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Abstract

This paper suggests using a multilayer artificial neural network (ANN) method,
known as deep learning ANN, to predict the probability of default (PD) within the
survival analysis framework. Deep learning ANN structures consider hidden intercon-
nections among the covariates determining the PD which can lead to prediction gains
compared to parametric statistical methods. The application of the ANN method to
a large data set of small business loans demonstrates prediction gains for the method
relative to the logit and skewed logit models. These gains mainly concern short term
prediction horizons and are more apparent for the type I misclassification error of loan
default events, which has important implications for bank loans portfolio management.
To identify the effects of covariates on the PD by the ANN structure, the paper proposes
a bootstrap sampling method obtaining the distribution of changes of the PD over dis-
crete covariate changes, while controlling for possible interactions among the covari-
ates. We find that the covariates with the most important influence on the PD include
the delinquent amount of a loan over its total balance, the payments and the balance of
the loan over its installment, as well as the delinquency buckets of a loan. The duration
of a loan is also found to be an important factor of default risk.

JEL classification: G12, E21, E27, E43

Keywords: business loans, probability of default, deep learning, artificial neural net-
works, logit, skewed-logit, bootstrap methods, ROC curve, type I and II errors.

∗Dendramis: Department of Economics, Athens University of Economics and Business, email: yden-
dramis@aueb.gr, Tzavalis: Department of Economics, Athens University of Economics and Business, email:
etzavalis@aueb.gr, corresponding author, Cheimarioti: Alpha Bank, Greece, Credit Risk Methodologies Di-
vision, email: aikaterini.cheimarioti@alpha.gr. The authors would like to thank the participants at the sem-
inars of the Department of Economics of Athens University of Economics Business for useful comments.
The views presented in the paper are those of the authors alone and do not reflect official views of their
institutions.

1



1 Introduction

Small business (SB) loans constitute a large proportion of bank portfolio loans, due to their

close links to the banking system.1 Given their high leverage and lack of alternative financ-

ing, the SB companies are excess vulnerable to severe recession and financially distressed

conditions of the economy. The large numbers of SB companies in the economy in asso-

ciation with their information opacity, weak balances, higher lending rates and trustwor-

thiness of management, as well as corporate structure (corporations or sole proprietors),

among others, make credit risk management and, in particular, the prediction of default

risk for SB loans (SBLs) a very challenging task (see, e.g.,Dietsch, Petey (2002), Rikkers,

Thibeault (2009), Moro, Fink (2013), and Behr et al. (2017)).The limited information and

asymmetric problems involved, as well as, the limited sources of data raises important ob-

stacles in developing and testing structural or reduced form models of the probability of

default (PD) for SBLs.2

This paper contributes into the above literature by proposing the use of an artificial

neural network (ANN) structure in predicting the PD of SBLs based on the survival analy-

sis framework. Multilayer ANN structures, also known as deep learning neural networks,

can universally approximate complex structures of the covariates driving the PD, known

as input variables in the ANN literature. Also, they can uncover relevant information from

the data throughout the interconnections among the multiple neurons and hidden layers

(hence the synonym ”deep learning”) that consider. These interconnections, which may be

missed in parametric methods, can lead to further gains in the prediction performance of

the ANN method. The above features of the ANN method may be proved very useful in

predicting default risk, especially under financially distressed conditions where the levels

of the NPLs are very high and loan default decisions are affected not only by macroeco-

nomic and credit risk fundamentals, but also on institutional factors whose effects can not

be easily measured. These factors include the legislation and bank supervision framework

1Note that, according to the European Banking Authority report of 2006 (see EBA/OP/2016/04), in year
2014 the small business and small-medium enterprises of the non-financial business sector were the 99% of
the enterprises, employed two in every 3 employees and added 58 cents for every euro of the value added of
the GDP in the EU-28 economy.

2Note that, since that seminal work of Altman, Sabato (2007) on the financial ratios determining
bankruptcy of small business and medium size enterprises, there are few studies modelling and estimat-
ing the PD for SBLs.



developed to protect borrowers from default and sometimes can initiate moral hazard at-

titudes. From a banks perspective, the ANN method can help to minimize possible future

losses due to loan default miss-forecasting. Parametric methods (e.g., the logit model), of-

ten used in the literature to predict the PD (see Greene (2012), for a survey), may misspecify

the true relationships predicting the PD, as they rely on a restrictive set of assumptions.

The above potentials of the ANN method are not without cost. The “black box” nature

of the method limits its use in identifying and interpreting covariate effects on PD. For a

given dataset there may exist multiple neural network architectures that can generate very

similar predictions, thus complicating parameter estimation and identification. In contrast

to the parametric methods, the results of an ANN structure are difficult to interpret, and

thus the economic evaluation of the covariates relative influence on the PD becomes a chal-

lenging task. To this end, in this paper we will adopt a modest approach, in the spirit of

that suggested by Gu et al. (2020), recently, to overcome identification issues of the ANN

method. Instead of the marginal effects, we focus on identifying covariate effects on the

PD based on fitted values of PD between two different percentiles of the distribution of a

covariate (e.g., the 10% top and bottom percentiles). This metric can evaluate the impact

of any covariate on the PD for a given interpencentile spread of the covariate often used in

credit risk assessments. We suggest a bootstrap sampling method to derive the empirical

distribution of the generalized effects of a covariate on the PD, while controlling for the

effects of other covariates on the PD based on sample information.

We implement the ANN method to a large micro (panel) dataset of Greek SB restruc-

tured loans during the period 2014:03 to 2017:06. The percentage of the defaulted loans is

very high due to the severe economic recession of this economy, started after the year 2008

global financial crisis. The high rate of loan defaults in our sample helps to more precisely

evaluate the prediction performance of the method, as compared to studies in which loan

default constitutes a rare event. The rich and disaggregated nature of our data allows us to

efficiently evaluate the performance of the ANN method to predict the PD and loan default

events, compared to parametric methods. We compare the ANN method to the logit and

skewed logit models, frequently used in practice. The skewed logit model, recently sug-

gested in the credit risk literature by Dendramis et al. (2020), is a parsimonious extension of

the standard logit model that allows for asymmetric responses of the PD to its covariates.

3



The estimation of the ANN structure and the two parametric statistical methods con-

sidered in our study is based on the following set of covariates: (i) covariates capturing

behavioral attitudes and risk sources of the borrowers measured at loan-specific (disag-

gregate) level, (ii) macroeconomic variables, measured at aggregate level (iii) region and

corporate structure qualitative features, and (iv) the duration (age) of a loan account since

it was opened. The inclusion of the duration variable into the models enables us to calcu-

late the survival probability of a loan in a future day, conditional on current information

and that it has not defaulted until now. The behavioral covariates include the ratio of the

delinquent amount of a loan over its total balance, the ratios of the balance and actual

payments of the loan over its installment, as well as, the delinquency buckets of a loan

measuring the aggregate number of times that a borrower is past due for up to 1, 2 and

3 months, over the history of a loan. These covariates may influence the PD, in addition

to macroeconomic ones often used in reduced form PD models in the literature. Studying

their effects on the PD can reveal how important are borrowers’ risk attitudes in deter-

mining the PD, compared to aggregate variables often used in practice. It may be proved

very useful to banks and supervisory institutions in monitoring loan quality and managing

credit risk. Despite the plethora of empirical studies modelling the PD for mortgages and

large companies, to the best of our knowledge, there is a limited number of studies investi-

gating the effects of behavioral covariates such as the above on the PD for SBLs. The ANN

approach, throughout the interconnections between its layers and neurons that assumes,

may uncover useful information from the loan-specific covariates about the PD across the

cross-section and time dimensions of the data.

The results of the paper highlight the usefulness of the ANN method to estimate the PD

and predict loan default events. The method compares favorably to the logit and skewed

logit models, based on a set of fit and prediction performance metrics applied. In particular,

the largest prediction gains of the ANN method relative to the logit models are observed

for the type I misclassification error of the default event ( i.e., a loan is predicted as non-

defaulted, while it is actually defaulted) which has important implications for bank loans

portfolio management. These gains are more evident over shorter prediction horizons.

As was expected, the performance of the ANN method declines as the prediction horizon

increases, but still compares favorably to that of the logit models. Regarding the effects
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of the covariates on the PD, we show that the ANN method provides qualitatively similar

results to the parametric methods for most of the covariates considered, but these effects

differ in magnitude.

The paper is organized as follows. Section 2 presents the ANN method to predict

PD within the survival analysis framework and discuss its estimation method. Section

3 presents the alternative parametric statistical models considered. Section 4 presents

the bootstrap sampling algorithm to estimate the generalized covariate effects. Section

5 presents the data and the covariates used in the estimation. Section 6 presents the esti-

mation results; these include in-sample estimates, distribution measures of the covariate

effects and an out-of-sample forecasting exercise. Finally, Section 7 concludes the paper.

2 The ANN method of calculating the probability of default

2.1 The ANN structure for survival analysis

Assume discrete time t = 0, 1, ..., T and that, at time t, a loan default event can happen for

an individual loan account i = 1, 2, ..., N. This event is denoted by a binary choice random

variable Yit which takes the value 1 (i.e., Yit = 1) if the default event occurs, and zero

otherwise (i.e., Yit = 0). In survival analysis approach, the probability of default (PD) of a

loan i, at time t, denoted as Pit is defined as3

Pit = Pr(Yit = 1|Yis = 0) (1)

= 1−Φ(−ωi(xit−r; θ)), for s < t, i = 1, .., N, and t = 1, .., Ti

where function Φ(.): R → [0, 1] is a cumulative probability function (referred as binary

link function) that links the probability of default of a loan account i to an index function

of covariates xit−r. This function is denoted as ωi(xit−r; θ), ωi(.): RK → R, where K is

the number of elements (covariates) of vector xit−r, and r denotes lag order. The vector

θ denotes the set of unknown parameters, and Ti denotes the last observation of a loan

account i. The vector xit−r ≡ [xk,it−r], k = 1, 2, ..., K, consists of K-covariates which capture

3see, e.g., Glennon and Nigro (2005), and Crook and Bellotti (2010), for recent reviews of the survival
analysis models.
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features of the data often studied in the credit risk analysis. These mainly include the

following three groups: (i) covariates reflecting loan-specific features of the data at each

point of time t, for all i, referred to as panel data variables (ii) macroeconomic covariates

given at aggregate level, which are common across all loan accounts i, and (iii) application

covariates which are defined over the cross-section dimension of the data. Note that the

application covariates are known at the date that a loan account was opened and they

are often given as binary variables (taking 1 and 0 values), reflecting qualitative effects

across i. In addition to the above covariates, the index function ωi(.) also includes a non

linear function of the duration (age) of a loan, denoted as dit. Its inclusion in the index

function enables us to calculate the PD of a loan i, or its survival probability, in a future

date conditional on a value of dit.

The Artificial Neural Network (ANN) method on predicting the PD (Pit) constitutes

a semi-parametric approach. This allow us to trace the predictive gains of incorporating

non linear covariates interactions of unknown form that are missed by parametric meth-

ods. This can be done in several telescopic hidden layers, earning the synonym ”deep

learning”. The ANN approach is considered as the least transparent, least interpretable,

and most highly parametrized machine learning tool, but also admitted as the most pow-

erful modelling approach in machine learning. It is theoretically grounded on universal

approximation results for any smooth function of predictors (see Hornik et al. (1989) and

Cybenko (1989)) and it minimizes any misspecification error of Φ(.) and/or ωi(xit−r; θ) due

to an incorrect functional form, by taking into account nonlinear and/or hidden patterns

of dependence in the data.

More specifically, the ANN method maps the elements of vector xit−r (the dataset) to

an initial layer of multiple units known as neurons. These are then sequentially transferred

(mapped) to a new hidden layer of neurons and so on, until the procedure stops to the

final layer/node of the ANN which is the predicted default probability, Pit, given by rela-

tionship (1). Practically, a large enough number of layers and nodes, provides an increased

flexibility on modelling the PD by the ANN method. The interconnection among the layers

of an ANN structure pass information about features of the data across layers which may

lead to a better classification and prediction mechanism (see e.g., Fausett (1994)). In Figure

1, we graphically present the configuration of a multiple neutron/layer ANN to calculate
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the conditional PD Pr(Yit = 1|Yis = 0) for s < t.

Figure 1: Multiple layers-neurons structure

The connection of the neurons across the sequence of the layers is based on real val-

ued continuous, or discrete, functions known as activation functions. Algebraically, this

connection is defined in our panel data set up by the following relationships:

neuron(vl ,l)
it−r = F(vl ,l)(net(vl ,l)

it−r ; θ(vl ,l)), (2)

with net(vl ,l)
it−r = a(νl ,l)

0 +
Vl−1

∑
j=1

β
(νl ,l)
j neuron(j,l−1)

it−r , for i = 1, .., N and t = 1, .., Ti

where l = 0, 1, 2, ..., L denotes the layers (including the initial one (l = 0) and the final one

(l = L)), vl = 1, 2, 3, ...Vl is the number of neurons in each layer l, net(vl ,l)
i is a linear function

which aggregates the neurons of the previous (l − 1)th layer-step in accordance to their

degree of importance, captured by factors β
(vl ,l)
j , and θ(vl ,l) = (a(νl ,l)

0 , β
(νl ,l)
1 , β

(νl ,l)
2 , ..., β

(νl ,l)
Vj−1

)′

is the vector of parameters in each layer-step. Note that for the input (l = 1) and output
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(l = L) layers, the functions net(vl ,l)
i are respectively defined as

net(v1,1)
it−r = a(v1,1)

0 +
K

∑
k=1

β
(v,0)
k xk,it−r and net(1,L)

it−r = a(νL,L)
0 +

VL−1

∑
j=1

β
(νL,L)
j neuron(j,L−1)

it−r , (3)

since the neurons are replaced with the covariates of the model in the input layer (implying

V0 = K) and there exist only one net for the output layer, i.e., net(1,L)
i . Given net(1,L)

i , the

conditional PD can be obtained as follows:

Pit = Pr(Yit = 1|Yis = 0) = F(1,L)
(

net(1,L)
it−r

)
, for s < t (4)

where F(1,L) is a logit function, and F(vl ,l), for l < L, is the remaining set of activation

functions. As it becomes clear from relationships (2)-(4), there is a high degree of flexibility

when structuring a neural network. This includes the number of layers l, the number of

neurons in each layer Vl, the choice of activation function F(vl ,l)(.), for l < L, as well as

the aggregation (weights) of information passed through the initial covariates and hidden

neutrons to the output function. The universal approximation results of Hornik et al. (1989)

and Cybenko (1989) suggests that a single hidden layer is sufficient to approximate any

smooth function of predictors. Recent literature suggests that more layers are essential for

a better approximation of unknown functional forms, giving rise to the broad acceptance of

the deep learning neural networks. Moreover, Barron (1993) provides specific convergence

rates for hidden layer feedforward networks with sigmoidal activation functions that can

approximate smooth functions. In the literature there are two main strands concerning the

choice of the activation function. The sigmoid, or logistic, function F(z) = 1
1+e−z , z ∈ R,

and the ReLu function defined as ReLu (z) = max (z, 0).

2.2 Estimation methodology

Let vector θ collect all the parameters of the ANN model θ(v,l), for all layers l and neutrons

v. To estimate this vector, we can use the maximum likelihood (ML) principle. This is

equivalent to the minimization of the cross entropy loss function based on the difference

between the output Yit and its predicted values, P̂it, frequently used in the machine learning

literature.
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The log-likelihood function is given as follows:

log L (θ) =
N

∑
i=1

log Li(θ), (5)

where

log Li(θ) =
Ti

∑
t=1

Yit log Pit + (1−Yit) log (1− Pit) , for i = 1, .., N and t = 1, .., Ti (6)

is the log-likelihood function for each loan account i (see ?). For the numerical optimization

of log L (θ), we apply brute force optimization using gradient decent methods. Although

this increases considerably the computational burden, due to the large number of param-

eters and the non convexity of the ANN, this approach is considered as more reliable,

compared to the commonly used stochastic gradient decent (SGD) approximate method.

As frequently noted, the gradient approximation of the objective function performed by

the SGD method sacrifices accuracy for the acceleration of the optimization routine.4

In general, estimating the parameters of an ANN structure is a challenging task. It re-

quires to choose the optimal number of hidden layers and neurons which fit better the

structure into the data. To this end, in our empirical application we will rely on the

Bayesian Information Criterion. As is well known, this criterion penalizes heavily mod-

els with large number of parameters when this is not accompanied with a large increase in

the likelihood value. In addition to the BIC, one can assess the best structure of the ANN

approach based on the receiver operating characteristic curve (ROC) (see ?). This curve

can determine the ability of any method to discriminate between default and non-default

events, which is crucial in credit risk appraisal (see also Section 5).

3 Parametric survival analysis methods

The comparison of the ANN method to parametric methods predicting the PD is essential

in evaluating the benefits of the method in credit-risk management. The most frequently

used parametric model of survival analysis is the logit model. This assumes that the bi-

4We have also examined the performance of the SGD method, and we have found that its performance is
unsatisfactory compared to the brute force optimization method.
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nary link function Φ(.) in relationship (1) is given by the logit distribution, defined as

Φ(ωi(.)) = 1
1+e−ωi(.)

, where ωi(.) is a linear index function of the vector of covariates xit−r,

i.e., ωi(xit−r; θ) = ∑K
k=1 xk,it−rθk. The estimation of (1) and its statistical inference can be

conducted by the ML principle, based on equations (5) and (6). The relative benefits of

employing the logit model in predicting the PD compared to an ANN structure stem from

the fact that it has a parsimonious parameter structure which can be easily estimated and

economically interpreted. The parameter structure of the model implies a much smaller

degree of estimation uncertainty, compared to that of the ANN method which usually de-

pends on a very large number of parameters. However, note that the logit model is nested

in an ANN structure. It can be obtained from it (see equations (2)-(4)), if the number of

hidden layers is set to zero and the activation function is given by the logit distribution

The ANN structure should be also compared with the skewed-logit model suggested

recently by Dendramis et al. (2020) in survival analysis. This model is an extension of the

logit one. It requires only one more parameter than the logit model to be estimated and it

can improve considerably upon the prediction performance of the logit when the response

of Pit to its covariates has an asymmetric pattern. The binary link function of this model is

given by the skewed logit distribution (see, e.g., Burr (1942)), i.e.,

Φ(ωi(.); α) =
1(

1 + e−ωi(.)
)α (7)

where a > 0 is a parameter controlling the asymmetry pattern of Pit with respect to its co-

variates. In particular, a reflects the rate by which Pit approaches to 1 (or 0) when respond-

ing to the index function of the covariates of the model, i.e., ωi(xit−r; θ). If a < 1, then

Φ(.; α) approaches to unity with a slower rate than that of the logit distribution (a = 1),

and the probability density function of Φ(.; α) is skewed to the right. The inverse happens

when a > 1. In this case, Φ(.; α) approaches to unity faster than the standard logit, and

the probability density function of Φ(.; α) is skewed to the left. These results mean that,

if a < 1 the maximum impact of the covariates of the model occurs at a lower level than

Pit = 0.5, which is assumed by the logit distribution, while, if a > 1, at a higher. Note that,

for α = 1, the skewed logit model reduces to the logit one, assuming a symmetric pattern

of Pit with respect to ωi(xit−r; θ). To estimate the skewed logit model, we can rely on the
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ML principle, described before, and the concentrated log-likelihood function for given val-

ues of α. The optimal ML estimate of a will be the one that maximizes the concentrated

log-likelihood function based a grid search method, over a set of values of a.5

4 Generalized covariate effects

An important step of credit risk analysis is the interpretation and the appraisal of the rela-

tive effects of discrete, or marginal, changes of covariates xkit−r on the PD, Pit, across alter-

native covariates and/or models. When ωi(xit−r; θ) is a linear index function and Φ (.) is

a known parametric distribution (e.g., logit), this can be done by calculating the marginal

effect of a covariate xkit−r, k = 1, 2, ..., K, on Pit, based on the partial derivative of the link

function Φ(.) with respect to xk,it−r and applying the chain rule, i.e.,

∂Pit

∂xk,it−r
= φ

(
−

K

∑
j=1

xj,it−rθj

)
θk (8)

where φ (.) = ∂Φ/∂xk,it−r is the partial derivative of the binary link function Φ (.) with

respect to xkit−r. Then, the marginal effects ∂Pit/∂xk,it−r can be easily calculated for given

values of covariates xk,it−r, for all k, based on formula (8) and the estimates of the vector

of parameters θ. In practice, we often calculate ∂Pit/∂xk,it−r at the sample mean values

of xkit−r (see, e.g., Greene (2012), for a survey). Since the mean values of xkit−r may not

constitute representative values of xk,it−r and/or may not be economically meaningful,

Dendramis et al (2020) suggested estimating ∂Pit/∂xk,it−r based on a bootstrap sampling

method which relies on sample information of xk,it−r and the remaining covariates of the

model xj,it−r,for j 6= k, on Pit, instead of calculating them at their mean values.6

In contrast to the parametric statistical models, the calculation of the marginal effects

based on an ANN structure raises a number of difficulties, related to the high number of

layers and/or neurons that it assumes. This implies an exploding number of parameters

5In particular, the concentrated log-likelihood function is given as log L (θ; α), where θ denotes the pa-
rameters of the index function ωi(xit−r; θ). The estimate of α can be obtained by solving the optimization
problem: â = arg

a∈Qa

max
(

log L
(

θ̂α; α
))

based on a grid search over values of α, which belong to a reasonable

set of α values, Qa, and θ̂α is the ML estimate for the given value of α ∈ Qa(see, e.g., Harvey (1990)).
6Note that this approach is in the spirit of the generalized impulse response functions (girf) suggested in

the literature (see, e.g., Koop et al. (1996)).
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to be estimated and raises identification issues, limiting the interpretation of the partial

derivatives of Pit, as well as our ability to extract statistically identifiable relationships. A

multilayer ANN structure implies that there can exist multiple layers and neurons with dif-

ferent weights that can generate very similar predictions of Pit, which makes problematic

the measurement of reliable marginal effects for a given set of data.

To overcome the above difficulty and take advantage of the benefits of the ANN method

in providing accurate predictions, we can evaluate the distinct effects of xk,it−r on Pit by cal-

culating changes of Pit due to discrete changes in xk,it−r, instead of relying on the marginal

effects ∂Pit/∂xk,it−r. An appropriate such metric for credit risk management would be to

calculate changes of Pit between two distinct percentiles of the sample distribution of xk,it−r

taking also into account the distribution of the other covariates xj,it−r, for j 6= k. To present

this metric more formally, consider the bottom and top 10% percentiles of the sample dis-

tribution of a covariate xk,it−r (known as deciles), i.e., x(10%)
k,it−r =

{
xk,it−r ≤ Φ−1

xk
(10%)

}
and x(90%)

k,it−r =
{

xk,it−r ≤ Φ−1
xk

(90%)
}

, where Φ−1
xk
(.) denotes the quantile function of the

marginal distribution of xk,it, denoted as Φxk(.). Then, define the following sets of the sam-

ple points pairs (i, t− r):

I(10%)
k,it−r =

{
(i, t− r) : xk,it−r ∈ x(10%)

k,it−r

}
and I(90%)

k,it−r =
{
(i, t− r) : xk,it−r ∈ x(90%)

k,it−r

}
. (9)

Given I(10%)
k,it−r and I(90%)

k,it−r , we can calculate the change of Pit between the two deciles of xk,it−r,

x(10%)
k,it−r and x(90%)

k,it−r , for all pairs (i, t− r), based on following metric:

∆Pk,it = Pk,it

(
xit−r|(i, t− r) ∈ I(90%)

kit−r

)
− Pk,it

(
xit−r|(i, t− r) ∈ I(10%)

kit−r

)
, (10)

where xit−r is the vector of all covariates xk,it−r, for k = 1, .., K. Apart from the interdecile

effects of changes of covariate xk,it−r on Pit, equation (10) also takes into account the effects

of the remaining covariates xj,it−r, for j 6= k, on Pit which may interact with xk,it−r and

influence ∆Pk,it. This approach is along the lines of that suggested by Dendramis et al (2020)

to calculate generalized marginal covariate effects for parametric PD models, discussed

above. Note that the approach can be easily applied to any distinct percentile of xk,it−r.

Next, we present the steps of a bootstrap sampling method to calculate the sample

distribution of metric ∆Pk,it based on the estimates of an ANN structure, or any of the two
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of the logit models considered.

Generalized Covariate Effects:

step 1: From the sample distributions of deciles x(10%)
k,it−r and x(90%)

k,it−r draw values of covariate

xk,it−r and obtain sets I(10%)
k,it−r and I(90%)

k,it−r

step 2: Sample with replacement 1000 values of the whole vector of covariates xit−r for the pairs

of points (i, t− r) ∈ I(10%)
k,it−r and (i, t− r) ∈ I(90%)

k,it−r

step 3: Estimate ∆Pk,it based on the bootstrap values of vector xit−r obtained in step 2 and the

estimates of ANN structure. Denote these estimates as ∆P̂k,it

step 4: Compute the empirical distribution of ∆P̂k,it

The distribution of ∆P̂k,it, obtained by the above procedure, can be used to calculate the

median and/or different quantiles of ∆P̂k,it which can be employed to assess the relative

effects of a covariate xk,it−r on Pit controlling for the effects of the remaining covariates

xj,it−r,for j 6= k.

5 Data on Small Business Loans

To obtain estimates of the PD for the ANN structure and the two logit models presented in

the previous sections, we will use a large set of SBL accounts (N = 11522), provided by one

of the largest systemic banks of Greece.7 The data have monthly frequency and cover the

period from 2014:03 to 2017:06. During this period, the Greek economy was under severe

recession and the number of non-performing loans (NPLs) was growing fast. The total

number of observations used in our empirical analysis is 268089 (=T × N). Following the

Basel II definition of default, we assume that an SB loan is defaulted (i.e., non-performing)

when its principal and payments of interest are past due by 90 days, or more. The maturity

horizon of the loans varies from 4 to 40 months, while a large proportion of them are

referred to sole proprietors (about 60%).

7For confidentiality reasons, all identification information (e.g., names, addresses, security numbers were
removed by the bank before proving the data, following all security protocols.
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Our data set has two interesting features. The first is the high percentage of the de-

faulted loans (almost 40%), due to the distressed financial conditions held in the economy

during the sample interval. This is expected to improve, considerably, the efficiency of the

estimation and inference procedures.8 The second feature is that our data consists of re-

structured loans increased under the legal procedures introduced by the government (e.g.,

laws 3869/2010, 3986/2011 and 4224/2013) to deal with the problem of NPLs (see, e.g.,

Charalambakis et al. (2017)). These procedures favor loan restructuring based on credit

ability related criteria, such as borrowers’ income, employment status, family size and po-

tential disabilities, inter alia. They are aimed to help borrowers to service their debt, under

severe recessions and systemic financial crises (see, e.g., Dergthaler et al (2015), for a sur-

vey). 9 For banks, they constitute a prominent policy tool to protect the values of their

credit portfolios and avoid weakening their balance sheets. However, for borrowers, they

may raise moral hazard incentives. The proposed survival-ANN method may better cap-

ture the above features of the data, through the increased flexibility that it offers in mod-

eling hidden relationships across covariates, reflecting complicated economic conditions,

such as those observed in our sample.

5.1 Covariates

The covariates used in our study can capture behavioral attitudes of borrowers and the

effects of changes in the macroeconomic conditions of the economy on the loan default

decisions. Next, we present these covariates in more detail, categorizing them into three

main groups, and we discuss their expected effects on the PD based on the theory and

empirical evidence reported in the literature.

(i) Application covariates

This group includes the following qualitative dummy variables, taking values 1 if a

specific characteristic holds, and 0 otherwise: (a) urban area, capturing companies in the

broad area of Athens and (b) sole proprietorship (denoted as SP), characterizing companies

owned by a single person. We expect the sole proprietorship (SP) covariate to be negatively

8See King, Zeng (2001).
9Note that a restructured loan is often treated as a new entry by the banks, with a new account opened at

the time that the old loan is defaulted and exits the sample.
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associated with the PD, due to internal-control mechanisms of the enterprises reducing

asymmetric information problems between the bank and the borrower (see, e.g., Fich and

Slezak (2008)).

(ii) Loan-specific covariates

In this group we include the loan-specific covariates defined over loan accounts i and

time-points t of the sample. These include the ratio of the delinquent amount of the loan

over its total balance (denoted as delinq.amount/balance), and the ratios of the actual pay-

ments of the loan and its balance over its installment (denoted as payment/installment

and balance/installment, respectively). In these ratios, note that the total balance of a loan

includes arrears such as penalties, unpaid installments, extra interest rates etc. The install-

ment of a loan is contracted at its application date. On the other hand, the actual payments

of a loan can change over time depending on the ability of the borrowers to fully service

their debt. Under the economic conditions that characterize our data, note that banks might

receive payments less than the installments in order to help borrowers to service their debt.

Apart from the inability to pay, due to recession and/or liquidity constraints, the above

ratios can mirror sources of default risk reflecting strategic decisions of borrowers to de-

fault and/or behavioral attitudes, like moral hazard incentives. That is, borrowers with

ability to pay and without liquidity problems may strategically not pay back their loans

(see, e.g., Dewatripont, Tirole (1994)). Moreover, the ratio delinq.amount/balance is often

considered as a measure of consistency of the borrower to pay his/her loan, and thus it can

be influenced by moral hazard incentives leading borrowers to delay their loan payments.

The effect of the above ratio on the PD is expected to be positive. Another measure of loan

payment consistency often used, in practice, is the number of times that a delinquent bor-

rower has a positive amount in buckets 1, 2 and 3, cumulatively. That is, the loan is past

due for up to one, two and three months, over its history. This measure, referred to as the

number of delinquency buckets (no.delinq.buckets), can be considered as an alternative to

the delinq.amount/balance one to capturing possible moral hazard incentives on the PD,

although a complete characterization of such incentives is hard to be made.

Finally, the ratio balance/installment is expected to have a positive effect on PD, which

can be explained by the same reasoning with delinq.amount/balance. For the ratio payment/installment,

one can argue that a negative sign of its on the PD (implying a decrease in the PD) can be in-
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terpreted as evidence that the borrowers are committed to meet their obligations, meaning

that their actions are not driven by moral hazard.

(iii) Macroeconomic Covariates

This group of covariates consists of the inflation and the real gross domestic product

(gdp) growth rates of the economy. Both series are seasonally adjusted. The quarterly

series of the real gdp growth rate is interpolated on monthly frequency. The above macroe-

conomic variables can capture nominal and real effects of changes in the business cycle

conditions. These effects constitutes the two main aggregate sources of default risk in the

economy, for all borrowers, and they can influence the ability of the small businesses to pay

back their loans. As is well known in the literature (see, e.g., Bergthaler et al. (2015)), credit

riskiness of small and medium sized firms exhibit a cyclical pattern following the changes

in business cycle conditions, while default rates increase, substantially, during recessions.

Figures 2A graphically presents the series of default rates of the SB loans, over the

sample interval 2014:03-2017:06, while Figure 2B presents a graph of these rates conditional

on the duration time (defined in months) of the loans. The conditional (average) default

rates are aggregated over the cross-section dimension of the data, for all duration intervals

presented in the horizontal axis. Inspection of the Figure 2A shows that, until the middle

of year 2015, the SBLs defaults exhibited abrupt shifts. Since then, they grown with an

approximately constant rate until the end of the sample. As Figure 2B indicates that the

highest default rate is reached at shorter loan durations (i.e., up to one year). This is smaller

than that observed in other loan markets (e.g., mortgages and consumer loans, see Deng

et al. (2000) and Dendramis et al. (2020) and Dendramis et al. (2009)). Almost certainly, this

can be attributed to the shorter maturity of the SBLs.
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Figure 2B: Default rates conditional on loan duration (age)

In Figure 3, we present the time varying distribution of the behavioral variables balance/installment,

payment/installment, no.delinq.buckets, delinq.amount/balance, through a fan chart visual-

ization. Inspection of this figure indicates that. for all the above covariates, the cross-

sectional dispersion is substantial. For delinq.amount/balance and, more evidently, payment/installment,

the interpencentile spread is larger that than that for balance/installment. The covariate

no.delinq.buckets posses an upward trended volatility, highlighting the increased tendency

of borrowers to default over time. The substantial differences in the above interpencentile

spreads may help to better identify the covariate effects on ∆Pk,it and, thus, facilitate their

interpretation for both the ANN method and the two logit models considered.
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Figure 3: Time varying distribution (fan chart visualisation) of the behavioral covariates: (a) is delinquency
over balance, (b) is payment over installment, (c) is balance over installment and (e) is number of delinquent
buckets.

6 Estimation results

6.1 In-sample estimates

We present two different sets of estimation results for the ANN method and the two para-

metric models considered, i.e., the logit and the skewed logit. The first assumes a lag

structure of r = 3 months for relationship (1), while the second assumes r = 12 months.

The lag structure r = 3 constitutes a natural choice, since loan default occurs when prin-

cipal and payments of interest are past due by 90 days (i.e., 3-periods back from t).10 The

lag structure r = 12 can indicate the ability of all the above methods to provide forecasts of

default events over a longer horizon ahead, which is often of interest for bank regulators

and/or monitoring authorities. From relationship (1), it can be seen that, at time t− r, the

lag structures r = 3 and r = 12 can be also thought of as a shorter and longer prediction

horizons.

Since the features of the SB enterprises differ across alternative corporate structures

(i.e., corporation vs sole proprietorship), in our analysis for the two logit models we distin-

guish the effects of the behavioral variables on the PD between the corporation (denoted as

Corp) and sole proprietorship (denoted as SP) structures, by using appropriately defined

dichotomous variables. For the ANN method, this is, in principle, unnecessary. A sufficient

10Note r = 3 is also the best chosen lag structure based on the Bayesian and Akaike criteria, see below.
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number of hidden layers and nodes should be able to approximate well non linearities of

this kind, as noted before.

As is considered in survival analysis, in the estimation of two logit models and the

ANN structure we include in the index function ωi(xit−r; θ) a concave function of duration

time, dit, given by h(dit) = θ1 ln(dit) + θ2 (ln(dit))
2 to obtain predictions of Pit condition

conditional on dit (see also our Discussion in 2.1). This function is chosen among a set of

alternative quadratic forms of h(dit), by comparing the fit of the two logit models into the

data using the BIC metric. The concave nature of h(dit) reflects evidence in the literature

that loan default does not often occur at the very early and/or very late stage of their

maturity horizon (see, e.g., Deng et al. (2000) and Glennon, Nigro (2005))). This can be also

justified by the graph of Figure 2B.

To choose the best structure (architecture) of the ANN method in terms of the number

of layers and their associated neurons, we present a number of prediction performance

and data fit metrics. These metrics can be also used to compare the optimal ANN structure

chosen to the two parametric models considered. The data fit metrics include the minus

log-likelihood function value (denoted as−loglik) obtained by the ML optimization proce-

dure, the BIC and the Mcfaddens’ coefficients of determination R2 and R2-adjusted.11 Note

that, for the evaluation of the relative performance of the alternative ANN structures exam-

ined, one advantage of the BIC metric is that it can select a more parsimonious structure,

in terms of parameters (or layers-neurons), compared to AIC which penalizes less more

complex structures. The prediction performance metrics include the type I and II misclas-

sification errors of the default or non-default events, as well as values of the AV(ROC) and

integral(ROC) metrics, based on the receiver operating characteristic (ROC) curve. These

metrics are often used in practice to evaluate the overall prediction performance of binary

choice models (see, e.g., Satchel, Xia (2008), for surveys). The type I error metric gives the

error (in percentage terms) that a loan is predicted as non-defaulted, while it is actually

defaulted. On the other hand, the type II error gives the error that a loan is predicted as

defaulted, while it is actually non-defaulted. To calculate these errors, we transform the

11These coefficients are defined as follows: R2 = 1− log L(θ)
log L(θR) and R2-adjusted = 1− log L(θ)-K

log L(θR) , where θ is
the parameter vector of the likelihood and θR is that of a restricted version of the model that assumes zero
values for all slope coefficients.
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predicted probabilities of default events, Pit, obtained by the alternative methods into bi-

nary (point) forecasts (i.e., Yit = 1, or Yit = 0) based on a threshold value above (or below)

which a loan is characterized as defaulted (or non defaulted), denoted as p∗ (see ?). More

specifically, the type I and type II errors are defined as:

type I error: eI (p∗) = ∑i ∑t Yit (Pr(Yit = 1|Yis = 0) ≤ p∗)
∑i ∑t Yit

, for s < t, (11)

and

type I I error: eI I (p∗) = ∑i ∑t(1−Yit) (Pr(Yit = 1|Yis = 0) > p∗)
∑i ∑t(1−Yit)

, for s < t,

respectively. We can choose the optimal value of p∗ by minimizing the sum of errors:

eI (p∗) + eI I (p∗) (see Hwang and Chu (2014)).

The ROC curve can show how well a model discriminates between events Yit = 1 and

Yit = 0 at any threshold value p∗ ∈ [0, 1]. The true proportion rate of the default event, at

time t, is defined as

TPRt =
∑i Yi,t [Pr(Yit = 1|Yis = 0) > p∗]

∑i Yit
, for s < t (12)

and the false proportion rate (denoted as FPRt) is the type II error. At each t, the ROC

curve is defined by the geometric locus of the points (FPRt,TPRt), for all threshold values

p∗, while the ROCAUC measures the area under the ROC curve, giving us a single num-

ber of performance. For the model that discriminates better between the default and non

default events, the value of the ROCAUC curve, at any t, should be higher and closer to

unity which is its maximum value. To account for the dynamic feature of our dataset, we

report the average value, over all time points t, estimates of the ROCAUC curve, denoted

as AV(ROC), as well as the sum of ROCAUC over all sample points t, denoted as inte-

gral(ROC). For the best performing method, both the AV(ROC) and integral(ROC) metrics

will reach their highest values of all the methods considered.

[INSERT TABLES 1A-1B]

Tables 1A-1B present values of the AV(ROC) and BIC metrics. These clearly show that

we need more than one layer of neurons to fit well an ANN structure into the data. This is

true independently of the activation function considered. For r = 3, both the AV(ROC) and
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BIC indicate that, for the logit activation function, the best ANN structure is that with 3

hidden layers and 4, 2 and 1 neurons in each of these layers, respectively. For the ReLu, the

best structure is that with 3 hidden layers and 3, 2 and 1 neurons in each of these layers,

respectively. When we move to the case of r = 12, the optimal number of layers and

neurons decreases for both the activation functions, implying that a less complex ANN

structure is required to predict the PD, efficiently, over longer horizons. As it becomes

apparent from the results of Table 1B, for r = 12, the best ANN structure is that of 2 layers

with 2 and 1 neurons associated with each layer, respectively.

To further appraise the differences of the ANN method, in terms of prediction power

and fitness into the data, across the lag structures r = {3, 12} and the two activation func-

tions, in Tables 2A-2B we present values of the type I, type II errors, AV(ROC) and inte-

gral(ROC) metrics, as well as the −loglik value for the optimal ANN structures (layers-

neurons) indicated by the results of Tables 1A-1B. The results of the tables for r = 3 demon-

strate that, for all the above metrics, the differences between the two activation functions

examined are quite narrow, with the logit function to be slightly superior in terms of the

type I error. As r increases to 12, all the metrics imply an important deterioration in the fit-

ness and prediction performance of the method, independently of the activation function.

Note that, for r = 12, the type I error increases almost by 30%.

[INSERT TABLES 2A-2B]

Tables 3A-3B and 4A-4B present parameter estimates, and values of the fit and pre-

diction performance metrics for the two logit models. This is done for the lag structures r

= {3, 12}. Note that the tables present results for alternative specifications of the covariates

of the models, with, or without, the loan-specific group of variables and with, or without,

the qualitative dummies distinguishing the corporate structure effects on Pit (i.e., SP and

Corp). The comparison of the fit and prediction metrics, reported in the tables, to those

of the optimally chosen structure of the ANN method, given in Tables 2A-2B, can lead to

interesting conclusions about the benefits in using the ANN method in predicting the PD.

First, as can be seen from Tables 2A, 3A and 4A, the ANN method clearly performs

better than the two logit models, in terms of most of the metrics presented in the tables

(namely, the type I+type II error, type I error, AC(ROC) and integral(ROC), for the case of
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r = 3. Note that the gains of the method are more profound for the type I error metric,

which implies an improvement almost by 60% even relative to the skewed logit model

which constitutes a flexible parameterization. Note that the improvement becomes almost

150% when the ANN method is compared to the logit model, often used in practice. These

results highlight the usefulness of the ANN method in managing bank loan portfolios. The

reduction of the type I error can avoid losses due to falsely predicting loan non-defaulting.

Regarding the type I+type II error metric, the improvements of the ANN method relative to

the skewed and standard logit models are of order 25% and 30%, respectively.

Second, for r = 12, the results of the tables (see Tables 2B, 3B, 4B) indicate that the

prediction performance of the ANN method is more similar to that of the two logit models.

This can be confirmed by most prediction and fit metrics reported in the tables. Note that,

even for this case, the ANN method is the best performing method in terms of the type I

error metric. However, in terms of the total, type I +type II error, the best model is the skewed

logit.

Summing up, the above results show that there exist significant gains from employing

the ANN method in predicting the PD relative to the two logit models considered. These

gains are more apparent over short term horizons. This can be attributed to possible non-

linearities and unobserved effects driven borrowers’ decisions to default in short-run. For

longer horizons, these effects seem to cease, implying that the decisions to default may be

determined by simpler structures which are in line with the logit models.

[INSERT TABLES 3A-3B and 4A-4B

Regarding the relative performance of the two logit models, the results of the tables

demonstrate the superiority of the skewed logit model. This can be justified by almost all

the fit and prediction performance metrics reported in the tables. The estimates of param-

eter a, reported in Tables 4A-4B, show that Pit exhibits an asymmetric to the right response

pattern of Pit to the covariates of the model. This means that Pit approaches to unity with a

slower rate than the standard logit model. Note that this result is robust to the alternative

covariates specifications and the different cases of r considered. Regarding the remaining

parameters of the two logit models, the results of the tables indicate that the slope coeffi-

cients of covariates xk,it have the correct sign (see Section 5), for all k, and are significant at
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the 5% level. The positive sign of the effects of the qualitative dummy SP on Pit indicate

that sole proprietorship has a positive effect on the PD, despite evidence in the literature

for the opposite (see Wellalage and Locke (2015)). This may be attributed to the systemic

risk conditions held in the economy, during the sample and the moral hazard incentives

raised by the legal procedures protecting individual borrowers and corporations from fore-

closures. Under such conditions, small business companies, even those managed by sole

proprietors, may tend not to service their debt, by repeatedly exploiting allowance of debt

payment moratorium and loan restructuring.

Finally, in Figures 3A and 3B we present estimates of the central and tail-tendency mea-

sures of the distribution of the PD conditional on the duration time of a loan dit, denoted as

denoted as P̂it (dit). These are based on the estimates of the PD by the ANN and logit meth-

ods, and it is done for r = {3, 12}, respectively. The central-tendency measures include the

mean and median, while the tail-tendency include the lower (25%) and upper (75%) per-

centiles. These measures enables us to study the effects of dit on Pit in depth, across the

whole support interval of the distribution P̂it (dit). For the ANN structure, the estimates of

P̂it (dit) are based on the in-sample optimal estimates of the ANN structure given by Table

2A for the logistic activation function. For the two logit models, they are based on the full

specifications of them given by the 7th-8th columns of Tables 3A-3B and 4A-4B.
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Figure 3A: Conditional on the duration PD functions (s− t = 3 months).
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Figure 3B: Conditional on the duration PD functions (s− t = 12 months).

The inspection of Figures 3A and 3B implies that, for both cases of r, the distribution

P̂it(dit) obtained by the ANN method has an inverse-U shape. This is similar to that im-
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plied by the two logit models and it is consistent to shapes of P̂it(dit) for other loan markets

reported in the literature (e.g., for mortgages, see Dendramis et al (2018)). This result can

be justified by all the graphs of the central-and tail-tendency measures of the distribution

P̂it(dit), reported in the figures. The pattern of all these measures tends to reach its highest

values at relatively early duration intervals, which vary between 10 and 18 months, and

then it exponentially declines. This pattern of P̂it(dit) is also very close to that of the con-

ditional default rates reported in Figure 2B, which is obtained nonparametrically from the

data. The last result adds supports to the evidence that both the ANN method and the

two logit models can sufficiently capture the true relationship between Pit and dit implied

by the data. Another interesting conclusion that can be drawn by the comparison of the

graphs of Figures 3A and 3B is that P̂it(dit) has a much more smooth pattern for r = 12

than r = 3. This may be attributed to the more complex pattern of the factors determining

Pit over the shorter prediction horizons, such as r = 3, as also noted before.

6.2 The Generalized covariate effects on PD

To examine the relative importance of any covariates xk,it−r, k = 1, 2, ..., K, on PD, in this

section we present results for the generalized covariate effects ∆P̂k,it. These are based on

the bootstrap sampling method, described in Section 4, and the estimates of the three meth-

ods, presented in the previous section. For the ANN method, we use its specification with

3 hidden layers, and 4, 2 and 1 neurons in each of these layers, respectively, and the logit

activation function, while for the logit models we use their full specifications whose esti-

mates are reported in the 7th-8th columns of Tables 3A and 4A.12 As for the lag structure

r, we provide results for the case that r = 3 where all the methods exhibit better prediction

performance and the ANN method outperforms the two logit models, according to our

in-sample results. To better appraise the covariate effects for the most distressed loans, we

focus on loan level data with duration dit = 12 months. As Figure 2B shows, loans with

age of around one year tend to have the highest default rates.13

12Note that, for the ANN method, similar results are obtained if the Re Lu is used as activation function.
13Note that most of these loans of our data set refer to the sample period May-June 2015 where serious

fears of a Greek withdrawal from the Eurozone were raised, the goverment announced the bailout referen-
dum on 27 June 2015, the banks closed and capital controls introduced.
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Table 5 and Figure 4 present measures of the distribution of ∆P̂k,it, for all xk,it−r. In

particular, the table presents the median, and the 25% and 75% percentiles of the distri-

bution of ∆P̂k,it, while Figure 4 presents the boxplots of ∆P̂k,it. The results of the table and

figure clearly show that, for all the methods, the effects of the ratios delinq.amount/balance,

no.delinq.buckets and balance/installment on Pit are positive, while those of the ratio payment/installment

are negative. These results can be clearly supported by the distribution support interval of

the boxplots of ∆P̂k,it, and the median and percentile measures reported in the table. They

are also consistent with the slope coefficients of the logit models, reported in Tables 3A-3B

and 4A-4B, and the theoretical predictions made in Section 5.

A second conclusion that can be drawn from the results is that, in terms of the median

the distribution of ∆P̂k,it which is a measure of central tendency, the covariate effects of

the above ratios, reflecting behavioral attitudes of borrowers, are larger in magnitude than

those of the macroeconomic covariates (namely, the inflation and real gdp growth rates),

as well as those of the qualitative dummies urban area and SP. As can be seen from the

boxplots of ∆P̂k,it, the median of ∆P̂k,it for the macroeconomic variables is very close to

zero and ∆P̂k,it has small dispersion around this value. Similar conclusions can be drawn

for the covariates effects of urban area and SP on Pit. The above results are qualitative

similar between the ANN method and the two logit models highlighting the robustness

of the method to measure covariate effects. However, it is worthy to note that, in terms

of magnitude, there are differences between the results. The ANN method provide larger

values of ∆P̂k,it than the two logit models for the four ratios capturing behavioral attitudes

of borrowers. This can be justified not only by the median, but also by the values of two

quantiles reported in Table 5 for almost all of the ratios considered.

[INSERT TABLE 5]
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Figure 4: Covariate effects; (a) inflation rate (b) real gdp growth (c) no.delinq.buckets (d) Urban effects (e) SP
(f) delinq.amount/balance (g) payment/installment (h) balance/installment. Also, L stands for logit, SL for
skewed logit and ANN for Artificial Neural Network.

6.3 Out-of-sample results

In this section, we evaluate the out-of-sample forecasting performance of the ANN method

and we compare the method to the logit and skewed logit models. For the ANN method,

we adopt the optimal structure (no. of layers-neurons) implied by the in-sample results

(see Tables 1A-1B, or Tables 2A-2B), and we examine the performance of both the logit

and the ReLu activation functions. For the two logit models, again we rely on their full

specifications reported in the 7th-8th columns of Tables 3A-3B and 4A-4B, including the

whole set of covariates.

We obtain forecasts of the event that a loan i will default within a period (horizon) of

H = {3, 12} months ahead, defined as Yi,t+h = 1, for h ∈ {1, .., H}. To obtain the forecasts

for H = 3 (or 12), we assume that the lag structure is given as r = 3 (or 12), so that

the forecast of the event Yi,t+h relies on the current t-time information of the sample. The

calculation of the H-month ahead PD is based on the probability of survival of a loan i

within the interval of H-months ahead, given as follows:

Sit (H) =
H

∏
h=1

(1− Pi,t+h), for i = 1, .., N (13)

where Pit+h is the PD given by (1). Given (13), we can obtain the PD of loan account i

within the horizon of H-months ahead as PDit(H) = 1− Sit (H). Based on PDit(H), we

can classify if a loan i will default in the next H periods, when the condition PDit(H) ≥ p∗
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holds, for p∗ ∈ [0, 1]. The optimal p∗ can be found be minimizing the type I+type II error, as

is described in Section 6.1.

Our forecasts rely on two recursive estimation approaches; the first uses an expanding

window and the second a rolling over one. 14 The expanding window approach uses an

initial data sample from 2014:03 until 2015:12 to obtain estimates of Pi,t+h and provide fore-

casts of PDit(H) and loan default events. Then, we add to our initial sample window the

next month of observations, obtain new estimates of Pi,t+h and provide the subsequent set

of PDit(H) and loan default events, within the next H months ahead. This procedure is

sequentially repeated until the end of the sample (i.e., date 2017:06), leaving us an out-of-

sample interval of one and a half years of observations for prediction performance evalu-

ation. According to the rolling over window approach, we consider a rolling sample win-

dow of fixed size for the estimation. The first fixed window covers the period from 2014:03

to 2015:12. As in the expanding window approach, this window is used to obtain estimates

of Pi,t+h and PDit(H), and loan defaults. Next, it is moved one month forward and is used

to obtain new estimates of Pi,t+h, and provide the subsequent values of PDit(H) and loan

defaults. This procedure is repeated until the end of the sample. Note that, for both the

above recursive estimation and forecasting approaches, the out-of-sample interval remains

the same. This consists of 207396 observations, which constitute a relatively large sample

size for efficient and reliable out-of-sample forecasting evaluation.

The results of the out-of-sample exercise are reported in Tables 6A-6B; Table 6A presents

results for the ANN method and Table 6B for the two logit models. In each of these ta-

bles, we consider the cases of H = {3, 12} and the two activation functions, for the ANN

method. For evaluating the prediction performance of the methods on predicting default

(or non default) events, the tables present the following metrics: the type I and type II errors,

the type I+type II error, and AV(ROC) and integral(ROC) defined in Section 6.1. A general

conclusion that can be drawn from the results of the tables is that the prediction perfor-

mance of the ANN method is satisfactory and improves upon that of the two logit models,

in terms of most of the metrics reported in the tables. This is true for both the expanding

and rolling window forecasting approaches, and it holds for the two activation functions

14Note that, as it has been highlighted in the literature, the rolling window approach is considered as a
more robust method to parameter instability (see e.g., ? and Groen and Kapetanios (2016)).
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considered.

The most improved metric by the ANN method is the type I error. This implies predic-

tion gains that range over 100% in some cases. As we have previously discussed, control-

ling this error is important for bank loans management, seeking to minimize losses from

defaults. Improvements are also observed by the ANN method for the metrics AV(ROC)

and integral(ROC), but these are less important than those of the type I error. The above

conclusions mainly hold for the case of H = 3. For H = 12, the prediction gains of the

ANN method relative to the two logit models reduce substantially. This is in accordance to

our in-sample results. Moreover, the similar prediction performance of the ANN method

between the in- and out-of-sample results, as well as between the expanding and rolling

window forecasting approaches constitutes further evidence that the ANN structure (num-

ber of layers and neurons) chosen fits efficiently into the data, meaning that there are no

overfitting problems due to over-parametirezation of the ANN structure (see West et al

(1997)).

Finally, regarding the relative performance of the two logit models, the results of the

tables are also consistent with the in-sample ones. They show that the skewed logit out-

performs the logit, in terms of the type I error, AV(ROC) and integral(ROC) metrics, when

H = 3. For H = 12, the differences in these metrics between the two models are eliminated.

[INSERT TABLE 6A, 6B]

7 Conclusions

Based on a large set of individual small business (SB) loan account data, this paper suggests

a multilayer artificial neural network (ANN) - known as deep learning ANN - to predict the

probability of loan default (PD) within the survival analysis framework. The ANN method

has the advantage that it can consider complex structures in the data to capture the true

factors driving loan default decisions. Furthermore, the interconnections between layers

and neurons of the method can uncover hidden aspects capturing behavioral attitudes

of borrowers or other institutional factors (e.g., legal procedures) influencing loan default
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decisions, which can lead to prediction gains. These factors are beyond the macroeconomic

and credit risk fundamentals frequently used by parametric methods (e.g., the logit model)

to predict the PD.

The paper provides a number of useful results highlighting the usefulness of employing

the ANN method to predict loan defaulting. We show that this method constitutes a favor-

able alternative to the logit and skewed logit models. In particular, we find that the ANN

method can lead to prediction gains in discriminating between default and non-default

events, and to significantly reduce the type I misclassification error for default events. This

can lead to significant loss reductions of bank loans portfolios. Our results are supported

by in-sample estimates and out-of-sample forecasting exercises, over different horizons.

They also demonstrate that most of the gains of the ANN method in predicting the PD are

related to short term horizons. As the prediction horizon increases, the performance of the

ANN method declines, but still compares favorably to the logit models for some metrics.

Finally, we show that loan-specific covariates, like the ratios of the delinquency amount

of a loan over its total balance and loans payments over its installments reflecting behav-

ioral attitudes of investors, constitute the main factors determining the PD. We provide

clear cut evidence that the above covariates dominate the macroeconomic ones, such as the

real gdp and inflation rate given at aggregate level, often used in the literature to predict

the PD. These results are supported by a new measure of calculating generalized effects of

a covariate on the PD over discrete changes of its values (e.g., different percentiles), while

controlling for the effects of other covariates. This measure exploits the fact that the ANN

method can provide accurate estimates of the PD and it can overcome identification issues

of the ANN method encountered when calculating marginal effects. We derive the empiri-

cal distribution of the above covariate effects based on a bootstrap sampling method which

takes into account possible interactions among the covariates determining the PD.

30



References

Altman Edward I., Sabato Gabriele. Modelling Credit Risk for SMEs: Evidence from the U.S. Market

// Abacus. 2007. 43, 3. 332–357.

Barron A. R. Universal approximation bounds for superpositions of a sigmoidal function // IEEE

Transactions on Information Theory. 1993. 39, 3. 930–945.

Behr Patrick, Foos Daniel, Norden Lars. Cyclicality of SME lending and government involvement in

banks // Journal of Banking Finance. 2017. 77. 64 – 77.

Bergthaler Wolfgang, Kang Kenneth H, Liu Yan, Monaghan Dermot. Tackling Small and Medium Enter-

prise Problem Loans in Europe. III 2015.

Burr I.W. Cumulative frequency functions // The Annals of Mathematical Statistics. 1942. 13. 215–

232.

Charalambakis E., Dendramis Y., Tzavalis E. On the determinants of NPLs: Lessons from Greece //

Political Economy Perspectives on the Greek Crisis. 2017.

Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control,

Signals, and Systems (MCSS). XII 1989. 2, 4. 303–314.

Dendramis Y., Tzavalis E., Adraktas G. Credit risk modelling under recessionary and financially dis-

tressed conditions // Journal of Banking and Finance. 2009. 91. 160–175.

Dendramis Y., Tzavalis E., Varthalitis P., Athanasiou E. Predicting default risk under asymmetric binary

link functions // International Journal of Forecasting. 2020. 36, 3. 1039 – 1056.

Deng Yongheng, Quigley John M., Order Robert. Mortgage Terminations, Heterogeneity and the Exer-

cise of Mortgage Options // Econometrica. 2000. 68, 2. 275–307.

Dewatripont M., Tirole J. The Prudential Regulation of Banks. 1994.

Dietsch Michel, Petey Joël. The credit risk in SME loans portfolios: Modeling issues, pricing, and

capital requirements // Journal of Banking Finance. 2002. 26, 2-3. 303–322.

Fausett Laurene. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications.

USA: Prentice-Hall, Inc., 1994.

Glennon Dennis, Nigro Peter. Measuring the Default Risk of Small Business Loans: A Survival Anal-

ysis Approach // Journal of Money, Credit, and Banking. 2005. 37. 923–947.

Greene W.H. Econometric analysis. 2012.

31



Gu Shihao, Kelly Bryan, Xiu Dacheng. Empirical Asset Pricing via Machine Learning // The Review

of Financial Studies. 02 2020. 33, 5. 2223–2273.

Hornik Kurt, Stinchcombe Maxwell, White Halbert. Multilayer feedforward networks are universal

approximators // Neural Networks. 1989. 2, 5. 359 – 366.

King Gary, Zeng Langche. Logistic Regression in Rare Events Data // Political Analysis. 2001. 9, 2.

137–163.

Koop Gary, Pesaran M.Hashem, Potter Simon M. Impulse response analysis in nonlinear multivariate

models // Journal of Econometrics. 1996. 74, 1. 119 – 147.

Moro Andrea, Fink Matthias. Loan managers’ trust and credit access for SMEs // Journal of Banking

Finance. 2013. 37, 3. 927–936.

Rikkers Frieda, Thibeault Andre E. A Structural form Default Prediction Model for SMEs, Evidence

from the Dutch Market // Multinational Finance Journal. 2009. 13, 3-4. 229–264.

Satchel Stephen, Xia Wei. 8 - Analytic models of the ROC Curve: Applications to credit rating model

validation // The Analytics of Risk Model Validation. Burlington: Academic Press, 2008. 113 –

133. (Quantitative Finance).

32



Table 1A: Alternative layers-neurons specifications of the ANN model (lag structure r = 3 months)

AV(ROC) BIC
number of
hidden layers

neurons
in layer 1

neurons
in layer 2

neurons
in layer 3

neurons
in layer 4

Activation Function: Logit

0.839 38148.741 3 4 2 1 0
0.811 38549.508 2 5 1 0 0
0.828 38753.008 3 2 1 1 0
0.808 38769.953 2 4 1 0 0
0.825 38817.855 2 6 1 0 0
0.833 39112.385 3 3 1 1 0
0.816 39144.438 3 3 2 1 0
0.82 39598.628 2 3 1 0 0

0.815 39645.456 3 2 2 1 0
0.798 39856.441 2 2 1 0 0
0.814 40406.067 4 2 2 2 1

Activation Function: ReLu

0.84 38480.532 3 3 2 1 0
0.825 39426.836 3 3 1 1 0
0.814 39508.526 2 3 1 0 0
0.815 39629.729 2 2 1 0 0
0.826 39659.436 2 4 1 0 0
0.825 39820.619 2 5 1 0 0
0.806 40494.894 3 4 2 1 0
0.8 40904.011 4 2 2 2 1

0.799 40907.275 3 2 2 1 0
0.799 41019.641 2 6 1 0 0
0.791 41419.352 3 2 1 1 0

Notes: The table presents values of the BIC and AV(ROC) metrics for alternative layers and neurons specifi-
cations of the survival ANN model, when the lag structure of the model is r = 3 months.
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Table 1B: Alternative layer-neuron specifications of the ANN model (lag structure r = 12 months)

AV(ROC) BIC
number of
hidden layers

neurons
in layer 1

neurons
in layer 2

neurons
in layer 3

neurons
in layer 4

Activation Function: Logit

0.688 7042.504 2 2 1 0 0
0.577 7108.12 3 2 2 1 0
0.644 7173.595 2 3 1 0 0
0.679 7190.29 3 3 1 1 0
0.706 7220.828 2 6 1 0 0
0.686 7252.042 3 2 1 1 0
0.588 7262.05 3 4 2 1 0
0.688 7359.31 2 4 1 0 0
0.687 7370.413 3 3 2 1 0
0.683 7408.566 4 2 2 2 1
0.695 7454.724 2 5 1 0 0

Activation Function: ReLu

0.683 7035.295 2 2 1 0 0
0.684 7120.492 3 3 2 1 0
0.685 7160.632 3 2 1 1 0
0.689 7269.147 4 2 2 2 1
0.685 7287.701 3 3 1 1 0
0.685 7288.955 2 3 1 0 0
0.677 7310.328 3 2 2 1 0
0.705 7354.47 2 6 1 0 0
0.686 7415.784 2 4 1 0 0
0.685 7457.006 3 4 2 1 0
0.698 7485.903 2 5 1 0 0

Notes: The table presents values of the BIC and AV(ROC) metrics for alternative layers and neurons specifi-
cations of the ANN model, when the lag structure of the model is r = 12 months.

Table 2A: Prediction and fit performance metrics for the
ANN model (in-sample results- lag structure r = 3)

I: number of hidden layers=3,
neurons Vlj = {4, 2, 1}, j = 1, 2, 3,

Act. function=logit)

II: number of hidden layers=3,
neurons Vlj = {3, 2, 1}, j = 1, 2, 3,

Act. function= ReLu)

−loglik -18718.147 -18965.287
BIC 38148.741 38480.532

no of parameters. 57 44
p∗ 0.011 0.013

type I + type II 0.362 0.385
type I error 0.093 0.111
type II error 0.269 0.274

AV(ROC) 0.839 0.84
integral(ROC) 28.491 28.508

Notes: The tables presents values of prediction and fit performance metrics for the best chosen specification
of the ANN model with lag structure r = 3, based on the results of the BIC and AV(ROC) metrics reported in
Table 1A.
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Table 2B: Prediction and fit performance metrics for the
ANN model (in-sample results- lag structure r = 12)

I: number of hidden layers=2,
neurons Vlj = {2, 1}, j = 1, 2,

Act. function=logit)

II: number of hidden layers=2,
neurons Vlj = {2, 1}, j = 1, 2,

Act. function≡ ReLu)

−loglik -3452.654 -3492.223
BIC 7042.504 7035.295

no of parameters. 73 25
p∗ 0.014 0.018

type I + type II 0.667 0.664
type I error 0.276 0.316
type II error 0.391 0.349

AV(ROC) 0.688 0.683
integral(ROC) 17.845 17.747

Notes: The tables presents values of prediction and fit performance metrics for the best chosen specification
of the ANN model with lag structure r = 12 months, based on the results of the BIC and AV(ROC) metrics
reported in Tables 1B.
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Table 3A: Estimates of the logit model (lag structure r = 3)

covariates\ coef. estimates estimate std error estimate std error estimate std error estimate std error

constant -14.84∗∗ (0.362) -15.99∗∗ (0.348) -13.17∗∗ (0.363) -14.94∗∗ (0.365)
urban area 0.039 (0.034) 0.038 (0.034) -0.058 (0.034) 0.04 (0.034)

sole proprietorship (SP) 0.085∗∗ (0.031) 0.084∗∗ (0.031) 0.132∗∗ (0.031) 0.224∗∗ (0.069)
ln(dit) 9.37∗∗ (0.283) 10.28∗∗ (0.269) 7.61∗∗ (0.282) 9.37∗∗ (0.282)
ln(d2

is) -1.97∗∗ (0.054) -2.13∗∗ (0.052) -1.51∗∗ (0.054) -1.97∗∗ (0.054)
no. delinq. buckets 0.079∗∗ (0.002) 0.079∗∗ (0.002)

delinq. amount / balance 4.32∗∗ (0.109) 4.29∗∗ (0.109)
payment / installment -0.788∗∗ (0.027) -0.801∗∗ (0.027)
balance / installment 0.006∗∗ (0.0001) 0.006∗∗ (0.0001)

no. delinq. buckets (SP) 0.081∗∗ (0.002)
no. delinq. buckets (Corp) 0.077∗∗ (0.002)

delinq. amount / balance(SP) 4.12∗∗ (0.145)
delinq. amount / balance (Corp) 4.67∗∗ (0.17)

payment / installment(SP) -0.832∗∗ (0.034)
payment / installment (Corp) -0.713∗∗ (0.044)

balance / installment (SP) 0.005∗∗ (0.0001)
balance / installment (Corp) 0.007∗∗ (0.0005)

inflation rate 0.009 (0.01) 0.008 (0.01) 0.009 (0.01)
real gdp growth rate -0.249∗∗ (0.021) -0.234∗∗ (0.021) -0.249∗∗ (0.021)

−loglik -20732.13 -20797.88 -22942.52 -20727.87
BIC 41601.76 41708.25 45972.54 41643.23

no. parameters 11 9 7 15
R2 0.128 0.125 0.035 0.128

R2
adj 0.128 0.125 0.035 0.128

p∗ 0.02 0.021 0.015 0.02
type I + type II 0.489 0.484 0.729 0.49

type I error 0.254 0.266 0.274 0.249
type II error 0.235 0.218 0.455 0.241

AV(ROC) 0.799 0.798 0.55 0.799
integral(ROC) 27.12 27.09 18.68 27.11

Notes: The table presents coefficient estimates and prediction and fit performance metrics for alternative
specifications the logit model, when the lag structure is r = 3 months. We consider specifications excluding
the group of macroeconomic variables and/or including dichotomous loan-specific covariates, categorizing
the data across the corporate structure of the SBLs, i.e., sole proprietorship (denoted as SP) and corporations
(Corp)). Standard errors are in parentheses. ∗∗ means significance at 5% level, ∗ means significance at 1%
level.
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Table 3B: Estimates of the logit model (lag structure r = 12)

covariates\ coef. estimates estimate std error estimate std error estimate std error estimate std error

constant -23.11∗∗ (4.48) -26.91∗∗ (3.98) -16.88∗∗ (4.37) -22.82∗∗ (4.48)
urban area 0.103 (0.089) 0.104 (0.089) 0.022 (0.089) 0.107 (0.089)

sole proprietorship (SP) 0.236∗∗ (0.081) 0.236∗∗ (0.081) 0.331∗∗ (0.081) 0.097 (0.16)
ln(dit) 14.35∗∗ (2.95) 16.76∗∗ (2.63) 9.7∗∗ (2.86) 14.12∗∗ (2.95)
ln(d2

is) -2.7∗∗ (0.48) -3.08∗∗ (0.433) -1.81∗∗ (0.463) -2.66∗∗ (0.481)
no. delinq. buckets 0.074∗∗ (0.006) 0.074∗∗ (0.006)

delinq. amount / balance 7.12∗∗ (0.865) 7.07∗∗ (0.862)
payment / installment -0.105 (0.057) -0.114∗ (0.058)
balance / installment 0.003∗∗ (0.001) 0.003∗∗ (0.001)

no. delinq. buckets (SP) 0.068∗∗ (0.008)
no. delinq. buckets (Corp) 0.079∗∗ (0.008)

delinq. amount / balance(SP) 7.9∗∗ (0.945)
delinq. amount / balance (Corp) 8.08∗∗ (2.5)

payment / installment(SP) -0.055 (0.068)
payment / installment (Corp) -0.112 (0.088)

balance / installment (SP) 0.005∗∗ (0.001)
balance / installment (Corp) 0.002∗ (0.001)

inflation rate -0.038 (0.028) -0.038 (0.028) -0.039 (0.028)
real gdp growth rate -0.097 (0.056) -0.085 (0.055) -0.098 (0.055)

−loglik -3473.9 -3475.85 -3586.12 -3471.74
BIC 7065.89 7048.33 7247.38 7104.51

no. parameters 11 9 7 15
R2 0.056 0.055 0.025 0.056

R2
adj 0.053 0.053 0.023 0.052

p∗ 0.018 0.019 0.018 0.021
type I + type II 0.653 0.641 0.738 0.661

type I error 0.302 0.335 0.323 0.431
type II error 0.351 0.306 0.415 0.23

AV(ROC) 0.688 0.688 0.536 0.687
integral(ROC) 17.88 17.87 13.95 17.85

Notes: See notes in Table 3A.
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Table 4A: Estimates of the skewed logit model (lag structure r = 3)

covariates\ coef. estimates estimate std error estimate std error estimate std error estimate std error

constant -24.55∗∗ (0.993) -35.13 (45.13) -11.8∗∗ (0.312) -16.76∗∗ (0.333)
urban area 0.271∗∗ (0.103) 0.414 (1.7) -0.06 (0.039) 0.109 (0.093)

sole proprietorship (SP) 0.143∗ (0.073) 0.191 (0.679) 0.136∗∗ (0.032) 0.887∗∗ (0.125)
ln(dit) 18.81∗∗ (0.753) 26.98 (31.86) 7.84∗∗ (0.24) 12.6∗∗ (0.852)
ln(d2

is) -3.78∗∗ (0.143) -5.32 (6.23) -1.55∗∗ (0.045) -2.6∗∗ (0.331)
no. delinq. buckets 0.17∗∗ (0.008) 0.227 (0.245)

delinq. amount / balance 115.04∗∗ (3.43) 176.77∗∗ (43.39)
payment / installment -0.322∗∗ (0) -0.347 (1.22)
balance / installment 0.037∗∗ (0.001) 0.05 (0.051)

no. delinq. buckets (SP) 0.121 (0.076)
no. delinq. buckets (Corp) 0.113 (0.153)

delinq. amount / balance(SP) 24.92∗∗ (2.17)
delinq. amount / balance (Corp) 37∗∗ (2.91)

payment / installment(SP) -1.12∗∗ (0.089)
payment / installment (Corp) -0.247∗∗ (0.076)

balance / installment (SP) 0.018∗∗ (0.003)
balance / installment (Corp) 0.017∗∗ (0.001)

inflation rate -0.033 (0.027) 0.007 (0.031) -0.012 (0.023)
real gdp growth rate -0.493∗∗ (0.062) -0.243∗∗ (0.042) -0.328∗∗ (0.092)

a (asymmetry) 0.008 0.005 0.2 0.031
−loglik -20429.24 -20476.88 -22944.18 -20399.89

BIC 40995.98 41066.26 45975.85 40987.27
no. parameters 11 9 7 15

R2 0.141 0.139 0.035 0.142
R2

adj 0.14 0.138 0.035 0.141

p∗ 0.018 0.019 0.015 0.019
type I + type II 0.449 0.446 0.729 0.471

type I error 0.147 0.154 0.274 0.207
type II error 0.303 0.292 0.455 0.264

AV(ROC) 0.814 0.815 0.55 0.808
integral(ROC) 27.65 27.66 18.68 27.44

Notes: See notes in Table 3A.
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Table 4B: Estimates of the skewed logit model (lag structure r = 12)

covariates\ coef. estimates estimate std error estimate std error estimate std error estimate std error

constant -19.96∗∗ (5.31) -24.76∗∗ (3.18) -15.35∗∗ (1.2) -19.77 (13.61)
urban area 0.136 (0.103) 0.135∗ (0.068) 0.023 (0.09) 0.142 (0.111)

sole proprietorship (SP) 0.241∗ (0.094) 0.242∗∗ (0.077) 0.339∗∗ (0.077) 0.021 (0.328)
ln(dit) 14.02∗∗ (3.48) 17.02∗∗ (2.09) 9.61∗∗ (0.768) 14.02 (8.8)
ln(d2

is) -2.67∗∗ (0.576) -3.13∗∗ (0.353) -1.8∗∗ (0.123) -2.66 (1.46)
no. delinq. buckets 0.077∗∗ (0.016) 0.077∗∗ (0.011)

delinq. amount / balance 16.92∗∗ (2.6) 16.32∗∗ (2.45)
payment / installment -0.042 (0.111) -0.049 (0.063)
balance / installment 0.006∗∗ (0.001) 0.005∗ (0.002)

no. delinq. buckets (SP) 0.065∗∗ (0.017)
no. delinq. buckets (Corp) 0.094∗∗ (0.011)

delinq. amount / balance(SP) 19.77∗∗ (3.42)
delinq. amount / balance (Corp) 14.72∗∗ (4.24)

payment / installment(SP) -0.032 (0.099)
payment / installment (Corp) -0.078 (0.1)

balance / installment (SP) 0.008 (0.005)
balance / installment (Corp) 0.004 (0.008)

inflation rate -0.048 (0.032) -0.039 (0.023) -0.049 (0.042)
real gdp growth rate -0.11 (0.062) -0.085 (0.055) -0.11 (0.122)

a (asymmetry) 0.067 0.072 0.264 0.062
−loglik -3466.55 -3468.56 -3586.52 -3463.37

BIC 7051.18 7033.75 7248.2 7087.77
no. parameters 11 9 7 15

R2 0.058 0.057 0.025 0.058
R2

adj 0.055 0.055 0.023 0.054

p∗ 0.019 0.021 0.018 0.018
type I + type II 0.65 0.644 0.738 0.657

type I error 0.352 0.41 0.323 0.356
type II error 0.298 0.234 0.415 0.301
AV(ROC) 0.686 0.686 0.536 0.688

integral(ROC) 17.82 17.82 13.95 17.86

Notes: See notes in Table 3A.

Table 5: Covariate effects on the PD

logit skewed-logit ANN

median 25% 75% median 25% 75% median 25% 75%

inflation rate 0 -0.0132 0.0131 0.0005 -0.0138 0.015 0.0001 -0.0293 0.0296
real gdp growth -0.0002 -0.0135 0.0124 0 -0.0144 0.0148 0 -0.0308 0.0294

no. delinq. buckets 0.0446 0.0262 0.0837 0.0387 0.0272 0.0531 0.0697 0.0551 0.0946
urban area -0.0014 -0.0153 0.0105 -0.0009 -0.0162 0.0132 -0.001 -0.0366 0.0223

SP 0.0027 -0.0105 0.0175 0.0025 -0.0114 0.0179 0.001 -0.0247 0.0361
delinq. amount / balance 0.0312 0.0152 0.0622 0.0411 0.0281 0.0627 0.0497 0.0317 0.0719

payment / installment -0.0391 -0.0653 -0.0219 -0.0107 -0.0294 0.0072 -0.0437 -0.0685 -0.0181
balance / installment 0.0135 0.0021 0.0352 0.0266 0.0137 0.0374 0.0114 -0.004 0.0547

Notes: Estimates of the median, the 25% and 75% quantiles of the empirical distribution of the interdecile
effects ∆P̂k,it+r. This is done for the survival ANN model, the logit and skewed logit models, for the lag
structure r = 3 months, on loan accounts with duration dit =12 months.
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Table 6A: Out-of-sample prediction performance of the ANN model

H = 3 months ahead H = 12 months ahead

expanding window rolling window expanding window rolling window

Activation Function logit ReLu logit ReLu logit ReLu logit ReLu

type I+type II 0.472 0.452 0.455 0.541 0.547 0.602 0.542 0.556
type I 0.098 0.099 0.104 0.235 0.174 0.311 0.174 0.149
type II 0.374 0.353 0.352 0.306 0.373 0.292 0.368 0.406

AV(ROC) 0.815 0.818 0.82 0.764 0.714 0.699 0.709 0.705
integral(ROC) 12.196 12.238 12.286 11.466 2.889 2.839 2.86 2.863

Table 6B: Out-of-sample prediction performance of the logit and skewed logit models

H = 3 months ahead H = 12 months ahead

expanding window rolling window expanding window rolling window

Model logit sk. logit logit sk. logit logit sk. logit logit sk. logit

type I+type II 0.553 0.533 0.554 0.515 0.576 0.576 0.575 0.574
type I 0.23 0.183 0.203 0.187 0.244 0.244 0.177 0.202
type II 0.323 0.35 0.351 0.327 0.332 0.332 0.398 0.373

AV(ROC) 0.778 0.785 0.783 0.8 0.694 0.694 0.698 0.699
Integral(ROC) 11.642 11.753 11.717 11.973 2.819 2.819 2.854 2.863
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