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Abstract

We modify the standard production function estimation framework to

incorporate endogenous disruptions in the productivity process due to lumpy firm

investment. We investigate the differences between the existing (baseline)

approach and our own (disruption) on a large proprietary panel of Greek

Manufacturing firms. We find significantly different production function estimates
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and different results for subsequent inference. The implied average levels of

productivity and magnitude of endogenous disruptions are different. The baseline

model cannot capture the full dynamics of disruption costs, which extend across

time. The decomposition of Aggregate Productivity Growth is substantially

different under the disruption model.

Keywords: Production function estimation, Investment spike, Productivity, Matching

JEL codes: D22, D24, E22, L60

1 Introduction

Studies on a variety of economic topics, such as productivity1 and markups2, as well as

applications that use structural models of firms, all rely on the accurate estimation of

production functions. The current standard for production function estimation is to

assume that productivity is completely exogenous. However, the literature studying

lumpy adjustment has shown that investment spikes are associated with disruptions in

productivity. In this paper, we propose a modification to the standard production

function estimation framework that incorporates endogenous disruptions in the

productivity process due to lumpy firm investment. We investigate the differences

between our novel (disruption) framework and the existing (baseline) approach on a

large proprietary panel of Greek Manufacturing firms.

1 See for example Allcott, Collard-Wexler, and O’Connell (2016), Bennett, Stulz, and Wang (2020),

Brandt, Van Biesebroeck, and Zhang (2012), Cirera, Lederman, Máñez, Rochina, and Sanchis (2015),

De Loecker (2011), Du and Wang (2020), Padilla-Pérez and Villarreal (2017), Pavcnik (2002), and Taştan

and Gönel (2020).
2 See for example Caselli, Schiavo, and Nesta (2018), De Loecker (2011), and Du and Wang (2020).
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We find that estimates of production function coefficients differ significantly. The

disruption model estimates the capital coefficient to be higher, the labour coefficient

lower and the returns to scale lower. This, in turn, affects the results of subsequent

inference. In particular, the two models imply different average levels of productivity.

The disruption model estimates log TFP to be lower by 0.087 on average in the sample.

The measured magnitude of endogenous disruptions is also different. A sample matching

experiment shows that firms that choose to adjust via a spike suffer a decrease in TFP

by 5.46 percentage points according to the baseline model, whereas for the disruption

model, the decrease is even greater at 6.31 percentage points. In addition, the baseline

model cannot capture the full pattern of disruption costs. In contrast, the disruption

model allows for a persistent effect of the disruption on productivity that extends across

time.

We also explore the different implications of the baseline and the disruption model

contrasting a sub-sample of investment spike episodes with a matched sample that did

not display lumpy investment. The sample matching is performed following one of the

methods in Rosenbaum and Rubin (1985). We identify a spike observation as the case

where the investment rate is above a large multiple of the expected investment rate

conditional on current capital and a certain minimum threshold. The conditional

expectation is defined as the fitted values of the regression of the investment rate on a

polynomial of log capital and a set of control dummies. Both models produce evidence

of disruptions, in the year after the spike (t=1). However, the disruption model gives an

average drop in TFP that is 23.2% larger, than that of the baseline model. Two years

on (at t=2), both models show that the average TFP of spike firms starts to recover

towards that of the non-spike firms.
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In addition, we are the first to extract the individual components of TFP, as they

are produced by the estimation procedure, and repeat the above analysis per component.

We find that disruptions affect the firm almost equally through both a part of TFP that

is observable by the firm prior to production and another that is not. The observable

part is solely responsible for the differences between the models (since the unobservable

component is identical to both models). In the matching experiment, the baseline models

shows a drop in observable productivity by 1.67 percentage points, while the disruption

model shows a 2.53 point drop.

The discrepancies between models have an important effect when analyzing the

decomposition of Aggregate Productivity Growth (APG). We construct APG for the

inference sample and decompose it to its underlying components, following the

methodology of Petrin and Levinsohn (2012). Our sample period extends from 2001 to

2017. This is a turbulent period for Greek manufacturing. It encompasses three distinct

subperiods in terms of economic activity. The first subperiod is between 2001 and 2007,

which is the pre-financial crisis period when the sector was booming. The second

subperiod is from 2008 to 2015, the crisis period. Finally, from 2016 to 2017 the sector

was under recovery.

Both models find technical efficiency as the more significant factor of APG, with

reallocation efficiency being generally of the same sign but smaller. There is, however,

the exception of the financial crisis period, where reallocation efficiency operates in a

positive direction (demonstrating the cleansing effect of the crisis), but is overcome by

the larger negative effect of technical efficiency. Although the qualitative conclusions are

similar for both models, there is significant disagreement about the magnitudes of the

components.
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In the pre-crisis period the disruption model estimates average technical efficiency to

be in absolute terms 10.11% higher and reallocation efficiency 38.82% lower, compared

to the baseline model. During the crisis, the disruption model is more conservative,

giving a 4.36% lower magnitude for average technical efficiency and 10% lower

reallocation efficiency. During recovery, the differences in contributions are more

extreme, with the disruption model giving a 17.17% lower technical efficiency and

232.67% higher reallocation efficiency contributions than the baseline model.

The two gross-output models we consider are based on the production model of

Ackerberg, Caves, and Frazer (2015) (henceforth ACF). The use of gross-output in this

paradigm may seem erroneous at first, as Bond and Söderbom (2005) have shown that

such a combination does not produce uniquely identifiable production functions, in the

presence of fully flexible inputs (i.e. the intermediate inputs present in gross-output

specifications). This has lead many authors to estimate value-added functions, instead,

whose implicit assumptions, however, have received their own skepticism3. In response

to all this, we follow a new method developed by Gandhi, Navarro, and Rivers (2020),

which enables the estimation of gross-output production functions in the ACF setting.

In particular, we use a simplified version found in Collard-Wexler and De Loecker

(2020).

Evidence of a spike induced disruption effect, has existed in the literature for decades

now. Sakellaris (2004) finds that investment spikes on a sample of US Manufacturing

plants are followed by TFP drops. Cooper and Haltiwanger (2006) estimate various

models of capital adjustment on US Manufacturing plants and find that a model with

mixed convex and non-convex adjustment costs, the latter being triggered by investment

3 See Bruno (1978), Diewert (1978), and Basu and Fernald (1995).
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spikes, to be the best fit for their data. More recently, Gradzewicz (2020) finds similar

disruption patterns in a large panel of the Polish economy.

There exist other studies that introduce other endogenous variables in the productivity

process4, but they are only preoccupied with measuring the effects this has on productivity

and not on the production function itself. This is much in the same way that the lumpy

investment literature has been studying the effects of investment spikes on productivity,

but not the implications its findings have for the underlying assumptions of the estimated

production function, in the first place. We are the first to put the spotlight on this issue

and align the production function model assumptions with the observed phenomena in

the data. Our more realistic assumption of partly endogenous productivity, founded on

the observation of productivity disruptions in our dataset, should allow for more accurate

production function estimates and more reliability on results that rely on them.

The rest of this paper proceeds as follows. Section 2 presents the dataset we employ,

discusses some variable definitions, and presents evidence of the disruption effect in our

sample. Section 3 presents a disruption model, where the productivity process is

affected by investment spikes. Section 4 discusses the differences in estimates and

conclusions between this and the baseline model, and presents the empirical application

on Aggregate Productivity Growth. Section 5 concludes. The appendices provide

further useful details.

2 Data and Variable Definitions

We employ a large proprietary unbalanced dataset from the ICAP database on Greek

firm annual financial statements and employment data from 1998 to 2017. After the

4 See Doraszelski and Jaumandreu (2013), Cirera et al. (2015), and Khan and Khederlarian (2021).
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basic dropping of duplicates and observations without financial data, the ICAP dataset

contains about 750,000 unique firm-year observations for about 100,000 Greek firms.

However, we restrict to a sample of roughly 125,000 observations for the Manufacturing

sector, covering about 15,000 firms. We focus on Manufacturing because it reports the

most reliable data and because there is better availability for the necessary deflators and

other sub-sector specific variables from other sources.

Our key variables are output, the production inputs, and investment in physical

capital. For output, we use the book values of net sales, other operating income, and

the change in inventories of finished goods, which we deflate by a production price index

provided to us by ELSTAT5. For intermediate inputs, we use the book values of the cost

of goods sold and other operating expenses minus their depreciation and the cost of

labour. Then, we deflate by the intermediate inputs price index reported by

EUKLEMS. For investment and capital, we follow the perpetual inventory method

(PIM) per asset class, and then add together the corresponding series for Buildings and

Machinery & Equipment to get the aggregate measures.

More details on variable construction and data cleaning are given in Appendix B. After

these tasks, we are left with a final sample of 47586 observations for 8087 Manufacturing

firms. We will be referring to this as the inference sample, as it comprises of all of the

observations that are involved in the various inference steps to follow.

Table 1 reports some summary statistics for output, capital, labour, and intermediate

inputs in logs and for the investment rate, in the inference sample. All variables appear

to be mostly symmetrically distributed without very fat tails, with the notable exception

of the investment rate. Table 2 reports the cross correlations and autocorrelations of the

5 In a few cases where that is not available, we use the Harmonized Consumer Price index for the

whole economy, reported by Eurostat.
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Table 1: Summary Statistics

Output Capital Labour Int. Inputs Inv. Rate

Min 0.2838 -0.2007 0.0000 5.8815 -0.9670

Median 14.4992 13.5680 3.0828 14.0644 0.0616

Mean 14.5350 13.4053 3.0830 14.0550 0.1597

Max 19.2223 18.3132 6.9020 19.2564 5.3232

S.D. 1.3704 1.7479 1.1599 1.5428 0.4550

Skewness -0.1178 -0.6963 -0.0771 -0.2280 4.5584

Kurtosis 4.0299 4.9691 3.0265 3.5800 35.7753

N = 47586

Output, capital, labour, and intermediate inputs are in logs. The investment

rate is defined as total real investment in physical capital over total real

physical capital.

same variables. The production function variables seem to display a significant positive

relationship and strong autocorrelations. In particular, the large positive autocorrelation

of log labour allows us to use its first lag as its instrument when appropriate, which is

needed for the purposes of the estimation of the model presented in Section 3. Again,

the investment rate is the odd one out, being generally independent of the rest of the

variables and not particularly autocorrelated.

In table A.1 of Appendix A, we report the per year average growth rates of output and

the production inputs, and the Aggregate Productivity Growth (APG), for the inference

sample, the latter of which we calculate in Section 4.3 based on the methodology of Petrin

and Levinsohn (2012). We observe that for the period between 2001 and 2007 the average

growth of output is 1.64% and is mostly driven by the positive growth of its inputs. This
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Table 2: Correlations and Autocorrelations

Output Capital Labour Int. Inputs Inv. Rate

Output 1.0000

Capital 0.6816 1.0000

Labour 0.7427 0.5948 1.0000

Int. Inputs 0.9469 0.6388 0.6361 1.0000

Inv. Rate 0.0647 -0.0947 0.0310 0.0618 1.0000

Autocorrelation 0.9611 0.9835 0.8850 0.9317 0.0805

N = 47586

Output, capital, labour, and intermediate inputs are in logs. The investment rate is

defined as total real investment in physical capital over total real physical capital.

is despite of average APG being at -0.72% for the same period. From 2008 to 2015,

during the 2008 Greek financial crisis, the average output growth is -8.96%, owning to

the decrease, and even reversal, of the growth of its inputs, while average APG falls even

further to -1.60% in the same period.

2.1 Investment Spike Definition

The statistics in table 1 imply that the empirical distribution of the investment rate in

our sample is not symmetric. Table 3 gives further insights on this by reporting the

number of observations in the sample for which the first lag of the investment rate falls

within certain intervals of interest. We report for the first lag because that is what is

used at the estimation stage.

Out of the 47586 observations, only 7337 report disinvestment and 5123 are within the

interval of -0.01 and 0.01, which is associated with investment inactivity in the literature.
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Table 3: Investment Rate Statistics

Number of observations with:

Iit−1/Kit−1 ≤ −0.01 7337

|Iit−1/Kit−1| < 0.01 5123

Iit−1/Kit−1 ≥ 0.01 35126

Iit−1/Kit−1 > 0.20 12346

N = 47586

The rest report positive investment. This is evidence of the presence of non-convex

adjustment costs in capital and justifies the need to investigate the effect of investment

spikes on the firm. We see that 12346 observations lie above the 0.20 threshold for the

investment rate, which is a typical lower bound used to characterize investment spikes in

the literature.

We define investment spikes similarly to Gradzewicz (2020). We use a combination

of the definitions in Power (1998) and Sakellaris (2004). Let Kit be the level of physical

capital of firm i in period t, Iit its level of investment, and dIit be the spike dummy, then

we define

dIit =


1,

Iit
Kit

> max

{
αE

(
Iit
Kit

∣∣∣∣Kit

)
, γ

}
0, otherwise

(1)

with α = 2.75 and γ = 0.20. E (Iit/Kit|Kit) is the expected investment rate for firm

i in period t conditional on its level of capital. We construct it as the fitted value

of the ordinary least squares regression of Iit/Kit on a third degree polynomial of the

natural logarithm of Kit and a complete set of time dummies. To account for sector

heterogeneity and the possibility of a structural break caused by the 2008 Greek financial

crisis, we perform a different regression per 2-digit NACE rev. 2 sector and before and

10



after 2008. Finally, if the criterion is satisfied for consecutive years for the same firm, we

only identify the first instance as a spike.

This definition results in 4270 spike events being identified in the inference sample,

which is about a third of the original 12346 candidates. Furthermore, table A.2 of

Appendix A reports the average investment rate and percentage of identified investment

spikes in the inference sample per year. We observe that average investment generally

recedes during the 2008 financial crisis relative to the pre-crisis period. Because we

control for the crisis, it does not affect the proportion of observations we identify as

investment spikes each year, always being roughly between 5% - 10% of all

contemporaneous observations in the sample.

2.2 Sample Matching Method

To study the effect investment spikes have on productivity, we define the sub-sample of

spike observations, as the treatment group, and an equally sized matched sub-sample of

non-spike firms with similar characteristics, as the control group. We follow a variant of

the Mahalanobis distance within calipers approach described in Rosenbaum and Rubin

(1985). Because we need our observations to have available data on productivity for

five consecutive years, we defer the construction of the spike and matched sub-samples

until after the models have been estimated (see Section 4) and the desired measures of

productivity have been calculated. We, then, restrict to the observations with the data

availability we require.

The matching process works with a set of approximate matching variables and a set

of exact matching variables. We select firm age, log real sales, real sales growth (as the

first difference in log sales), and lagged leverage (as total liabilities over total assets)
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as our approximate matching variables. We use the observation’s year, the firm’s legal

form, its 2-digit NACE rev. 2 sector, and its trading status (public or private) for exact

matching. We then regress a logit model with the spike dummy as the explained variable

and the approximate matching variables, a set of time dummies, and a set of 2-digit sector

dummies as the explanatory variables. The fitted log odds ratio is called the propensity

score and is used to determine the closeness of the observations between samples.

Both the sample of spikes and candidate matches are sorted randomly. For each

observation in the spike sample, we find its match by restricting to the candidates that

exactly match the exact matching variables and are within a 0.5 range above or below of

the propensity score of the spike. Then, we do not just match by the closest propensity

score, but by the Mahalanobis distance between the spike and all of the candidate

matches. This distance is calculated according to the approximate matching variables

and the propensity score. The observation with the minimum Mahalanobis distance is

designated a match and it is removed from the sample of candidates (matching without

replacement). Once every spike has its match, we drop any pairs with a Mahalanobis

distance greater than 3. The two final sub-samples cover 644 spike episodes.

Figure 1 illustrates the average performance of the TFP of a firm that undergoes an

investment spike, for a time window of two periods before to two periods after a spike

event, compared to its statistical match that does not. The measure of TFP used is

derived based on the estimates of a baseline gross-output production function estimated

according to GNR. Here, we have a superficial look at the figure and go into greater

detail in Section 4.2. One can see that on average productivity drops by 5.46 percentage

points, following an investment spike. Compared to the overall variability of the series,

this drop is too large to be dismissed as a random occurrence. In addition, no similar
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Figure 1: Baseline log(TFP ) averages around investment spikes

3.40

3.45

3.50

3.55

−2 −1 0 1 2

N = 644

The solid lines report for the spike sub-sample and the dashed lines report for the matched sub-sample.

behaviour is observed in the matched sample. This is evidence of endogenous productivity

disruptions caused by lumpy adjustment. However, this phenomenon is not reflected in

the standard assumptions of the ACF/GNR model. Thus, we find it necessary to align it

with the evidence and develop a new version which allows for investment spikes to affect

productivity, which is what we do in Section 3.

3 The Disruption Model

A lot of research that uses production functions focuses on value-added6. However, there

has been skepticism regarding its validity and the validity of the necessary conditions

for it to give equivalent results to gross-output7. There is also the structural real value-

added specification, used for example in Ackerberg et al. (2015), where the production

function is assumed to be separable in the primary and the intermediate inputs by a

Leontief function. The practical difference between (deflated) value-added and structural

6 See for example Bennett et al. (2020), Brandt et al. (2012), Ding, Kim, and Zhang (2018), Du and

Wang (2020), Padilla-Pérez and Villarreal (2017), and Taştan and Gönel (2020).
7 See Bruno (1978) and Diewert (1978).
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value-added comes down to if and how to deduct the value of the intermediate inputs

from output before regressing. In both cases, one estimates a model of some measure of

output on the primary inputs alone.

Given that intermediate inputs are generally freely adjustable and the

non-identifiability critique of Codd-Douglas functions with flexible inputs by Bond and

Söderbom (2005), it would seem that value-added is the only option. Even with the

added assumptions it requires. However, the new approach by GNR allows for the

estimation of gross output production functions with fully flexible inputs. So, we here

present a disruption model, which builds upon the baseline model of ACF and GNR,

but includes investment spike decisions as a determinant of productivity. Its estimation

is practically identical to that of the baseline. The model and its assumptions are as

follows.

Consider a set of firms, with a gross-output Cobb-Douglas production function in logs

yit = βKkit + βLlit + βMmit + ωit + εit (2)

where the i subscript indicates the firm in question and t the time period. yit is the

natural logarithm of the firm’s gross output and kit, lit, and mit are the logs of capital,

labour, and other intermediate inputs (raw materials, energy, etc), respectively. βK , βL,

and βM are the respective Cobb-Douglas parameters.

The production process is subject to two types of shocks, ωit and εit, which combined

give its total factor productivity. Both variables are unobservable to the econometrician.

However, ωit is observed by the firm at the start of the period, so we may also refer to it as

the observable shock. εit is not observed by the firm until the end of the period, thus we

may also refer to it as the unobservable shock. It may incorporate highly unpredictable

factors that affect output or even the measurement errors of some variables, all of which
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may or may not display some serial correlation.

Assumption 1. The current and all past levels of observable productivity, ωit−s ∀s ∈

{0, 1, 2, . . . }, are included in Iit, but any future values, ωit+s ∀s ∈ {1, 2, . . . }, are not.

For the unobservable shock it holds that E(εit|Iit) = 0.

Assumption 2. The observable shock, ωit, follows a first order Markovian process

ωit = g(ωit−1, d
I
it−1) + ξit (3)

where dIit−1 is the first lag of the disruption dummy defined in Section 2.1 and ξit is such

that E(ξit|Iit−1) = 0.

The choice of dIit−1 instead of dIit, follows from our findings in Section 4 that disruption

takes effect one period after the investment spike.

This is our point of differentiation to the baseline approach, which uses a restricted

version of (3), where g is only a function of ωit−1. We will be estimating both models in

order to juxtapose them in Section 4.

For our particular needs, we parameterize g to be linear and have ωit following an

AR(1) process, in order to get model estimates for its long run average and its persistence.

Thus, (3) becomes

ωit = c+ ρωit−1 + δdIit−1 + ξit (4)

and the baseline version becomes

ωit = c+ ρωit−1 + ξit (5)

with 0 < ρ < 1.
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Assumption 3. Capital is a fixed input and its level, kit, is determined by the previous

period’s investment, at time t− 1, and some law of motion. Labour is quasi-fixed and its

level, lit, is chosen at time t− b, with 0 < b < 18.

By assumptions 1 and 3, lit is correlated with ωit and thus ξit, whereas kit is not.

However, the relative rigidity of labour means that it should display some positive

correlation with its first lag, which is independent of ξit and can be used as its

instrument. Both kit and lit are uncorrelated with εit. From all this, we can get the

following unconditional moment conditions

E(kitξit) = 0 (6)

E(lit−1ξit) = 0 (7)

E(kitεit) = 0 (8)

E(litεit) = 0 (9)

Assumption 4. The other intermediate inputs are fully flexible and their level, mit, is

determined at the start of period t. There exists an intermediate input demand function

mit = f(kit, lit, ωit) (10)

This means that mit is chosen freely and optimally, up to the unobservable shock, εit.

Additionally, assumptions 1 and 4 imply that

E(mitεit) = 0 (11)

Assumption 5. f is strictly increasing and invertible in ωit.

8 Depending on the particularities of the data, the model, and the general context, the researcher may

want to set b equal to exactly zero or exactly one. This can be accommodated by the GNR method with

the necessary modifications to the estimation process, as described in their appendix.
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The invertibility of f with respect to ωit implies that there exists a function, f−1,

such that

ωit = f−1(kit, lit,mit) (12)

The main argument of GNR, which we also follow, is that the flexibility of mit permits

the use of revenue share regressions to identify βM . Using an estimate of βM , we can

define a measure of output net of the effect of intermediate inputs

ỹit = yit − β̂Mmit = βKkit + βLlit + ωit + εit (13)

Given that the rest of the inputs are not fully flexible, one can use a revenue share

regression for the flexible inputs in conjunction with the ACF framework for ỹit and

equation (13). Thus, one can retrieve estimates for every parameter in (2) and circumvent

the unidentifiability issues underlined by Bond and Söderbom (2005).

The ACF two-stage procedure substitutes (12) in (13) to get

ỹit = βKkit + βLlit + f−1(kit, lit,mit) + εit = Φ(kit, lit,mit) + εit (14)

where Φ is an unknown function of observables. At the first stage, Φ is approximated by

least squares on a polynomial of the observables. At the second stage, the fitted values,

Φ̂it, are used with candidate estimates of (βK , βL) to get estimates for ω with which to

estimate (or approximate) g. The residuals, ξ̂it, are combined with a set of instruments

to give moment conditions for which (β̂K , β̂L) is chosen optimally.

We use the revenue share of intermediate inputs and the moment conditions derived

above, following Collard-Wexler and De Loecker (2020), to estimate the production

function in (2). However, we are not preoccupied with accounting for measurement

errors, as they do, to avoid the systematic loss of a considerable number of observations.

We employ a linear approximation for Φ and the linear functional form we have
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assumed for g. As a side-effect, we can also get estimates for the parameters in (4) and

(5), as well as approximate the unobservable (to the econometrician) variables ωit and

εit. The estimation essentially follows the procedure described in the appendix of

Collard-Wexler and De Loecker (2020). Nevertheless, we provide detailed estimation

steps in Appendix C. LP, ACF, and GNR also provide their own detailed appendices.

4 Estimation Results

4.1 Model Estimates

We proceed by estimating the production function for the baseline and the disruption

model described in Section 3. Table 4 reports the estimated parameters for both

models. The standard errors for the production function parameters are calculated by

1000 bootstrap samples, following Levinsohn and Petrin (2003)9. The standard errors

for the parameters in the productivity process, g, are heteroskedasticity and

autocorrelation robust errors.

We first examine the estimates for the production function. Given how relatively

small the estimated standard errors are, we can confidently say that all coefficients are

statistically significant for both models. We also observe that the estimates for some

coefficients change significantly. The coefficient for capital increases from 0.0759 to 0.0922,

which using the standard deviation of the baseline model is 1.4554 standard deviations

higher. The coefficient for labour decreases from 0.1888 to 0.1473, which is 1.4613 baseline

9 According to Hahn and Liao (2021), standard error estimates produced by bootstrap can be more

conservative (i.e. greater) than the true standard errors. This is not a problem for us, however, as it only

means that our parameter estimates are more accurate than we report. For a more detailed analysis on

the bootstrap, also see Horowitz (2001).
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Table 4: Production Function and Productivity Process Estimates

Production Function Productivity Process

βK βL βM c ρ δ

Baseline
0.0759 0.1888 0.6730 0.5165 0.8516

(0.0112) (0.0284) (0.0015) (0.0150) (0.0043)

Disruption
0.0922 0.1473 0.6730 0.5199 0.8474 -0.0217

(0.0167) (0.0427) (0.0015) (0.0154) (0.0045) (0.0011)

N = 47586

Values in parentheses report standard errors. For the Production Function, they

are calculated using 1000 bootstrap samples. For the Productivity Process, they are

heteroskedasticity and autocorrelation robust errors.

standard deviations lower. That these two coefficients adjust between models in the

opposite direction is not surprising. According to Collard-Wexler and De Loecker (2020),

because capital and labour are positively correlated, an upwards correction to the capital

coefficient leads to a downwards adaptation of the coefficient for labour and the overall

effect on returns to scale is unknown. In this case, returns to scale decrease, form 0.9377

to 0.9125. Moreover, the recent findings by Hahn and Liao (2021) suggest that second

moment estimates using the bootstrap are biased upwards. So, the standard deviations

for the production function coefficients may be smaller than estimated and the models

are more precise and more statistically distinct than they appear to be. Of course, the

estimate for the intermediate inputs coefficient remains unchanged, since it is calculated

before the inclusion of the spike dummy takes place. The important conclusion is that

including the spike dummy definitely has an effect on the production function estimates.

We now have a look at the estimates for the productivity process. Again, the relatively
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small standard errors imply that all coefficients are statistically significant. In both

models, productivity is strongly persistent, with an autocorrelation coefficient of 0.8516

and 0.8474 for the baseline and the disruption model, respectively. Both models have

a positive and statistically significant constant, implying a positive long-run average for

productivity. In the disruption model, we can see that the investment spike dummy has

a negative and statistically significant coefficient of -0.0217. This suggests a short-term

negative effect of investment spikes on output of 2.17 percentage points. Furthermore,

the persistent nature of the productivity process means that investment spikes also have

their mark in later periods, and productivity needs more time to recover. We return to

this idea in the next subsection.

Finally, although the constant and persistence parameters between both models are

statistically very close, the implied average productivity is different. The implied average

for the baseline model is given by

ω̄ =
c

1− ρ
(15)

which gives an estimate of 3.4812. For the disruption model, the calculation becomes

ω̄ =
c+ δP (dIit−1 = 1)

1− ρ
(16)

In the inference sample, 8.97% of observations report an investment spike (in first lags).

Using this percentage as the probability of an investment spike, the estimated ω̄ for

the disruption model is 3.3942. So, between models, ωit is on average calculated to be

smaller by 0.0870 (or 2.5% in terms of the baseline estimate). Since the average value of

the unobservable shock is zero for both models, the difference in averages for log TFP is

also 0.0870. The baseline model generally predicts a TFP for this sample that is biased

upwards.
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4.2 Productivity Component Performance

We now study the effects of investment spikes on log TFP and its components, ωit and

εit. We retrieve the three variables for each model as follows: for log(TFPit) we use the

estimated production function parameters with the production function in logs to get

log(TFPit) = yit− β̂Kkit− β̂Llit− β̂Mmit, for ωit we use the values produced in the second

stage of the estimation, and we get εit as the difference between log(TFPit) and ωit
10.

In the sample used for the estimation, the disruption model estimates a smaller

contribution of TFP to output, compared to the baseline model. Based on the data,

both the average logarithm of TFP and the average of ωit of the baseline model are

3.4760 (compared to the parameter based estimate of 3.4812, calculated in Section 4.1).

For the disruption model, they are both at 3.3857 (compared to 3.3942 in Section 4.1),

which is less by 0.0903 (or 2.6%, compared to 0.0870 and 2.5% in Section 4.1). These

data based averages and their difference are relatively close to the corresponding

parameter based estimates of Section 4.1. This is providing comfort that both the

baseline and the disruption model can adequately fit the data. For εit in both models

the average is zero, which is to be expected since it is equivalent to the OLS residual

from the first stage of the estimation.

We select a sub-sample of 644 cases, in our sample, that experience an investment

spike and have available data for a time window of two periods before and after the spike.

Following the methodology described in Section 2.2, we select an equally sized sub-sample

of cases of firms that are statistically similar, but do not exhibit a spike, and have the

10 Equivalently, we could use the residuals from the first stage of the estimation. We have found that

the two alternatives only differ at the very low digits, which could be attributed to representational

rounding errors.
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Figure 2: Productivity component averages around investment spikes
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The solid lines report for the spike sub-sample and the dashed lines report for the matched sub-sample.

same time window of available data. We draw a series of plots for these sub-samples,

regarding the performance of TFP and its components around investment spike episodes.

All investment spike episodes are grouped together, regardless of the time period they

happened, thus mitigating any time effects.
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Figure 3: Productivity component first difference averages around investment spikes
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The solid lines report for the spike sub-sample and the dashed lines report for the matched sub-sample.

Figure 2, plots the average values of log(TFPit), ωit, and εit separately for the spike

and the matched sub-samples, for a time window of two periods before to two periods after

an investment spike. Figure 3 does the same for the corresponding first differences, which

helps to better illustrate the presence of productivity disruptions following investment
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spikes, as well as any differences between the models. Observe that, also in these sub-

samples, the averages for both log(TFPit) and ωit are at visibly lower levels for the

disruption model compared to the baseline model, same as it is found by the parameter

based and the data based estimates above. That is not the case for εit, however, which

is identical for both models. This makes sense, since the residuals of the first stage,

with which εit is equivalent, are calculated before any assumption on the process of ωit

is involved.

In figure 2, for both models (subfigures (a) and (b)), the averages of log TFP and those

of its components, for both spike and non-spike firms, start out relatively close two periods

before the spike (at t = −2). Their difference is around 2 to 3 percentage points11, in both

cases. They also move mostly in parallel towards the period before the spike (t = −1),

maintaining that difference. This is also evident by the corresponding subfigures of figure

3, where the starting first differences essentially coincide, being at around the 1.6 to 2

percentage points region in all cases. This reassures that the matching process did a good

job at finding appropriate statistical twins of the spike firms, even though productivity

and its components are not targeted variables of the matching algorithm.

During the spike period (at t = 0), in both models, the average spike firm enjoys a

relatively higher TFP than its non-spike counterpart. For the baseline model the average

log TFP of a spike firm is 3.5412 compared to 3.4883 for the non-spike firms, increasing

the gap between them to about 5 percentage points. For the disruption model, the

difference is slightly greater at about 5.5 percentage points (average log TFP is 3.4642

for the spike firms and 3.4083 for the non-spike firms). The same picture can also be seen

in their growth rates from before the spike to the spike period. In the baseline model,

11 A difference of 0.01 in log TFP approximately implies a difference in TFP in levels of 1 percentage

point.
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non-spike TFP drops by 3 percentage points, whereas spike TFP stays essentially the

same. Roughly the same happens in the disruption model.

The first period after the spike (at t = 1), we can see a stark difference in productivity

growth rates, between spike and non-spike firms. In the baseline model, the average TFP

of the spike firms drops by 5.46 percentage points, compared to about zero for the non-

spike firms, closing the gap between them. In the disruption model, the difference is more

pronounced. Spike firms fall by 6.31 percentage points, while non-spike firms increase

by 0.43. Using the baseline model as the reference point, in this limited sample of 644

cases, it can be calculated that the disruption model predicts a productivity differential

that is 23.22% greater. So, it seems that both models show signs of a disruption effect,

the baseline model underestimates its magnitude, since it is trying to fit the data in a

specification without disruption.

Such productivity drops, which are correlated with lumpy adjustment behaviour,

constitute an extra adjustment cost that the firm has to face for choosing spiky

adjustment, compared to smoother adjustment, on top of any usual convex costs. These

costs may appear because significant adjustment may require production units to halt

operations while the new capital is installed, or may be the result of the production

workers slowly adapting to the new capital they work with (learning-by-doing). As we

will see below, such productivity disruption have a lingering effect on the firm’s future

output, due to the persistent nature of ωit.

Two periods after the spike (at t = 2), both types of firms appear to co-move again, in

both models. However, the first difference plots in figure 3 reveal that the spike firms have

a slightly higher growth rate, possibly while they recover from last period’s disruption

shock. All of the above observations are in line with the general findings of the lumpy
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adjustment literature.

We now move on to dissecting TFP into its individual components, the observable

ωit component and the unobservable εit component (subfigures (c), (d), (e), and (f), for

each figure, respectively). Firstly, we observe in both figure 2 and 3 that ωit is much less

variable for both models, compared to εit, which appears to drive a lot of the variability

in TFP. Before the spike (at t = −2 and t = −1), ωit and εit are relatively close between

sub-samples for both models, same as with TFP.

In both models, the relatively increased productivity of spike firms at the spike

period (t = 0) is almost exclusively due to the unobservable shock, εit. Since the spike

and the non-spike firms are otherwise similar, one interpretation of this is that the

relative productivity advantage of the spike firms is a random occurrence, which cannot

be captured by the models. This boosted productivity helps counteract the disruption

costs that an investment spike would cause, and incentivizes the firm to go through

with it. Alternatively, this productivity spread could also be a sign of the spike firms

proactively intensifying the usage of physical capital to get the most out of it before it

is replaced and to help build a buffer that will protect them from the ensuing

productivity disruptions. This may be evidence of variable input utilization. However,

the models used here could not account for it, since the dataset we employ provides no

such useful information.

In the first period after the spike (t = 1), the situation is different. Now, both

components respond to the spike with a significant drop. The observable ωit drops by

1.67 percentage points for the baseline model and 2.53 for the disruption model, 0.86

percentage points more. The unobservable εit drops by 3.79 in both models. So, the

disparity in the decrease between models is entirely due to differences in the observable
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shock. At t = 2, ωit appears to be the main contributor towards the recovery of TFP we

have observed.

Even though they are useful in providing with some insight into the performance

of productivity and its components, the spike and the matched non-spike sub-samples

are rather limited in size, and thus any measurements of the size of disruption may

be significantly inaccurate. For the remainder of this subsection, we will be using the

estimate of the δ parameter of the disruption model, which is based on the entire inference

sample, as the true size of disruption that acts through ωit.

We are interested in examining whether our estimate of the disruption effect on the

observable shock, δ̂, is backed by the data. We do this via a paired Wilcoxon signed rank

test12. We take 2452 cases for which ωit is available during and after an investment spike

and consider two samples, one containing the observations during the spike and one for

the next period. We use the ωit that is produced by the disruption model.

We conduct a two-sided Wilcoxon test, where the null hypothesis is that the

location shift between the two samples is equal to −δ̂. Our estimate for δ is -0.0217,

implying a location shift of 0.0217. The test’s p-value is 0.0197, which rejects the null at

the 5% confidence level. Interestingly, however, the reported 95% confidence interval is

[0.0220, 0.0249], which has two implications. Firstly, we see that our estimate is

rejected by a small margin. Secondly, the confidence interval excludes zero, which

reinforces the evidence for the presence of a disruption effect in the examined sample.

We also conduct a one-sided test, where the null is that the shift is at least equal to −δ̂

or greater. Unsurprisingly, the test strongly accepts the null at the 5% confidence level

with a p-value of 0.9901.

12 Because the exact Wilcoxon test can be computationally demanding even for relatively small samples,

we use a continuity corrected normal approximation.
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Furthermore, both tests report a pseudomedian for the location shift of 0.0234, which

is the tests’ estimate of the shift. So, our estimate is relatively more conservative about

the size of the disruption effect, compared to what the paired signed rank test finds. In

practice, they both roughly agree and, at the very least, the disruption effect is at least

as prominent as we estimate it to be and should not be ignored when conducting any

kind of inference.

Finally, using model parameter estimates and sample statistics, we can get an idea

of the overall effect a single investment spike has on output across time. As we have

discovered, disruption acts through two channels, by affecting both the observable and

the unobservable shock. Due to the persistence of ωit, the overall effect of an investment

spike on it from the time disruptions take effect and across all future periods can be

calculated as

δ + ρδ + ρ2δ + ρ3δ + · · · = δ

1− ρ
(17)

Using the parameter estimates from the disruption model in (17) we get -0.1421. By this

estimate alone, we see that, ceteris paribus, the firm losses 14.21% of its future output

just through the observable shock channel, when it chooses lumpy adjustment as opposed

to smooth adjustment. Notice here how the baseline model provides no structural way

of measuring this long-term effect of lumpy investment. We have seen that εit also drops

in response to investment spikes. In the inference sample, the average drop is 0.0288,

or 2.88%, which we will use in place of a lacking model estimate. Adding everything

together, we find that investment spikes result in the overall loss of 17.10% of the firm’s

output in forgone output, 5.05% of which in the very next year (calculated as 2.17% plus

2.88%) and the remaining 12.05% in the subsequent years. Thus, the extra cost the firm

has to bear, when choosing to adjust in spikes rather than smoothly, is not limited to
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one period.

4.3 Aggregate Productivity Growth

We further illustrate the importance of the difference in estimates between the baseline

and the disruption model with an empirical application. We construct Aggregate

Productivity Growth (APG) for the inference sample and decompose it to its

underlying components, following the methodology of Petrin and Levinsohn (2012). We

deviate slightly from their definition, to reflect our gross-output assumption, and

calculate the discrete time version of APG in each time period as

APGt =
∑
i

Dit∆yit −
∑
i

Ditsikt∆kit −
∑
i

Ditsilt∆lit −
∑
i

Ditsimt∆mit (18)

where summation is across all firms present in the sample in period t, Dit is the firm’s

Domar weight, which we calculate as total revenue over the sum of all revenues across

all firms in period t, and sikt is the revenue share of capital and similarly with silt and

simt for labour and intermediate inputs, respectively. The bars over Dit, sikt, silt, and

simt indicate average values between periods t− 1 and t. ∆yit, ∆kit, ∆lit, and ∆mit are

the first differences of log output and the respective log inputs. Before constructing APG

and any of its components, we drop observations that lie at the top and bottom 0.5% of

the empirical distribution of the sum of revenue shares.

For the revenue shares of the inputs, we need data on their costs. For labour and

intermediate inputs, we simply multiply the real variables in levels with the average cost of

labour and the intermediate inputs price index, respectively (see Appendix B). Of course,

data on capital use costs are not reported in any of the firm’s financial statements. Basu

and Fernald (1995) and Balk (2021) provide some measures one can construct, but the

necessary data for Greece are not easily available. Petrin and Levinsohn (2012), who
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face the same problem, opt to simply not account for capital in their data and provide

an APG measure which is accurate “up to an adjustment for capital expenditures”. We

prefer to use a simple, but attainable, approximation used in Bitros and Panas (2001) for

Greek Manufacturing. We define the cost of capital as

rKit = P I
it(rit + δit) (19)

where P I
it is the investment deflator, rit is the intertemporal interest rate, and δit the

capital depreciation rate. We have data for the investment deflator and the capital

depreciation rates, which we use for our variable construction. We calibrate the

intertemporal interest rate at a fixed 0.025 for all periods, taken from table 9 of the

online appendix of Fakos, Sakellaris, and Tavares (2021), who study the effects of credit

supply shocks on Greek Manufacturing firms’ investment before and during the Greek

2008 financial crisis. We calculate the unit cost both for Buildings and Machinery &

Equipment and then appropriately calculate the revenue share of aggregate capital.

Notice how the calculation of APG relies only on observable data and does not depend

on any estimated parameters. Production function estimates are needed, however, to get

a breakdown of the forces acting on APG. Petrin and Levinsohn (2012) split APG into

changes in Technical Efficiency (TE), Reallocation Efficiency (RE) for each input, and

fixed and sunk costs (F). Thus,

APGt = TEt +REt + Ft (20)
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Table 5: Aggregate Productivity Growth breakdown according to the each model.

Averages per subperiod.

Period Model APG TE RE REK REL REM N

2001-2007
Baseline -0.0072 -0.0057 -0.0015 0.0042 -0.0023 -0.0035

19799
Disruption -0.0072 -0.0063 -0.0009 0.0057 -0.0031 -0.0035

2008-2015
Baseline -0.0160 -0.0284 0.0124 0.0014 0.0081 0.0028

10295
Disruption -0.0160 -0.0272 0.0111 0.0019 0.0065 0.0028

2016-2017
Baseline -0.0050 -0.0046 -0.0003 0.0018 0.0002 -0.0023

5345
Disruption -0.0050 -0.0038 -0.0011 0.0024 -0.0012 -0.0023

Averages of the annual values of APG and its breakdown for the specified subperiods (annual values are

found in tables A.3 and A.4 in Appendix A).

The estimates for fixed and sunk costs (F) are not reported, because they are zero everywhere.

N is the number of observations.

with

TEt =
∑
i

Dit∆ln(TFPit) (21)

REt =
∑
i

Dit(βK − sikt)∆kit +
∑
i

Dit(βL − silt)∆lit +
∑
i

Dit(βM − simt)∆mit (22)

Ft = −
∑
i

Dit∆ln(Fit) (23)

and Fit being the fixed and sunk costs of firm i at time t. Ft is calculated residually as

Ft = APGt − TEt −REt. TFP is calculated as in Section 4.2.

Table 5 shows the evolution of APG and its components, during three time periods in

our sample, according to both the baseline and the disruption model. The values reported

are the averages of the corresponding annual values, given by the Petrin and Levinsohn

(2012) methodology, for each subperiod we define. The per year values are reported in
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Appendix A (tables A.3 and A.4). Our first subperiod is between 2001 and 2007, which

is the pre-financial crisis period. The second subperiod is from 2008 to 2015, which we

consider to be the crisis period. Finally, from 2016 to 2017 is our recovery period. The

values of APG are common for both models, since its calculation is model independent.

We observe that the average of APG is slightly decreasing in every subperiod, except for

the crisis period where the decrease is more prominent at -0.0160, implying an average

decrease in aggregate productivity in our sample of 1.60% per year during the crisis.

Moving on to the breakdowns by component, at first glance, it appears that both

models mostly agree on the signs of each part of APG. Both models find technical

efficiency as the more significant factor of APG, with reallocation efficiency being

generally of the same sign but smaller. There is, however, the exception of the financial

crisis period, where reallocation efficiency operates in a positive direction

(demonstrating the cleansing effect of the crisis), but is overcome by the larger negative

effect of technical efficiency.

Upon closer inspection, one can also see that the generally smaller size of

reallocation efficiency is misleading. In reality, the reallocation effects from each

production input are comparable in size to that of technical efficiency, but usually

cancel each other out. Efficiency growth due to capital reallocation is positive

throughout time, but the other inputs are ultimately the deciding factor of the effect of

total reallocation. Finally, both models report the exact same values for the

intermediate inputs reallocation efficiency, because the intermediate inputs production

function coefficient estimate is identical between models.

Although the qualitative conclusions are similar for both models, there is significant

disagreement about the magnitudes of the components. Table 6 reports the ratio of the
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Table 6: Aggregate Productivity Growth breakdown as percentage of annual level and

ratios between models. Averages per subperiod.

Baseline Disruption Ratio
N

Period TE RE TE RE TE RE

2001-2007 1.8322 -0.8322 2.0562 -1.0562 1.1011 0.6118 19799

2008-2015 2.0766 -1.0766 1.9978 -0.9978 0.9564 0.9000 10295

2016-2017 0.9694 0.0306 0.8426 0.1574 0.8283 3.3267 5345

The columns under Baseline and Disruption report the ratios of TE/APG and RE/APG

in each time period for the baseline and the disruption model, respectively. The columns

under Ratio report the ratio of the disruption estimate over the corresponding baseline

estimate.

N is the number of observations.

corresponding values of TE and RE over APG for the baseline and the disruption model,

as well as the ratio between the models (as disruption over baseline). Notice that for each

grouping the values of TE and RE sum up to one. We can observe that the models assign

significantly different contributions of TE and RE to APG in all subperiods. In the pre-

crisis period the disruption model estimates average technical efficiency to be in absolute

terms 10.11% higher and reallocation efficiency 38.82% lower13, compared to the baseline

model. During the crisis, the disruption model is more conservative, giving a 4.36%

lower magnitude for average technical efficiency and 10% lower reallocation efficiency.

During recovery, the differences can be more extreme, with a 17.17% lower technical

efficiency and 232.67% higher reallocation efficiency (or equivalently, the baseline model

13 These values are found by subtracting one from the corresponding columns under Ratio, which report

the value estimated by the disruption model over the corresponding value of the baseline model.
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is 69.95%14 lower than the disruption model). However, this last large difference could

be due to the more limited data for the recovery period. Overall, however, the evidence

we have reviewed suggests that the choice of model can paint a substantially different

picture of the underpinnings of APG.

5 Summary and Conclusions

In this paper, we study the effects of investment spikes on firm-level productivity on a

panel of Greek Manufacturing firms from the ICAP database. Motivated by the evidence

from the lumpy investment literature, we argue that production function estimation needs

to take into account endogenous productivity disruptions caused by investment spikes.

We contribute to the production function estimation literature, by providing a modified

structural model and an estimation method similar to the unobservable variable proxy

approach that incorporates spike induced disruptions to production.

We find that our modification is meaningful and produces significantly different

production function estimates, compared to the standard exogeneity assumption for

productivity, on a large proprietary panel of the Greek Manufacturing sector.

Furthermore, we break down TFP in an observable (by the firm) part and an

unobservable part. We find that the disruptions examined have an effect on output

both in the next period and a gradually waning effect in subsequent periods, the latter

of which can only be structurally estimated using our model. These constitute an

additional adjustment cost the the firm incurs for lumpy adjustment, in contrast to

smoother adjustment where only the typical convex costs may apply. Additionally, we

calculate Aggregate Productivity Growth and its implied components according to each

14 This is found by taking the reciprocal of 3.3267 and subtracting one.
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model. Again, we find significant differences.

We suggest that other firm-level datasets may display patterns of endogenous

productivity disruptions. If ignored, they can skew production function or other

estimates and produce erroneous inference results, as we have seen here. They need not

be present in every dataset, but researchers ought to not exclude the possibility and try

to control for it.
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A Tables

Table A.1 reports for the inference sample, per year for the pre-crisis, crisis, and

recovery periods: Aggregate Productivity Growth (APG), calculated according to

Petrin and Levinsohn (2012), and the average growth rates of the output and input

variables (capital, labour, and other intermediate inputs), calculated as the average of

their first differences in logs.

Table A.2 reports, per year for the inference sample, the average investment rate

(i.e. average Iit/Kit across i for each t) and the percentage of observations identified as

investment spikes (i.e. when dit = 1). Observe the noticeable drop in average investment

behaviour after the onset of the Greek financial crisis in 2008. Our definition of lumpy

investment appears unaffected, however, because it takes the financial regime into account

(pre 2008 or not). In fact, one could notice some increase in lumpy behaviour when

approaching the recovery period (circa post 2015).

Table A.3 reports Aggregate Productivity Growth (APG) and its components,

technical efficiency (TE) and reallocation efficiency (RE), for the baseline model. RE is

further broken down into its summands, RE due to capital (REK), RE due to labour

(REL), and RE due to other intermediate inputs (REM). Table A.4 reports the same for

the disruption model.

Table A.5 reports, per year for the inference sample, technical efficiency and

reallocation efficiency as a percentage of APG (TE/APG and RE/APG, respectively)

for the baseline and the disruption model, and their ratio between models (as disruption

over baseline). Notice how for each grouping TE and RE sum up to one.

42



Table A.1: Aggregate Productivity Growth and Average Growth Rates

Year APG Output Capital Labour Int. Inputs

2001 -0.0362 -0.0005 0.1157 0.1221 0.0389

2002 -0.0206 0.0155 0.0767 0.0845 0.0162

2003 -0.0152 0.0175 0.0814 0.0647 0.0226

2004 -0.0149 0.0295 0.1142 0.0608 0.0459

2005 0.0177 -0.0299 0.0747 -0.0500 -0.0665

2006 -0.0002 0.0325 0.0827 -0.0031 0.0257

2007 0.0190 0.0503 0.0844 0.0252 0.0218

2008 -0.0226 -0.0374 0.0720 -0.0083 0.0223

2009 -0.0236 -0.2191 0.0076 -0.0912 -0.2243

2010 -0.0181 -0.1534 0.0070 -0.0843 -0.1122

2011 -0.0219 -0.1864 -0.0196 -0.1024 -0.1282

2012 -0.0065 -0.1709 -0.0111 -0.1956 -0.1180

2013 -0.0069 -0.0253 0.0189 -0.0158 0.0272

2014 -0.0170 0.0409 0.0122 0.2757 0.0522

2015 -0.0115 0.0349 0.0754 0.0504 0.0480

2016 -0.0035 0.0020 0.0084 -0.0034 0.0413

2017 -0.0064 0.0188 0.0286 0.0568 0.0088

Average -0.0111 -0.0342 0.0488 0.0109 -0.0164

SD 0.0142 0.0890 0.0440 0.1053 0.0817

Average 2001-2007 -0.0072 0.0164 0.0900 0.0435 0.0149

Average 2008-2015 -0.0160 -0.0896 0.0203 -0.0214 -0.0541

Average 2016-2017 -0.0050 0.0104 0.0185 0.0267 0.0250

Aggregate Productivity Growth is calculated based on Petrin and Levinsohn (2012).

The average growth rates for the rest of the variables are calculated as the average of

their first differences in logs.
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Table A.2: Average Investment Rate and Proportion of Investment Spikes per year

Year Investment Rate Investment Spike Percentage

1999 0.2551 0.0650

2000 0.2518 0.0755

2001 0.1856 0.0773

2002 0.1814 0.0796

2003 0.2326 0.0690

2004 0.1796 0.0886

2005 0.1944 0.0862

2006 0.2003 0.0791

2007 0.1819 0.0681

2008 0.0916 0.0681

2009 0.0868 0.0642

2010 0.0576 0.0673

2011 0.0621 0.0695

2012 0.1096 0.0627

2013 0.0862 0.0780

2014 0.2160 0.0939

2015 0.1074 0.0990

2016 0.1255 0.0796
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Table A.3: Aggregate Productivity Growth breakdown according to the Baseline Model

Year APG TE RE REK REL REM

2001 -0.0362 -0.0398 0.0035 0.0060 0.0002 -0.0026

2002 -0.0206 -0.0192 -0.0014 0.0040 -0.0013 -0.0041

2003 -0.0152 -0.0176 0.0023 0.0036 -0.0001 -0.0013

2004 -0.0149 -0.0108 -0.0041 0.0060 -0.0057 -0.0044

2005 0.0177 0.0279 -0.0102 0.0033 -0.0086 -0.0050

2006 -0.0002 -0.0014 0.0011 0.0035 0.0024 -0.0047

2007 0.0190 0.0206 -0.0017 0.0032 -0.0027 -0.0022

2008 -0.0226 -0.0483 0.0257 0.0031 0.0204 0.0023

2009 -0.0236 -0.0256 0.0020 0.0011 -0.0052 0.0061

2010 -0.0181 -0.0373 0.0192 0.0006 0.0156 0.0030

2011 -0.0219 -0.0152 -0.0067 0.0003 -0.0066 -0.0004

2012 -0.0065 -0.0216 0.0151 0.0003 0.0052 0.0096

2013 -0.0069 -0.0230 0.0161 0.0011 0.0124 0.0025

2014 -0.0170 -0.0314 0.0144 0.0011 0.0121 0.0012

2015 -0.0115 -0.0248 0.0133 0.0037 0.0113 -0.0018

2016 -0.0035 -0.0038 0.0003 0.0019 0.0006 -0.0022

2017 -0.0064 -0.0054 -0.0010 0.0017 -0.0003 -0.0025

Average -0.0111 -0.0163 0.0052 0.0026 0.0029 -0.0004

SD 0.0142 0.0199 0.0101 0.0018 0.0085 0.0040

Average 2001-2007 -0.0072 -0.0057 -0.0015 0.0042 -0.0023 -0.0035

Average 2008-2015 -0.0160 -0.0284 0.0124 0.0014 0.0081 0.0028

Average 2016-2017 -0.0050 -0.0046 -0.0003 0.0018 0.0002 -0.0023

The estimates for fixed and sunk costs (F) are not reported, because they are zero

everywhere.
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Table A.4: Aggregate Productivity Growth breakdown according to the Disruption Model

Year APG TE RE REK REL REM

2001 -0.0362 -0.0373 0.0011 0.0079 -0.0042 -0.0026

2002 -0.0206 -0.0177 -0.0029 0.0052 -0.0041 -0.0041

2003 -0.0152 -0.0166 0.0013 0.0048 -0.0022 -0.0013

2004 -0.0149 -0.0124 -0.0025 0.0083 -0.0064 -0.0044

2005 0.0177 0.0217 -0.0040 0.0045 -0.0035 -0.0050

2006 -0.0002 -0.0018 0.0016 0.0048 0.0015 -0.0047

2007 0.0190 0.0199 -0.0009 0.0042 -0.0030 -0.0022

2008 -0.0226 -0.0457 0.0231 0.0041 0.0167 0.0023

2009 -0.0236 -0.0296 0.0060 0.0015 -0.0016 0.0061

2010 -0.0181 -0.0343 0.0162 0.0007 0.0125 0.0030

2011 -0.0219 -0.0194 -0.0025 0.0004 -0.0025 -0.0004

2012 -0.0065 -0.0249 0.0184 0.0002 0.0085 0.0096

2013 -0.0069 -0.0207 0.0138 0.0015 0.0097 0.0025

2014 -0.0170 -0.0213 0.0043 0.0014 0.0016 0.0012

2015 -0.0115 -0.0214 0.0099 0.0051 0.0066 -0.0018

2016 -0.0035 -0.0038 0.0003 0.0024 0.0001 -0.0022

2017 -0.0064 -0.0039 -0.0026 0.0024 -0.0024 -0.0025

Average -0.0111 -0.0158 0.0047 0.0035 0.0016 -0.0004

SD 0.0142 0.0181 0.0085 0.0024 0.0067 0.0040

Average 2001-2007 -0.0072 -0.0063 -0.0009 0.0057 -0.0031 -0.0035

Average 2008-2015 -0.0160 -0.0272 0.0111 0.0019 0.0065 0.0028

Average 2016-2017 -0.0050 -0.0038 -0.0011 0.0024 -0.0012 -0.0023

The estimates for fixed and sunk costs (F) are not reported, because they are zero

everywhere.
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Table A.5: Aggregate Productivity Growth breakdown as percentage of annual level and

ratios between models

Baseline Disruption Ratio

Year TE RE TE RE TE RE

2001 1.0978 -0.0978 1.0292 -0.0292 0.9375 0.2982

2002 0.9307 0.0693 0.8573 0.1427 0.9212 2.0589

2003 1.1520 -0.1520 1.0870 -0.0870 0.9436 0.5725

2004 0.7250 0.2750 0.8306 0.1694 1.1456 0.6162

2005 1.5790 -0.5790 1.2260 -0.2260 0.7765 0.3904

2006 6.2520 -5.2520 8.3160 -7.3160 1.3301 1.3930

2007 1.0888 -0.0888 1.0471 -0.0471 0.9617 0.5303

2008 2.1360 -1.1360 2.0202 -1.0202 0.9458 0.8980

2009 1.0843 -0.0843 1.2543 -0.2543 1.1567 3.0152

2010 2.0587 -1.0587 1.8917 -0.8917 0.9189 0.8423

2011 0.6933 0.3067 0.8861 0.1139 1.2780 0.3714

2012 3.3189 -2.3189 3.8212 -2.8212 1.1514 1.2166

2013 3.3260 -2.3260 3.0009 -2.0009 0.9022 0.8602

2014 1.8445 -0.8445 1.2506 -0.2506 0.6780 0.2967

2015 2.1513 -1.1513 1.8577 -0.8577 0.8635 0.7450

2016 1.0983 -0.0983 1.0833 -0.0833 0.9864 0.8481

2017 0.8405 0.1595 0.6019 0.3981 0.7161 2.4966

Average 1.8457 -0.8457 1.8859 -0.8859 0.9772 1.0264

SD 1.3976 1.3976 1.8563 1.8563 0.1825 0.7929

Average 2001-2007 1.8322 -0.8322 2.0562 -1.0562 1.1011 0.6118

Average 2008-2015 2.0766 -1.0766 1.9978 -0.9978 0.9564 0.9000

Average 2016-2017 0.9694 0.0306 0.8426 0.1574 0.8283 3.3267

The columns under Baseline and Disruption report the ratios of TE/APG and RE/APG

in each time period for the baseline and the disruption model, respectively. The columns

under Ratio report the ratio of the disruption estimate over the corresponding baseline

estimate.
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B Variable Construction

We try to recover any missing information in our financial statement data based on

accounting identities15. We then construct the variables we need as explained below.

Finally, we take some additional steps to reach the final dataset we use for inference.

The inference variables are constructed as follows:

Firm Age, as the difference between the current year of each observation and the Year

of Establishment reported for each firm.

Physical Capital and Investment Deflators (base year 2010), as the Implicit Price Index

for Gross Fixed Capital Formation, provided by the World Bank.

Geometric Depreciation Rates by Asset Class per Year, δjit, as the weighted average of

the geometric depreciation rates for each subclass of capital, provided by the EU

KLEMS 2019 survey, weighted by the gross capital stocks reported by Eurostat

(nama10 file) every year and for every 2-digit NACE 2 division. If data for a

division are not reported, the data for the immediate parent grouping available are

used. If some δjit is undefined due to a zero over zero division, this means that the

amount particular asset class for that particular time and sector is zero, and thus

δjit set to zero. Then firms are assigned the proper δjit according to their NACE 2

classification.

15 We set to missing any value that is reported as negative where negative values do not apply. The only

financial variables that we allow to be negative are: Cash and Deposits, Shareholders’ Equity, Retained

Earnings/Accumulated Losses, Gross Margin, Operating Margin, Profits Before Taxes, Income Taxes,

and EBITDA. To account for rounding errors, we set every instance of the value of negative one to zero.
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Deflated Book Value of Capital per Asset Class16, as

KBook jit =
Bookjit − AccumulatedDepreciationjit

IPIGFCFt

, ∀i, j, t (B.1)

where j ∈ {Buildings, Machinery and Equipment} and IPIGFCF is the Implicit

Price Index for Gross Fixed Capital Formation for Greece provided by the World

Bank per asset class per year.

Real Investment per Asset Class17, as

Ijit =

∆(Bookjit+1 − AccumulatedDepreciationjit+1)

+ CurrentDepreciationjit

IPIGFCFt

, ∀i, j, t (B.2)

where j ∈ {Buildings, Machinery and Equipment}.

Real Capital per Asset Class, according to the Perpetual Inventory Method (PIM) where

for consecutive years

Kjit = Ijit + (1− δjit)Kjit−1, ∀i, j, t (B.3)

and Kjit is initialized using the corresponding Deflated Book Value, KBook jit, when

the firm first appears in the sample or if there is a skip in the series.

Aggregate Physical Capital and Aggregate Investment in Physical Capital, as the

respective sums of Buildings, and Machinery and Equipment,∑
j∈{Buildings,Machinery and Equipment}Kjit and

∑
j∈{Buildings,Machinery and Equipment} Ijit.

16 Here, we could have lagged the deflator by the average age of each asset class, as in İmrohoroğlu and

Tüzel (2014). However, in our case the estimates for capital age were impossibly high for a considerable

number of cases, so we opted not to use it.
17 Our data do not report Current Depreciation for each asset class, but only in total. We decompose

this to its per asset class components as best as possible, using a series of reasonable assumptions (e.g.

setting current depreciation to zero when the associated book value is zero, etc).
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Real Gross Output, as Net Sales plus Other Operating Income and the change in

Inventories of Finished Goods deflated by the Producer Price Index (PPI) of the

corresponding 2-digit NACE rev. 2 division (base year 2010) provided to us by

ELSTAT. For a few cases where PPI is not available, we use Eurostat’s

Harmonized Consumer Price Index.

Labour, as the reported number of employees times the year and sector specific ratio

of persons employed to number of employees reported by Eurostat. If possible, we

fill any missing ratios by linear interpolation. We fill the rest with the ratio of

persons employed to employees reported by the EU KLEMS survey. Because self

employment may be reported as zero employees (as opposed to missing), we first

set observations reporting zero employees to one for non S.A. firms.

Intermediate Inputs, according to Keller and Yeaple (2009) and de Loecker, Eeckhout,

and Unger (2020), as Cost of Goods Sold and Other Operating Expenses less

Depreciation in Cost of Finished Goods and wage expenditures. Wage

expenditures are calculated as the Average Cost of Labour for the corresponding

division and year times the original number of employees reported by the firm at

that year. We get the average wage by dividing the total cost of employees by the

number of employees, reported by Eurostat. If possible, we fill any missing

average cost by linear interpolation. We fill the rest with the ratio of the EU

KLEMS item COMP over EMPE.

Leverage, as 1− TotalEquity

TotalAssets
.

We then drop any firm associated with a consolidated group in any way, to control

for consolidation effects. Then, we drop observations with negative values for age,
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output, real Buildings, real Machinery and Equipment, and intermediate inputs.

Following Gradzewicz (2020), we also set to missing any investment rate above 12, as

unlikely. Finally, we treat as outliers and drop observations below the 0.5-th and above

the 99.5-th percentile for real output, real aggregate capital, labour, intermediate

inputs, and the investment rate.

C Estimation

The estimation procedure of the models in Section 3 is a simplified version of Gandhi,

Navarro, and Rivers (2020), as described in the appendix of Collard-Wexler and De

Loecker (2020) (less the instrumentation of log capital by log investment to control for

measurement errors). The estimation process is identical for both models, with the

difference that in the disruption model, g takes a not only lagged productivity as an

input, but also a lagged investment spike dummy. We base our computer code for the

estimation on the prodest R package by Rovigatti (2017). Here we describe the precise

steps that yield the results in table 4.

Consider the Cobb-Douglas production function in logs in equation (2)

yit = βKkit + βLlit + βMmit + ωit + εit (2)

Produce an estimate of βM as the median of the empirical distribution for the revenue

share of intermediate inputs

β̂M = median

(
pMit Mit

PitYit

)
(C.1)

where the capitalized variables, Yit and Mit, are output and intermediate inputs in

levels instead of logs. Pit is the price firm i receives at time t for its output and pMit the
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corresponding price it pays for the inputs. In practice, they are the corresponding

deflators used when constructing the variables.

Subtract the effect of intermediate inputs from output to get

ỹit = yit − β̂Mmit (C.2)

and use ỹit in the Ackerberg, Caves, and Frazer (2015) framework to get estimates for

βK and βL in the following specification

ỹit = βKkit + βLlit + ωit + εit (13)

This allows for the unique identification of all Cobb-Douglas coefficients.

The Ackerberg et al. (2015) framework is as follows.

For the first stage, proxy for the unobservable ωit by inverting f and substituting in

equation (2)

ỹit = βKkit + βLlit + ωit + εit

= βKkit + βLlit + f−1(kit, lit,mit) + εit

= Φ(kit, lit,mit) + εit (C.3)

so that the production function can be written as an unknown function of observable

variables, kit, lit, and mit, and the unobservable shock, εit. To deal with the unknown

function, Φ, approximate it with a linear function of its inputs. Because E(kitεit|Iit) =

E(litεit|Iit) = E(mitεit|Iit) = 0, this approximation can be estimated by OLS.

Then, take the fitted values of the regression, Φ̂it, to use in the second stage. This,

essentially, purges εit from output.

In the second stage, choose candidates for β̂K and β̂L and get an estimate measure of

ωit

ω̂it = Φ̂it − β̂Kkit − β̂Llit (C.4)
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The next step is to estimate g. For our AR(1) process for the baseline model we get

ωit = c+ ρωit−1 + ξit (5)

and for the disruption model we get

ωit = c+ ρωit−1 + δdIit−1 + ξit (3)

The model assumptions in Section 3 imply that E(kitξit) = E(lit−1ξit) = 0.

Thus, use ω̂it (and any other data necessary) to estimate either (5) or (3) by OLS,

depending on the chosen model, and use the residuals, ξ̂it to form the above moment

conditions. Essentially, kit and lit−1 act as instruments of a non-linear GMM specification

given by (C.4) and (5) or (C.4) and (3), respectively. Form the GMM objective as

J = ξ̂′Z ′WZξ̂ (C.5)

where Z = [k l−1] and W a weighting matrix. We set W = (Z ′Z)−1.

We optimize the objective using the Newton-Raphson algorithm, but any appropriate

optimization routine can equally be used.
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