−1
T ||2 = O (1).

Proof.

||AT||22 = max
1≤j≤p

{
µj
}
= µp = O (1) , (29)

and

||AT||2 = O (1) . (30)

Also,

||A−1
T ||

2
2 = max

1≤j≤p

{
1
µj

}
= 1/µ1 = O (1) , and ||A−1

T ||2 = O (1) . (31)

11.2 Proof of Theorem 1

11.2.1 Parameter consistency

Consider the true parameter vector of model (1) given by β = Σ−1
x Σxy. We then have that:

β̂− β = T
(
Σ̂x
)−1 T(Σ̂xy)− Σ−1

x Σxy = T
(
Σ̂x
)−1 T(Σ̂xy)−

T
(
Σ̂x
)−1

Σxy + T
(
Σ̂x
)−1

Σxy − Σ−1
x Σxy

= T
(
Σ̂x
)−1 (T(Σ̂xy)− Σxy

)
+
(

T
(
Σ̂x
)−1 − Σ−1

x

)
Σxy.

(32)

So, ∥∥∥β̂− β
∥∥∥ ≤ ∥∥∥T

(
Σ̂x
)−1
∥∥∥ ∥∥T(Σ̂xy)− Σxy

∥∥+ ∥∥∥T
(
Σ̂x
)−1 − Σ−1

x

∥∥∥ ∥∥Σxy
∥∥

=
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥+ ∥∥∥Σ−1
x

∥∥∥) ∥∥T(Σ̂xy)− Σxy
∥∥+ ∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ ∥∥Σxy
∥∥ .

(33)

33



From Theorem 1, in Dendramis et al. (2018), for λpz = κ

√
log pz

T , where npz is the sparsity

parameter of Σz, κ is a fixed constant, and pz = p + 1 we have that

∥∥∥T
(
Σ̂x
)−1 − Σ−1

x

∥∥∥ ≤ Op
(
npz λpz

)
, (34)

and ∥∥T(Σ̂xy)− Σxy
∥∥ ≤ Op

(
npz λpz

)
. (35)

Also from Lemma 1 we have that
∥∥∥Σ−1

x

∥∥∥ = O (1) . For the term
∥∥Σxy

∥∥, first notice that

‖Σz‖2
F =

1
T2

p

∑
i=1

p

∑
j=1

(
E

(
T

∑
t=1

(zit − E (zit))
(
zjt − E

(
zjt
))))2

(36)

=
1

T2

p

∑
i=1

p

∑
j=1

T

∑
t=1

T

∑
t′=1

E
[
(zit − E (zit))

(
zjt − E

(
zjt
))]
· E
[
(zit′ − E (zit′))

(
zjt′ − E

(
zjt′
))]

(37)

= O
(

n2
pz

)
, and ‖Σz‖2

2 ≤ ‖Σz‖2
F . (38)

Notice that Σz has at most npz non zero row elements and E
[
(zit − E (zit))

(
zjt − E

(
zjt
))]

is bounded ∀i, j, t which is satisfied when it is a covariance stationary a-mixing process. It

then follows that

∥∥Σxy
∥∥ =

 1
T2

p

∑
i=1

(
E

(
T

∑
t=1

(xit − E (xit)) (yt − E (yt))

))2
1/2

=

(
1

T2

p

∑
i=1

T

∑
t=1

T

∑
t′=1

E
[
(xit − E (xit))

(
yjt − E

(
yjt
))]
· E
[
(xit′ − E (xit′))

(
yjt′ − E

(
yjt′
))])1/2

= O
(√

npz

)
. (39)

We conclude that∥∥∥β̂− β
∥∥∥ =

{
Op
(
npz λpz

)
+ O (1)

}
Op
(
npz λpz

)
+ Op

(
npz λpz

)
O
(√

npz

)
, (40)

or equivalently ∥∥∥β̂− β
∥∥∥ = Op

(
n2

pz λ2
pz

)
+ Op

(
n3/2

pz λpz

)
(41)
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11.2.2 Probability Bound

To find the probability bound for the term
∥∥∥β̂− β

∥∥∥ we work as follows

Pr
(∥∥∥β̂− β

∥∥∥ > q
)
≤ (42)

≤ Pr
((∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥+ ∥∥∥Σ−1
x

∥∥∥) ∥∥T(Σ̂xy)− Σxy
∥∥+ ∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ ∥∥Σxy
∥∥ > q

)

≤ Pr
((∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥+ ∥∥∥Σ−1
x

∥∥∥) ∥∥T(Σ̂xy)− Σxy
∥∥ >

q
2

)
+

+Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ ∥∥Σxy
∥∥ >

q
2

)
.

(43)

≤ Pr
((∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥+ ∥∥∥Σ−1
x

∥∥∥) >
q

2C1

)
+ Pr

(∥∥T(Σ̂xy)− Σxy
∥∥ > C1

)
+

+Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ >
q

2C2

)
+ Pr

(∥∥Σxy
∥∥ > C2

) (44)

≤ Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ >
q

4C1

)
+ Pr

(∥∥∥Σ−1
x

∥∥∥ >
q

4C1

)
+ Pr

(∥∥T(Σ̂xy)− Σxy
∥∥ > C1

)
+

+Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ >
q

2C2

)
+ Pr

(∥∥Σxy
∥∥ > C2

)
.

(45)

Omitting the constants, and assuming C1 ≥ npz λpz , we have that

Pr
(∥∥T

(
Σ̂xy
)
− Σxy

∥∥ > C1
)
< p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
, (46)

for D1, D2, D3, D4 sufficiently large constants. When C2 is large enough, such that C2 ≥
√npz , we have that

Pr
(∥∥Σxy

∥∥ > C2
)
= 0 . (47)

For
q

2C2
≥ npz λpz ⇒ q ≥ 2C2npz λpz ⇒ q ≥ 2n3/2

pz λpz , (48)

we have

Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

xx

∥∥∥ >
q

2C2

)
< p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
. (49)
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When C1 is a sequence such that

q
4C1
≥ 1⇒ C1 ≤

q
4

, (50)

it follows that

Pr
(∥∥∥Σ−1

x

∥∥∥ >
q

4C1

)
= 0. (51)

When
q

4C1
≥ npz λpz ⇒ C1 ≤

q
4npz λpz

, (52)

we have that

Pr
(∥∥∥T

(
Σ̂x
)−1 − Σ−1

x

∥∥∥ >
q

4C1

)
< p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
. (53)

For q = n3/2
p λp, all inequalities hold for a proper choice of constants C1, C2, and overall we

have

Pr
(∥∥∥β̂− β

∥∥∥ > n3/2
p λp

)
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
. (54)

11.3 Proof of Theorem 2

11.3.1 Proof for TPR

Notice that

E
[
TPRp,T

]
= k−1

k

∑
i=1

Pr
[
|t̂i| > cT

∣∣ βi 6= 0
]

. (55)

When βi 6= 0 we have that

Pr
[
|t̂i| > cT |βi 6= 0

]
= Pr

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

) +
β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > cT

 . (56)

But, ∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

) +
β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > cT,

will occur when ∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > 2cT, and,

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

)
∣∣∣∣∣∣ < cT.
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Also notice

eq.(56) ≥ Pr


∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > 2cT

 ∩

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

)
∣∣∣∣∣∣ < cT

 |βi 6= 0

 (57)

= 1− Pr


∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣ < 2cT

 ∪

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > cT

 |βi 6= 0

 (58)

≥ 1− Pr

∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣ < 2cT

− Pr

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > cT

 . (59)

For the first probability term in (59) we have

Pr

∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣ < 2cT

 = Pr

[ ∣∣∣β̂i

∣∣∣ < 2cT

√[
σ2

u
1
T

Σ−1
x

]
ii

]
(60)

= Pr

[ ∣∣∣β̂i − βi + βi

∣∣∣ < 2cT

√[
σ2

u
1
T

Σ−1
x

]
ii

]
. (61)

It is true that when

|βi| − 2cT

√[
σ2

u
1
T

Σ−1
x

]
ii
> 0,

we have

Pr

[∣∣∣β̂i − βi + βi

∣∣∣ < 2cT

√[
σ2

u
1
T

Σ−1
x

]
ii

]
≤ (62)

≤ Pr

[∣∣∣β̂i − βi

∣∣∣ > |βi| − 2cT

√[
σ2

u
1
T

Σ−1
x

]
ii

]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
,

(63)

with further assuming that

|βi| − 2
cT√

T

√[
σ2

uΣ−1
x

]
ii
≥ n3/2

p λp(≥ 0). (64)
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For the second probability term in (59) we have

Pr

∣∣∣∣∣∣ β̂i

ŝe
(

β̂i

) − β̂i

se
(

β̂i

)
∣∣∣∣∣∣ > cT

 = Pr

∣∣∣∣∣∣ β̂i

se
(

β̂i

)
∣∣∣∣∣∣
∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ > cT

 (65)

= Pr

∣∣∣β̂i

∣∣∣
∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ > cTse
(

β̂i

)  (66)

≤ Pr

∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ >
cT se

(
β̂i

)
C1

+ Pr
[∣∣∣β̂i − βi + βi

∣∣∣ > C1

]
(67)

≤ Pr

∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ >
cT se

(
β̂i

)
C1

+ Pr
[∣∣∣β̂i − βi

∣∣∣+ |βi| > C1

]
(68)

≤ Pr

∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ >
cT se

(
β̂i

)
C1

+ Pr
[∣∣∣β̂i − βi

∣∣∣ > 1
2

C1

]
+ Pr

[
|βi| >

1
2

C1

]
, (69)

where se
(

β̂i

)
=

√[
σ2

u
1
T Σ−1

x

]
ii
, and C1 > 0. The second probability term in (69) is

Pr
[∣∣∣β̂i − βi

∣∣∣ > 1
2

C1

]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
, (70)

when

1
2

C1 ≥ n3/2
p λp(≥ 0). (71)
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The third probability term in (69) (since (64)) is zero, when C1 > 2 |βi| > 4cTse
(

β̂i

)
+

2n3/2
p λp. For the first probability term in (69), first notice

se
(

β̂i

)
ŝe
(

β̂i

) − 1 =

√[
σ2

u
1
T Σ−1

x

]
ii√[

σ̂2
u

1
T Tλ

(
Σ̂x

)−1
]

ii

− 1 (72)

=

[σ2
u

1
T Σ−1

x ]ii[
σ̂2

u
1
T Tλ(Σ̂x)

−1]
ii

− 1

√
[σ2

u
1
T Σ−1

x ]ii√[
σ̂2

u
1
T Tλ(Σ̂x)

−1]
ii

+ 1

≤

[
σ2

uΣ−1
x

]
ii[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

− 1, (73)

since

√
[σ2

u
1
T Σ−1

x ]ii√[
σ̂2

u
1
T Tλ(Σ̂x)

−1]
ii

+ 1 > 1. Then,

Pr

∣∣∣∣∣∣
se
(

β̂i

)
ŝe
(

β̂i

) − 1

∣∣∣∣∣∣ >
cT se

(
β̂i

)
C1

 ≤ Pr


∣∣∣∣∣∣∣∣

[
σ2

uΣ−1
x

]
ii[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

−

[
σ̂2

uTλ

(
Σ̂x

)−1
]

ii[
σ̂2

uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣∣∣∣∣ >
cT se

(
β̂i

)
C1



= Pr


∣∣∣∣∣∣∣∣

1[
σ̂2

uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣∣∣∣∣
∣∣∣∣[σ2

uΣ−1
x

]
ii
−
[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > cT se
(

β̂i

)
C1


(74)

≤ Pr


∣∣∣∣∣∣∣∣

1[
σ̂2

uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣∣∣∣∣ > C2

+ Pr

∣∣∣∣[σ2
uΣ−1

x

]
ii
−
[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > cT se
(

β̂i

)
C1C2


≤ Pr

[∣∣∣∣[σ̂2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1/C2

]

+Pr

∣∣∣∣[σ2
uΣ−1

x

]
ii
−
[
σ̂2

uΣ−1
x

]
ii
+
[
σ̂2

uΣ−1
x

]
ii
−
[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > cT se
(

β̂i

)
C1C2


(75)
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≤ Pr
[∣∣∣∣[σ̂2

uTλ

(
Σ̂x

)−1
]

ii
−
[

σ2
uTλ

(
Σ̂x

)−1
]

ii
+

[
σ2

uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1/C2

]

+Pr

∣∣∣[σ2
uΣ−1

x

]
ii
−
[
σ̂2

uΣ−1
x

]
ii

∣∣∣ > 1
2

cT se
(

β̂i

)
C1C2


+Pr

∣∣∣∣[σ̂2
uΣ−1

x

]
ii
−
[

σ̂2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1
2

cT se
(

β̂i

)
C1C2


(76)

≤ Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

(
σ̂2

u − σ2
u

)∣∣∣∣ > 1
2C2

]
+ Pr

[∣∣∣∣[σ2
uTλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1
2C2

]
+

+Pr

∣∣∣σ2
u − σ̂2

u

∣∣∣ > 1
2

cT se
(

β̂i

)
C1C2

1[
Σ−1

x

]
ii


+Pr

∣∣∣σ̂2
u

∣∣∣ ∣∣∣∣[Σ−1
x

]
ii
−
[

Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1
2

cT se
(

β̂i

)
C1C2

 ≤
(77)

≤ Pr

[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ >
√

1
2C2

]
+ Pr

[∣∣∣σ̂2
u − σ2

u

∣∣∣ > √ 1
2C2

]

+Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > 1
2C2

1
σ2

u

]
+

Pr

∣∣∣σ2
u − σ̂2

u

∣∣∣ > 1
2

cT se
(

β̂i

)
C1C2

1[
Σ−1

x

]
ii

+ Pr

∣∣∣σ̂2
u

∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2



+Pr

∣∣∣∣[Σ−1
x

]
ii
−
[

Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2

 .

(78)

Set

ω1 = min

(√
1

2C2
,

1
2C2

1
σ2

u

)
=

1
2C2

1
σ2

u
, (79)
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when σ2
u is a constant. Also,

ω2 = min

1
2

cT se
(

β̂i

)
C1C2

1[
Σ−1

x

]
ii

,

√
1

2C2

 (80)

=
1
2

cT se
(

β̂i

)
C1C2

1[
Σ−1

x

]
ii

. (81)

For cTse
(

β̂i

)
= O

(
(π log(p))1/2

√
T

)
, we have that

eq.(78) ≤ 2 Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > ω1

]
+ 2 Pr

[∣∣∣σ2
u − σ̂2

u

∣∣∣ > ω2

]

+ Pr

∣∣∣σ̂2
u

∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2

+

+ Pr

∣∣∣∣[Σ−1
x

]
ii
−
[

Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2

 . (82)

For the second probability term in (82) we have that

Pr
[∣∣∣σ2

u − σ̂2
u

∣∣∣ > ω2

]
≤ exp

(
−D5TD6

)
, (83)

for C2 = O
(

1
Tv

)
and v > 0.

For the first probability term in (82) we have that

Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > ω1

]
≤ Pr

[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii
+
[
Σ−1

x

]
ii

∣∣∣∣ > ω1

]
≤ (84)

≤ Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > ω1

2

]
+ Pr

[∣∣∣[Σ−1
x

]
ii

∣∣∣ > ω1

2

]
(85)

≤ p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
. (86)
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For the third probability term in (82) we have

Pr

∣∣∣σ̂2
u

∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2

 ≤ Pr

∣∣∣σ̂2
u − σ2

u

∣∣∣ > 1
2

√√√√1
2

cT se
(

β̂i

)
C1C2



+Pr

∣∣∣σ2
u

∣∣∣ > 1
2

√√√√1
2

cT se
(

β̂i

)
C1C2

 ≤ exp
(
−D5TD6

)
,

(87)

when
∣∣σ2

u
∣∣ < 1

2

√
1
2

cT se(β̂i)
C1C2

(→ ∞), with C1 constant, C2 = O
(

1
Tv

)
and v > 0.

For the fourth probability term in (82) we have that

Pr

∣∣∣∣[Σ−1
x

]
ii
−
[

Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ >
√√√√1

2

cT se
(

β̂i

)
C1C2

 ≤ p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
(88)

since √√√√1
2

cT se
(

β̂i

)
C1C2

→ ∞. (89)

So overall we have that

Pr
[
|t̂i| > cT |βi 6= 0

]
≥ 1− 4p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
− exp

(
−D5TD6

)
,

(90)

when cT = o (Tc0 ), ∀c0 > 0, and se
(

β̂i

)
= O

(
T−θ

)
, for θ > c0.

Actually, we need cTse
(

β̂
)
= cT√

T

√[
σ2

uΣ−1
x

]
ii
→ 0. Since,

[
σ2

uΣ−1
x

]
ii

is a constant and

cT = O (log p), then cTse
(

β̂
)
= O

(
log p√

T

)
. We conclude that

E
[
TPRp,T

]
= k−1

k

∑
i=1

Pr
[
|t̂i| > cT

∣∣ βi 6= 0
]

≥ 1−O
(

p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
.

(91)
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11.3.2 Proof for FPR

Notice that

E
[
FPRlT ,T

]
= (p− k)−1

k

∑
i=k+1

Pr
[
|t̂i| > cT

∣∣ βi = 0
]

(92)

Also,

Pr
[
|t̂i| > cT |βi = 0

]
= Pr

∣∣∣∣∣∣ β̂i − βi + βi

se
(

β̂i

)
−
(

se
(

β̂i

)
− ŝe

(
β̂i

))
∣∣∣∣∣∣ > cT

 (93)

≤ Pr

∣∣∣∣∣∣ 1

se
(

β̂i

)
−
(

se
(

β̂i

)
− ŝe

(
β̂i

))
∣∣∣∣∣∣ > √cT

+ Pr
[∣∣∣β̂i − βi + βi

∣∣∣ > √cT

]
(94)

≤ C9 Pr

∣∣∣∣∣∣
ŝe
(

β̂i

)
− se

(
β̂i

)
se
(

β̂i

)
∣∣∣∣∣∣ > √cT

∣∣∣∣∣∣ βi = 0

+ Pr
[∣∣∣β̂i − βi + βi

∣∣∣ > √cT

]
, (95)

for some finite constant C9. The second probability term in (95) is

Pr
[ ∣∣∣β̂i − βi + βi

∣∣∣ > √cT

∣∣∣] ≤ Pr
[ ∣∣∣β̂i − βi

∣∣∣ > √cT

∣∣∣ βi = 0
]
+ Pr [ |βi| >

√
cT| βi = 0] ,

(96)

and

Pr
[ ∣∣∣β̂i − βi

∣∣∣ > √cT

∣∣∣ βi = 0
]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
, when

√
cT ≥ n3/2

pz λp.

So, overall we have that

Pr
[ ∣∣∣β̂i − βi + βi

∣∣∣ > √cT

∣∣∣ βi = 0
]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
.
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For the first probability term in (95) we have that

Pr

∣∣∣∣∣∣
ŝe
(

β̂i

)
− se

(
β̂i

)
se
(

β̂i

)
∣∣∣∣∣∣ > √cT

∣∣∣∣∣∣ βi = 0

 (97)

≤ Pr


∣∣∣∣∣∣∣∣
[

σ̂2
uT · Tλ

(
Σ̂x

)−1
]

ii[
σ2

uT · Σ−1
x

]
ii

− 1

∣∣∣∣∣∣∣∣ >
√

cT

∣∣∣∣∣∣∣∣ βi = 0

 (98)

= Pr


∣∣∣∣∣∣∣∣

σ̂2
u

σ2
u

[
Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii[

Σ−1
x

]
ii

∣∣∣∣∣∣∣∣ >
√

cT

 (99)

= Pr
[∣∣∣∣ σ̂2

u
σ2

u

[
Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

[
Σ−1

x

]
ii

]
. (100)

Notice that
[
Σ−1

x

]
ii

is the i,i element of Σ−1
x which is constant. Then,

eq.(100) = Pr
[∣∣∣∣ σ̂2

u
σ2

u

[
Tλ

(
Σ̂x

)−1
]

ii
−
[

Tλ

(
Σ̂x

)−1
]

ii
+

[
Tλ

(
Σ̂x

)−1
]
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−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

[
Σ−1

x

]
ii

]
≤ Pr

[∣∣∣∣ σ̂2
u

σ2
u

[
Tλ

(
Σ̂x

)−1
]

ii
−
[

Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > √cT

2

[
Σ−1

x

]
ii

]
+Pr

[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

2

[
Σ−1

x

]
ii

]
(101)

≤ Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii

∣∣∣∣ > √cT

2C3

[
Σ−1

x

]
ii

]
+ Pr

[∣∣∣∣ σ̂2
u

σ2
u
− 1
∣∣∣∣ > C3

]
+Pr

[∣∣∣∣[Tλ

(
Σ̂x

)−1
]
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−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

2

[
Σ−1

x

]
ii

] (102)

= Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii
+
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

2C3

[
Σ−1

x

]
ii

]
+Pr

[∣∣∣∣ σ̂2
u

σ2
u
− 1
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]
+ Pr
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(
Σ̂x

)−1
]
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−
[
Σ−1

x

]
ii
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2

[
Σ−1

x

]
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] (103)
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≤ Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

4C3

[
Σ−1

x

]
ii

]
(104)

+Pr
[∣∣∣[Σ−1

x

]
ii

∣∣∣ > √cT

4C3

[
Σ−1

x

]
ii

]
+ Pr

[∣∣∣∣ σ̂2
u

σ2
u
− 1
∣∣∣∣ > C3

]
+Pr

[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

2

[
Σ−1

x

]
ii

]
.

The first probability term in (104) is

Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

4C3

[
Σ−1

x

]
ii

]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
.

(105)

When
√

cT
4C3

[
Σ−1

x

]
ii
> npz λpz , and C3 is a large constant, the second probability term in

(104) is zero.

The third probability term in (104) is

Pr
[∣∣∣∣ σ̂2

u
σ2

u
− 1
∣∣∣∣ > C3

∣∣∣∣ βi = 0
]
≤ exp

(
−D10TD11

)
(106)

for a constant C3.

The fourth probability term in (104) is

Pr
[∣∣∣∣[Tλ

(
Σ̂x

)−1
]

ii
−
[
Σ−1

x

]
ii

∣∣∣∣ > √cT

2

[
Σ−1

x

]
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]
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zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
,

(107)

when
√

cT
2

[
Σ−1

x

]
ii
> npz λpz .

So overall we have that

Pr
[
|t̂i| > cT |βi = 0

]
≤ C9 Pr

∣∣∣∣∣∣
ŝe
(

β̂i

)
− se

(
β̂i

)
se
(
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]
,

(108)

that is,

Pr
[
|t̂i| > cT |βi = 0

]
≤ p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

)
. (109)
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We conclude that

E
[
FPRlT ,T

]
≤ (p− k)−1 O

(
p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
= O

(
pzD1 exp

(
−D2Tλ2

pz

)
+ D3 exp

(
−D4Tλpz

))
,

(110)

with pz = p + 1.

11.4 Proof of Theorem 3

We first define the event of correctly identifying the true model as

A0 = A0 =

{
k

∑
i=1

I ̂(βi 6= 0) = k

}
∩
{

p

∑
i=k+1

I ̂(βi 6= 0) = 0

}
. (111)

Then,

Pr (Ac
0) ≤ Pr

(
k

∑
i=1

I ̂(βi 6= 0) < k

)
+ Pr

(
p

∑
i=k+1

I ̂(βi 6= 0) > 0

)
. (112)

For the second probability term in (112) we have

Pr

(
p

∑
i=k+1

I ̂(βi 6= 0) > 0

)
≤

p

∑
i=k+1

E
[
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∣∣∣ βi = 0

]
(113)

=
p

∑
i=k+1

Pr
(
|t̂i| > cT

∣∣ βi = 0
)
≤ (p− k)O
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pzD1 exp

(
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)
+ D3 exp

(
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(114)

≤ O
(

p2
zD1 exp

(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
. (115)

For the first probability term we have

Pr

(
k

∑
i=1

I ̂(βi 6= 0) < k

)
= 1− Pr

(
k

∑
i=1

I ̂(βi 6= 0) = k

)
≤ 1− 1 + O

(
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zD1 exp
(
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)
+ pzD3 exp

(
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.

(116)
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That is,

Pr (Ac
0) ≤ O

(
p2

zD1 exp
(
−D2Tλ2

pz

)
+ pzD3 exp

(
−D4Tλpz

))
. (117)

Also, for any ε > 0 there exists some Bε < ∞ such that

Pr
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)
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(√
T
∥∥∥β̂− β

∥∥∥ > Bε

∣∣∣ A0

)
Pr (A0)

+Pr
(√

T
∥∥∥β̂− β

∥∥∥ > Bε

∣∣∣ Ac
0

)
Pr (Ac

0)

≤ Pr
(√

T
∥∥∥β̂− β

∥∥∥ > Bε

∣∣∣ A0

)
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(118)

When we define Fu = T−1 ‖û′û‖, for the error term of the second step regression we

have that for any ε > 0 there exists some Cε < ∞ such

Pr
(√

T
∣∣∣Fu − σ2

u

∣∣∣ > Cε

)
= Pr

(√
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)
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(119)
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