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We introduce a bounds testing procedure (BTP), in the spirit of Pesaran, Shin and Smith (2001, 

hereafter PSS) and Bertsatos, Sakellaris and Tsionas (2022, hereafter BST), for the existence 

of a non-degenerate co-integrating relationship in levels of the dependent variable and its 

forcing variables for “large N large T” panel datasets.  We allow for homogeneous responses 

of the key variable of interest using a mean-based framework, as well as for heterogeneous 

responses of the dependent variable operating in conditional quantile environment. 

The dynamic fixed effects (DFE) estimator is easy to run and has been utilized in many 

papers (see e.g. Pesaran et al., 1999, Clements et al., 2019) as a benchmark or main model to 

analyze panel datasets and derive long-run multipliers, where a panel autoregressive distributed 

lag (PARDL) model is implied.  When the time dimension, T, is large then, it is legit to use this 

estimator since the familiar downward lagged dependent bias, known as “Nickel bias” (see 

Nickel, 1981), is eliminated given a large number of cross sections, N.4  For small T on the 

other hand, dynamic panel generalized method of moments (GMM) estimators have been 

proposed (see e.g. Arellano and Bond, 1991).  Homogeneity across cross sections is assumed 

in both cases.  However, the long-run effects based on the DFE estimator may be spurious if 

there is no co-integration, i.e. this is a degenerate case and the long-run coefficients could be 

misleading.  Therefore, based on the (one-way or two-way) DFE estimator we propose a 

bounds testing procedure similar to that of PSS and BST in the time-series environment, and 

provide coefficients interpretation depending on the treatment of fixed effects. 

However, homogeneity across individuals may be restrictive for panels and if heterogeneity 

holds then, heterogeneity bias (see Pesaran and Smith, 1995) emerges and the results may be 

misleading.  To this reason, several appealing dynamic estimators for heterogeneous panels 

have been proposed with the mean group (MG) estimator of Pesaran and Shin (1995) being the 

cornerstone.5  Though, DFE and the family of MG estimators are mean-oriented estimators that 

                                                 

4  Judson and Owen (1999) show that the “Nickel bias” of the least squares dummy variable (LSDV) estimator 

(or DFE) is non-negligible even when T is 20 or 30.  Hence, as we will present later we focus on simulations with 

T greater than or equal to 50.  Also, in cases with unbalanced panels when T is greater than 30, they show that the 

LSDV estimator is the preferred estimator amongst others they examine. 

5  Pesaran and Smith (1995) propose the mean group (MG) estimator that allows for full heterogeneity, i.e. for 

heterogeneous long-run and short-run responses.  Pesaran et al. (1999) propose the pooled mean group (PMG) 

estimator, which restricts the long-run responses to be homogeneous, while it allows for heterogeneous short-run 
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rely on OLS (PMG is based on ML for the long-run part), and the covariates are allowed to 

shift only the location or the scale of the dependent variable.  Also, the responses of the 

examined key variable to its covariates may not be representative by the average effect and 

thus, the outcome is distorted.  Moreover, OLS estimates are sensitive to outliers and OLS does 

not perform well when the variable of interest exhibits skewness or kurtosis.  On the other 

hand, conditional quantile regressions (CQREGs) deal with these “problems” since they permit 

estimation of the relationship at different quantiles and spotting any differences.  Furthermore, 

with CQREGs one can explore the shape of the distribution and allow for heterogeneous effects 

of the independent variables to the dependent variable.6 Every part of the conditional 

distribution of the dependent variable and not just the mean can be explored with CQREG, 

while a fruitful discussion about the spectrum of the responses to different covariates may arise. 

We diverge from this strand of literature of (P)MG estimators whose coefficients 

interpretation is like in a time-series model.  In particular, we introduce a dual source of 

heterogeneity based on a Canay (2011) type estimator for dynamic quantile modelling, and 

propose a BTP for the existence of co-integration at a selected percentile with CQREGs.  As 

far as we are aware the suggested in this paper BTP is the first venture for establishing quantile 

co-integration for panel data. Our method brings two advances.  First, quantile-dependent 

coefficients allow for heterogeneous responses across the conditional distribution of the 

dependent variable.  Second, duality in interpretation of the state-dependent coefficients that 

can be seen as time-varying or individual-specific coefficients as we will show below. 

We define the state as the relative performance (overperformance or underperformance) of 

the dependent variable and the state depends on the fixed effects.  According to our method in 

conditional quantile framework, we examine how a change of a covariate over time or in the 

                                                 
responses, i.e. there is partial heterogeneity.  Chudik and Pesaran (2015) expand the estimator of common 

correlated effects (CCE) of Pesaran (2006) to dynamic modelling (DCCE).  Chudik et al. (2016) refer to DCCE 

as cross-sectionally augmented ARDL or CS-ARDL, and propose an alternative estimation strategy by the name 

of cross-sectionally augmented distributed lag or CS-DL, which complements CS-ARDL.  Briefly, CS-ARDL 

and CS-DL are expansions of the MG estimator that allow for heterogeneous cross correlations.  Finally, the 

assumption that a long-run relationship exists is the Achilles heel of (P)MG estimators (see Pesaran et al., 1999). 

6  With OLS the average prediction error is zero by construction, whilst with conditional quantiles underprediction 

is observed  at low percentiles (the average prediction error is positive) and overprediction at high percentiles (the 

average prediction error is negative).  This property of CQREGs is used in business; for example, delivery firms 

employ high quantiles to predict delivery time and risk managers low quantiles for value-at-risk of stock returns. 
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cross section (dual interpretation of coefficients) affects the response of the key variable of 

interest (dependent variable).  This is important as it offers flexibility to researchers and 

practitioners in answering their research questions because the coefficients interpretation varies 

with the presence of cross-sectional and time fixed effects in the model specification. 

Finally, our paper is also related to the literature of panel co-integrating tests and especially 

to Westerlund (2007).  He proposes four different tests, which are based on unrestricted error-

correction models (UECMs) and focus on the error-correction coefficient.  If the null 

hypothesis of no error correction is rejected then, that of no co-integration is also rejected.  

However, even if these tests are robust to several error specifications, they are limited to I(1) 

variables and are subject to problems related to pretesting for unit roots. 

To summarize, for the existence of co-integration we propose first, a BTP based on the 

DFE estimator in unrestricted error-correction form to detect situations, where the long-run 

effects could be questionable (degenerate case of co-integration).  Second, we propose a BTP 

for a selected percentile using a Canay (2011) type estimator for unrestricted error-correction 

models (UECMs) at conditional quantile framework.  For its completeness we also propose an 

interpercentile BTP to detect similarities of long-run components across quartiles (25th, 50th 

and 75th percentiles) and deciles (10th, 20th, …, 80th, 90th percentiles) in the spirit of BST.  Third, 

we provide coefficients interpretations – depending on the treatment of cross-sectional and/or 

time fixed effects – in both conditional mean and quantile setups for our methodologies. 

The rest of the paper is as follows: Section 2 presents the framework of unrestricted error-

correction models that is required for the bounds testing procedure and, Section 3 describes the 

simulations used and presents the results.  Section 4 is dedicated to coefficients interpretation 

and treatment of fixed effects, and Section 5 concludes and offers future suggestions.  Finally, 

there is an Appendix incorporating tables with the results of the employed simulations and a 

demonstration for the treatment of fixed effects. 

 

In this section we present the unrestricted error-correction models to be estimated before 

executing the BTP.  We state the assumptions and pose the associated tests.  First we deal with 

the conditional mean environment and next, we move to the conditional quantile setup.  We 

work with panel datasets, where the number of cross sections, N, and time periods, T, are large. 
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We employ panel ARDL models in unrestricted error-correction form as PSS and BST in 

time-series level.  UECMs are attractive since they permit examination of both short-run and 

long-run multipliers in one step efficiently, as well as of transitional dynamics towards the 

steady-state equilibrium (if any).  Moreover, they allow regressors to be a mixture of stationary 

variables, i.e. I(0) processes, and variables with unit root, i.e. I(1) processes (see e.g. Pesaran 

et al., 1999, PSS and Chudik et al., 2016), and allow for one co-integrating relationship that 

runs from the forcing variables to the dependent variable.7 

We begin with the conditional mean setup. Given a PARDL (p, q, … , q) model in levels: 
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Our methodology for the panel BTP is built on the ARDL (p-1, q-1, … , q-1) model in 

unrestricted error-correction form that is equivalent of the ARDL (p, q, … , q) model in levels:8 
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  (2) 

where, Y is the main variable of interest, φy is the error-correction parameter, X is a column 

vector of k stochastic regressors (forcing variables) and 
xγ  is the raw vector with the associated 

k coefficients, c is the constant term, a is the coefficient of the linear trend, b is the coefficient 

of quadratic trend, and di and dt are the cross-sectional and fixed time effects, respectively.  The 

error structure is ei,t.  For ease of exposition, we assume that the lags for all forcing variables 

equal q however in practice, the lags of the stochastic regressors may vary and not be the same. 

                                                 

7  However, there are some caveats as with the (P)MG estimators.  I(2) variables or of higher order of integration 

are not supported and if the dependent variable affects some of the forcing variables in the long run then, ARDL 

models may yield spurious results and a new estimator with multiple co-integrating vectors should be employed. 

8  We should notice that an ARDL in unrestricted error-correction form is not the same with a first-difference 

model, since the error term and the deterministic factors remain unchanged. BST discuss this issue thoroughly. 



6 

 

Next, we move to conditional quantile framework and present the panel quantile ARDL, 

PQARDL, (p-1, q-1, … , q-1) in unrestricted error-correction form employing first, a Canay 

(2011) type approach for dynamic modelling and second, the standard minimization routine 

and “check function” of Koenker and Bassett (1978): 

 

         

       

       

2 '
, , 1 , 1

1 0

1 1
' '

, 0 , , ,

1 1 1 1

2
,

1
p q

i t j i t j i t

j j

p p q q

i t jm i t j i t j i t

j m j j m j

i t y

Y c a t b t Y

Y e

Y c a t b t Y

     

    

    

 

 

 

 

     

   
              

   

      
              
         



       

 

   

δ X

δ X δ X

   

   

1
*

, 1 ,, 1

1

1
* '

, ,

0

p

i t i t ji t j

j

q

j i t j i t

j

Y

e

  

 



 









   

  





x
γ X

δ X

  (3) 
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unit circle9 then, the ARDL models are stable.  So, if we find evidence in favor of the existence 

of a non-degenerate co-integrating relationship, running from X to Y with the panel BTP as we 

discuss later, this long-run equilibrium relation will also be stable.  Namely, the actual values 

of Y converge eventually to their steady-state values, where the long-run multipliers of forcing 
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9  This condition also ensures that the error-correction parameter is negative (see Pesaran et al., 1999). 
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The errors have to be free of serial correlation and cross-sectional dependence so that 

consistency of estimates is achieved.  The first condition can be met with a sufficiently large 

number of lags.10  The second condition under homogeneity of cross sections can be met either 

with inclusion of fixed time effects or by expressing variables as deviations from their cross-

sectional means (see Pesaran et al., 1999).  Also, it could be met with inclusion of common 

variables, such as global macro variables (e.g. gold, or kerosene, prices) that enter the 

equilibrium relationship, or with inclusion of a time trend (see Pesaran and Smith, 1995).  One 

other way to capture time-variant unobserved characteristics is to express the variables as 

deviations from their cross-sectional means.11 

We focus on Equation (2) to execute the panel BTP as we will present next for the 

conditional mean environment.  In practice, there may be fixed cross-sectional and/or time 

effects and thus, practitioners and researchers have to purge them.  In this study, we suggest 

prior to the execution of our BTP the use of DFE estimator for conditional mean models and 

an expansion of Canay’s (2011) estimator for conditional quantile models to get rid of fixed 

effects.12  We are interested in dynamic models and to tackle some estimation problems we 

                                                 

10  The use of lags in ARDL models also alleviates endogeneity concerns (see e.g. PSS, and Clements et al., 2019).  

Particularly, short-run reverse causality is resolved with the error-projection technique given that regressors are 

represented by finite-order autoregressive processes (see Pesaran and Shin, 1999, Pesaran et al., 1999, PSS, Shin 

et al., 2014, Cho et al., 2015). 

11  Pesaran et al. (1999) also suggest to augment the model with cross-sectional means of the variables used as 

additional regressors however in this case, the simulated critical values have to be modified.  For example, these 

variables have to be excluded from the F-tests since they do not have any meaningful interpretation.  So, even if 

the degrees of freedom of the numerator remain the same, this is not the case for the denominator, where the 

degrees of freedom become smaller; this effect may be trivial because the number of observations after the 

estimation process range from 2,500 (when both N and T equal 50) to 1,000,000 (when both N and T equal 1,000) 

in our setup.  This can be also the case when we treat macro variables as deterministic factors and we do not 

include them in the co-integrating relationship.  Therefore, we suggest two options along with the use of cross-

sectional fixed effects.  First, the use of fixed time effects and second, the model augmentation with macro 

variables that affect the dependent variable along the path towards the steady-state equilibrium relationship. 

12  In Section 4 we discuss about the inclusion of fixed effects in the specification and how it alters the 

interpretation of the coefficients.  In the conditional mean setup, the interpretation is like that in the time-series 

case when cross-sectional fixed effects are added, whilst with fixed time effects the interpretation is like that in 

the cross-sectional case.  Regarding the two-way fixed effects, the interpretation is more complicated (see Kropko 

and Kubinec, 2018) however, we derive a much easier interpretation.  Regarding the conditional quantile setup, 

the coefficients interpretation with respect to fixed effects is dual. 
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focus on “large N large T” datasets.  Therefore, equations (1) and (2) can be estimated 

consistently with the DFE estimator, and Equation (3) with conditional quantile estimator of 

Koenker and Bassett (1978) within a Canay (2011) type approach for dynamic modelling, as 

the familiar lagged dependent bias vanishes in long panels (see Nickel, 1981, for conditional 

mean environment, and Galvao, 2011, and Covas et al., 2014 for conditional quantile setup). 

Finally, the specification of Equations (2) and (3) can be easily expanded in the spirit of 

Shin et al. (2014) so that non-linear responses of Y to its covariates are allowed.13  Therefore, 

that would be the panel non-linear ARDL, or PNARDL.  In the quantile setup that would be 

the panel quantile non-linear ARDL, or PQNARDL. 

In this subsection we focus on the unrestricted models of Equations (2) and (3), and 

highlight eleven cases following BST. In particular, these cases are based on the specification 

of the deterministic components, i.e. the constant term, the linear trend and the quadratic 

trend.14  Furthermore, we present for each case the involved tests of the BTP and their 

hypotheses.  As previously, we begin with the conditional mean framework and next, we move 

to the conditional quantile setup. 

Case I involves the following specification: 
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y y C I

F
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(iii)  H0 : , .0 0C I
   x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

Cases II and III deal with the following specification: 

                                                 

13  When the threshold is known a priori, either with zero or non-zero value, and there are no large differences in 

the regime probabilities then, no estimation or inference issues arise (see e.g. Greenwood-Nimmo and Shin, 2013). 

14  BST discuss in detail the null and alternative hypotheses for all cases. 
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For Case II, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C IIc       x xγ φ  against with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii)  H0 : , .0 0C IIc     x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

For Case III, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C III      x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii)  H0 : , .0 0C III
   x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

Case II  is subsumed by Case III for the t-tests, which are the same in these cases. On the 

other hand, the F-tests are different in these cases. 

Cases IV to VII are based on the following specification: 
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(iii)  H0 : , .0 0C IVa     x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

For Case V, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C V      x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 
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(iii)  H0 : , .0 0C V
   x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

For Case VI, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C VIc       x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii)  H0 : , .0 0C VIc     x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

For Case VII, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C VIIc a        x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii)  H0 : , .0 0C VIIc a      x xγ φ  with a Fx-test, 

(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

Note that in Cases IV to VII, the t-tests are the same, while the F-tests differentiate. 

Cases VII to XI cope with the following specification: 

 
1 1

2 * * '

, , 1 , 1 , , ,

1 0

p q

i t y i t i t j i t j j i t j i t i t

j j

Y c a t b t Y Y d d e 
 


   

 

                 xγ X δ X   (7) 

For Case VIII, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C VIIIc a b         x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii) H0 : , .0 0C VIIIc a b       x xγ φ  with a Fx-test, 

(iv)  H0 : 0j   with a tx-test for j = 1 to k. 

For Case IX, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C IXa b        x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii) H0 : , .0 0C IXa b      x xγ φ  with a Fx-test, 
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(iv)  H0 : 0j   with a tx-test for j = 1 to k. 

For Case X, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C Xc       x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii) H0 : , .0 0C Xc     x xγ φ  with a Fx-test, 

(iv)  H0 : 0j   with a tx-test for j = 1 to k. 

For Case XI, the panel BTP includes testing: 

(i)  H0 : , .0 0y y C XI      x xγ φ  with a Fyx-test 

(ii)  H0 : 0y   with a ty-test, 

(iii) H0 : , .0 0C XI
   x xγ φ  with a Fx-test, 

(iv)  H0 : 0j   with a tx-test for j = 1 to k. 

Note that in Cases VII to XI, the t-tests are the same, while the F-tests differentiate.  The 

alternative hypothesis of each F-test denotes that at least one coefficient tested in the null is 

different from zero.  Furthermore, the alternative of ty-test denotes that the coefficient of the 

error-correction term (ECT) is negative ( HA : 0y   ) and that of a tx-test denotes that the 

associated coefficient is different from zero ( HA : 0j   for j = 1 to k ). 

When fixed time effects are taken into account, 3 cases remain for the BTP, i.e. Cases I, II 

and III.  Also, when time trends are included to handle time-variant unobserved heterogeneity 

then, the first 3 cases are non-eligible, i.e. Cases I, II and III.  Finally, when the specification 

is augmented with common variables, which enter the co-integrating relationship, to deal with 

unobserved heterogeneity in the time dimension then, Cases I, II and III are eligible. 

As discussed previously, when we move to the conditional quantile framework we use a 

Canay (2011) type approach for dynamic modelling. So we have to transform the dependent 

variable Y into , ,

est est
i t i t i tY Y d d     given that the fixed effects are consistently estimated. 

The corresponding Equation (4) in conditional quantile framework for Case I is: 
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     

   

1
*

, , 1 ,, 1

1

1
* '

, ,

0

p

i t i t i t jy i t j

j

q

j i t j i t

j

Y Y Y

e

    

 



 









      

  





x
γ X

δ X

      (8) 

where, the consistently estimated fixed effects from Equation (4) are obtained to transform 

the dependent variable in levels. 

Similarly, using the consistently estimated fixed effects from Equation (5), Cases II and III 

in conditional quantile framework involve the following specification: 

       

   

1
*

, , 1 ,, 1

1

1
* '

, ,

0

p

i t i t i t jy i t j

j

q

j i t j i t

j

Y c Y Y

e

     

 



 









       

  





x
γ X

δ X

     (9) 

Cases IV to VII in the conditional quantile setup employ the consistently estimated fixed 

effects from Equation (6) for the transformation of Y ending up with: 

         

   

1
*

, , 1 ,, 1

1

1
* '

, ,

0

p

i t i t i t jy i t j

j

q

j i t j i t

j

Y c a t Y Y

e

      

 



 









         

  





x
γ X

δ X

             (10) 

Finally, using the consistently estimated fixed effects from Equation (7) we get the 

following specification for Cases VIII to XI in the conditional quantile environment: 

           

   

1
2 *

, , 1 ,, 1

1

1
* '

, ,

0

p

i t i t i t jy i t j

j

q

j i t j i t

j

Y c a t b t Y Y

e

       

 



 









           

  





x
γ X

δ X

            (11) 

The tests involved in the BTP for a selected quantile  0,1   share the same null 

hypotheses with these described previously in the conditional mean environment.  For example 

in Case III, the panel BTP for PQARDL models includes testing: 

(i)  H0 :        , .0 0y y C III          x xγ φ  with a Fyx-test 

(ii)  H0 :   0y    with a ty-test, 

(iii)  H0 :    , .0 0C III    x xγ φ  with a Fx-test, and 
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(iv)   H0 : 0j   with a tx-test for j = 1 to k. 

Table 1 summarizes the aforementioned cases for the panel BTP. 

Table 1.  Cases for the panel bounds testing procedure 

 , 1 , 1 , 1 ,,  and 0i t i t i t i ty w  


 z x                             Case I 

 , 1 , 1 , 1 ,, ,1 and 0i t i t i t i ty w  


 z x   Case II 

 , 1 , 1 , 1 ,, and 1i t i t i t i ty w  


 z x    Case III 

 , 1 , 1 , 1 ,, , and 1i t i t i t i ty t w  


 z x    Case IV 

   , 1 , 1 , 1 ,, and 1,i t i t i t i ty w t  

  z x   Case V 

 , 1 , 1 , 1 ,, ,1 and i t i t i t i ty w t  


 z x    Case VI 

 , 1 , 1 , 1 ,, ,1, and 0i t i t i t i ty t w  


 z x     Case VII 

 2

, 1 , 1 , 1 ,, ,1, , and 0i t i t i t i ty t t w  


 z x      Case VIII 

 2

, 1 , 1 , 1 ,, , , and 1i t i t i t i ty t t w  


 z x    Case IX 

   2

, 1 , 1 , 1 ,, ,1 and ,i t i t i t i ty w t t  


 z x  Case X 

   2

, 1 , 1 , 1 ,, and 1, ,i t i t i t i ty w t t  


 z x    Case XI 

Notes: This Table shows all the cases of the panel bounds testing procedure we examine. Regarding the generation 

of the simulated critical values (SCVs), we run the model in Equation (12) with OLS and in Equation (13) with 

conditional quantile regressions of Koenker and Bassett (1978).  The SCVs are the empirical quantiles of the 

following computed test-statistics.  The tests involved in each case are: i.  0Φ  (Fyx-test), where Φ  equals to 

 ,
y

  
x

φΦ , includes the coefficients of , 1i tz  according to this Table and y  is the coefficient of , 1i ty  , ii. 

0
y

   (ty-test), iii.  xφ 0  (Fx-test), which includes the coefficients of , 1i tz  except for that of , 1i ty  , and iv. 

0
j

   (tx-test), where j = 1 to k.  Note that the ty-test is the same for Cases II and III (we keep Case III), Cases 

IV to VII (we keep Case V), and Cases VII to XI (we keep Case XI).  The same holds for the tx-test.  The ty-test 

is a left-oriented test and the tx-test is a two-tailed test.   

To sum up, there are four common steps involved in the proposed panel BTP for the two 

different frameworks we examine. 
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Step 1: If the F-statistic of Fyx-test is greater than the simulated critical bounds then, move 

to the next step.  If on the other hand, it is lower the simulated critical bounds, there is no co-

integrating relationship with this specification under the selected Case.  The Fyx-test tests if the 

lagged dependent variable in levels, the lagged stochastic regressors in levels and any 

deterministic factor (intercept, linear trend, quadratic trend) are jointly zero. 

Step 2: If the t-statistic of ty-test is smaller than the simulated critical values then, we move 

to the next step.  If there is a positive or a small negative t-statistic, which is greater than the 

simulated critical bounds then, there is no long-run relationship with the examined specification 

under the selected Case.  The ty-test tests if the lagged independent variable in levels equals 

zero. 

Step 3: If the F-statistic of Fx-test is greater than the simulated critical bounds then, the 

BTP is successfully passed in this specification under the selected Case and the long-run, or 

co-integrating, multipliers, '

y



  xγθ  and  
 

 
 ' 0,1

y


 

 



   
xγ

θ  can be successfully 

assessed with the delta method since the sample size is large (both N and T are large).  The Fx-

test tests if the lagged stochastic regressors in levels and any deterministic factor (intercept, 

linear trend, quadratic trend) are jointly zero. 

Step 4: If the Fyx-test and ty-test reject their null hypotheses, and the Fx-test does not reject 

its null, and the γ’s are individually significant (tx-tests), 0 : 0jH    against : 0A jH    for 

1, ,j k , then, there is a long-run relationship running from X’s to Y and the long-run 

coefficients can be evaluated with the delta method.  The tx-tests test if the lagged stochastic 

regressors in levels are equal to zero individually.  Furthermore, if both the Fx-test and the tx-

tests in Step 3 do not reject their null hypothesis, and the delta method generates statistically 

significant long-run multipliers then, we argue this is a degenerate case of co-integration. 

The first two steps (Fyx and ty tests) are the same as in PSS and BST.  The Fx and tx tests 

help us towards the path to co-integration as in BST and filter out degenerate cases. After the 

rejection of the null hypotheses of Fyx-test and ty-test, there are two paths towards the existence 

of a non-degenerate co-integration.  The first one is through joint testing with the Fx-test and if 

this leads to a dead end, there is one alternative through individual testing with the tx-tests. 

If we reject the joint null hypothesis of interest given by 0 0 0 0
yx y x

F t FH H H H  against 

the alternative that at least one of the three null hypotheses cannot be rejected then, we find 
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evidence that a non-degenerate co-integrating relationship in levels between Y and forcing X 

exists. On the other hand if we fail to reject only the null of Fx-test, we could focus on the joint 

null of 0 0 0 0
yx y x

F t tH H H H  whose rejection also implies the existence of a non-degenerate 

co-integration between Y and forcing X.  Moreover, if we fail to reject the null hypothesis of 

the Fyx-test or that of the ty-test then, there is no evidence of co-integration for the examined 

sample and model specification. 

Graphically, our suggested BTP is depicted in Figure 1. 

Figure 1: Graphical illustration of the tests involved in the bounds testing procedure 

 

 

 

 

 

 

Finally, one extra set of tests arises for the BTP in the conditional quantile environment as 

a natural consequence of quantiles themselves.  The main advantage of quantile regressions 

over mean-based regressions is that the former explores the whole distribution of the dependent 

variable, allowing at the same time for heterogeneous, or quantile-driven covariates’ effects, 

and does not just focus on the mean of the distribution as the latter.  Therefore, it makes sense 

to test whether there are heterogeneous responses of the dependent variable. 

As discussed in the previous subsection for Equation (3), the use of a Canay (2011) type 

estimator for dynamic modelling involves a new dependent variable Y , which is the deviation 

of Y from the consistently estimated fixed effects of Equation (2).  However, the covariates X 

remain unaltered and are not transformed as in the case of the one-way or two-way DFE.  This 

is a very attractive feature since a change of X, stemming from either the time-series dimension 

or the cross-sectional dimension, can affect the new dependent variable Y . 

Fyx Reject H0 Reject H0 ty Fx Reject H0 

 

OK! 

Cannot 
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H0 

Cannot 
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H0 

No 

co-integration 
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H0 
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If we consider the time-series dimension of individual i then, the response of Y  at period t 

to 
j

X , for j = 1 to k, may be time-varying as it depends on the conditional distribution of Y  

with respect to the history of individual i given characteristics , ,j i tx , i.e. 
, ,i j j i tY  X x . 

Namely, periods with conditional high values of Y  (that correspond to high quantiles of the 

conditional distribution of Y ) could be more responsive than periods with conditional low 

values (that correspond to low quantiles of the conditional distribution of Y ).  This implies a 

“panel-invariant” heterogeneity across time, i.e. evidence for time-varying coefficients (see 

also Xiao, 2009) that are the same for all individuals.15 

  On the other hand, if we consider the cross-sectional dimension of individual i then, the 

response of Y  to 
j

X  may differ across individuals as it depends on the conditional distribution 

of Y  with respect to the rest individuals (–i ) given characteristics , ,j i tx , i.e. 
, ,i j j i tY   X x . 

Namely, a panel with conditional high values of Y  (that correspond to high quantiles of the 

conditional distribution of Y ) could be more responsive than a panel with conditional low 

values (that correspond to low quantiles of the conditional distribution of Y ).  This denotes 

“time-invariant” heterogeneity across cross-sections, i.e. evidence for individual-specific 

coefficients that are the same for all periods.16 

Hence in our setup, testing for coefficients equality across quantiles is equivalent to testing 

for time-varying or individual-specific coefficients (duality in interpretation).  In other words, 

quantile-dependent coefficients imply heterogeneous coefficients across time or cross sections. 

We focus on testing if there are quantile-dependent co-integrating relationships employing 

a series of Wald tests like BST.  This is the interpecentile BTP.  Specifically, we are interested 

                                                 

15  For example, two individuals at percentile   of their conditional distributions and at a given period share the 

same coefficients (“panel-invariant” part).  But an individual at different periods may have different coefficients 

(“heterogeneity across time” part) 

16  For example one panel at percentile   of its conditional distribution and at a given period, and one other panel 

at percentile   of its conditional distribution at a different period share the same coefficients (“time-invariant” 

part).  But at the same period two individuals may have different responses if one is at the top quantiles of its 

conditional distribution and the other is at the lower part (“heterogeneity across cross-sections” part). 
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in Cases III, V and XI (the “fully unrestricted” cases) since the intercept and the time trends 

are unlikely to be equal across quantiles and so, the tests could be skewed against the null 

hypothesis.  Hence, we focus on the three quartiles (interquartile BTP), i.e 25th, 50th and 75th 

percentiles, and the nine deciles (interdecile BTP), i.e. 10th, 20th, … 80th, 90th percentiles. 

We demonstrate the interpercentile BTP for the three quartiles and similarly, the 

corresponding tests of the interdecile BTP for the nice deciles are derived. 

1. The Wald test, Wyx, for 

     

     

     

     

0

1 1 1

2 2 2

: 0.25 0.50 0.75

0.25 0.50 0.75

0.25 0.50 0.75

0.25 0.50 0.75

y y y

k k k

H   

  

  

  

 

 

 

 

 

against the alternative hypothesis that at least one equality does not hold.  If we reject 

the null hypothesis then, we move on to the next test of the interquartile BTP.  On the 

other hand, if we fail to reject the null then, there is no evidence for quantile-dependent 

co-integrating relationships.  The interquartile Wyx test tests if the lagged dependent 

variables in levels at the 25th, 50th and 75th percentiles are equal, and if the lagged 

stochastic regressors in levels at the 25th, 50th and 75th percentiles are equal. 

2. The Wald test, Wy, for 

     0
: 0.25 0.50 0.75

y y y
H      

against the alternative that at least one equality does not hold.  The null hypothesis tests 

whether the error-correction terms are equal across the three quartiles, i.e. whether the 

speed of adjustment to equilibrium is the same at the 25th, 50th and 75th percentiles.  If 

we reject the null, then we move to the last test of the interpercentile BTP.  If we fail to 

reject the null then, we argue there are no heterogeneous long-run equilibrium relations. 

3. The Wald test, Wx, for 

 

     

     

     

0 1 1 1

2 2 2

: 0.25 0.50 0.75

0.25 0.50 0.75

0.25 0.50 0.75
k k k

H   

  

  

 

 

 
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against the alternative that at least one equality does not hold.  The interquartile Wx test 

tests if the lagged stochastic regressors in levels at the 25th, 50th and 75th percentiles are 

equal.  If we cannot reject the null then, there is no evidence in favor of quantile-

dependent co-integration.  If we reject the null then, we conclude there is evidence of 

quantile-dependent co-integration. 

In each test of the BTP, should we have a test statistic that lies between the simulated critical 

values for I(0) and I(1) regressors at a given size then, this is the so-called “grey area”.  

Inference is inconclusive for that test at that size and we have to switch to a different level of 

statistical significance. 

 

We run stochastic simulations to obtain our test statistics with 50,000 replications using 

OLS regressions for the mean-oriented environment and conditional quantile regressions 

(CQREGs; see Koenker and Bassett, 1978, and Koenker, 2005) for the quantile setup in the 

spirit of BST.  The regression required for the simulations for the conditional mean setup is 

shown in Equation (12) and for the conditional quantile environment in Equation (13): 

, , 1 , ,

:

,    1,2, , & 1,2, ,i t i t i t i t

OLS

y i N t T
        Φ z a w

  (12) 

     , , 1 , ,

:

,   1,2, , & 1,2, ,i t i t i t i t

CQREG

y i N t T   
        Φ z a w

  (13) 

where,  , 1 , 1 , 1,i t i t i ty  


z x ,  , 1, , , , , ,i t i t k i tx x x , 

2

, 1, ,i t t t
   w , the variables ,i ty  and ,i tx  

are generated from , , 1 1, ,i t i t i ty y    and , , 1 2, ,i t i t i t x Px ε  with ,0 0iy   and ,0i x 0 , 

 , 1, , 2, ,,i t i t i t


ε ε  is drawn as  1k   independent standard normal variables, and τ is the user-

specified percentile, where  0,1  .17  The same data generation process for yt and xt holds 

                                                 

17  By definition from the minimization problem of CQREG, estimating the model at the τth quantile implies that 

underprediction is weighted by (100τ)% and overprediction is weighted by [100(1-τ)]%.  Furthermore, the positive 

residuals are almost [100(1-τ)]% of the total residuals, whilst the negative residuals consist nearly (100τ)% of the 
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in the quantile environment too.  Also,    
,, , 1|

i ti t i t Y tY Q        in Equation (2), where 

 1 , 1 ,,t i t i t   z w , i.e. the sigma field generated by  , 1 ,,i t i tz w .18  T is the number of 

observations (periods) for each cross section, N.  If  ,i tx  is purely I(1) then, 
k

P I , while if 

,i tx is purely I(0) then, .P 0   The raw vectors, in Equations (1) and (2), Φ consists of 

   1, , , ,y y k    xφ  and  , ,c a b a , where c is the constant term, α is the coefficient 

of the linear trend and b is the coefficient of the quadratic trend.  Moreover, we study “large N 

large T” datasets.  Specifically, we study combinations of N and T, where N takes the values of 

50, 100, 200, 300, 400, 500 and 1,000, T equals to 50, 100 and 1,000, while k (row size of x) 

ranges between 0 and 13. 

According to Table 1, we obtain the simulated critical values (SCVs) for the following test 

statistics.  First, for the F-statistics (Fyx and Fx) for testing i. 0Φ (Fyx-test), where Φ  equals 

to  ,y  xφΦ , includes the coefficients of , 1i tz  and y  is the coefficient of , 1i ty  , and ii. 

 xφ 0   (Fx-test), where 
x

φ  includes the coefficients of , 1i tz  except for that of , 1i ty  .  Second, 

for the t-statistics (ty and tx) for testing 0y   (ty-test) and 0j   (tx-test), where j = 1 to k.  

A set of critical values is obtained when the stochastic regressors x are stationary and another 

one when they contain a unit root. These are the bounds of the critical values from the 

simulations we run, and include the case when the stochastic regressors are mutually co-

integrated (see PSS).  The SCVs are the empirical quantiles of the computed test-statistics.19 

                                                 
total residuals.  Also, the average prediction error is positive at low percentiles and turns to negative as we move 

on to high percentiles. 

18  We follow Cho et al. (2015) for the definition of the error term in the quantile framework.  However, we could 

also follow Xiao (2009) and rewrite Equation (2) for panels as: 

         
,

1 2

, , 1i ty i i tQ C A t B t    

 
        Φ z  , where  .  is the cumulative distribution 

function of ,i t . 

19 For the calculation of the simulated critical values we have created 3 codes in EViews (9th edition) based on 

50,000 replications: one for the BTP in the OLS case, one for the BTP in the CQREG case and one for the 

interpercentile BTP. 
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  To see whether SCVs are required for the tests in the BTP, we compare them with the 

typical or conventional critical values (CCVs).  Specifically, we calculate the absolute 

percentage deviations (APDs) of CCV from the SCV relative to CCV for the 4 mostly-used 

sizes (1%, 2.5%, 5% and 10%) for all the cases (11 for the F-tests and 4 for the t-tests). 

 100%
SCV CCV

APD
CCV


    (14) 

We observe that most of the times for a given significance level or for a given case, the 

APDs are very close to each other.  So, for simplicity and to save space, we calculate the 

average absolute percentage deviations (AAPDs) for all the aforementioned cases and 

significance levels.20  We consider a threshold of 5% such that any AAPD, which is greater 

than that, suggests that we employ the SCVs for the proposed panel BTP and that standard 

inference could lead to misleading results.  We do not use a lower or a higher threshold because 

a higher value (e.g. the liberal 10%) could bias our results towards the use of the CCVs, whilst 

a lower value (e.g. the conservative 1%) may favor our SCVs against the use of the CCVs. 

We examine combinations of cross-sectional dimension, N, and time-series dimensions, T, 

where N equals to 50, 100, 200, 300, 400, 500 and 1000, while T equals to 50, 100 and 1000 

after the estimation process.  We find that when N is equal to or greater than 100, the CCVs 

should be used for the F-tests and the tx-tests.  However, when N is 50 the SCVs can be useful 

for the inference of these tests, as well as when N  [50, 100).  Yet, regarding the ty-test, we 

show that the CCVs are not appropriate and that SCVs should be employed for every pair N 

and T we examine.  These results hold for the BTP both in the OLS framework and the 50th 

decile (median) in the conditional quantile environment. 21 

When we look beyond the 50th percentile, we find not so different results for the Cases III, 

IV, V, IX, XI  for the F-tests (i.e. a constant term is included in the specification however, it is 

not included in the long-run equation), and for the Cases III, V, XI for the t-tests.22  We name 

these cases as the “unrestricted intercept” cases.  Specifically, the CCVs can be used for the tx-

                                                 

20  Should we employ the median instead of the average, results do not change. 

21  In Section I and Section II of the Appendix, Tables I.1 to I.7 and Tables II.1 to II.8 respectively, contain the 

AAPDs for every (N, T) we examine for the conditional mean and for the conditional quantile environment. 

22  These AAPDs are calculated for Cases III, IV, V, IX and XI for the F-tests, and for Cases III, V and XI for the 

t-tests. 
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tests, while the SCVs are required for the ty-tests for every combination we examine.  

Moreover, when T equals 50, or 100, and N  [50, 100), the SCVs should be used for the F-

tests.  However, when N is at least 100, or when T is 1000, CCVs can be used for the F-tests.  

In the rest cases, i.e. when there is no intercept in the specification (Case I for F-tests and t-

tests), or it is included in the steady-state equilibrium equation (Cases II, VI, VII, VIII and X 

for the F-tests) we argue that there cannot be evidence of co-integration because the AAPDs 

skyrocket.  So, when a researcher/practitioner intends to estimate CQREGs beyond the median 

we suggest he/she should rather focus on the “unrestricted intercept” cases, i.e. when there is 

an intercept in the specification and the steady-state equilibrium relationship does not contain 

that quantile-specific constant term. 

  Yet, when it comes for the interpercentile BTP we find that the SCVs are highly 

approximated by the CCVs.  The CCVs should be employed in every combination of cross 

sections and time periods we examine.  

When we compare the AAPDs and the SCVs we see that the AAPDs of the OLS model are 

larger than these of the conditional quantile models.  This implies that the critical values depend 

on the estimation strategy.  Furthermore, we see that the SCVs at the τth percentile, where 

 0,1  , are very close to these at the 1-τth percentile. 

 

To save space and for presentation reasons we  

i. used equations (12) and (13) for the calculation of the critical values, where no lagged 

values of Δy, and contemporaneous or lagged values of Δx, are taken into account, and 

ii. calculated the average deviations of the simulated critical values from the conventional 

critical values [see Equation (14)]. 

In this way we provide notable evidence that there are several circumstances, where the 

conventional critical values exhibit great divergences from the simulated critical values. 

The observations after the estimation of Equations (12) and (13) range from 2,500 (when 

both N and T equal 50) to 1,000,000 (when both N and T equal 1,000) leading to large degrees 

of freedom. Therefore, lag augmentation could have a weak effect, if any at all, for the 

generation of the simulated critical values.  To alleviate any concern, we developed “lag and 

stochastic regressor” specific codes for greater accuracy of the bounds testing procedure, as 
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well as for completeness of our work.23  These codes generate strictly speaking, sample-specific 

critical values unless there are extra variables, which affect only the short-run or long-run path24 

of the dependent variable in the examined empirical model of researchers and practitioners. 

 

In this Section we discuss coefficients interpretation that depends on the treatment of fixed 

(cross-sectional and/or time) effects. The interpretation of DFE coefficients is as if we 

estimated a time-series model since the elimination of cross-sectional fixed effects removes the 

cross-sectional variation.  So, the temporal variation is left.  That is, with this estimator we 

study the response of the dependent variable over time to a change of a covariate over time.  If 

we use the two-way fixed effect estimator, or if time dummies are added too then, we show 

that a different interpretation holds.  In particular, how the time-series variation of X affects the 

cross-sectional variation of Y, or how the cross-sectional variation of X (regressor) affects the 

time-series variation of Y (regressand).  Moreover, with the one-way or two-way DFE 

estimator, results hold on average for every cross section and every time period.  There are 

equal responses across individuals and time periods, and this is also the same case for the 

widely used dynamic panel GMM estimators.25  Hence, the treatment of fixed effects must be 

taken into consideration every time when a researcher/practitioner designs his/her project 

goals, and this is something that Kropko and Kubinec (2018) have pointed out. 

The interpretation of the (P)MG estimators is like that in time-series environment.  If the 

goal of the researcher/practitioner is to analyze results in the cross-sectional level (e.g. like a 

fixed time effect estimator, or as if you run cross-sectional regressions for every period) then, 

these estimators are not appropriate.  Also, results with MG hold on average for every time 

                                                 

23  Specifically, three codes are available accounting for sample size, number of regressors and their lagged terms. 

One code for the BTP in the OLS case, one code for the BTP in the CQREG case and one code for the 

interpercentile BTP.  In these codes we also allow for one cross section and this is an extension of the BST time-

series codes.  Furthermore, besides a standard normal distribution we provide the option to the user to select a 

student-t distribution with 5 degrees of freedom to account for fat tails. 

24  We discussed this issue at footnote #11. 

25  Including only fixed time effects in a model (or using a demeaning process with cross-sectional averages) 

cancels out the temporal variation and the interpretation of the DFE coefficients is as if we run cross-sectional 

regressions. 
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period (for both long-run and short-run coefficients), while with PMG estimator long-run 

results hold on average for every time period and every cross section, and short-run results hold 

on average for every time period.  Finally, as with DFE estimators, there is one co-integrating 

vector from forcing variables to dependent variable and no time-varying coefficients. 

The two-way fixed effect estimator (TW) for balanced panels is: 26 

 
  

  
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X X X X


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
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


  (15) 

where, Y is the dependent variable and X the independent variable.  Kropko and Kubinec 

(2018) show that formula (15) can be written as (see Equation 12 in their paper): 

  

  

, ,
*
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         (16),    or        
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Generally, they argue that this OLS estimator is difficult to interpret since it is a complex 

amalgamation of variation in time and cross-sectional dimensions.  We expand the two 

previous formulas and after a series of simple calculus we end up with a more concrete and 

dual interpretation.  In particular, Equations (16) and (17) are, respectively, equivalent to: 

 
  

 

  

     

, ,
2

,
2

,

*

, ,

2
* *

,
1

i t i i t t

t

i t i

i t

i t i

t

TW

i t i i t t

i t

i t i i i i

i t i

i i

i i

X X Y Y

X X

X X

X X X X

X X V X T

w w



 

 







 

   

 








 

 

(18), 
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(19) 

Intuitively, we argue that the two-way fixed effect estimator has an attractive dual 

interpretation.  First, according to formula (18), the two-way estimator is the weighted average 

                                                 

26  For unbalanced panels there are matrix-algebra techniques that eliminate the fixed effects (see Davis, 2002).  

However, the intuition for the interpretation of the fixed effect estimator remains the same. 
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(part of the weights consists of the period, or within or temporal, variance) of the coefficients 

from time-series regressions for each cross section of the excess cross-sectional Y on excess 

historical X, or the “between Y” on “within X”.  Alternatively, the two-way estimator captures 

the effect of the historically adjusted X on the cross-sectionally adjusted Y.  We see that there 

is a blend of cross-sectional and temporal variation and specifically, how the between 

dimension responds to the within dimension.  Second, according to formula (19), the two-way 

estimator is the weighted average (part of the weights consists of the contemporaneous, or 

between or cross-sectional, variance) of the coefficients from cross-sectional regressions for 

each period of the excess historical Y on excess cross-sectional X, or the “within Y” on “between 

X”.  In other words, the two-way estimator measures how the historically adjusted Y responds 

on the cross-sectionally adjusted X.  Again there is a mixture of cross-sectional and temporal 

variation and particularly, how the between dimension affects the within dimension. 

Moving to quantile environment and using Canay’s (2011) methodology to two-way fixed 

effects, we need to transform the dependent variable as deviations from the consistently 

estimated fixed effects , ,

est est

i t i t i tY Y d f    from the two-way fixed effect estimator given a 

“large N and large T” dataset.27 

The new dependent variable is free of temporal and contemporaneous trends.  It can be 

treated as the relative performance of Y with respect both to cross-sectional performance and 

its average, or historical, performance.  We name it as the model-specific “total performance” 

of Y because this transformation provides “full information” about the track of Y. Namely, we 

get the deviation of Y from model implied time-series and cross-sectional means.  Increased 

values of the new dependent variable denote a great performance and decreased values a poor 

performance.  Also, since the X’s are not transformed then, with this specification we study the 

effect of a change in X either in the time, or cross-sectional, dimension (dual interpretation) on 

the total performance of Y.  Hence, the researcher/practitioner explores the effects of changes 

in X and he/she is not restricted to one dimension (see e.g. MG and PMG estimators, one-way 

fixed effect estimators).  Particularly, he/she can detect the responses of Y, relative to the cross 

section and its average performance, on variations of X.  This is a very promising tool for 

researchers and practitioners, as well as for policy makers since a change in X can truly improve 

                                                 

27  In the Appendix we elaborate on two more cases of fixed effects.  One case with cross-sectional fixed effects 

and one case with time fixed effects under the Canay (2011) approach. 
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Y.  Furthermore, low percentiles denote overperformance of Y relative to historical and cross-

sectional performance, and high percentiles, where underperformance of Y relative to historical 

and cross-sectional trends. Also, the responses at these quantiles can be different implying 

time-varying or individual-specific coefficients.  Alternatively, high percentiles correspond to 

poor total performance of Y (total underperformance) relative to the predicted total 

performance of  Y (overprediction), and low percentiles to high total performance of Y (or total 

overperformance) relative to the predicted performance of Y (underprediction). 

Canay’s (2011) estimator accounting for two-way fixed effects is very attractive from the 

point of view of policy implications since the coefficients offer flexibility in the effects from 

shocks in X and these effects are essentially imprinted on the model-specific performance of Y 

relative to historical and cross-sectional trends.  So, there is full information about an upward, 

or downward, movement of Y. 

 

In this paper we propose for large panel datasets a bounds testing procedure for the 

existence of a non-degenerate co-integrating relationship running from the forcing variables to 

the main variable of interest.  We start with the conditional mean environment employing the 

dynamic fixed effect estimator, which can be used as a benchmark for the transition to 

conditional quantile setup.  Previous findings that used the dynamic fixed effect estimator for 

studying long-run multipliers may contain degenerate cases of co-integration, which can be 

detected with our proposed method.  Elaborating on the interpretation of fixed effects, we also 

show that the answers to research questions heavily depend on the treatment of fixed effects. 

Next, we proceed with the conditional quantile setup employing a Canay (2011) type 

estimator for dynamic modelling.  To the best of our knowledge, this is the first attempt for the 

establishment of a panel co-integrating relation in quantile framework.  Fixed effects are treated 

as location shifters, i.e. they do not vary across quantiles, and provide attractive interpretations 

for the coefficients of forcing variables allowing for a dual source of heterogeneity across the 

time dimension or the cross-sectional dimension. 

Finally, we notice that there is plenty of room for advances and future research could 

investigate the following directions.  First, focusing on the time-series interpretation of the 

dependent variable, each individual could have its own time-varying coefficients, i.e. an 

individual at a given percentile   faces different coefficients relative to other individuals.  This 
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feature could be incorporated by expanding the family of the (pooled) mean group estimators 

in the conditional quantile framework.  Second, fixed effects could be modelled to differ across 

quantiles rather than affect all quantiles the same way, resulting to an extra source of 

heterogeneity in panel co-integration.  Yet, an even more challenging and daunting task would 

be the establishment of panel co-integration at the unconditional quantile setup, but such a 

proposal would be a major breakthrough in the econometrics field. 
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Based on our simulations and the combinations (N, T) we examine, we argue that for the 

ty-test of the coefficient of the error-correction term (ECT) simulated critical values (SCVs) are 

required, especially as the number of stochastic regressors, k, increases.  The maximum AAPD 

is 67.10%.  Also, when N = 50 for the I(1) case, the AAPDs for the tx-test of the regressors and 

both the F-tests (Fyx and Fx) exceed the 5% threshold as k increases.  On the other hand, when 

N is greater than or equal to 100, the tx-tests and the F-tests can be evaluated with the CCVs.  

The AAPDs range from 0.13% to 4.56%.  Moreover, the AAPDs for the I(1) case are increasing 

in k for given N and T. 

We see that the cross-sectional dimension plays a crucial role for the determination of the 

SCVs.  As N increases for fixed k and T, the divergence of CCVs from SCVs diminishes.  

Specifically, the AAPDs, which exceed the threshold of 5% for the I(1) case, become smaller 

and there is a tendency for convergence towards the CCVs.  On the other hand, the time 

dimension does not contribute a lot to the determination of the SCVs.  There is no clear 

evidence that the SCVs for the I(1) case are increasing or decreasing in T for given k and N.  

They are rather very close to each other. 
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Table 

I.1 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 50   &   T = 50 

Fyx 1.01% 2.70% 0.38% 4.67% 0.18% 6.31% 0.16% 8.34% 

Fx 0.84% 2.80% 0.71% 4.78% 0.35% 6.57% 0.26% 8.71% 

ty 8.60% 12.90% 8.55% 30.17% 8.57% 47.41% 8.58% 65.36% 

tx left 0.40% 1.78% 0.30% 3.44% 0.25% 5.56% 0.23% 7.65% 

tx right 1.27% 1.86% 1.29% 3.71% 1.25% 5.21% 1.28% 7.62% 

N = 50   &   T = 100 

Fyx 1.38% 2.50% 0.72% 4.32% 0.36% 6.18% 0.43% 8.42% 

Fx 0.85% 2.46% 0.44% 4.72% 0.19% 6.59% 0.26% 8.82% 

ty 8.22% 12.68% 8.16% 30.26% 8.19% 48.10% 8.15% 66.15% 

tx left 0.65% 1.34% 0.85% 3.75% 0.90% 5.37% 0.89% 7.58% 

tx right 0.56% 2.40% 0.42% 4.17% 0.54% 6.47% 0.53% 8.77% 

N = 50   &   T = 1000 

Fyx 1.74% 2.90% 0.87% 4.81% 0.38% 6.91% 0.42% 8.90% 

Fx 0.83% 3.21% 0.40% 5.17% 0.24% 7.33% 0.23% 9.34% 

ty 9.10% 13.56% 9.14% 30.98% 9.14% 48.86% 9.13% 67.10% 

tx left 0.60% 1.72% 0.70% 3.79% 0.70% 5.48% 0.79% 7.67% 

tx right 0.53% 2.27% 0.57% 4.15% 0.55% 6.18% 0.56% 8.49% 
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Table 

I.2 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 100   &   T = 50 

Fyx 0.43% 0.76% 0.26% 1.27% 0.30% 2.37% 0.13% 3.81% 

Fx 0.39% 1.30% 0.33% 1.94% 0.33% 2.99% 0.16% 4.31% 

ty 5.47% 8.14% 5.48% 19.81% 5.50% 31.34% 5.45% 43.08% 

tx left 0.24% 0.60% 0.31% 1.39% 0.36% 2.18% 0.39% 3.29% 

tx right 0.24% 1.50% 0.23% 2.26% 0.29% 2.99% 0.21% 3.81% 

N = 100   &   T = 100 

Fyx 0.35% 1.10% 0.45% 1.75% 0.60% 2.89% 0.78% 3.86% 

Fx 0.41% 1.45% 0.57% 1.89% 0.62% 3.00% 0.76% 4.03% 

ty 5.33% 8.18% 5.29% 19.94% 5.28% 31.85% 5.32% 44.00% 

tx left 0.28% 0.41% 0.18% 1.09% 0.18% 2.22% 0.16% 3.11% 

tx right 0.30% 1.13% 0.29% 1.87% 0.32% 3.21% 0.35% 4.39% 

N = 100   &   T = 1000 

Fyx 1.27% 1.94% 0.69% 2.40% 0.30% 3.22% 0.23% 4.25% 

Fx 0.78% 1.95% 0.48% 2.33% 0.24% 3.41% 0.24% 4.56% 

ty 6.67% 9.71% 6.71% 21.76% 6.68% 34.07% 6.70% 46.15% 

tx left 0.41% 1.06% 0.40% 1.91% 0.44% 2.77% 0.47% 3.85% 

tx right 0.70% 1.16% 0.70% 2.00% 0.70% 3.01% 0.74% 4.19% 
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Table 

I.3 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 200   &   T = 50 

Fyx 0.39% 0.81% 0.40% 1.06% 0.45% 1.63% 0.61% 2.05% 

Fx 0.47% 0.51% 0.25% 1.10% 0.32% 1.63% 0.51% 2.03% 

ty 4.01% 6.06% 4.02% 13.91% 4.03% 21.82% 4.01% 29.67% 

tx left 0.21% 0.57% 0.34% 0.76% 0.29% 0.94% 0.22% 1.17% 

tx right 0.45% 0.86% 0.43% 1.07% 0.41% 1.57% 0.48% 2.11% 

N = 200   &   T = 100 

Fyx 0.51% 0.92% 0.25% 1.43% 0.28% 1.83% 0.13% 2.15% 

Fx 0.85% 1.01% 0.35% 1.73% 0.25% 2.14% 0.17% 2.38% 

ty 4.59% 6.65% 4.58% 14.75% 4.59% 22.84% 4.61% 31.25% 

tx left 1.23% 0.34% 1.25% 0.83% 1.22% 1.23% 1.29% 1.56% 

tx right 0.22% 0.52% 0.22% 0.87% 0.26% 1.29% 0.27% 1.71% 

N = 200   &   T = 1000 

Fyx 0.43% 0.55% 0.31% 0.78% 0.32% 1.39% 0.25% 2.12% 

Fx 0.64% 0.70% 0.36% 0.94% 0.47% 1.47% 0.29% 2.17% 

ty 4.06% 6.21% 4.06% 14.29% 4.06% 22.68% 4.05% 30.96% 

tx left 0.40% 0.47% 0.43% 0.76% 0.36% 1.30% 0.34% 1.74% 

tx right 0.70% 0.45% 0.70% 0.52% 0.68% 0.58% 0.69% 0.85% 
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Table 

I.4 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 300   &   T = 50 

Fyx 0.46% 0.34% 0.67% 0.65% 0.75% 0.90% 0.36% 1.40% 

Fx 0.91% 0.58% 0.93% 0.89% 0.77% 0.90% 0.48% 1.37% 

ty 3.20% 4.79% 3.23% 11.38% 3.19% 17.85% 3.28% 24.45% 

tx left 0.19% 0.55% 0.22% 0.51% 0.20% 0.56% 0.25% 0.97% 

tx right 0.61% 0.17% 0.62% 0.28% 0.66% 0.65% 0.70% 1.05% 

N = 300   &   T = 100 

Fyx 0.51% 1.13% 0.27% 0.99% 0.20% 0.70% 0.21% 1.40% 

Fx 0.69% 0.64% 0.27% 0.92% 0.16% 0.86% 0.29% 1.51% 

ty 3.53% 5.31% 3.58% 11.64% 3.61% 18.01% 3.56% 24.63% 

tx left 0.73% 0.24% 0.74% 0.40% 0.81% 0.79% 0.79% 1.19% 

tx right 0.36% 0.66% 0.34% 0.81% 0.32% 1.09% 0.42% 1.33% 

N = 300   &   T = 1000 

Fyx 0.63% 0.77% 0.70% 0.40% 0.31% 0.99% 0.21% 1.56% 

Fx 0.58% 0.99% 0.82% 0.45% 0.36% 1.16% 0.32% 1.58% 

ty 3.49% 5.18% 3.51% 11.56% 3.51% 18.11% 3.51% 24.82% 

tx left 0.62% 0.77% 0.65% 0.74% 0.69% 1.16% 0.68% 1.39% 

tx right 0.64% 0.13% 0.63% 0.44% 0.60% 0.81% 0.57% 1.16% 
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Table 

I.5 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 400   &   T = 50 

Fyx 0.38% 0.42% 0.37% 0.77% 0.23% 0.75% 0.43% 1.04% 

Fx 0.51% 0.56% 0.45% 0.74% 0.18% 0.55% 0.27% 0.99% 

ty 2.38% 3.66% 2.39% 9.24% 2.34% 14.75% 2.35% 20.39% 

tx left 0.54% 0.48% 0.48% 0.36% 0.48% 0.40% 0.48% 0.27% 

tx right 0.25% 0.56% 0.21% 0.40% 0.21% 0.42% 0.22% 0.66% 

N = 400   &   T = 100 

Fyx 0.55% 0.60% 0.35% 0.65% 0.26% 0.96% 0.54% 1.45% 

Fx 0.95% 0.75% 0.28% 0.80% 0.37% 0.89% 0.46% 1.42% 

ty 2.87% 4.25% 2.85% 9.86% 2.87% 15.59% 2.86% 21.40% 

tx left 0.87% 0.14% 0.89% 0.36% 0.85% 0.41% 0.87% 0.75% 

tx right 0.65% 0.51% 0.62% 0.60% 0.62% 0.69% 0.62% 0.99% 

N = 400   &   T = 1000 

Fyx 0.57% 0.75% 0.25% 1.10% 0.21% 1.17% 0.21% 1.28% 

Fx 0.35% 0.54% 0.27% 0.86% 0.13% 1.25% 0.23% 1.28% 

ty 2.66% 4.28% 2.65% 10.02% 2.66% 15.59% 2.66% 21.17% 

tx left 0.35% 0.22% 0.36% 0.35% 0.37% 0.35% 0.39% 0.53% 

tx right 0.42% 0.40% 0.44% 0.84% 0.42% 1.08% 0.42% 1.27% 
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Table 

I.6 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 500   &   T = 50 

Fyx 0.55% 1.16% 0.25% 0.29% 0.22% 0.17% 0.19% 0.29% 

Fx 0.57% 0.96% 0.32% 0.26% 0.20% 0.20% 0.21% 0.43% 

ty 2.07% 3.23% 2.03% 8.02% 2.02% 12.73% 2.04% 17.75% 

tx left 0.29% 0.64% 0.35% 0.48% 0.29% 0.30% 0.31% 0.31% 

tx right 0.84% 0.89% 0.88% 0.80% 0.85% 0.69% 0.83% 0.77% 

N = 500   &   T = 100 

Fyx 0.34% 0.35% 0.32% 0.65% 0.34% 0.26% 0.14% 0.62% 

Fx 0.48% 0.37% 0.29% 0.79% 0.19% 0.35% 0.16% 0.66% 

ty 2.63% 3.83% 2.65% 8.80% 2.71% 13.92% 2.66% 18.93% 

tx left 0.31% 0.22% 0.38% 0.29% 0.34% 0.37% 0.30% 0.75% 

tx right 0.61% 0.24% 0.62% 0.40% 0.54% 0.36% 0.51% 0.34% 

N = 500   &   T = 1000 

Fyx 0.75% 1.04% 0.69% 0.48% 0.19% 0.75% 0.13% 0.47% 

Fx 0.37% 0.37% 0.47% 0.31% 0.16% 0.66% 0.24% 0.44% 

ty 2.73% 4.06% 2.73% 9.03% 2.73% 14.03% 2.75% 19.18% 

tx left 0.36% 0.22% 0.36% 0.43% 0.39% 0.69% 0.38% 0.81% 

tx right 0.38% 0.13% 0.35% 0.20% 0.38% 0.32% 0.37% 0.63% 
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Table 

I.7 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 1000   &   T = 50 

Fyx 0.39% 0.49% 0.30% 0.81% 0.24% 0.71% 0.19% 0.43% 

Fx 0.58% 0.34% 0.30% 0.85% 0.29% 0.69% 0.19% 0.43% 

ty 2.40% 3.29% 2.36% 6.88% 2.36% 10.17% 2.41% 13.70% 

tx left 0.90% 0.46% 0.87% 0.48% 0.93% 0.44% 1.00% 0.39% 

tx right 0.38% 0.72% 0.43% 0.84% 0.41% 0.83% 0.37% 1.01% 

N = 1000   &   T = 100 

Fyx 0.33% 0.93% 0.28% 0.40% 0.25% 0.40% 0.28% 0.43% 

Fx 0.46% 0.48% 0.25% 0.26% 0.33% 0.23% 0.33% 0.28% 

ty 2.81% 3.78% 2.81% 7.07% 2.84% 10.71% 2.84% 14.19% 

tx left 0.18% 0.31% 0.16% 0.39% 0.16% 0.27% 0.17% 0.17% 

tx right 0.18% 0.49% 0.18% 0.66% 0.19% 0.73% 0.19% 0.68% 

N = 1000   &   T = 1000 

Fyx 0.43% 0.86% 0.41% 0.64% 0.18% 0.21% 0.15% 0.43% 

Fx 0.58% 1.16% 0.40% 0.63% 0.23% 0.22% 0.19% 0.41% 

ty 1.93% 2.86% 1.94% 6.37% 1.95% 9.87% 1.96% 13.48% 

tx left 0.52% 0.27% 0.56% 0.49% 0.54% 0.50% 0.53% 0.59% 

tx right 0.22% 1.17% 0.21% 1.35% 0.19% 1.40% 0.22% 1.52% 

 

Tables I.1 to I.7 correspond to the AAPDs when researchers and practitioners employ the 

DFE estimator in unrestricted error-correction form.  We use bold and purple font when the 

AAPDs are greater than 5%. 
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Analyzing the results of our simulations for all the examined combinations of N and T for 

the 50th percentile, i.e. median conditional regression, we find that the CCVs should be used 

for the F-tests and the tx-tests when N is greater than or equal to 100.  The AAPDs range from 

0.14% to 2.87%.  Only when N is 50 and for big values of k we spot AAPDs greater than 5%.  

On the other hand, when we look at the ty-test of the coefficient of the ECT we find that for 

every pair (N, T) we examine the AAPDs are greater than 5% suggesting that the SCVs should 

be used rather than the CCVs.  The maximum AAPD is 53.85%.  Specifically, we see that for 

given N and T, the AAPDs for the I(1) case are increasing in k.  Also for the I(1) case, for given 

T and k, as N increases the AAPDs fall.  For fixed N and k though, there is no clear pattern for 

the AAPDs as T changes for the I(1) case again. 

When we examine what happens beyond the 50th percentile, we also find that the SCVs 

should be used for the F-tests when N equals 50 and T is 50, or 100.  However, for T 50, or 

100, and when N is equal to, or greater than 100 then, CCVs should be used for the F-tests.  

Yet, when T is 1000 and for every N we examine, the CCVs can be used for the F-tests.  

Moreover, the inference for the ty-test should be relied on the SCVs and that of the tx-tests on 

the CCVs for every pair N and T we consider.  However, these findings hold for Cases III, IV, 

V, IX, XI for the F-tests and Cases III, V and XI for the t-tests.  Namely, these are the cases, 

where there is a quantile-dependent constant term included in the specification and it is not 

included in the long-run relationship.  These are the “unrestricted intercept” cases as stated 

earlier.  The rest cases, where the constant term is not included in the specification, i.e. Case I 

for the t-tests and F-tests, or it is included in the F-tests, i.e. Cases II, VI, VII, VIII and X then, 

we observe a different behavior of the SCVs.  We name these as the “restricted cases”.  In these 

cases, we argue that there cannot be evidence in favor of co-integrating relationships since the 

AAPDs, corresponding to the SCVs for these cases, are so big and thus, the null hypotheses 

cannot be rejected in practice.  Therefore, we suggest when a researcher/practitioner estimates 

CQREGs beyond the median, he/she should rather focus on the “unrestricted intercept” cases, 

i.e. when the constant term, which is not a location shifter, is not part of the steady-state 

equilibrium relationship. 

Turning next to the interpercentile BTP, we have to note that since the simulations (50,000 

repetitions for each pair N and T) for the calculation of the SCVs are computationally intensive 

and time consuming, we have focused on the scenario, where the time dimension is 100.  
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However, the main findings seem also to hold for T = 50 and T = 1000, i.e. we should use the 

CCVs for the interpercentile tests.  When T equals to 1000, we have results for N = 50, 100 and 

200, where the maximum AAPD is 1.10% and the minimum 0.08%, and for T = 50 we have 

results when N equals to 50, 100, 200, 300, 400 and 500, where the maximum AAPD is 2.44% 

and the minimum 0.10%. 

We focus on the interdecile BTP, i.e. the 10th, 20th, … , 80th, 90th percentiles, and on the 

interquartile BTP, i.e. the 25th, 50th and 75th percentiles, for Cases III, V and XI.  We allow for 

a constant term in the model, and these cases involve no deterministic restrictions under the 

null of no co-integration when we test for the long-run relationship in levels between the 

dependent and independent variables, i.e. the equilibrium relationship does not include an 

intercept and/or trends.  Furthermore, in Cases III, V and XI, the model includes an intercept, 

an intercept and linear trend, and an intercept, a linear and quadratic trend, respectively.  

Specifically we test with Wald tests first, whether the lagged dependent variable in levels is 

jointly equal across the quantiles and the lagged regressors in levels are jointly equal across the 

quantiles (Wyx test), second whether the lagged dependent variable in levels implies 

homogeneous convergence rates across quantiles (3 quartiles or 9 deciles, Wy test) and third, 

whether the lagged stochastic regressors in levels are location shifters (Wx test). 

Regarding the interquartile Wald tests, we find that the AAPDs for the Wyx test are less 

than 1% when is N equal to or greater than 200.  Yet, when N is 50, or 100, the maximum 

AAPD is 1.57% and the minimum 0.48%.  We conclude we can use the CCVs for the Wyx test.  

Examining the Wy test we see that the AAPDs are less than 1% when N equals or is greater 

than 300.  Also, when N is 50, 100 and 200, the maximum AAPD is found to be 1.96% and the 

minimum 0.92%.  The CCVs can be employed for the Wy test.  Finally, we argue that we can 

also rely on the CCVs for the Wx test since the AAPDs are above the threshold of 1% only 

when N is 50 or 100 or 400.  Specifically the maximum AAPD for these scenarios are 1.34% 

and the minimum is 0.23%. 

Regarding the interdecile Wald tests, we find that all the AAPDs are less than 1%.  In 

particular, the maximum AAPD is 0.90% and the minimum 0.08%.  So, we see that the smaller 

the percentile distance is the smaller the AAPDs become.  For the interquartile tests the distance 

is 0.25, while for the interdecile tests the distance is 0.1.  Therefore, our main conclusion from 

the interpercentile tests of the BTP is that the CCVs should be used since we find that the CCVs 

are approximated very well by the SCVs.  
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Table 

II.1 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 50   &   T = 50 

Fyx 1.02% 0.84% 1.59% 0.94% 1.79% 2.19% 1.89% 3.45% 

Fx 1.40% 1.07% 1.65% 1.08% 1.98% 2.37% 2.06% 3.67% 

ty 5.23% 8.43% 5.11% 21.62% 5.25% 35.53% 5.18% 49.46% 

tx left 0.34% 0.42% 0.53% 1.09% 0.31% 2.14% 0.44% 3.17% 

tx right 1.28% 0.55% 1.20% 0.68% 1.46% 1.86% 1.66% 3.45% 

N = 50   &   T = 100 

Fyx 0.47% 0.59% 0.28% 1.56% 0.42% 3.26% 0.40% 5.24% 

Fx 0.89% 0.68% 0.59% 1.81% 0.51% 3.30% 0.46% 5.38% 

ty 5.97% 9.13% 6.01% 22.53% 5.82% 36.39% 5.69% 51.05% 

tx left 0.54% 0.74% 0.74% 0.91% 0.75% 2.33% 0.93% 3.64% 

tx right 0.56% 0.18% 0.55% 1.21% 0.52% 2.61% 0.46% 3.58% 

N = 50   &   T = 1000 

Fyx 1.05% 1.50% 0.41% 1.98% 0.29% 3.82% 0.16% 5.24% 

Fx 1.11% 1.17% 0.42% 2.08% 0.29% 4.14% 0.20% 5.61% 

ty 6.93% 10.47% 6.84% 24.32% 6.91% 38.85% 6.76% 53.85% 

tx left 0.57% 0.86% 0.46% 2.35% 0.61% 4.37% 0.50% 5.60% 

tx right 1.19% 0.88% 1.30% 2.52% 1.24% 3.75% 1.35% 4.59% 
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Table 

II.2 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 100   &   T = 50 

Fyx 0.99% 0.57% 0.94% 0.36% 0.75% 0.43% 0.75% 1.67% 

Fx 1.42% 0.62% 1.15% 0.29% 0.88% 0.26% 0.78% 1.62% 

ty 4.01% 6.17% 4.01% 15.20% 4.01% 24.41% 3.95% 34.02% 

tx left 1.32% 0.48% 1.34% 0.29% 1.56% 0.57% 1.72% 1.14% 

tx right 0.24% 0.40% 0.38% 0.88% 0.24% 1.18% 0.37% 1.72% 

N = 100   &   T = 100 

Fyx 0.56% 0.55% 0.40% 0.91% 0.61% 1.30% 0.42% 1.76% 

Fx 1.00% 0.64% 0.61% 1.13% 0.77% 1.32% 0.49% 1.89% 

ty 5.03% 7.60% 5.36% 16.56% 5.13% 25.73% 5.12% 34.96% 

tx left 0.29% 1.10% 0.36% 1.65% 0.49% 2.12% 0.63% 2.60% 

tx right 0.89% 0.51% 0.75% 0.42% 0.68% 0.88% 0.68% 1.54% 

N = 100   &   T = 1000 

Fyx 0.65% 0.55% 0.31% 1.58% 0.22% 2.34% 0.28% 2.53% 

Fx 0.78% 0.63% 0.53% 1.85% 0.34% 2.62% 0.35% 2.65% 

ty 4.04% 6.46% 3.95% 15.99% 3.90% 25.36% 4.06% 35.14% 

tx left 0.29% 0.48% 0.29% 1.23% 0.26% 2.17% 0.35% 2.87% 

tx right 1.09% 0.38% 1.15% 0.66% 1.17% 1.25% 1.25% 1.76% 
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Table 

II.3 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 200   &   T = 50 

Fyx 0.85% 1.01% 0.46% 0.24% 0.47% 0.97% 0.22% 1.13% 

Fx 1.11% 0.67% 0.76% 0.25% 0.70% 1.13% 0.26% 1.28% 

ty 2.57% 4.14% 2.44% 10.32% 2.52% 16.56% 2.81% 23.16% 

tx left 1.27% 0.77% 1.31% 1.23% 1.50% 1.52% 1.36% 1.47% 

tx right 0.25% 0.83% 0.21% 0.50% 0.42% 0.36% 0.45% 0.20% 

N = 200   &   T = 100 

Fyx 0.38% 0.43% 0.37% 0.56% 0.28% 0.89% 0.27% 1.42% 

Fx 0.95% 0.65% 0.32% 0.46% 0.31% 0.70% 0.32% 1.36% 

ty 3.42% 5.03% 3.23% 11.36% 3.42% 17.91% 3.55% 24.44% 

tx left 1.07% 0.36% 0.94% 0.26% 0.85% 0.17% 0.64% 0.33% 

tx right 0.55% 0.47% 0.40% 0.26% 0.46% 0.63% 0.40% 0.78% 

N = 200   &   T = 1000 

Fyx 1.09% 0.97% 0.77% 0.76% 0.49% 0.86% 0.38% 0.73% 

Fx 0.62% 0.66% 0.57% 0.56% 0.32% 0.81% 0.28% 0.69% 

ty 3.61% 5.42% 3.61% 11.77% 3.62% 18.52% 3.58% 25.01% 

tx left 0.77% 0.55% 0.63% 0.70% 0.68% 0.72% 0.66% 0.96% 

tx right 0.38% 0.49% 0.31% 0.55% 0.31% 0.87% 0.40% 1.25% 
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Table 

II.4 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 300   &   T = 50 

Fyx 0.48% 0.39% 0.26% 0.36% 0.19% 0.46% 0.19% 0.55% 

Fx 0.61% 0.58% 0.45% 0.42% 0.24% 0.60% 0.16% 0.67% 

ty 2.87% 4.22% 2.89% 9.14% 3.13% 14.14% 3.07% 18.90% 

tx left 0.39% 0.98% 0.43% 0.69% 0.51% 0.38% 0.50% 0.64% 

tx right 0.65% 0.37% 0.57% 0.64% 0.54% 0.69% 0.44% 0.74% 

N = 300   &   T = 100 

Fyx 0.41% 0.39% 0.55% 0.32% 0.54% 0.41% 0.56% 0.72% 

Fx 0.61% 1.10% 0.70% 0.42% 0.61% 0.28% 0.67% 0.55% 

ty 2.46% 3.73% 2.38% 8.63% 2.30% 13.93% 2.36% 19.35% 

tx left 0.68% 0.62% 0.76% 0.32% 0.84% 0.23% 0.83% 0.33% 

tx right 0.36% 0.59% 0.53% 0.62% 0.34% 0.57% 0.45% 0.49% 

N = 300   &   T = 1000 

Fyx 0.49% 0.65% 0.38% 0.23% 0.31% 0.36% 0.29% 0.69% 

Fx 0.57% 0.68% 0.54% 0.19% 0.41% 0.32% 0.31% 0.77% 

ty 3.93% 5.43% 3.92% 10.62% 3.85% 15.63% 3.93% 20.68% 

tx left 0.44% 0.34% 0.56% 0.52% 0.52% 0.68% 0.49% 0.82% 

tx right 0.40% 0.21% 0.37% 0.44% 0.42% 0.40% 0.41% 0.46% 
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Table 

II.5 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 400   &   T = 50 

Fyx 1.10% 0.66% 0.95% 0.28% 0.58% 0.21% 0.36% 0.56% 

Fx 0.81% 0.44% 0.77% 0.18% 0.54% 0.35% 0.39% 0.55% 

ty 1.00% 1.88% 0.97% 6.13% 1.00% 10.79% 1.01% 15.17% 

tx left 0.27% 0.40% 0.23% 0.38% 0.36% 0.44% 0.31% 0.36% 

tx right 0.96% 0.62% 1.02% 0.58% 1.05% 0.73% 1.08% 0.68% 

N = 400   &   T = 100 

Fyx 0.35% 0.47% 0.33% 0.36% 0.38% 0.53% 0.28% 0.46% 

Fx 1.06% 0.49% 0.43% 0.24% 0.52% 0.50% 0.32% 0.66% 

ty 2.69% 3.86% 2.81% 8.33% 2.83% 12.81% 2.68% 17.22% 

tx left 1.00% 0.34% 0.89% 0.33% 0.86% 0.55% 0.72% 0.40% 

tx right 0.60% 0.38% 0.52% 0.45% 0.49% 0.49% 0.58% 0.35% 

N = 400   &   T = 1000 

Fyx 0.74% 0.30% 0.26% 0.35% 0.35% 0.28% 0.41% 0.55% 

Fx 1.34% 0.46% 0.48% 0.42% 0.52% 0.33% 0.62% 0.59% 

ty 2.70% 3.85% 2.60% 8.27% 2.76% 12.79% 2.68% 17.48% 

tx left 1.36% 0.25% 1.24% 0.28% 1.32% 0.36% 1.06% 0.48% 

tx right 0.54% 0.45% 0.47% 0.27% 0.42% 0.38% 0.44% 0.35% 
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Table 

II.6 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 500   &   T = 50 

Fyx 0.83% 0.74% 0.69% 0.45% 0.87% 0.22% 0.57% 0.16% 

Fx 0.97% 1.38% 0.69% 0.67% 0.89% 0.27% 0.63% 0.24% 

ty 2.19% 3.36% 2.32% 7.09% 2.19% 11.11% 1.95% 14.94% 

tx left 0.52% 1.05% 0.51% 0.83% 0.56% 0.61% 0.46% 0.55% 

tx right 1.45% 1.14% 1.37% 0.72% 1.22% 0.72% 1.17% 0.75% 

N = 500   &   T = 100 

Fyx 1.31% 0.57% 0.37% 0.56% 0.50% 0.29% 0.59% 0.17% 

Fx 1.61% 0.70% 0.32% 0.68% 0.41% 0.36% 0.49% 0.16% 

ty 1.30% 2.31% 1.29% 6.29% 1.35% 10.31% 1.40% 14.25% 

tx left 1.18% 0.81% 1.08% 0.50% 1.24% 0.49% 1.21% 0.27% 

tx right 0.75% 0.40% 0.89% 0.55% 0.72% 0.69% 0.65% 0.67% 

N = 500   &   T = 1000 

Fyx 0.41% 0.57% 0.28% 0.56% 0.25% 0.40% 0.26% 0.47% 

Fx 0.47% 0.46% 0.34% 0.85% 0.14% 0.44% 0.30% 0.62% 

ty 2.05% 2.94% 2.01% 6.90% 1.97% 10.84% 1.97% 14.94% 

tx left 0.29% 0.32% 0.29% 0.25% 0.29% 0.25% 0.39% 0.16% 

tx right 0.46% 0.53% 0.51% 0.68% 0.43% 0.41% 0.50% 0.51% 
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Table 

II.7 

k = 1 k = 5 k = 9 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

N = 1000   &   T = 50 

Fyx 0.51% 0.55% 0.49% 0.39% 0.67% 0.40% 0.54% 0.22% 

Fx 0.56% 0.65% 0.38% 0.32% 0.57% 0.37% 0.63% 0.20% 

ty 0.92% 1.46% 0.88% 4.33% 0.90% 7.03% 1.08% 9.79% 

tx left 0.28% 0.40% 0.35% 0.40% 0.28% 0.48% 0.41% 0.46% 

tx right 0.61% 0.25% 0.71% 0.27% 0.73% 0.34% 0.78% 0.29% 

N = 1000   &   T = 100 

Fyx 1.17% 0.34% 0.40% 0.44% 0.36% 0.36% 0.20% 0.29% 

Fx 1.13% 0.69% 0.40% 0.75% 0.31% 0.47% 0.25% 0.43% 

ty 0.74% 1.32% 0.70% 4.02% 0.72% 6.73% 0.70% 9.36% 

tx left 0.99% 0.44% 1.02% 0.36% 0.96% 0.34% 0.90% 0.19% 

tx right 0.70% 0.55% 0.66% 0.68% 0.64% 0.61% 0.63% 0.85% 

N = 1000   &   T = 1000 

Fyx 0.38% 0.35% 0.29% 0.31% 0.32% 0.16% 0.41% 0.16% 

Fx 1.36% 0.59% 0.34% 0.35% 0.31% 0.18% 0.51% 0.19% 

ty 1.05% 1.79% 1.14% 4.56% 1.08% 7.41% 1.02% 10.21% 

tx left 0.62% 0.46% 0.59% 0.56% 0.57% 0.41% 0.49% 0.28% 

tx right 1.47% 0.86% 1.40% 0.83% 1.42% 0.86% 1.43% 1.06% 

 

 

Tables II.1 to II.7 correspond to the AAPDs when researchers and practitioners use a PQARDL 

at the 50th percentile.  We use bold and purple font when the AAPDs are greater than 5%. 

Below, Table II.8 shows the AAPDs for the interpercentile BTP.  We use bold and purple font 

when the AAPDs are greater than 1%. 

 

  



45 

 

Table 

II.8 

k = 1 k = 13 k = 1 k = 13 

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

  N = 50   &   T = 100 

  interquartile interdecile 

Wyx 0.48% 1.03% 1.25% 0.64% 0.57% 0.60% 0.90% 0.85% 

Wy 0.97% 1.20% 1.17% 1.17% 0.62% 0.47% 0.76% 0.86% 

Wx 0.59% 1.58% 1.31% 0.82% 0.34% 0.70% 0.87% 0.89% 

  N = 100   &   T = 100 

  interquartile interdecile 

Wyx 1.57% 1.04% 0.83% 0.51% 0.37% 0.56% 0.50% 0.58% 

Wy 1.64% 1.96% 1.01% 1.63% 0.49% 0.40% 0.53% 0.74% 

Wx 1.34% 1.06% 0.98% 0.46% 0.41% 0.36% 0.50% 0.67% 

  N = 200   &   T = 100 

  interquartile interdecile 

Wyx 0.82% 0.49% 0.44% 0.22% 0.37% 0.28% 0.50% 0.28% 

Wy 1.07% 0.92% 1.01% 1.14% 0.37% 0.29% 0.43% 0.36% 

Wx 0.48% 0.32% 0.47% 0.22% 0.16% 0.61% 0.54% 0.32% 

  N = 300   &   T = 100 

  interquartile interdecile 

Wyx 0.45% 0.17% 0.28% 0.54% 0.15% 0.27% 0.17% 0.21% 

Wy 0.38% 0.69% 0.69% 0.23% 0.24% 0.36% 0.23% 0.26% 

Wx 0.26% 0.27% 0.33% 0.85% 0.24% 0.16% 0.20% 0.26% 

  N = 400   &   T = 100 

  interquartile interdecile 

Wyx 0.65% 0.31% 0.17% 0.25% 0.35% 0.25% 0.11% 0.09% 

Wy 0.46% 0.45% 0.37% 0.60% 0.38% 0.32% 0.37% 0.24% 

Wx 1.07% 1.02% 0.23% 0.38% 0.39% 0.40% 0.14% 0.08% 

  N = 500   &   T = 100 

  interquartile interdecile 

Wyx 0.69% 0.26% 0.09% 0.34% 0.19% 0.14% 0.09% 0.09% 

Wy 0.57% 0.39% 0.58% 0.86% 0.32% 0.22% 0.20% 0.22% 

Wx 0.31% 0.32% 0.07% 0.39% 0.33% 0.30% 0.08% 0.13% 

  N = 1000   &   T = 100 

  interquartile interdecile 

Wyx 0.58% 0.40% 0.29% 0.18% 0.31% 0.26% 0.16% 0.11% 

Wy 0.43% 0.46% 0.80% 0.26% 0.73% 0.54% 0.44% 0.44% 

Wx 0.37% 0.23% 0.18% 0.24% 0.41% 0.53% 0.11% 0.13% 
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In this Appendix section we offer two examples both in the conditional mean and 

conditional quantile environments demonstrating the interpretation of coefficients, which as 

we argue in main text, depends on the treatment of fixed (cross-sectional and/or time) effects. 

Moving to quantile environment with using Canay’s (2011) estimator, we first express the 

dependent variable as deviation from the consistently estimated fixed effects, , ,

est

i t i t iY Y d 

(both the cross-sectional and time dimensions should be large), as Canay suggests. 

The new dependent variable Y is purged from cross-sectional fixed effects and cross-

sectional (or contemporaneous) variation.  It can be seen as the excess historical performance 

of Y, or the “within Y”, since Y is net off contemporaneous trends. Namely, we get the deviation 

of Y from model-implied time-series means, or the model-specific relative performance of Y 

with respect to its history.  On the other hand, the X’s are not subject to any transformation and 

thus, an increase in X is considered, either in the cross section or in the time dimension (dual 

interpretation), to affect the “net off contemporaneous trends” Y.  In other words, it can be seen 

how Y responds over time on changes in X.  However, since we are in the quantile environment, 

we do not study the results on average as in the OLS case, and the covariates’ effect may be 

quantile-dependent.  Low (high) percentiles denote overperformance or underprediction 

(underperformance or overprediction) of “within Y” and indicate how the historically adjusted 

Y responds to changes in X. 

If we adjust Canay’s (2011) methodology to fixed period effects, we should first transform 

the dependent variable as deviations from the consistently estimated fixed time effects

, ,

est

i t i t tY Y d   from the fixed time effect estimator given large N and large T. 

Under this scenario, we assume that there are only common time-variant unobservable 

factors and no time-invariant factors exist.  The new dependent variable is cleansed from fixed 

time effects and temporal (or time-series) variation.  It could be seen as the excess cross-

sectional performance of Y, or the “between Y”, since Y is net off time-series trends.  Namely, 

we get the deviation of Y from model-implied cross-sectional means, or the model-specific 

relative performance of Y with respect to the cross sections in sample.  Moreover, the X’s are 

not subject to any transformation.  Therefore, we study the effect of variation in X (either in 

the cross section or in the time dimension; duality in interpretation) on Y in the cross section.  

Low (high) percentiles correspond to overperformance or underprediction (underperformance 
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or overprediction) of “between Y” and indicate how a change in X affects the cross-sectionally 

adjusted Y. 

Suppose that we examine a panel with tourist arrivals, Y, at a given destination country and 

GDP levels, X, of origin country, employ the two-way fixed effect estimator (TW) and estimate 

the expected positive coefficient of GDP on tourist arrivals. 

According to the first interpretation of TW [see equation (18) in main text], if a country 

exhibits a high GDP relative to its historical performance then, the tourist arrivals from that 

country to destination country, relative to the cross-sectional performance of tourist arrivals, 

will increase.  According to the second explanation of TW [see equation (19) in main text], the 

richer the origin country relative to the cross section of countries in sample the higher the 

historically adjusted tourist arrivals from that country to destination country.  So, it will be in 

destination’s country interest that the origin country exhibits either a historical high record at 

GDP levels, or GDP levels that are higher than the contemporaneous GDP levels of the rest 

origin countries in sample. 

Next, we use the Canay (2011) type approach for dynamic modelling and allow for cross-

sectional fixed effects.  In such a case, we can examine how GDP of origin country over time, 

or in the cross section, affects tourist arrivals at the destination country over time.  Low 

percentiles correspond to overperformance (or underprediction) of “within tourist arrivals”, 

and we can explore the response of excess historical performance of tourist arrivals on GDP 

variations either over time, or in the cross section. On the other hand, with low (high) 

percentiles we produce pessimistic (optimistic) predictions of the “within tourist arrivals” and 

study how they respond to GDP variations. 

Now we use the Canay (2011) type approach for dynamic modelling and allow for time 

fixed effects.  We examine how a change in GDP of an origin country affects the cross-sectional 

performance of tourist arrivals from that country to the destination country.  Specifically, high 

percentiles correspond to underperformance (or overprediction) of “between tourist arrivals” 

from an origin country, and indicates how the GDP of that origin country affects the excess 

cross-sectional performance of tourist arrivals. In other words, with low (high) percentiles we 

produce pessimistic (optimistic) predictions of the “between tourist arrivals” and study how 

they respond to GDP variations. 
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Finally, we use the Canay (2011) type approach for dynamic modelling and allow for both 

cross-sectional and time fixed effects.  We argue that high percentiles denote tourist arrivals’ 

underperformance (or overprediction) relative to historical and cross-sectional trends, and 

indicate how a change in GDP either in time-series level, or in the cross section, affects the 

total performance of tourist arrivals.  Also, it could be the case that overprediction, or optimistic 

predictions, of tourist arrivals is differently affected by GDP shocks of the origin country than 

underprediction, or pessimistic predictions, of tourist arrivals.  For example, the coefficients at 

the high quantiles could be less positive than the respective ones at the low deciles. 

  Suppose that we have a panel analyzing sales’ growth rates of firms and their response to 

shocks in firm size captured by book value of assets. 

First we begin with the cross-sectional fixed effect estimator.  It shows us how a firm’s 

growth rate, relative to its average performance, responds to firm size.  Alternatively, we study 

how a firm’s excess historical sales’ growth responds to size over time.  If size increases 

comparatively to its average performance then, the coefficient tells us how a firm’s sales’ 

growth rate will move relative to its average performance.  So we do not know if a relative 

improvement of sales’ growth (with respect to its average sales’ growth rates) from relative 

size (with respect to its average size) will bring this firm in a better position relative to its 

competitors and rivals.  This is a very important question for short-term investors and the 

researcher/practitioner cannot answer it using the cross-sectional fixed effect estimator. 

Second, we allow only for fixed time effects.  Specifically, with the fixed time effect 

estimator we examine how relative size (with respect to the cross-sectional firm sizes) affect 

relative improvement of sales’ growth (with respect to its cross-sectional performance).  

However, there is no information about the relative performance with respect to the firm’s 

average/historical sales’ growth rate.  The fixed time effect estimator does not reveal what 

happens to the excess historical performance of sales’ growth rate and this is a very crucial 

question for long-term debt and equity holders. 

Finally, employing the TW estimator, we can see whether a relative improvement of sales’ 

growth (with respect to its cross-sectional performance) stems from a relative change of size 

(with respect to its historical performance), or whether a relative improvement of sales’ growth 

(with respect to its average performance) stems from a relative change of size (with respect to 

its cross-sectional performance).  With these explanations we are able to discover whether an 
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improvement of sales’ growth rate is actually essential, or not, since we account for both model-

specific time-series and cross-sectional trends of sales’ growth.   

The improvement of growth rate may differ when we focus on periods of overprediction 

and total underperformance (or periods of underprediction and total overperformance), of 

sales’ growth rates since the coefficients are allowed to vary across quantiles of the conditional 

distribution of sales’ growth.  Namely, high quantiles imply an optimistic prediction of the 

sales’ growth rate and low quantiles a pessimistic one.  Assuming a positive coefficient of size 

then, the firm’s balance-sheet expansion indicates that the firm’s sales’ growth will essentially 

increase.  This increase is totally informational (e.g. to policy makers, consultants and 

investors) because both average/historical sales’ growth rates and contemporaneous/cross-

sectional sales’ growth rates are taken into consideration in the estimation process. Also, during 

total underperformance, firm size may be more influential than during periods of total 

overperformance, i.e. the coefficient gets smaller as we move down to the quantiles implying 

a dual source of heterogeneity across time and cross sections. 
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