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Abstract

We are occupied with the issue of consistency of the Gaussian QMLE in GARCH-type
models with very heavy tailed squared innovations. We show that the appropriately scaled
likelihood function weakly epi-converges to a stochastic process that is a.s. lower semi-
continuous and proper. When moreover the volatility filter is increasing w.r.t. the param-
eter, inconsistency follows due to that the true parameter value misses the set of minimizers
of the limit. This holds for models like the AGARCH, the Augmented GARCH, and the
GQARCH.
Keywords: Heavy-tailed distribution, GARCH-type Models, Gaussian QMLE , AGARCH,
Augmented GARCH, GQARCH, Inconsistency.

1 Introduction

A strand of the empirical finance literature considers the use of heavy tailed distribu-
tions for the squared innovation process in GARCH-type models-see for example
Rachev and Mittnik, 1988 and Mittnik, Rachev, and Paolella, 1998. The impli-
cations of heavy tails on the limit theory of the commonly used Gaussian QMLE
for the GARCH(p,q) model were analyzed by the seminal papers of Hall and Yao,
2003 and of Mikosch and Straumann, 2006. The resulting limit theory derived
consistency, as well as, stable limiting distributions and regularly varying rates of
convergence, when the tail index of the stationary distribution of the squared inno-
vations is strictly greater than one. The slower rates and the possibly non Gaussian
limiting distributions motivated a strand of literature for the development of alter-
native Quasi likelihood functions, or other semi-parametric methods of estimation
(see for example Preminger and Storti, 2017, Fan, Qi, and Xiu, 2014, Peng and
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Yao, 2003) as well as the references therein. Even then, some of those methods, e.g.
Preminger and Storti, 2017, and Fan, Qi, and Xiu, 2014 may involve first steps that
depend on the Gaussian QMLE, and therefore may crucially rely on its consistency
properties.

However, the case where the index of stability of the squared innovations is less
than (or in some instances equal to) one presents ambiguity on the issue of consis-
tency of the QMLE for such-like models. This is due to the different asymptotic
behavior of the log-likelihood process associated with the required scaling. Such
very heavy tailed cases can be expected to be relevant in return time series from
technological innovations (see Silverberg and Verspagen, 2007), or associated to eco-
nomic losses and operational risks from natural disasters (see R. Ibragimov, Jaffee,
and Walden, 2009). Therefore, it is of both theoretical and empirical interest to
establish whether consistency holds and if not, whether the asymptotic properties
of multi-step estimation procedures that involve Non-Gaussian likelihoods (Fan, Qi,
and Xiu, 2014), or OLS regressions (Preminger and Storti, 2017), that rely on the
Gaussian QMLE, also hold in such very heavy tailed cases.

Thus, in the present paper we are occupied with the issue of consistency of
the QMLE for GARCH-type models, when the aforementioned index is strictly less
than one. Our contributions consists of the following: i) under familiar assumptions,
the likelihood function weakly epi-converges (see the relevant discussion just before
Lemma 1) to a stochastic process that is almost surely lower semi-continuous (lsc)
and proper. This is not the typical behavior whenever the index is greater than
one; the limit then is deterministic. (ii) We derive inconsistency when there exists
a parameter value at which the limit is finite and smaller compared to the value at-
tained at the true value. This precludes the true parameter value from lying inside
the (possibly stochastic) set of minimizers of the limit. In such cases the usual iden-
tification assumption (see for example Wintenberger, 2013) holds, but consistency
fails. (iii) We show that this is true for models where the volatility filter has an
almost sure monotonicity property; it implies that the likelihood limit almost surely
achieves smaller values when the true parameter is partially translated to pointwise
larger values. Examples are the standard GARCH, the AGARCH and Augmented
GARCH and the GQARCH models. Hence our derivations involve a quite wide
class of volatility models that are commonly employed in the empirical literature.
(iv) As a by-product we derive in the Appendix, a Martingale Limit Theorem that
differs from the one of Mikosch and Straumann, 2006, first, by not requiring mixing
conditions beyond ergodicity, and second, by allowing for continuous convergence
w.r.t. Euclidean parameters.

In the following sections we describe our main framework, provide with our
assumptions, obtain the results along with some examples, and describe potential
extensions. Finally, we provide our proofs.
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2 Framework

Given an underlying probability space (Ω,G,P), consider the following general model{
yi = σizi

H(σ2
i ) = gθ0

(
zi−1, . . . , zi−p, H(σ2

i−1), . . . , H(σ2
i−max(p,q))

) , i ∈ Z (1)

where the parameter θ0 lies in some non-empty compact parameter space Θ ⊂ Rd,
the function gθ is a measurable function on Θ×[0,∞)q, H is an invertible measurable
self function on R, and the sequence (zi)i∈Z is i.i.d.

Illustrative examples of known models that adhere to the formulation in (1) are
(for further examples see among others Paragraph 3.3 in Straumann, 2004):

• AGARCH(p, q), see Ding, Granger, and Engle, 1993, where

σ2
i = ω +

p∑
j=1

(a0,j |yi−j| − γ0yi−j)
2 +

q∑
k=1

β0,kσ
2
i−k,

• Augmented GARCH(1, 1), see Francq and Zakoıan, 2013, where

σ2
i = ω0 + a0+[max(0, yi−1)]2 + a0−[min(0, yi−1)]2 + β0σ

2
i−1,

• GQARCH(1, 1), see Sentana, 1995, where

σ2
i = ω0 + a0(yi−1 +

γ0

2a0

)2 + β0σ
2
i−1.

The examples contain as a special case the celebrated symmetric GARCH(1,1) model
(see Bollerslev, 1986). They are all dynamically asymmetric in the sense that they
allow for non-zero covariances between yi and σ2

i−1 without requiring asymmetry
for zi. The unitary order of the last two examples is chosen for brevity; auxiliary
properties for the unitary specifications are already known in the literature. Our
main results can be readily extended to arbitrary orders for those two cases at the
cost of heavier notation.

Using a stochastic recurrence equation (SRE) approach, Straumann and Mikosch,
2006, give sufficient conditions for the existence of a unique (up to a limiting
argument), solution to (1), say ((yi, σ

2
i ))i∈Z, that is stationary, ergodic and non-

anticipative. This is ensured by, among others, imposing conditions on the Lipschitz
coefficient of the random map that generates σ2

i . In order to infer the unknown pa-
rameter θ0, and since in practice only (yi)i=1,...,n is observable, the volatility process
(σ2

i ) is reconstructed under the parameter hypothesis θ using the following volatility
filter for some random vector of initial values (ς0, ς1, . . . , ςq−1)′ ∈ Rq,

H(ĥi(θ)) =

{
ςi, q − 1 ≤ i ≤ 0,

g?θ

(
yi−1, . . . , yi−p;H(ĥi−1(θ)), . . . , H(ĥi−max(p,q)(θ))

)
, i > 0,

(2)
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which is generally non-stationary. Here, g?θ is obtained by gθ by replacing zi−j with
yi−j√
ĥi−j(θ)

for all j = 1, . . . , p. Given the above, the Gaussian quasi likelihood function

is proportional to

ĉn (θ) =
1

n

n∑
i=1

ˆ̀
i (θ) ,

where ˆ̀
i (θ) = log ĥi (θ) +

y2i
ĥi(θ)

, and then the Gaussian QMLE θn of θ0 is defined by

ĉn (θn) = inf
θ∈Θ

ĉn (θ) .

Standard lower semi-continuity and measurability conditions imply existence of
the estimator (see for example Definition 3.5 and Proposition 3.6 in Chapter 5
of Molchanov, 2011), while the definition-and the subsequent results-can be easily
extended so that approximate/numerical optimization is allowed.

3 Assumptions, results and examples

We are interested in the issue of consistency of θn when z2
0 belongs to the domain of

attraction of a stable distribution with tails heavy enough so that it does not have a
first moment. We first present our assumption framework. There, Sα(s, c, γ) denotes
the (univariate) stable distribution with α, s, c, γ denoting stability index, skewness,
scale and location parameters respectively (see Chapter 2 of I. A. Ibragimov and
Linnik, 1971).

A.1 The distribution of z2
0 lies in the domain of attraction (DoA) of Sα(1, c, 1) with

α ∈ (0, 1).

The assumption implies that E[z2
0 ] = +∞ (see Chapter 2 of I. A. Ibragimov and

Linnik, 1971) and in fact allows for very heavy right tail for the distribution of z2
0 .

Its unit location is in accordance to the innovations’ unit variance normalization
condition (E[z2

0 ] = 1) that is typical in such models when the innovations have
enough moments. We do not consider the case where α > 1 (as well as the case of
α = 1 and E[z2

0 ] < +∞) since consistency then readily follows by Theorem 5.3.1
of Straumann, 2004 under A.2-4 below, and a usual identification condition. The
restriction of the skewness parameter to one follows naturally from the fact that the
support of z2

0 − 1 is bounded from below.
Assumption A.1 directly implies that P[|z0| > x] ∼ C l(x)

x2α
, as x → ∞, where l

is a slowly varying function at infinity (see Bingham, Goldie, and Teugels, 1989)
and C > 0. If l converges to zero sufficiently fast, then Theorem 5 of Kesten, 1973
and Proposition 2.1 of Denisov and Zwart, 2007 imply that for each of the three
examples considered above, there exist parameter values and a constant C? > 0,
such that P[|y0| > x] ∼ C? 1

x2α
as x → ∞. This implies that Assumption A.1

allows for stationary processes with unconditional tail indices associated with very
heavy tailed time series that can be relevant in empirical economics (see for example
Silverberg and Verspagen, 2007).

Assumptions A.2-A.4 that follow are similar to the ones used in the literature
in the case where E[z2

0 ] < +∞ (see Straumann, 2004, ch. 5, C.1, C.3-C.4 and
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Wintenberger, 2013). They among others enable the approximation of (2) by the
process (hi(θ))i∈Z, θ ∈ Θ defined by

H(hi(θ)) = g??θ
(
yi−1, . . . , yi−p;H(hi−1(θ)), . . . , H(hi−max(p,q)(θ))

)
, i ∈ Z, (3)

which is independent of initial conditions. The form g??θ here, is obtained from gθ
by replacing zi−j with

yi−j√
hi−j(θ)

for all j = 1, . . . , p.

A.2 The model (1) admits a unique stationary ergodic non-anticipative solution
((yi, σ

2
i ))i∈Z, with E[ln+(σ2

0)] < +∞.

A.3 The model (3) is continuously invertible in Θ. The functions ln ◦H−1, 1
H−1 are

well defined and Lipschitz continuous on the range of gθ for all θ ∈ Θ. Finally,
the model (3) is P a.s. continuous in θ.

A.4 infθ∈Θ infx∈Rp×[0,∞)q H
−1 ◦ gθ(x) > 0.

Assumption A.2 holds if there exists u, for which E[ln+(|ψ0(u)|)] < +∞,
E[ln+(Λ(ψ0))] < +∞ and E[ln(Λ(ψ0))] < 0-see Theorem 2.6.1 in Straumann, 2004.
For u ∈ Rmax(p,q), ψt(u) is defined as gθ0 (zi−1, . . . , zi−p,u), and for a real Lipschitz
continuous self-function f , Λ(f) denotes its Lipschitz coefficient. The form of (1),
the functional invertibility of H, and A.2 imply that hi(θ0) = σ2

i , P a.s., ∀i ∈ Z.
Given A.2, continuous invertibility enables the almost sure convergence ofH(ĥi(θ)

toH(hi(θ) as i→∞ uniformly in Θ, given Definition 3 of Wintenberger, 2013. From
Theorem 2 of Wintenberger, 2013, this follows whenever there exists u, for which
E[ln+(supθ∈Θ |φT (u, θ)|)] < +∞, E[ln+(supθ∈Θ Λ(φ0(θ))] < +∞ and E[ln(Λ(φ0(θ))] <
0, ∀θ ∈ Θ. φ0(u, θ) is g??θ (yi−1, . . . , yi−p,u). The Lipschitz continuity conditions of
the second part of A.3 enable then the analogous approximation of ln(ĥi(θ)) by
ln(hi(θ)) and of 1

ĥi(θ)
by 1

hi(θ)
. Hence, A.3 enables among others, asymptotic valid-

ity of the substitution of ĥi(θ) by hi(θ) in the likelihood function, and thereby the
limiting independence of the likelihood process of the initial conditions. The final
part of A.3 along with continuous invertibility, the Lipschitz continuity conditions
and the compactness of Θ imply the P a.s. continuity of hi(θ) in θ.

A.4 is a technical condition of strict positivity and in several cases follows from
restrictions on Θ that facilitate the positivity of the volatility process.

A.1-A.4 suffice for the establishment of the weak epi-convergence of the scaled
likelihood process to a lsc and proper stochastic process driven by a very heavy tailed
random variable. We first establish the required notation. Due to Theorem 2.6.5
of Ibragimov and Linnik I. A. Ibragimov and Linnik, 1971, the DoA assumption is
equivalent to that the characteristic function of z2

0 has for some t0 > 0, the repre-
sentation it − c|t|ah (|t|−1)

(
1− isgn(t) tan(1

2
πα)

)
on (−t0, t0), where h is a slowly

varying function at infinity. Define rT by the asymptotic relation h(T
1
α r

1
α
T )

rT
→ 1,

and notice that rT is a well defined slowly varying sequence (see Paragraph 1.9 of
Bingham, Goldie, and Teugels, 1989, and Proposition 1.(iv) of Astrauskas, 1983).
Futhermore, epi

 denotes epi-convergence in distribution; a sequence of determinis-
tic lsc real functions (fn) on a Polish space epi-converges to a limit function f , iff
∀x,∀xn → x, lim infn→∞ fn(xn) ≥ f(x), and ∀x, ∃xn → x, lim supn→∞ fn(xn) ≤ f(x)
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(see Ch.3 of Molchanov, 2011 for this sequential characterization). The "in distri-
bution" stochastic mode of epi-convergence is obtained by those sequential char-
acterizations, along with the consideration of Skorokhod representations on suit-
ably enlarged probability spaces that exist due to the separability of the associated
metrizable topology, see Knight, 1999. See also Knight, 1999 for a characterization of
epi-convergence in distribution, in terms of fidis and stochastic equi-semi-continuity.
An extended real valued function is called proper when it never assumes the value
−∞, and is not identically equal to +∞. A stochastic process with extended real
valued sample paths is called proper, when almost all its sample paths are proper
functions.

Lemma 1. Suppose that A.1-A.4 hold. Then, as T →∞

1

T 1/αr
1/α
T

T∑
i=1

ˆ̀
i (θ)

epi
 ZE1/α[(

σ2
i

hi (θ)
)α], (4)

where Z ∼ Sα(1, c, 0) for some c > 0. The limiting process is P a.s. lsc and proper.

The derivation utilizes among others the martingale limit theorem (see Theorem
2) that we establish in the Appendix, and the aforementioned availability of Sko-
rokhod representations. The limiting process has positive sample paths since α < 1.
Furthermore, E[(

σ2
0

h0(θ)
)α] ∈ (0,+∞]. The asymptotic location parameter is zero,

thereby the limit does not contain information on γ that appears in A.1. For any
θ for which E[(

σ2
0

h0(θ)
)α] is finite, ergodicity and the fact that α < 1 ensures that the

location related term associated with Theorem 2 is asymptotically negligible (see
Corollary 1 and its proof). The epi-convergence controls the limiting behavior of
the minimizers of the likelihood function. It implies that every weak accumulation
point must lie inside the set of minimizers of the limiting process. When the latter
does not contain θ0 inconsistency is obtained due to non-identification.

The final assumption concerns the behavior of the moment appearing in the
deterministic part of the limiting process, and it essentially ensures asymptotic non-
identification in the framework of A.1, due to the positivity of the limit in 4.

A.5 ∃θ 6= θ0 : E[(
σ2
0

h0(θ)
)α] < 1.

A.5 can be valid even in cases where condition h0 (θ) = σ2
0 ⇔ θ = θ0, P a.s. (ID)

holds. When E[z2
0 ] exists and equals to one, the latter is the usual identification

condition-see for example Wintenberger, 2013. Under A.1, when A.5 holds, (ID)
becomes insufficient as an identification condition.

The following auxiliary result says that A.5 holds when the stationary version of
the filter in (3) has a monotonicity property w.r.t. some part of the parameter that
can be adequately translated inside the parameter space. In this respect suppose
that Θ is factored as Φ×Ψ, so that θ0 := (φ0, ϕ0), and let θ(φ) := (φ, ψ0) and denote
with KΦ some neighborhood of φ0. ∂φ denotes partial derivation w.r.t. φ.

Lemma 2. Suppose that

ĝφ ◦ u := g??θ(φ) (yi−1, . . . , yi−p,u)
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is P a.s. continuously differentiable on KΦ × (0,+∞) (by potentially extending Φ),
and that KΦ is compact and coincides with the closure of its interior. Suppose that
the SRE

mi = ∂φ(ĝφ ◦ (mi−1, . . . ,mi−max(p,q))), (5)

has a unique, stationary and ergodic solution (mi)i∈N such that mi > 0, P a.s. for
all i, and that H−1 is strictly increasing. Then A.5 holds.

The existence of a unique stationary and ergodic solution to (5) can be estab-
lished by conditions similar to the conditions D.1-2 of Straumann, 2004 (see Ch. 5)
restricted to Kφ. In models like the AGARCH(p,q) we can choose φ = ω in which
case the SRE admits a simple form, and positivity is ensured due to the positivity of
the GARCH autoregressive parameters and the constant. Furthermore, in such cases
the potentially needed extension of Φ (when for example φ0 lies in its boundary) is
usually empirically innocuous.

We can now state our main result.

Theorem 1. Under A.1-A.5, the Gaussian QMLE is inconsistent.

Lemma 1 and A.5 imply that the QMLE has subsequential limits inside the set of
minimizers of the limiting process that do not include θ0 with probability one, hence
inconsistency follows essentially from Theorem 7.31.b of Rockafellar and Wets, 2009
that relates epi-convergence to the limiting properties of minimizers. The result rests
on a qualitatively different behavior compared to the classical identification failures.
Those occur due to that either E[z2

0 ] 6= 1 but finite, and/or E[z2
0 ] = 1 but (ID) fails.

In all those cases the likelihood limit is deterministic and θ0 belongs to the non-
singleton set of minimizers under A.2-A.4. Despite the randomness of the limiting
likelihood, weak consistency would be obtained as long as ∀θ 6= θ0 : E[(

σ2
0

h0(θ)
)α] > 1,

which would constitute the sufficient identification condition under A.1.
We finally examine the AGARCH, Augmented GARCH and GQARCH examples

that were presented above.

Lemma 3. Suppose that A.1 holds. (i). For the AGARCH(p,q) suppose that a0,j >
0 for some j > 0, (a0,p, β0,q) 6= (0, 0), and the polynomials

∑p
j=1 a0,jz

j and 1 −∑q
j=1 β0,jz

j do not have common roots. (ii). For the Augmented GARCH(1,1) case,
suppose that E[ln(a0+[max(0, z0)]2 + a0−[min(0, z0)]2 + β0)] < 0 and β < 1, for all
θ ∈ Θ. (iii). For the GQARCH(1,1) case, suppose that E[ln(sups∈[

ω0
1−β0

,+∞) |a0z
2
0 +

β0 + γ0
2
√
s
|)] < 0 and β < 1, for all θ ∈ Θ. In each case (i),(ii),(iii), the Gaussian

QMLE is inconsistent.

Besides A.1, the conditions that appear in the lemma are identical to Theorem
5.4.6 of Straumann, 2004, Theorem 3.1.(i) of Francq and Zakoıan, 2013, and Propo-
sition 3.2 of Arvanitis and Louka, 2015 that establish consistency for each model
respectively. In all cases A.2-A.4 and condition (ID) hold, however A.5 is also valid
due to the linearity in volatility of (3) for those models. This implies monotonicity
for the choice φ = ω, due to the positivity of the GARCH autoregressive parameters,
and the strict positivity of the constants, via the application of Lemma 2.

In cases where Lemma 1 holds with Φ = Θ, and thereby the whole model is
increasing w.r.t. the parameter, and Θ has a greatest element, say θmax, then θn  
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θmax. This is due to that at θmax, the expected ratio E[(
σ2
0

h0(θ)
)α] < 1 attains its lowest

value. Notice that this monotonicity holds for the Augmented GARCH example,
and the parameter space has a greatest element when it is a product of compact
intervals. Analogous pseudo-true values for the QMLE can be established for models
that are not fully monotonic, via furter restrictions on the distribution of z0.

Lemma 3 implies difficulties for the asymptotic properties of multi-step esti-
mation procedures employed in models like the above, when the first step is the
derivation of the Gaussian QMLE: Assumption 3 coupled with Assumption 2 Fan,
Qi, and Xiu, 2014 makes their Non-Gaussian QMLE inconsistent. Analogously,
whenever the mean of ln(z2

0) is unknown, and estimated by the residuals obtained
by the Gaussian QMLE, the least squares estimator of Preminger and Storti, 2017
becomes also inconsistent (for example it is possible to show that Lemma A.2.(a) in
the Appendix of Preminger and Storti, 2017 holds under A.1, when p < α. This and
the usual identification condition for the GARCH(1,1) model imply inconsistency).

The inconsistency of the Gaussian QMLE is mitigated by the existence of consis-
tent semi-parametric estimators for θ0. For an example consider the LAD estimator
for θ0 of Peng and Yao, 2003. Under an assumption framework that contains sim-
ilar conditions to A.1-4, and additionally involves conditions of mean boundedness
for the derivatives of the volatility filter, the estimator, is strongly consistent when
ln(z2

0) has zero median and a bounded density that is continuous at zero (see Lemma
A.1 of Peng and Yao, 2003).

4 Monte Carlo study

We perform a set of Monte Carlo experiments to assess the deviation of the QMLE
from θ0 in the GARCH(1,1) model. We set θ0 := (ω0, a0, β0) = (4.5, 0.27, 0.5). We
assume that z0 follows a Student’s tv distribution with v = 1.95, or v = 2 or v = 2.5
degrees of freedom, hence z2

0 belongs to the DoA of a stable distribution with α = v
2

(see Lemma 3 in the Supplement of Arvanitis and Anyfantaki, 2020). The first case
conforms to A.1; Lemma 3 and the subsequent discussion suggest that the QMLE
converges in probability to θmax := (8, 2, 0.8). The third case is well known in the
literature (see for example Straumann and Mikosch, 2006). For the second case,
and to the best of our knowledge, the issue of consistency for the QMLE is not yet
resolved. We use T = 500, 1000, 10000, 100000 and 1000000 and the number of
Monte Carlo replications is set to 1000 for all T .

The results are reported in Figures 1-3 below. For each of the examined v, the
respective figure presents the Monte Carlo probabilities that ‖QMLE− θ?‖ > ε, for
θ? = θ0, θmax, 0 ≤ ε ≤ 5, and for every examined T , where ‖·‖ denotes the `2 norm.

The results confirm the respective limit theories when v = 1.95 and v = 2.5.
Specifically, Figure 1 suggests inconsistency and convergence to θmax as expected.
Figure 3 suggests consistency as expected, see for example Straumann and Mikosch,
2006, albeit at a slow rate of convergence of magnitude T 0.2. For the unknown case
where α = 2, Figure 2 seems to suggest the possibility of a similar behavior to the
one predicted when α < 1. For a discussion on the difficulties associated with α = 1
see the following section. Similar results, available upon request, for other values of
v are not presented for economy of space.
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Fig. 1: Monte Carlo empirical probabilities that ‖QMLE− θ?‖ > ε, for θ? = θ0, θmax,
0 ≤ ε ≤ 5, for the `2 norm, with α = 0.9475.

Fig. 2: Monte Carlo empirical probabilities that ‖QMLE− θ?‖ > ε, for θ? = θ0, θmax,
0 ≤ ε ≤ 5, for the `2 norm, with α = 1.
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Fig. 3: Monte Carlo empirical probabilities that ‖QMLE− θ?‖ > ε, for θ? = θ0, θmax,
0 ≤ ε ≤ 5, for the `2 norm, with α = 1.25.

5 Further research

The filter monotonicity property of Lemma 2 does not seem to hold for models with
more complex volatility filters like the EGARCH (see Nelson, 1991). There, A.5 may
not be the case and identification could hold, if for example ∀θ 6= θ0, E[(

σ2
0

h0(θ)
)α] =

+∞ under A.1. If this is true, then a slight modification of A.2-3 that takes care
of the non-existence of logarithmic moments when α ≤ 0.5 would imply the weak
consistency of the QMLE. This potentially interesting investigation is delegated to
further research.

When a unique pseudo-true value exists, the issue of the establishing the rate of
convergence of the QMLE to it, as well as the associated limiting distribution can
be also of interest for further research.

The derivation of the limit theory for the NGQMLE of Fan, Qi, and Xiu, 2014,
when the QMLE in the first step is replaced by the LAD estimator of Peng and Yao,
2003, under A.1, can be analogously delegated to further research.

Finally, as noted above, the results do not cover the cases where α = 1 yet
E [z2

0 ] = +∞. We suspect that these can be handled under the premises of a (locally
uniform) LLN for stationary strong mixing sequences with potentially diverging
slowly varying moments. To our knowledge such LLNs are currently available only
under uniform mixing conditions (see for example Corollary 3 of Szewczak, 2010)
that are not generally compatible to the examined models in the current framework.
Hence such a consideration is also delegated to further research.
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6 Proofs

Proof of Lemma 1. First notice that for arbitrary K > 0,

1

T 1/αr
1/α
T

supθ∈Θ |
∑T

i=1(log ĥi (θ) +
z2i (σ2

i ∧K)

ĥi(θ)
− log hi (θ)− z2i (σ2

i ∧K)

hi(θ)
)|

≤ 1

T 1/αr
1/α
T

C
∑T

i=1(1 + z2
i (σ

2
i ∧K)) supθ∈Θ |ĥi (θ)− hi (θ) |

for some C > 0 independent of K that exists due to the Lipschitz continuity
conditions in A.3, and A.4. Then by Definition 2 of Wintenberger, 2013 and
due to A.3, supθ∈Θ |ĥi (θ) − hi (θ) | converges P a.s. to zero as i → ∞. Hence,
(σ2

i ∧K) supθ∈Θ |ĥi (θ)−hi (θ) | also converges P a.s. to zero. Then the dominant term
of the previous display weakly converges to zero due to the Cezaro sum Theorem,
the fact that by a trivial application of Theorem 2 and Corollary 1, 1

T 1/αr
1/α
T

∑T
i=1 z

2
i

weakly converges to an α-stable random variable, Theorem 1.10.4 of Vaart and Well-
ner, 2012 and the fact that α < 1. Letting T → ∞ and then K → ∞ we obtain
that 1

T 1/αr
1/α
T

supθ∈Θ |
∑T

i=1(log ĥi (θ) +
z2i σ

2
i

ĥi(θ)
− log hi (θ)− z2i σ

2
i

hi(θ)
)| weakly converges to

zero.
Now consider the term, 1

T 1/αr
1/α
T

∑T
i=1 z

2
i

σ2
i

hi(θ)
1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
. Under A.1-

A.4 and due to Theorem 2 and Corollary 1, it weakly converges uniformly (over
Θ) to Sα

(
1, cE[(

σ2
i

hi(θ)
)α1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
], 0
)
, which is equal in distribution to

E1/α[(
σ2
i

hi(θ)
)α1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
]Sα (1, c, 0). Theorem 1.10.4 and Addendum 1.10.5

of Vaart and Wellner, 2012 implies the existence of an enhanced probability space
and measurable mappings defined on it with values on the original probability space,
say φT,K , φK , such that 1

T 1/αr
1/α
T

∑T
i=1 z(φK,T )2

i
σ2
i

hi(θ)
(φT,K)1

{
supθ∈Θ

σ2
i

hi(θ)
(φT,K) ≤ K

}
is equal in distribution to 1

T 1/αr
1/α
T

∑T
i=1 z

2
i

σ2
i

hi(θ)
1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
, and converges

almost surely to E1/α[(
σ2
i

hi(θ)
(φK))α1

{
supθ∈Θ

σ2
i

hi(θ)
(φK) ≤ K

}
]Sα (1, c, 0) (φK). The

latter is equal in distribution to E1/α[(
σ2
i

hi(θ)
)α1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
]Sα (1, c, 0). Ap-

plying again Theorem 1.10.4 and Addendum 1.10.5 of Vaart and Wellner, 2012,
we have that for any T (as well as for T = +∞), and letting K → ∞, there
exist measurable mappings defined on a potentially further enhancement of the
aforementioned probability space, with values on the original probability space, say
φT , φ, such that: a. 1

T 1/αr
1/α
T

∑T
i=1 z(φK,T )2

i
σ2
i

hi(θ)
(φT,K)1

{
supθ∈Θ

σ2
i

hi(θ)
(φT,K) ≤ K

}
converges almost surely to 1

T 1/αr
1/α
T

∑T
i=1 z(φT )2

i
σ2
i

hi(θ)
(φT ) which is equal in distribu-

tion to 1

T 1/αr
1/α
T

∑T
i=1 z

2
i

σ2
i

hi(θ)
, and b. E1/α[(

σ2
i

hi(θ)
(φK))α1

{
supθ∈Θ

σ2
i

hi(θ)
(φK) ≤ K

}
]×

Sα (1, c, 0) (φK) converges almost surely to E1/α[(
σ2
i

hi(θ)
(φ))αSα (1, c, 0) (φ), which is

equal in distribution to E1/α[(
σ2
i

hi(θ)
)α1
{

supθ∈Θ
σ2
i

hi(θ)
≤ K

}
]Sα (1, c, 0). The previ-

ous convergences along with Definition 7.12, Theorem 7.14 and Proposition 7.15 of
Rockafellar and Wets, 2009 imply that as T →∞, 1

T 1/αr
1/α
T

∑T
i=1 z(φT )2

i
σ2
i

hi(θ)
(φT ), epi-

converges almost surely to E1/α[(
σ2
i

hi(θ)
(φ))αSα (1, c, 0) (φ). Reverting to the original
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probability space we obtain that 1

T 1/αr
1/α
T

∑T
i=1 z

2
i

σ2
i

hi(θ)
epi-converges in distribution

to the limit that appears in the rhs of (4).
Finally, it suffices to show that the term 1

T 1/αr
1/α
T

∑T
i=1 log

σ2
i

hi(θ)
weakly converges

to zero uniformly over θ. But notice that due to A.4, this is less than or equal to
C 1

T 1/αr
1/α
T

∑T
i=1 log σ2

i , where C is independent of θ, and the latter converges to zero,
from Birkoff’s LLN which is applicable due to the existence of the log-moment in
A.2., and since α < 1.

Properness follows from A.2-A.4 and Proposition 5.2.12 of Straumann, 2004
which imply that E[(

σ2
0

h0(θ0)
)α] = 1. The lsc property follows by the final part of

A.3 which implies that the scaled likelihood function is P a.s. lsc and from the
metrizability of epi-convergence on the set of lsc proper functions on Euclidean do-
mains as separable spaces (see Knight, 1999), Theorem 1.10.4 of Vaart and Wellner,
2012 and Theorem 7.15.(a) of Rockafellar and Wets, 2009.

Proof of Lemma 2. From the chain rule and Theorem 2.6.1 of Straumann on the
form of the stationary solution to (3), m0 is identified as the P a.s. derivative (w.r.t.
φ) at θ0 of H ◦h0. Since m0 is P a.s. strictly positive and H−1 is strictly increasing,
h0(θ(φ)) is P a.s. strictly increasing w.r.t. the pointwise product order on Kφ. This
implies that there exists some φ-possibly in an extension of Kφ-such that σ2

0

h0(θ(φ))
< 1

P a.s., which is sufficient for A.5.

Proof of Theorem 1. First notice that the QMLE by construction minimizes
1

T 1/αr
1/α
T

∑T
i=1

ˆ̀
i (θ). Then due to Lemma 1, the separability of Θ, and Theorem

1.10.4 of Vaart and Wellner, 2012, we obtain by 7.31.b of Rockafellar and Wets,
2009 that the accumulation points of the QMLE lie inside the set of minimizers of
the limiting likelihood process. This set does not contain θ0 due to A.5, and the fact
that Z ∼ Sα(1, c, 0) and thereby Z has positive support.

Proof of Lemma 3. For all cases A.2-A.4 can be established from the proofs and the
intermediate results that lead to Theorem 5.4.6 of Straumann, 2004, Theorem 3.1.(i)
of Francq and Zakoıan, 2013, and Proposition 3.2 of Arvanitis and Louka, 2015 (the
existence of log-moments follows directly from A.1). Choosing φ = ω it is easy to
establish that the conditions of Lemma 2 hold for all cases since then (5) assumes
a very simple form, that of a non-homogeneous linear difference equation of order
equal to max j : β0,j > 0, with unitary constant term and positive autoregressive
coefficients. The uniqueness, stationarity-ergodicity of the solution follows from the
restrictions on the modulus on the matrix of autoregressive parameters that hold
due to the referred conditions, while strict positivity follows from the positivity
restrictions on the GARCH autoregressive parameters and the strict positivity of
the constant term. H−1 is strictly increasing since it is the identity in all cases.
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Appendix

The Appendix establishes a (uniform) martingale limit theorem for stationary and
ergodic martingale transforms without use of mixing conditions. In what follows  
denotes convergence in distribution.

Theorem 2. Suppose that (ξi)i∈Z is an iid sequence and such that ξ0 belongs to the
domain of attraction (DoA) of Sα(s, c, γ), where α ∈ (0, 1), c > 0, s ∈ R. Further-
more, for Θ a compact subset of some Euclidean space, (Vi(θ))i∈Z is a stationary and
ergodic, sequence adapted to the filtration (Fi)i∈Z with Fi := σ(zi−j, j > 0) for all
θ ∈ Θ, V0(θ)) is continuous, and E[supθ∈Θ |V0(θ)|α+δ] < +∞ for some δ > 0. Then,
for some slowly varying real sequence (ri)i∈N, and any θ ∈ Θ, and deterministic
θT → θ, as T →∞

1

T 1/αr
1/α
T

T∑
i=1

(ξi − γ)Vi(θT ) Sα

(
s
E[sgn(V0(θ))|V0(θ)|α]

E[(|V0(θ)|α]
, cE[|V0(θ)|α], 0

)
. (6)

Proof. By Theorem 1.1 along with Paragraph 3 of Jakubowski, 1986) the result
would follow if for all t ∈ R

T∏
i=1

E

(
exp

(
it

1

T
1
α r

1
α
T

ρi,α

)
/Fi

)
(7)

converges pointwise P a.s. to the characteristic function of the limit, for some
appropriate real slowly varying sequence (ri)i∈N, where ρi,α,θT := (ξi−γ)Vi(θT ). Due
to Theorem 2.6.5 of Ibragimov and Linnik I. A. Ibragimov and Linnik, 1971, the
DoA assumption is equivalent to that the characteristic function of ξ0 has for some
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t0 > 0, the representation iγt − c|t|ah (|t|−1)
(
1− iβsgn(t) tan(1

2
πα)

)
on (−t0, t0),

where h is a slowly varying function at infinity. Define rT by

h(T
1
α r

1
α
T )

rT
→ 1, (8)

(see Paragraph 1.9 of Bingham, Goldie, and Teugels, 1989) and notice that this
defines a slowly varying sequence. Fix t 6= 0 and define the event

CT,K,θT :=
{
ω ∈ Ω : |Vi(θT )| ≤ Kt (TrT )

1
a ,∀i = 1, . . . , n

}
where Kt <

t0
|t| . From to the moment existence condition above and the inequality

of Markov we obtain

P[Cc
T,K,θT

] ≤
T∑
i=1

P[sup
θ∈Θ
|Vi(θ)| > Kt (TrT )

1
α ]

≤ E[supθ∈Θ |Vi(θ)|α+δ]

Kα
t T

δ
α r

1+ δ
α

T

= o(1).

Now, if ω ∈ CT,K,θT then logE[exp

(
it 1

T
1
α r

1
α
T

∑T
i=1 [ξi − γ]Vi(θT ))/Fi

)
] equals

−c|t|
α

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)(
1− iβsgn(tVi(θT )) tan(

1

2
πα)

)

= −c|t|
α

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
+
|t|α

TrT
iβcsgn(t) tan

(
1

2
πα

) T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
sgn(Vi(θT ))

Examining the first term, define g (x) := x−αh (x) . Then for any ε > 0

1

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
1 {|Vi(θT )| ≤ ε}

=
n∑
i=1

g
(
T 1/αr

1/α
T |Vi(θT )|−1

)
1 {|Vi(θT )| ≤ ε}

=
h
(
T 1/αr

1/α
T

)
rT

1

T

T∑
i=1

g
(
T 1/αr

1/α
T |Vi(θT |−1

)
g
(
T 1/αr

1/α
T

) 1 {|Vi(θT )| ≤ ε} .

Since
h
(
n1/ar

1/a
n

)
rn

→ 1 by construction, the last term of the previous display is asymp-
totically equivalent to

1

T

T∑
i=1

|Vi(θT )|α1 {|Vi(θT )| ≤ ε}+
1

T

T∑
i=1

g
(
T 1/αr

1/α
T |Vi(θT )|−1

)
g
(
T 1/αr

1/α
T

) − |Vi(θT )|α
 1 {|Vi(θT )| ≤ ε}
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But,

1

T

T∑
i=1

g
(
T 1/αr

1/α
T |Vi(θT )|−1

)
g
(
T 1/αr

1/α
T

) − |Vi(θT )|α
 1 {|Vi(θT )| ≤ ε} ≤ sup

|x|≤ε

∣∣∣∣∣∣
g
(
T 1/αr

1/α
T |x|−1

)
g
(
T 1/αr

1/α
T

) − |x|α
∣∣∣∣∣∣→ 0.

by an application of the Uniform Convergence Theorem for regularly varying func-
tions. Thus,

1

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
1 {|Vi(θT )| ≤ ε} → E [|V0(θ)|a 1 {|V0(θ)| ≤ ε} |] ,Pa.s.,

due to the compactness of Θ, the moment existence condition E[supθ∈Θ |V0(θ)|α+δ] <
+∞, Theorem 2.2.1 of Straumann, 2004, dominated convergence, and Theorem 7.14
of Rockafellar and Wets, 2009. Similarly, and applying the Uniform Convergence

Theorem for regularly varying functions on
h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
h
(
T 1/αr

1/α
T

) whenever |Vi(θT )| > ε

we obtain that

1

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
1 {|Vi(θT )| > ε} → E [|V0(θ)|a 1 {|V0(θ)| > ε} |] ,Pa.s.

Letting ε→∞ we obtain due to the moment existence condition

1

TrT

T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θT )|−1

)
→ E [|V0(θ)|a] , P a.s.

Treating the second term analogously, we obtain

|t|α

TrT
iβcsgn(t) tan

(
1

2
πα

) T∑
i=1

|Vi(θT )|α h
(
T 1/αr

1/α
T |Vi(θ)|−1

)
sgn(Vi(θ))

→ iβc|t|αsgn(t) tan

(
1

2
πα

)
E [|V0(θ)|α sgn(V0(θ))] , P a.s.

establishing the result due to the form of the characteristic function of an α stable
distribution (see Ch. 2 of I. A. Ibragimov and Linnik, 1971).

The moment existence condition in the previous theorem also implies the follow-
ing corollary.

Corollary 1. Under the premises of Theorem 2, as T →∞

1

T 1/αr
1/α
T

T∑
i=1

ξiVi(θT ) Sα

(
s
E[sgn(V0(θ))|V0(θ)|α]

E[|V0(θ)|α]
, cE[|V0(θ)|α], 0

)
.(9)

Proof. Due to the compactness of Θ, the moment existence condition
E[supθ∈Θ |V0(θ)|α+δ] < +∞, Theorem 2.2.1 of Straumann, 2004, dominated conver-
gence, and Theorem 7.14 of Rockafellar and Wets, 2009, we have that
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1
T

∑T
i=1

∣∣Vi(θT )|α+δ → E[|V0(θ)|α+δ], P a.s. Since δ can be chosen small enough so
that α + δ < 1, and due to the reverse Minkowski inequality, we obtain the bound
( 1

T 1/αr
1/α
T

∑T
i=1 |Vi(θT )|)α+δ ≤ 1

T δ/αr
(α+δ)/α
T

1
T

∑T
i=1

∣∣Vi(θT )|α+δ . This, along with the

almost sure convergence established above and the fact that δ
α
> 0 imply that

1

T 1/αr
1/α
T

T∑
i=1

Vi(θT )→ 0, P a.s.,

The result follows then from Theorem 2.
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