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Abstract

Using a novel methodology, we offer new evidence that a threshold relationship exists for

Okun’s law (the well-known output-unemployment co-movement). We use a logistic smoothed

transition regression (LSTR) model where threshold endogeneity is addressed using copulas.

We also suggest a new test of the linearity hypothesis against the LSTR model. In line with

Okun’s insight (and that of the subsequent literature) that the trade off can be affected by

different margins, we consider several potential threshold variables. Of these the labor share,

the policy rate and the shadow rate appear to robustly reveal threshold effects in the Okun’s

parameter in the US in recent decades. This conclusion is bolstered by combing these threshold

candidates into a single factor. Accordingly, we find that the unemployment gap is increasingly

associated with a smaller output gap. Notably, whilst the Great Recession accelerated that rise,

the bulk of the change occurred beforehand. Word Count (excluding online appendices: 9,478

words.)
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1 Introduction

Okun’s law (hereafter, OL) relates to an empirically observed comovement between cyclical un-

employment and output (Okun, 1962). Despite its apparent simplicity, it has generated a vast,

enduring literature, and is widely used among policy makers and applied economists.1 The rela-

tionship provides a link between the labor and goods market over the business cycle, and is often

considered a key empirical regularity.2 It is a core part of many models, where the aggregate

supply function is derived from combining OL with the Phillips curve, Mankiw (2015). In terms

of policy, OL addresses the issue of how much output is ‘lost’ when unemployment exceeds its

natural or trend rate, plus, it demonstrates that the effectiveness of disinflation policy depends on

the responsiveness of unemployment to the rate of output growth.

One common and compelling criticism of OL in the literature, though, is the assumption of

linearity. Many studies instead suggest that it is characterized by nonlinearities and asymmetries.3

A nonlinear asymmetric OL would be an important finding for applied economists. It may affect

other recognised economic relationships such as the price and wage Philips curves. Moreover, in

the policy realm, it would suggest that the effectiveness (and required ‘size’) of stabilization policy

on the real economy would depend in which ‘regime’ Okun’s relationship then lies. It may also

have a bearing on forecasting properties of the relationship.

We use a novel methodology to assess the case for asymmetry. Our econometric framework is

an augmented version of the logistic smooth transition regression (LSTR)model.4 TheLSTRmodel

nests the linear and standard threshold specification for ‘low’ and ‘high’ values of its identified

regimes. The threshold variable allows the model to classify the data into two or more groups

of observations. It captures smooth transition across regimes, which may be more reasonable

in macroeconomics due to various adjustment mechanisms and frictions (in contrast to standard

markov-switching models which imply a sharp switch).

Notably, though, we depart from the bulk of the LSTR literature since we allow the threshold

variable to be endogenous (i.e., contemporaneously correlated with the disturbance term of the

regression).5 Indeed, in as fundamental and deep-seated a relationship as OL, this is intuitive; if

there are asymmetries, then it is likely that, rather than be exogenous, they should arise from the

workings of the economy itself – i.e., from the operation of booms and busts, or from policy shifts

or more persistent structural changes. In so far as the threshold is endogenous, our empirical

methodology explicitly seeks to capture that endogeneity. Failure to do so leads to inconsistent

model estimates.

To deal with this problem, motivated by the recent work of Kourtellos, Stengos and Tan (2016)

(hereafter KST), this approach includes bias correction terms conditional on each regime of the

model to account for the endogeneity problem. However, instead of using the inverse Mills ratios

(which assumes normality of the threshold variable), we drawon the recently suggestedmethod of

1 See Perman et al. (2015). Okun’s law has been regularly referred to as a policy benchmark and used to appraise

macroeconomic conditions, see Bernanke (2012).

2 To cite Blinder (1997, p241): ”... [A] truly sturdy empirical regularity [is] Okun’s Law ... it closes the loop between real

output growth and changes in unemployment with stunning reliability” (emphasis added).

3 Perman et al. (2015) provides a meta study of the literature of the variety of approaches followed in the literature.

4 See van Dĳk et al., 2002 for a survey.

5 Kourtellos, Stengos and Tan (2016) call this the “Structural Threshold Regression”. As they discuss, the assumption of

threshold exogeneity undermines the practical usefulness of threshold regressionmodels, sincemany plausible threshold

variables (their examples include modelling trade shares, political risk) are very likely to be endogenous to the process

under consideration.
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Christopoulos et al (2021) which calculates the bias correction terms based on the copula approach
(which does not necessarily require normality of the threshold variable)6: the bias correction terms

are then given by copula-based transformations of the threshold variable for each regime of the

model truncated at the location parameter value.7

The copula approach has a number of interesting properties to deal with the problem of the

endogeneity of the threshold variable in the framework of the LSTR model. It can capture the

dependence between the threshold variable and the error term through the copula transformed

terms (variables). The marginal distributions of the transformed variables can be estimated based

on a non-parametric or density estimation procedure, in a first step. This makes our approach

quite general and flexible. Indeed, we avoid the problem of “weak" instruments for the threshold

variable in the casewhere onewould like to estimate themodel parameters based on an IVmethod.

The suggested method can also allow for different variances of the LSTR regression disturbance

termand its correlation structurewith the threshold variable across the two regimes. Furthermore,

to test for smooth transition effects in the data, we enhance our approach by suggesting a new

likelihood ratio (LR) test to detect linearity against LSTR effects under threshold endogeneity.

Both the estimation methodology of our approach and the power performance of the LR test are

evaluated through a Monte Carlo (MC) study.

The paper is organized as follows. Section 2 discusses and the motivates the dynamic ‘gap’

version of theOL. Section 3 assesses in broad terms howwellOLfits the data. These considerations

establish its importance for applied economists andeconometricians. Section 4 formally introduces

the LSTR model, and presents our approach to adjust the model for the endogeneity of the

threshold variables, based on copula theory. The adjusted model is estimated using a two-step

concentrated nonlinear least squares method. The method is assessed in a Monte Carlo (MC)

study in the appendix. We consider the cases that the threshold variable and disturbance term

follow a normal as well as a Student-t distribution. The former allows us to make comparisons to

KST’s approach (as we have adapted it to the LSTR framework). Generating data from the Student

t distribution will show the robustness of the method to fat tails of threshold variables often met

in practice. Moreover, we also describe and motivate our new linearity testing procedure to test

for smooth transition threshold effects against linearity under threshold endogeneity.

Section 5 explores threshold choices within the OL framework. Rather than impose a single

preferred threshold variable, we pursue a multivariate approach. This is consistent with Okun’s

observation that many factors may affect the nature and strength of the trade off, in a possibly

time-varying manner. Plus it is also consistent with much modern econometric discussion (see

the seminal contribution of Stock and Watson, 2002) that instead combines and examines data

information from many sources. This philosophy is also arguably more appealing than the

researcher reporting a single threshold variable with no information provided as to the variable

selection process.

Specifically, we test three broad categories drawn from the literature, classified as (i) Demand
& Cyclical pressures, (ii) Structural features of the economy, and finally, (iii) Policy & Financial vari-

6 See Patton (2006) for a discussion of, and an economic application of, copula methods.

7 Moreover, to mitigate the effects of the normality assumption on the estimates of the model, Kourtellos et al (2021) use a

semi-parametric approach.
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ables.8 As befits a quasi-structural relationship9, there may be many feasible threshold candidates

rather than merely a sparse outcome; in effect candidates which may reinforce or counteract one

another’s effects.10 Accordingly, we also examine the performance of a composite indicator which

can summarize common information of the most relevant threshold candidates.

That the Okun parameter is shaped by many different channels is something Okun himself

recognized, Okun (1974). He discussed cyclical features (e.g., changes in hours worked and

productivity and business cycles), changes in macroeconomics policy as well as more supply-side

influences (changes in the labor force and labor supply). Our paper can be seen as an attempt to

revive these additional channels envisaged by Okun and, where feasible, to discriminate between

them.

Given this background, Section 6 estimates OL assessing the selection of the threshold can-

didates that indicated nonlinearity in the results of the previous section. These are mostly to be

found in the last two categories (i.e., structural, and policy). We also plot the resulting transition

probabilities alongside the threshold as a visual plausibility test. In Section 7, we then combine

the most relevant threshold candidates into a composite index. We use this index as the thresh-

old variable and re-estimate the endogenous threshold model. Section 8 concludes. Additional

material is given in appendices.

2 Okun’s Law: Overview and Margins

OL refers to an inverse business-cycle contemporaneous relationship between the unemployment

rate (u) and real output (Y ). We model this in a dynamic ‘gap’ form:11

yt = ρyt−1 + βut + εt (1)

where yt = ỹt − y∗t is the cyclical component of real GDP – i.e., the deviation of log real GDP, ỹt,

from log potential real GDP, y∗. Likewise, the cyclical component of unemployment, ut = ũt−u∗t ,
is the deviation of the unemployment rate, ũt, from its ‘trend’, u∗t . Relationship (1) captures the

contemporaneous effect of ut on yt; yt−1 is included to capture dynamic adjustments due to lagged

8 In past empirical studies of asymmetries in OL, a single threshold has been used, rather than (as here) allowance for a

variety of potential channels. This focus may have led to a selection (or publication) bias in reported empirical studies

given that researchers and journals have limited incentive to publish results where a prescribed threshold variable has

no impact. See Perman et al. (2015) for an interesting discussion of publication biases in the context of OL.

9 Prachowny (1993) argued that OL had a structural interpretation in the context of the production function approach. We

choose to work with the simpler form, since it is the most common representation in the literature (and thus admits easy

benchmarking). Moreover, although the appeal of the (production-function) approach is due to its inclusion of additional

factor and factor utilization margins, many of the proposed controls (in cyclical form) such as hours worked are so

heavily correlated with unemployment as to potentially dilute any intended structural interpretation of the parameters.

Moreover, the Prachowny derivation is a special case assuming that aggregate production is Cobb Douglas and that the

capital stock and a disembodied technology factor are always at their long-run levels (characteristics which are counter

factual in the US aggregate data, see Klump et al., 2007).

10 For an analysis of sparse and dense models, see Giannone et al. (2019).

11 An additional ‘first differences’ form of OL is sometimes also used:

∆yt = β0 + ρ∆yt−1 + β∆ut + ηt

where ∆yt = log(Yt)− log(Yt−1), ∆ut = ut − ut−1. Of the two OL forms, the gap model requires us to capture latent

trends and is related more to understanding business-cycle trade offs. It has the advantage of taking into account the

state of the economy relative to its trend or natural rate. The difference form posits a linear relationship between the

first difference of the log of output and the first difference of the unemployment rate. The two versions are equivalent

if potential growth and the natural rate of unemployment are constant. Since this is unlikely to hold, the gap version

appears preferable (and, accordingly, is the one we emphasize).
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unemployment or output own shocks.12 Parameter β is the impact Okun coefficient (expected to

be negative reflecting the trade off), and β∗ = β/(1−ρ) is its long-run equivalent. Term εt denotes

a stochastic disturbance. For a given ρ, the higher is |β|, the steeper is Okun’s relationship and thus

the higher the output costs of a rise in cyclical unemployment.

Asdiscussed,we can thinkof theOLcoefficient as reflectinganumberofmargins of adjustment.

Later in the paper, we explore the idea that such margins may be time varying and subject to

threshold behavior. Here however as a preliminary step we can consider a simple formalization

based around a production function. This is not meant to generate hypotheses per se, but more to

anchor ideas for reflecting on the existence of different margins.

Consider the production function:

Y = Γ× F(k × zk , n× h× zl) (2)

where Y is output, k is the quantity of the capital stock, zk is the utilization rate of capital and

zl represents usage (or hoarding) of the labor input, n represents the number of workers, h is

hours worked, Γ represents Hicks neutral technical progress, and F represents some smooth and

concave mapping function.13

Defining ẏ = Ẏ /Y (akin to a continuous-time cyclical gap) andnoting that growth inunemploy-

ment is the gap between the growth in the labor force and the working population, u̇ = l̇/l− ṅ/n,
we can re-express (2) as,

ẏ = α

(
k̇

k
+ żk
zk

)
+ (1− α)

(
ḣ

h
+ l̇

l
− u̇+ żl

zl

)
+ Γ̇

Γ (3)

whereα = δF/δK×K/F ∈ (0, 1) is the elasticity of outputwith respect to the capital input (reflect-

ing the capital share of income), assuming constant returns. Noting variable-specific cyclicality

admits a more compact OL framework: |cor(Ξ, ẏ)| = |βΞ | ≥ 0 ; Ξ ∈ {k̇/k, żi/zi, ṅ/n, ḣ/h, Γ̇/Γ}:14

ẏ = β × u̇ (4)

where β(α, βΞ) = (1−α)×
(
α(βk+βzk)+(1−α)(βh+βl+βzl)+βΓ−1

)−1
is the Okun coefficient.

Accordingly, we can see that the OL can be written in a way that emphasizes the strengths of

the various possible adjustment mechanisms (as recognized by Okun himself). Moreover, if these

margins are time varying or subject to regime shifts, then the Okun parameter β should reflect

these too. Indeed, even the production function “primitives”, α, 1 − α may be time varying (as

corroborated in various shifts in income shares in the major economies.)

3 HowWell Does the basic Okun’s Law fit the data?

To derive the cyclical component of the series to estimate the gap form of OL, we explored several

different filters common in the literature. In many cases, they gave a relatively similar picture but

we chose the asymmetric Christiano-Fitzgerald one since, for our series of interest, it identified the

12 Following the bulk of the literature, we add a dynamic term. Thus the equation captures not only the contemporaneous

correlation between changes in the unemployment rate and real output growth, but dynamic lagged effects.

13 see León-Ledesma et al., 2010) for further discussion of production function types and identified technical progress.

14 If βΞ > 0 then the appropriate element in Ξ is pro-cyclical with output growth; counter-cyclical < 0 or a-cyclical = 0
otherwise.
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appropriate frequencies relatively well – i.e., when approximating the ideal band-pass filter over

the standard Burns-Mitchell business-cycle frequency of 6− 32 quarters (for further discussion of

this see Appendix D).

Estimates of OL are shown in Table 1 in static and dynamic form. In terms of the fitmetricsR2
adj

and AIC (Akaike information criterion), the dynamic model dominates both the static OL model

and a simple AR1 benchmark for yt; the inclusion of ut into the AR model absorbs a substantial

part of the autoregressive persistence of yt.

Results suggest a unit increase of cyclical unemployment is associated with a decline of just

under 2% in output (in cyclical terms). Consistent with Okun’s original work, most US studies

locate the slope coefficient |β| in a (1, 3] interval. That the coefficient typically exceeds one in

absolute value (i.e., cyclical output drops by more than the increase in cyclical unemployment)

reflects different adjustment margins that can amplify movements in unemployment on output:

e.g., some unemployed may cease job search thus contracting the labor force, labor productivity

may fall (reflecting labor hoarding), hoursworkedmay fall, and the economymayweaken through

the normal Keynesian spending multiplier (associated to lower demand).15

Figure 1 shows both filtered series, and rolling (75 quarters) sample window regression esti-

mates of β over 1950q1-2018q4. The basic fit is apparent: the cyclical turning points (as highlighted

by theNBER recession dates) tends to bewell aligned between cyclical unemployment and output.

Some basic takeaways of asymmetry are revealed by the plots. For example negative output gaps

are generally deeper and more abrupt than positive ones (see also Rothman, 1998). The gaps can

also be quite changeable: in the first half (or at least second third) of the sample, output volatil-

ity far exceeded that of unemployment, but became closer in the subsequent decades. Finally,

the rolling window regression analysis suggests that the Okun slope coefficient has been rising

above its full-sample estimate from the mid 1990s.16 Thus whilst OL fits the data well, it does so

somewhat imperfectly: even on a cursory inspection, the Okun parameter appears to be shifting

over time. However, to address this rigorously, we clearly need to go beyond simple plots. Whilst

they indicate that there may be changes in the Okun parameter, they only roughly indicate when

(given a particular choice of window size) and give no economic intuition for those changes (or

shed light on the likely driver(s)).

Regarding such likely drivers (to which we alluded in the previous section), it goes with-

out saying that over post-war period the US economy has experienced several major, complex

developments which underpin the evolution of these series: the productivity slowdown of the

early 1970s, the major oil shocks in that decade, the fall in the labor income share, swings in the

stance of macroeconomic policies, the “Great Moderation” of reduced macroeconomic volatility

(starting from the mid-1980s), as well as the “Great Recession” (2007-2009), followed in turn by

extraordinary monetary policy accommodation.

There were also important shifts from the mid 1980s onwards (Fernald and Wang, 2016):

labor productivity turned from pro to counter cyclical – largely reflecting the weakening pro

cyclicality of factor utilization, which itself points to reduced factor hoarding. This may be due

15 Some studies express OL not as y = f(u;β) but instead as u = f(y; 1/β). Using the latter normalization the

interpretation would equivalently be that, for βb < βa < 0, a given fall in cyclical output would produce a smaller

proportionate rise in unemployment under ‘b’ than ‘a’.

16 In the appendix as an additional exercise, Figure D.4 plots the fit of the dynamic OL regression from 2007q1-2018q4

(i.e., from the Great Recession onwards) against the realized outcomes. If the full sample forecast fitted the data exactly,

all points would be on the 45◦ angle. However the bulk of the points turn out to be below the line indicating that the

Okun coefficient is more strongly negative than required to fit the data (meaning that ideally the coefficient should be

less negative).
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Table 1: Okun Law Coefficients

AR1 Static OL Dynamic OL

ρ 0.907∗∗∗ 0.607∗∗∗
(0.02) (0.07)

β −1.815∗∗∗ −0.658∗∗∗
(0.06) (0.13)

β∗ −1.815∗∗∗ −1.674∗∗∗

R2
adj 0.830 0.796 0.843

AIC −1015.521 −993.318 −1026.245

Note. This table shows the estimates of Okun’s law over the sample 1950q1 to 2018q4 for the gap form:

yt = ρyt−1 + βut + ηt

where yt = ỹt − y∗t is the deviation of log real GDP from log potential real GDP (i.e., the cyclical component of real GDP:

yt). Likewise, ut = ũt − u∗t is the deviation of the unemployment rate from its ‘trend’, where β∗ = β/(1 − ρ). Numbers in

parentheses below the coefficients represent bootstrapped standard errors. R2
adj is the adjusted value of R2

. AIC denotes the

Akaike Information criterion (for a given model size, the lowest score is preferred).

Figure 1: Okun Law Variables, Correlations and Stability
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to increased economic flexibility (i.e., expansion of female labor participation, perhaps declining

labor power); it may also reflect the decline of manufacturing (where utilization was traditionally

amore important margin of adjustment).17 Whilst it is unrealistic to be able tomap all these events

to well-defined changes in Okun’s coefficient, they do provide a persuasive case for examining the

possible time variation in and non-linear nature of such a key relationship.

4 A LSTRModel with Threshold Endogeneity

Consider OL model (1) without the dynamic term yt−1 for analytical convenience. A structural

threshold model that can be employed to interpret the structural changes in the slope coefficient

β is the following two-regime logistic smooth transition regression (LSTR) model:18
,
19

yt = x′tβ1(1− g(zt; γ, δ)) + x′tβ2g(zt; γ, δ) + εt, (5)

wherext = (1, ut)′ is a (2×1) vector of independent variables, when an intercept is also included, β1

andβ2 respectively denote the vectors of the slope coefficients ofxt in twodistinct regimes, denoted

h = {1, 2}, where “1” stands for the first regime and “2” for the second, and εt ∼ IID(0, σ2
ε) is the

disturbance term. Function g(zt; γ, δ) is a continuous logistic function of the observable variable

zt, known as the threshold variable, which governs the transition between the two regimes, at

time t:

g(zt; γ, δ) = 1
1 + exp(−γ(zt − δ))

∈ [0, 1]. (6)

The value of δ ∈ R, known as the location or threshold parameter, defines the two regimes.

Parameter γ > 0, the speed-of-transition parameter, determines the smoothness of the transition

from one regime to the other. When γ → ∞, g(zt; γ, δ) tends to indicator function I(zt > δ),
for all i. In this case, the LSTR model can be approximated by the standard threshold model

and thus, the transmission between regimes is abrupt: the shift from regime “1” to “2” becomes

instantaneous at zt = δ. On the other hand, when γ → 0, then g(zt; γ, δ) → 1
2 . In this case, the

LSTR model reduces to a linear model, with vector of parameters
1
2 (β1 + β2).

Through transition function g(zt; γ, δ), the slope coefficients of model (5) are time-varying,

depending on the value of threshold variable zt. One econometric problem often encountered

in practice, though, when estimating model, is the bias of the estimates of the parameters of the

model due to the contemporaneous correlation of zt with the error term et, raising issues of the

endogeneity of zt. This is likely to happen in economic relationships, like the OL, where zt and yt

(or et) are jointly determined or reflect exogenous common sources of shifts (shocks) due to policy

changes.20 See our discussion in Section 5.

Let us therefore split the sample of zt across the two regimes as follows: Z1t = (−∞, δ]
and Z2t = (δ,∞), for all t, based on a value of location parameter δ, and assume that the

disturbance term εt is distributed differently across the two regimes, i.e., εht ∼ IID(0, σ2
h), h =

{1, 2}. Endogeneity between zt and εht means that E(ε1t|Z1t) 6= 0 and E(ε2t|Z2t) 6= 0, which

17 The average rate of capacity utilization has been declining for many decades, see Figure 2 below.

18 See Teräsvirta (1994). Note that the inclusion of a (potentially regime-specific) intercept in the LSTR model algebra is for

generality.

19 We restricted ourselves to two regime models. Attempts to go beyond two regimes are extremely hard to estimate and

take to the data.

20 Note that some of these shifts may be deterministic in nature, i.e., shifts in the levels or the linear trends of the time

series (see Terasvirta (1994).
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implies that estimates of the location parameter δ will be inconsistent. This in turn implies that

the estimates of all slope coefficients of model (5) will also be biased.

There are different estimation methods to tackle this endogeneity problem in econometrics

(Antonakis et al. (2014) provide a survey). Themethod chosen here draws on that of Christopoulos

et al. (2021) which employs copulas to capture the dependence between the disturbance term εt

and the threshold variable zt.21 Thismethod allows for the level of dependence between εht and zt,

as well as the variance of εht to be different across the two regimes. Copulas are functions which

can express joint probability distributions (or densities) of random variables εht and zt in terms

of their marginal probability density functions and a copula function capturing the dependence

between εht and zt. Based on the copula function, we can derive a single-correlation structure of

εht, h = 1, 2, which can be used to control the endogeneity of zt in model (5). To this end, consider

the following definition:

Definition: Let pδ ∈ (0, 1) = P (zt ≤ δ) = Fz(δ), where Fz is the distribution function of zt. The

joint distribution of the pair of random variables (εht, zt ∈ Zht), h = {1, 2}, can be written using

copulas as follows:

Fεhz(εht, zt|Zht) = Ch
(
Fεh(εht), Fz|Zh(zt|Zht)

)
, (7)

where Ch is a bivariate appropriately scaled copula, with Ch : [0, 1]2 → [0, 1], Fεh is the marginal

distribution function of εht, and

Fz|Z1(zt|Z1t) = Fz(zt)
pδ

if 0 ≤ Fz(z) ≤ pδ

Fz|Z2(zt|Z2t) = Fz(zt)−pδ
1−pδ if pδ ≤ Fz(z) ≤ 1,

(8)

are the truncated from above and below location parameter value δ distribution functions of zt,

respectively.

From the above definition, it is clear that the truncated joint distribution of the pair of variables

(εht, zt), Fεhz(εht, zt|Zht), h = {1, 2}, constitutes a copula Ch on [0, 1]2 with uniformly distributed

on [0, 1] margins, since Fz|Zh(zt|Zht) is appropriately scaled to integrate to unity.22 Based on

copula theory, the conditional distribution function of εht on zt ∈ Zht can be derived from Ch as

follows:

Fεh|Zh(εht|Zht) = ∂

∂Fz|Zh
Ch
(
Fεh(εht), Fz|Zh(zt|Zht)

)
, (9)

while the conditional probability density function related to this distribution is given as,

fεh|Zh(εht|Zht) = ∂2

∂εh∂Fz|Zh
Ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)

= ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)
fεh(εht),

(10)

21 Although in their study they considered the simpler TARmodel. The extension of the approach to the LSTRmodelmakes

increases the generality and usefulness of the framework since as already discussed it nests the linear and threshold

model and allows for the smooth transitions between the regimes.

22 The two copulasCh, h = 1, 2 , can be glued along zt at point pδ , and produce a single copula (see Siburg and Stoimenov,

2008; and Erdely, 2017).
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where ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)
= ∂2

∂Fεh∂Fz|Zh
Ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)
is the copula density

function corresponding to Ch and fεh(εt) = ∂
∂εh

Fεh(εt) is the probability density of εht.23 The

last relationship of the conditional density fεh|Zh(εht|Zht)implies that we can capture the con-

temporaneous dependence between εth and zt ∈ Zht, through the copula density function

ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)
. For a Gaussian copula (which is often used in practice, e.g., Park

and Gupta, 2012; Joe, 2014) this function becomes

ch
(
Fεh(εt), Fz|Zh(zt|Zht)

)
= ϕ

(
Φ−1 (Fεh(εt)) ,Φ−1 (Fz|Zh(zt|Zht)

))
, (11)

where Φ−1
is the quantile function of the standard normal distribution and ϕ the probability

density function of the normal distribution.24

If the error term εht is normally distributed ∼ N (0, σ2
h), the Gaussian copula given by (11)

implies a linear relationship between εht and Φ−1 (Fz|Zh(zt|Zht)
)
which can deal with the endo-

geneity problem of the threshold variable zt . Substitution of (11) into (10) implies that εht has a

single factor correlation structure25

εht = ωhz
∗
ht + V ar(εht|z∗ht)1/2ξht, h = {1, 2}, (12)

and

E(εht|Zht) = ωhz
∗
ht, with ωh = σhρεhz∗h , (13)

where z∗ht = Φ−1 (Fz|Zh(zt|Zht)
)
is distributed as z∗ht ∼ N (0, 1), ρεhz∗h is the Pearson correlation

coefficient between εht and z
∗
ht, V ar(εht|z∗ht) = σ2

h(1− ρ2
εz∗
h
) and ξht is an IID(0, 1) a disturbance

term which is independent of z∗ht, implying E(εht|z∗ht) = 0.
Using the above representation of relationship of εht, model (5) can be written as

yt =


x′tβ1(1− g (zt; γ, δ)) + ω1z

∗
1t + e1t if zt ∈ Z1t : Regime “1”

x′tβ2g(zt; γ, δ) + ω2z
∗
2t + e2t if zt ∈ Z2t : Regime “2”

(14)

where eht = −ωhz∗ht + εht, h = {1, 2}, is a disturbance term with conditional mean E(et|z∗ht) = 0,
since E(εht|z∗ht) = ωhz

∗
ht and E(ξht|z∗ht) = 0. This augmented with random variables z∗ht version of

model (5) can be employed to control for the endogeneity problem of zt. The random variables z∗ht
correct the conditional mean of yt on Zh, E(yt|Zht), for the contemporaneous correlation between

εht and zt for both regimes of the model. This is done, note, without making any assumption

about the distribution of zt. Furthermore, as already highlighted, it allows the distribution of εht

and its correlation structure with zt to change across the two regimes.

23 Note that the joint probability density corresponding to Fεz(εt, zt|Zht) is given as follows:

fεZ(εt, zt|Zht) = ch
(
Fε(εt), Fz|Zh (zt|Zht)

)
fε(εt)fz|Zh (zt|Zht)

where fz|Z1 (zt|Z1t) = fz(zt)
pδ

, −∞ < zt ≤ δ, and fz|Z2 (zt|Z2t) = fz(zt)
1−pδ

, with δ < zt ≤ ∞, are the truncated from

above and below pδ probability densities fz(zt).
24 As shown by Park and Gupta (2012), or Christopoulos et al (2021) the Gaussian copula can satisfactorily approxi-

mate different types (linear or nonlinear) dependencies between two random variables, under different distributional

assumptions. In our Monte Carlo study we show that the Gaussian copula can satisfactorily approximate a dependent

structure between the error term variable εht and the threshold variable zt when these two variables follow the Student-

t distribution.

25 See, for example, Joe (2014).

9



The augmented model (5) can be straightforwardly extended to include the lagged dependent

variable yt−1. This variable is not contemporaneously correlated with the error term et and, thus,

does not raise any endogeneity regressor issues. In addition, it can be easily extended to include

copula based transformations of the regressors including in vector xt, if they are also correlated

with et (see Christopoulos et al (2021)). This extension is an empirical matter. In our empirical OL

application, we have found that it does not change the estimates of the model. Our interpretation

for this is that the threshold variable zt, being correlated with ut, absorbs, substantially, any

endogeneity effects of ut on the estimates of the augmented OL relationship, by zt.

4.1 Estimation Aspects and Monte Carlo Results

Model (14) can be employed to estimate the location parameter δ and its remaining parameters

collected in vector θ(δ) = (γ, β1, β2, ω1, ω2)′ based on a two-step nonlinear least squares (NLLS)

method, since its disturbance term eht is independent of the transformed variable z∗ht, for h =
{1, 2}.

In particular, δ can be estimated, in a first step, by solving the following NLLS optimization

problem:

δ̂ = arg min
δ∈Qz

RSS(δ), (15)

where RSS(δ) =
∑T
t=1 ê

2
h,t, is the residual sum of squares of (14), δ is an interior point of

Qz , since we assume pδ = P (zt ≤ δ) ∈ (0, 1). To estimate δ, note that we require values of

the transformed variables z∗ht, given by Φ−1 (Fz|Zh(zt|Zht)
)
. This can be done based on non-

parametric estimates of the marginal distribution Fz|Zh(zt|Zht) (see Silverman, 1986), or based

on the empirical cumulative distribution function. Given the optimal estimate of δ, the slope

parameters of model (5) and the speed-of-transition coefficient γ collected in vector θ(δ̂) can be

estimated, in a second step. Following the literature on threshold models (see, e.g., Chan, 1993;

Samia and Chan, 2011), the estimator ẑδ is T -consistent and the estimates of vector θ(δ̂), which

correspond to δ̂, are
√
T asymptotically normal.

As a remark on the above estimation procedure note that, instead of the one dimensional grid

search over δ, we can carry out a two dimensional grid search over δ and γ (see, e.g., Leybourn et

al., 1986; and Franses and van Dĳk, 2000). This procedure may mitigate optimization problems in

estimating γ, due to the nonlinear nature of function g(zt; γ, δ). Furthermore, it can have better

small sample properties, due to grid-search process in estimating δ and γ. Given the estimates of

δ and γ, then we can estimate the remaining slope parameters, collected in vectors βh, in a second

step.

To evaluate the performance of our estimation approach to successfully control for the endo-

geneity of threshold variable, we carry out a small MC study, see Appendix A. We consider cases

in which the disturbance term εht and threshold variable zt are jointly normally and then Student-

t distributed, with different values of the speed-of-transition parameter γ and sample sizes T .

Generating data from the Student’s t distribution, which allows for tail dependence between εht

and zt, can show the robustness of our method to such features in the data.

The results of our MC clearly supports the view that our method can successfully control for

the endogeneity of zt on the estimates of location parameter δ. They also show that ignoring this

endogeneity leads to series biases in the estimates of δ.

These results hold for both the distributions of εht and zt considered. This means that our
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method is robust to misspecification of these distributions. For the comparator case that εht and zt

are normally distributed, our method compares favorably to that of Kourtellos et al. (2016) based

on the inverse Mills ratios, modified appropriately for the LSTR model (5). Also, our method is

robust to the case that both εht and zt follow the Student-t distributed. Finally, another interesting

result of our MC exercise is that our method can be implemented without any concern for bias or

inefficiency of the estimates of δ in the case where the threshold variable zt is exogenous.

4.2 New Test for Linearity With Threshold Endogeneity

Before estimating model (5), or its extended version (14), a critical prior testing procedure is to

diagnose if the data supports our threshold model compared to its linear specification. To this

end, we suggest a suitable testing procedure.

We follow recent work in the literature on threshold or LSTR models (see, e.g., Hansen (1996)

and KılıÇ, 2016) which is focused on testing H0: β1 = β2 (implying γ → 0) against Ha: β1 6= β2

(implying γ > 0). As noted by KılıÇ (ibid), compared to inference procedures testing for the

exclusion restrictions on the threshold variable zt or its product terms with regressors collected

in vector xt based on an approximation of model (5) under H0, our suggested procedure may be

proved more powerful for γ values far away from the γ = 0 neighborhood.26 That is to say where

the approximation of (5) is not accurate and depends on the value of the location parameter δ.

Furthermore, in our simulations we found that endogeneity of threshold variable zt makes the

power performance of the inference procedures based on the above approximation of (5) even

worse, due the estimation bias of the slope coefficients of the auxiliary regression.

More specifically, to test H0: β1 = β2 against Ha: β1 6= β2, we rely on the LR test statistic:

LR(γ, δ) = 2× (logL(θ(δ))− logL(β)) (16)

where logL(θ(δ)) and logL(β) constitute themaximum log-likelihood function ofmodel (5) under

the alternative and null hypotheses, respectively. Note that, in order to estimate the model under

the alternative hypothesis, wewill use the auxiliary regression (14), controlling for the endogeneity

of the threshold variable zt. Since the nuisance parameters δ and γ are not identified under the

null, we next suggest a sup-version of statisticLR(γ, δ) (see Andrews and Ploberger, 1994), defined

as follows:

LRsup ≡ sup
(γ,δ)∈Qγ×Qz

LR(γ, δ), (17)

whereQγ denotes a compact subspace on the real line, searching for an optimal value of γ andQz

is defined as before.27 Since the distribution of LRsup
is non standard under the null, its critical

values can be obtained based on a parametric bootstrap procedure, generating data under the null

of linearity (i.e., H0: β1 = β2).

To evaluate thepowerperformance of statisticLRsup
, we carry out aMCexercise inAppendixB.

In this exercise, we also consider the case that we ignore the endogeneity of threshold variable zt.

The results of this exercise indicate thatLRsup
has satisfactory power. This is true under alternative

copula functions and marginal distributions of εt and zt considered in the MC exercise. Another

26 The initial literature of tests for linearity against threshold specifications (such as Luukonen et al., 1998) replaced the

transition function by a Taylor series expansion which is estimable under null with the test amounting to testing for the

significance of the interaction of the linear regressors with the polynomial terms.

27 Note that, in practice,Qγ can be set toQγ =
[

1
10σz

, 1000
σz

]
, where σz is the standard deviation of the threshold variable

zt, see KılıÇ (2011).
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interesting finding is that our test does not lose significant power in the casewhere zt is exogenous.

5 Data and Threshold Candidates

So far we have discussed the possibility of (endogenous) threshold variables leading to threshold

effects in OL, without discussing which those variable(s) would be. As already indicated, the

literature on asymmetries has concentrated on cyclical features. But, to recall, Okun himself

identified many channels of influence on the Okun trade off. And it is with this broader more

encompassing approach in mind that we proceed.

In that vein, Fernald et al. (2017) decompose Okun’s coefficient emphasizing the different

margins and adjustment channels that firms and households use to respond to different shocks.28

Although these authors do not explore threshold nonlinearity, their framework is nonetheless

suggestive. For instance, labor hoarding (an empirically well-established phenomenon) cushions

the unemployment consequences of downturns perceived to be temporary or “small”. However,

a sufficiently large downturn (i.e., in our context, beyond some estimated threshold) may counter

labor hoarding incentives, thus changing the output-unemployment nexus.

We classify these potential threshold candidates in three broad (and not necessarily mutually

exclusive) categories (see Table 2)29:

1. Demand & Cyclical pressures;

2. Structural features of the economy, and;

3. Policy & Financial variables.

Our main data source is the Federal Reserve Bank of St. Louis (FRED) database, the Bureau of

Labor Statistics (BLS) and the Congressional Budget Office (CBO). The shadow federal funds rate

is taken from Wu and Xia (2016). As before, the sample mostly spans 1950q1 to 2018q4. In the

final columnwe show the corresponding LRsup
test statistic (recalling Section 4.2) and probability

values of the null hypothesis that the linear model (1) constitutes the correct specification of the

data against the LSTR specification (5), controlling for the endogeneity of the threshold variable,

which includes in its rhs the lagged dependent variable yt−1.

Consider the first category of threshold candidates, Demand & Cyclical. Many studies suggest

Okun’s coefficient moves over the phases of the business cycle, and in a nonlinear, asymmetric

fashion (e.g., good examples of this include Lee, 2000; Harris and Silverstone, 2001; Cuaresma,

2003; Silvapulle et al. 2004). Common rationales for this cyclical asymmetry include: labor

hoarding; downward wage rigidity; employment regulations; patterns of cyclical firm expansion

and contraction; non-constant factor substitution (Courtney, 1991) etc. In line with this business-

cycle asymmetry literature, we consider as possible threshold variables: the unemployment and

‘natural’ unemployment rate, the output gap, output, and inflation rates (which similarly reflect

cyclical demand pressures).30

28 To illustrate, respectively, these are the extensive (e.g., labor force participation andmigration etc.) and intensivemargins

(e.g., hours per worker, factor utilization etc.)

29 Manyof these are quite representative ofmacroUS series commonly used for econometric studies, andmost are included,

for instance, in the large dat set of Marcellino et al. (2006) (their economy-wide variables anyway).

30 Note that dichotomous (Heaviside) threshold variables (of the expansion/contraction variety) which are often used in

12



Our second category is dubbed Structural. Again this reflects various strands of the Okun

literature as well as more general themes of structural change in the post-war US economy – the

idea being that various secular (though not necessarily irreversible) trends may have imparted an

effect on the slope coefficient of the OL relationship. For example employment and participation

rates, the labor income share, macroeconomic volatility etc. The final category assesses Policy
& Financial variables as threshold candidates, including a variety of public and market interest

rates.31

Table 2 shows around half the threshold candidates reject linearity. Among the first category,

“Demand” (or cyclical) factors, the evidence is mixed. Only inflation and capacity utilization ap-

pear important. The latter, though strongly significant, has a smaller sample (from 1967 onwards),

and is not economy wide.32 This finding is interesting since cyclical factors have been the favored

candidates of past Okun threshold studies (e.g., Virén, 2001). However even a finding of weak

demand threshold candidates need not imply that cyclical pressures do not impact OL. Down-

turns may have long and persistent effects, inducing protracted adjustments in Okunmargins that

extend well beyond the defined periods of recession, with the short run effects but one aspect of

those influences.

In the “Structural” category, the labor share,33 and long term unemployed (percentage unem-

ployed for ≥ 27 weeks), illustrating important shifts in labor-market features, are also detected.

Finally, “Policy & Financial” measures, yield a number of valid threshold candidates. Both long

and short policy rates and the shadow rate reject the linear specification and thus are viable

threshold candidates.

6 Estimation of the LSTRModel for Okun’s Law

Having presented our empirical methodology to estimate a LSTR model under threshold endo-

geneity, andpretested for linearity, we nowestimate themodel. Tomeasure directly themagnitude

of the shift in the slope coefficient of unemployment, we estimate an augmented version of (5)

with the regressors z∗1t and z
∗
2t, defined in Section 4, andwhere, for congruence with the literature,

we assume that threshold behavior affects the Okun coefficient alone:34

yt = ρyt−1 + βut + but

[
1 + e−γ(z∗1t−δ)

]−1
+ ω1z

∗
1t + ω2z

∗
2t + et. (18)

such analyses, such as

zt =

{
1 : Expansion if ut < 0, or yt > 0

0 : Contraction otherwise

are not feasible threshold variable types in our framework since they are not continuous.

31 We also considered the Gilchrist-Zakrajšek Corporate Bond Credit Spread, and the National Financial Conditions

Index (from the FRB Chicago). But their short sample (available from 1973 and 1971, respectively) precluded their use.

Although the credit spreads share similar information with the interest rates used since, for instance, they reflect similar

monetary or fiscal shocks. Likewise, many variables which might have been of interest, for instance inequality measures,

tax burden, ‘economic and policy uncertainty’ metrics etc were excluded since they tend to be of short sample and/or

not available at a quarterly frequency. Further details of these data choices and restrictions are available on request.

32 Capacity utilization indexes reported by FRED, moreover, are not economy wide: they are constructed for 71 industries

in manufacturing, 16 in mining, and 2 in utilities.

33 The variant of the labor share that we use is the quarterly indexed one provided by FRED where 2012 = 100. For

comparison purposes we annualized this series and compared it to the Share of Labor Compensation series provided by

University of Groningen (also available from FRED), see supplementary material Figure D.5.

34 We also tried a variety of structural break and recursive tests but we failed to detect any systematic pattern of time

dependency in the autoregressive coefficient. This bolsters our case for concentrating on the Okun coefficient.
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Table 2: Data: Definitions, Sources and Linearity Testing

Data Series Symbol Source (mnemonic) LRsup

Demand

Cyclical Unemployment Rate u FRED (derived from UNRATE) 2.968 [0.315]

Cyclical Real GDP y FRED (derived from GDPC1) 4.250 [0.352]

Output Gap (% of potential GDP) og CBO 4.749 [0.310]

Capacity Utilization: Total Industry cu FRED (TCU) 10.830 [0.002]

Consumer Price Inflation (%∆ yoy) π FRED (CPIAUCSL) 6.259 [0.050]

Commercial Real Estate Price Inflation π
H

FRED/Haver Analytics 3.017 [0.176]

Structural

Rolling 10-year St. Dev. of Cyclical Output (Risk) σyt(10) (derived from GDPC1) 5.307 [0.085]

Utilization-Adjusted TFP Growth g
TFP

Fernald (2018) 3.542 [0.325]

Non-farm Business Sector: Labor Share labsh FRED (PRS85006173) 16.871 [0.013]

Employment Share: Manufacturing lmansh FRED (derived from MANEMP/PAYEMS) 5.224 [0.205]

Labor Force Participation Rate (Total) pr FRED (CIVPART) 4.239 [0.183]

Labor Force Participation Rate (Female) prf FRED (LNS11300002) 4.613 [0.123]

Natural Rate of Unemployment un CBO 6.223 [0.067]

Long-Term Unemployed
111 ul BLS (LNS13025703) 22.951 [0.001]

Policy & Financial

Federal Funds Rate is FRED (FEDFUNDS) 12.728 [0.040]

Shadow Policy Rate
222 is,wx Wu and Xia (2016) 12.481 [0.041]

Long Term Interest Rates (10y Gov. Bonds)
222 il FRED (IRLTLT01USM156N) 11.068 [0.003]

Corporate Bond Spread
333 iBaa FRED (BAAFFM) 5.209 [0.255]

Note. This table tests threshold candidates for theLRsup
linearity test. All series are quarterly and, where relevant, seasonally adjusted and span 1950q1-2018q4 except

is, is,wx which start in 1954q3, il (1960q1), cu (1967q1).
111
Unemployed for ≥ 27 weeks (as a % of civilians unemployed).

222
Calculated as end of period.

333
Moody’s

Baa Corporate Bond minus Federal Funds Rate. Numbers in brackets in the final column are bootstrapped probability-values of the threshold linearity tests.
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Parameter b captures the magnitude of the shift of the Okun coefficient of ut from the first

regime to the second. The no-threshold (linear) case of the dynamic OL is retrieved if b = 0. The
long-run OL coefficients in the first and second regimes are, respectively, given by,

β∗1 = β

1− ρ ; β∗2 = β + b

1− ρ . (19)

Table 3 presents estimates of dynamic (AR1) OL with the threshold variable treated as en-

dogenous.35 This is based on our preferred estimation approach just presented, including the

copula-transformed variables z∗1t and z
∗
2t as regressors with the attendant parameters ω1, ω2. For

better small sample estimation properties, we present bootstrapped standard errors (in brackets)

and confidence intervals (in braces). These are calculated based on a wild parametric bootstrap

method (see Davidson and MacKinnon, 2007). Note, the bootstrapped values are subject to the

distribution of the threshold variable.

6.1 Estimation Results

table 3 shows the estimates of coefficients ρ, β and b ofmodel (18), the implied long-run coefficients

β∗1 and β∗2 , the threshold and speed of adjustment parameters (δ and γ, respectively) the AIC and

the sample percentage residing in the second regime, denoted D222 ∈ (0, 100). We also report the

ωh, h = {1, 2}, parameters (multiplied by 100 for legibility).

To aid interpretation, consider a case where

β∗1 < β∗2 < 0 (20)

If condition (20) holds, it implies that a given unemployment gap is associatedwith a larger output

gap in regime “1” relative to “2”. Accordingly, we can think of regime “1” as the steeper regime,

and regime “2” as the flatter. For instance, when the labor share of income exceeds the threshold

value (which is around 70% of the time), the output gap is almost twice as sensitive to changes

in the unemployment gap: |β∗2 | = 1.863. Otherwise, they move around one-to-one: |β∗1 | = 1.156.
Note that a shift from the regime “1” to “2” does not always mean a change from the steeper to the

flatter OL relationship. For cu and il, moreover, there is no clear-cut significant OL relationship in

regime “1”, at conventional significance levels. Although, to recall, capacity utilization has a far

shorter sample and is not economy-wide in coverage.

Figures 2 – 4 plot the threshold time series, zt (in solid blue lines using the lhs axis) overlaid

with the transition probabilities g(zt; γ̂, δ̂) (in red dashed lines using the rhs axis) and the scalar

estimated threshold δ̂.36 For a given series, the higher is γ the more rapid is the transition between

regimes.37 Highvalues, i.e., γ > 10, as for threshold variablesπ and cu often have volatile and rapid

adjustment transition probabilities. This conforms with their status as demand/cyclical variables.

The labor share, and the short term policy rates by contrast exhibit intermediate transitions, i.e.,

γ ∈ (1, 6). A lower adjustment speed, i.e., γ between 0 and 4, is associated to the long-term

unemployment rate. One might expect this variable to reflect long run (slow moving) supply

variables such as demographics, labor supply, work incentives, economic dynamism etc.

Accordingly, the transition probabilities demonstrate amix of persistent (long lived) and tempo-

35 The results for the exogenous case are shown in Appendix D.

36 The same graphs with NBER dates overlaid are shown in Appendix D.

37 This recalls the distinction made by Bernanke et al. (2005) who discuss ‘slow’ and ’fast-moving’ variables.
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Table 3: Threshold Okun Law Results: Endogenous Threshold

para./zt labsh† ul π is,xw is cu il

ρ 0.546∗∗∗ 0.571∗∗∗ 0.602∗∗∗ 0.692∗∗∗ 0.693∗∗∗ 0.751∗∗∗ 0.748∗∗∗
(0.059) (0.063) (0.071) (0.071) (0.071) (0.079) (0.074)

β −0.525∗∗∗ −1.767∗∗∗ −0.492∗∗∗ −0.208 −0.210 0.278 0.564
(0.122) (0.311) (0.222) (0.143) (0.138) (0.214) (0.382)

b −0.321∗∗∗ 1.346∗∗∗ −0.290 −0.396∗∗∗ −0.389∗∗∗ −0.750∗∗∗ −1.869∗∗
(0.106) (0.335) (0.258) (0.135) (0.130) (0.192) (0.848)

δ 108.241 0.075 0.017 3.220 3.220 0.759 6.900
{108.140-108.450} {0.068-0.097} {0.0106-0.066} {2.83-3.460} {2.98-3.480} {0.754-0.780} {2.530-9.02}

γ 5.500 0.100 47.400 1.400 1.600 44.20 0.100
{4.10-6.70} {0.010-0.421} {45.30-48.500} {0.80-3.10} {1.01-3.20} {42.00-46.10} {0.010-3.900}

100× ω1 −0.001 0.290∗∗∗ −0.020 0.030∗∗ 0.030∗∗ 0.420∗∗∗ 0.060∗
(0.028) (0.055) (0.082) (0.039) (0.037) (0.080) (0.033)

100× ω2 −1.460∗∗∗ 0.520 −0.780∗∗∗ −1.090∗∗∗ −10.900∗∗∗ 0.140 0.700∗
(0.243) (0.733) (0.250) (0.362) (3.647) (0.144) (0.392)

β∗1 −1.156 −4.119 −1.236 −0.675 −0.684 3.359 2.238

β∗2 −1.863 −0.981 −1.965 −1.961 −1.951 −1.080 −5.179

AIC −1045.497 −1039.460 −1029.924 −977.443 −977.566 −712.802 −913.110

D2 69.12 86.64 83.48 60.93 60.43 81.31 36.62

Note. This table shows the results from estimation of (18) for the threshold candidates that rejected a linear specification. The ωh

terms are scaled up for readability. Numbers in parentheses below the coefficients represent bootstrapped standard errors, and

those in braces represent bootstrapped 95% confidence intervals. The terms β∗1 and β∗2 are as defined in (19). D222 is the sample

percentage residing in the second regime.
†
The labor share measure used is the quarterly indexed one provided by FRED where

2012 = 100.

rary regime shifts of the Okun coefficient over the sample. In particular, the labor share (labsh) has

triggered an apparently permanent shift to the flatter regime after year 2001. For labsh, this shift in

its own profile has often been attributed to the effects of globalization and off-shoring (widening

the global labor pool, weakening labor bargaining power), patterns of technology adoption and

skill complementarities over recent decades etc. (inter alia, Manyika et al., 2019). These apparently

unfavorable outcomes for labor can also arguably be seen in the increasing share of unemployed

who remain unemployed after 27 weeks (Figure 3), which has been trending upward since the

mid 1970s, and especially so during the Great Recession.38

The Federal Funds rate and the shadow rate (is, is,wx), overlaid in Figure 4, as well as inflation

rate π (Figure 2) are associated with less permanent regime shifts of the OL relationship. These

seem to cause shifts from the steeper to the flatter regime when they reach historically low levels.

Large values of is or π (such as those in 1970s and 80s) triggered enduring shifts in the Okun

parameter to the steeper regime, highlighting the effectiveness of monetary policy. By contrast,

the long term interest rate il does not seem to trigger frequent regime shifts in the OL. Although,

like the short rate, its decline over time reduces the probability of a steep OL regime, there is

no statistically significant Okun parameter in the 2
nd

flatter regime. Moreover, the adjustment

parameter appearsweakly identified, withwide confidence intervals. Thuswhilst it would appear

that long term interest rates matter, in so far as they are a product of short rates, fundamentally

the main channel is from actual and shadow short-run policy rates. In the aftermath of the recent

Great Recession, thus, these threshold variables are associated with the flatter regime of the OL

relationship or they triggered a shift to it. In other words, the unemployment and output gap

38 This trajectory though has had limited impact on the Okun coefficient since, apart from some particular spells near the

beginning of the sample, the coefficient is mostly around −1.
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during that period co-moved more strongly.39

How can we interpret this flattening? Consider the labsh threshold: the Okun coefficient

was −1.863 roughly until the early 2000s, and −1.156 thereafter. Accordingly the unemployment

gap is increasingly associated with a smaller output gap (they now co-move nearly 1-to-1). The

corollary (or, literally, the inverse) of this is that the unemployment costs of output contractions

are now substantially greater. This accords with outcomes: the period since 2000s were a period

of historically low interest rates and, from 2007q4, one of extraordinary cyclical weakness where

unemployment and long-term unemployment rose markedly. Of course if there had be no regime

change and the value of −1.863 (or −0.537, its inverted variant) held throughout the sample,

unemployment would still have risen markedly after 2007 reflecting the severity of the downturn,

but not as much as it did.

Firms may have understood early on the severity of the Great Recession and hoarded la-

bor less than otherwise (implying rising labor productivity), and perhaps substituted towards

more capital-intensive production. Moreover various underlying structural changes in the US

economy (such as declining labor share, globalization, changing sectoral composition patterns)

may have lent weight to that change. Thus, if we had modelled the economy as having a fixed

employment-output trade off, these developments would have been missed. Our examination of

several potential threshold variables on the non-structural Okun relationship has provided robust

evidence of that important change.

Figure 2: Endogenous Threshold Variables & Transition Probabilities (Demand)
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Note. Blue solid line represent the threshold variable, z, red dashed line represent the {0, 1} transition probabilities. The horizontal

solid line represents the estimated threshold parameter, δ̂. Theβ∗ values on the rhs edge are the Okun parameters in the respective

regimes.

39 More generally, Auerbach and Gorodnichenko (2012) found that for the US the size of the fiscal multiplier appeared to

be state dependent; thus the state of the economy and policy effectiveness are innately liked. Moreover there is a growing

literature on state dependency in monetary policy, particularly around the effective lower bound (see Woodford, 2012).
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Figure 3: Endogenous Threshold Variables & Transition Probabilities (Structural)
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Figure 4: Endogenous Threshold Variables & Transition Probabilities (Policy/Financial)
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7 A Composite Threshold Variable

Our analysis suggests thatmany of the regime shifts triggered by the threshold variables examined

co-move. This is true for both long-lived and more temporary shifts. Table 4 corroborates this

showing the extent of the correlations among the (0, 1) transition probabilities across regimes for

all z candidates (all cross-correlations turn out to be significant at 1%). This co-movement can

be attributed to common, or related, sources of information and economic events underlying the

threshold variables triggering the threshold effects in OL.

Accordingly, we now combine these different information sources into a single common factor.

The threshold factor effects considered can summarize and smooth out all the alternative sources

of the OL regime shifts, and can potentially better describe and account for the total effects of

such shifts over time. We can then use this to estimate (18) and exploit its usefulness as an index

variable to assess predictive performance (see our exercises in the appendices).

Consider the K-dimension column vector of the relevant threshold variables considered:
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Table 4: Correlation of the Transition Probabilities

labsh ul π is cu il is,wx

labsh 1

ul −0.73 1

π 0.58 −0.62 1

is 0.69 −0.75 0.64 1

cu 0.31 −0.57 0.40 0.58 1

il 0.67 −0.48 0.69 0.76 0.27 1

is,wx 0.69 −0.76 0.65 0.99 0.58 0.77 1

Note. The table presents estimates of the correlation coefficients of the transition probabilities from regime “1” to “2” for variables zj which

trigger significant threshold effects. All cross-correlations turn out to be significant at 1%.

Z = [zj ], j = 1, 2, ...,K, (we drop time subscripts from zj for notational convenience). The prin-

cipal component (PC) analysis implies that there are common factors spanning Z, collected in

column vector p, which can be obtained as

PCi = p′iZ, i = 1, 2, ...,K (21)

where p′i is the ith-row of an orthogonal matrix P = [pij ] (normalized, i.e., P ′P = I) such that

P ′ΣzP = Λ = diag[λi], with λ1 ≥ λ2 ≥ ... ≥ λK ≥ 0, where Σz is the covariance matrix of vector

Z and Λ is the matrix of the eigenvalues of Σz , denoted λi, by the spectral decomposition theorem.

Note that the first factor PC1 (which accounts for the largest single share of the data variation)

corresponds to the largest eigenvalue λ1. The proportion of the variation of the data accounted

for by the first v-PCs is given as ρ2
v =

∑v

i=1
λi∑K

i=1
λi
. The covariance and correlation loading coefficients

between PCi and threshold variables zj , j = 1, 2, ..,K, are respectively given by

cov(PCi, zj) = pij
√
λi and ρij = pij

√
λi

σzj
(22)

Table 5 reports estimates of model (18) using as threshold variable a weighted average of the

first three PCi, i = 1, 2, 3, denoted zft, using as weights their relative variance. The three PCi

explain 90% of the variation of the data.

The PCs are based on threshold variables zj : labsh, ul, π, is, is,wx and il which, as we saw,

imply significant threshold effects. Variable cu is excluded given its relatively shorter sample. To

avoid the influence of differences in the measurement units and quantities of zj ’s on the PCis, we

rely on the standard-score transformation of the original variables zj : z̃j = zj−µzj
σzj

where µj and

σzj are the first and second moments of zj (e.g., Timm, 2002). This implies that all variables zj

contribute equally to the sample variation of the PCis. In the table, we present the estimates of

ρ1j for the 1
st
factor PC1 explaining roughly 80% of the variability of the data.

Results suggest the following. The AIC shows that the version of the threshold factor model

constitutes a superior specification of the data compared to those of table 3. Coefficients β∗1 and

β∗2 demonstrate that there are substantial differences in the OL slope between regimes (with the

first being the flatter) and that the speed of transition between regimes is at very high levels if we

control for the endogeneity of threshold variable. Such high transition rates were found for the

labsh, is and is,wx threshold cases (recall table 3).

Figure 5 demonstrates that the threshold factor variable constructed, zft, provides smooth and
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broadly consistent patterns of movements of its underlying variables zj and its accompanying

transition probabilities implied by the model estimates. It demonstrates vividly that OL is less

strong than we might have imagined. The steeper OL relationship can be mainly attributed to the

economic changes at the end of sixties, and the early-middle of seventies and eighties, discussed

previously. After the end-80s/early-90s, there essentially exists only one regime transition from a

steeper to a flatter OL relationship implying a near 1-to-1 Okun coefficient.

The consistency of our regime switching resulting to those implied by the estimates with the

individual threshold variables can be justified by the estimates of the loading coefficients ρ1j .

The positive values of ρ1j for variables labsh, π, is, is,wx and il mean that higher values of these

variables (above their threshold levels) are associated with higher values of the threshold factor

variablezft, which favor a regime shift to the steeper OL relationship. Negative values of ρ1j for

ul imply the opposite effects. The values of zft decrease when ul increase thus favoring switching

to the flatter OL regime.

8 Conclusions

Okun’s law is a building block of many macro-econometric models and often considered an em-

pirical regularity. It is widely used in policy and forecasting environments, and macroeconomic

model building where cyclical output and unemployment are a core relationship in the model

structure. We examined the possibility of asymmetries in OL. Specifically, we considered a nonlin-

ear, smooth transition regression model, exploring a variety of (endogenous) candidate threshold

variables. These channels were informed by Okun’s insight that the (nature and strength) of the

trade off would be impact from the demand, supply and policy side (and from the subsequent

literature).

Our paper makes two main contributions. The first is methodological, the second is applied

and empirical.

In terms of methodology, our work has two distinct components:

(a) We allow for endogeneity in the threshold variable using copulas to capture the

dependence between the disturbance term and the threshold variable in the context

of a LSTR model. The last model constitute a more general framework to study

transition effects in macroeconomic relationships, which nests the linear and the

standard threshold model as special cases. The copula approach constitutes a quite

flexible and general approach to deal with the problem of endogeneity; it does not

depend on valid instruments for parameter estimation, nor does it necessarily require

normality of the marginal distribution of the threshold variable.

(b) We also suggest a new testing procedure to test for smooth transition threshold effects

against linearity under endogeneity of the threshold variable.
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Table 5: Principal Component Analysis and Model Estimates

PC Estimates

i, v 1 2 3 4 5 6

λi 5.1560 1.0400 0.2520 0.1130 0.0680 0.0048

ρ2
v 0.7360 0.8850 0.9730 0.9890 0.9990 1.0000

j labsh π is is,wx il ul

ρ1j 0.7890 0.7620 0.9340 0.9500 0.8740 -0.7720

Threshold Estimates

ρ β b δ γ111 100× ω1 100× ω2 β∗1 β∗2 AIC D2

0.751
∗∗∗

-0.262
∗∗

-0.555
∗∗∗

0.641 2.300 0.100 1.658
∗∗∗

-1.052 -2.229 -907.774 11.630

(0.066) (0.134) (0.160) {0.620-0.642} {2.26-2.33} (0.376) (0.718)

Note. The table presents results of the PCA of the variables zj triggering significant threshold effects and estimates of model (18) using the first three PC factors (weighted by their standard deviation)

as the threshold variable. These estimates cover the case that the endogeneity of the threshold factor is controlled for based on our suggested copula method. Bootstrap standard errors and confidence

intervals are, respectively, given in parentheses and braces. The terms β∗1 and β∗2 are as defined in (19).

111
: Parameter γ and its confidence intervals should be divided by the variance 0.022 in order for the speed-of-transition parameter to be scale free.
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Figure 5: Transition Probability (Principal Components)
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Note. This figure graphically presents estimates of the threshold principle component factor model against its transition probability. The

blue solid line represent the threshold PC factor, and the red dashed line represents the transition probability. The horizontal line represents

the estimated threshold parameter, δ̂. The β∗ values on the rhs edges are the long-run Okun parameters in the respective regimes. Note,

in this case there is no need for both a lhs and rhs axis in the figure since both variables lie in the unit interval.

Both the copula based approach and the linearity testing procedure suggested are evaluated

throughout a MC study.

Regarding applied empirical lessons, which is our second main contribution, we establish

that threshold effects can be detected in Okun’s relationship. We find mainly a combination of

structural and policy-related variables accounts for changes in the Okun’s law trade off in recent

decades. Thus the notion that OL (though a cyclical comovement) is only affected by cyclical

variables is incorrect. This conclusion is bolstered by combing these threshold candidates into a

single factor. We found regime-like behavior with Okun’s coefficient rising (or flattening) over

time: from around −2.23 over the 1960s-1980s, then a slow transition to a value around −1 (i.e.,

more than halving in value). Thus the unemployment gap is increasingly associatedwith a smaller

output gap. Put another way, the unemployment costs of output fluctuations are greater in more

recent decades than before. This is an important finding.

Moreover, whilst the Great Recession accelerated that rise, interestingly, the bulk of the change

occurredbeforehand. This, in turn, corroborates ourfinding that both structural andnon structural

factors were at play. A key variable in that respect is the labor share of income. Perhaps this is

not surprising since the importance of this variable in influencing growth and policy transmission

has been widely discussed. Knowledge of the possibilities of these shifts and their determinants,

improves the forecasting performance of Okun’s law over methods missing the these shifts and

their endogenous effects (see Appendix C).

Finally, the work done here could be fruitfully extended. An interesting controversy in the

literature is whether OL holds outside the US, in particular for countries characterized by less

flexible labor and product markets. Could the relationship be identified as asymmetric for coun-

tries of the European Union, for instance? If so, are there commonalities in the threshold variables
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found?

More generally, though, our endogenous threshold LSTR model could prove useful for addi-

tional applications such as in studies of growth, trade and finance where threshold models have

often been employed to analyze asymmetries. The use of our new approach may yield fresh or

more robust insights.
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A Monte Carlo

In this section, we present the data generating processes (DGP) and results of the Monte Carlo

(MC) exercise touched upon in the main text. Our first exercise examines the performance of the

estimationmethod suggested to estimate the location parameter δ accurately and the ability of our

method to successfully control for the endogeneity of threshold variable zt in the LSTR model.

The second exercise (in Appendix B) evaluates the power performance of test statistic LRsup
.

The DGP that we consider to estimate δ is as follows:
1

yt = (β11 + β12x2t)(1− g(zt; γ, δ)) + (β21 + β22x2t)g(zt; γ, δ) + εt, (A.1)

where x2t ∼ IIDN (0, 1) and x3t ∼ IIDN (0, 1) are exogenous, i.e., E(εt|x2t) = 0, and the values

of the slope coefficients across the two regimes of the model are as follows:

Regime 1: β11 = 0.5, β12 = 2.0

Regime 2: β21 = −0.7, β22 = {1.5, 3.0}.

These values imply quite small differences in the slope coefficients of model (A.1) across its two

regimes, which are difficult to detect. They are chosen to highlight the ability of our method to

lead to accurate estimates of δ even for very small-size shifts of the slope coefficients of the model.

For simplicity and without any loss of generality, we drop the lagged dependent variable in these

Monte Carlo exercises.

For the regression error term εt and threshold variable zt of the above mentioned DGP, we

consider the normal and the Student-t distribution, with four degrees of freedom. Using data from

the Student’s t distribution will show if our method, based on the transformations of the quantile

function of the standard normal distribution (i.e., Φ−1), can be proved robust to a misspecification

of the true distributions of εht and zt, like the Student’s t often assumed in econometrics. For

reasons of space, we present results for the cases that the distribution of εt, and correlation

structure between εht and zt do not change across the two regimes of the model. For zt, we

assume zt ∼ IID(zµ, 1), with zµ = 3.0, while, for the correlation coefficient between εht and zt,

we consider the following set of values:ρεz = {0.0, 0.55, 0.75}, for h = {1, 2}. The structure of the
threshold variable is given as follows:

zt = δ + cεzvt + ζt (A.2)

where εt ∼ tDF=4 and ζt ∼ tDF=4, for all t. The value of coefficient cεz is chosen to control for the

degree of correlation between εt and zt.

The threshold value δ is set to the 25% percentile (1
st
quantile) of the distribution of zt. We

also examined threshold values at the 75% percentile (3
rd

quantile) of this distribution, but the

MC results do not change qualitatively. The values of the speed of adjustment considered are set

to γ = {1.5, 3.5}. These values reflect the cases that the transition between the two regimes is low

and high, respectively. Following other studies, we treat the above values of γ as known in our

analysis, reflecting that our interest is focused on the estimation bias of δ. Since we are focused on

1
Both the DGP and the values of its parameters considered in our simulation analysis are close to those considered in the

simulation studies of, for instance, Lundbergh et al. (2003).
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the performance of our method to control for the endogeneity of zt on the estimates of δ, we do

not report results for the remaining parameters of the model, i.e., ω1, ω2 for reasons of space.

We consider sample sizes of T = {50, 250} observations and carry out 1, 000 iterations. For

all iterations, we calculate the bias and the root mean square error of the estimator of δ. In

Table A.1, we present average values of the above metrics, over all iterations, denoted BIAS and

RMSE, respectively. The table presents different sets of results. Panel A presents results ignoring

the problem of the threshold variable endogeneity in the estimation. Panel B controls for this

problem, based on our method by including in the rhs of (A.1) the bias correction terms z∗ht,

h = {1, 2}.
Panel C presents results for the case that Kourtellos’s et al. (2016) approach for threshold

models, appropriately modified for the LSTR model, is employed to control for the endogeneity

problem of zt. This approach adjusts equation (A.1) by estimating the expectation terms E(εt|zt ≤
δ) and E(εt|zt > δ), capturing the bias of zt across the two regimes of the model, based on the

inverse Mills ratio terms assuming that both εt and zt are normally distributed. To calculate these

ratios, we assume that zt ∼ IIDN (zµ, 1) has the following single factor presentation:

zt = zµ + 0.95ζt + ezt, (A.3)

where ζt ∼ IIDN (0, 0.5) and ezt ∼ IIDN (0, 0.5) and zµ = 3.0. Finally, Panel D presents results

for the case that our method is applied to the case that εht and zt are jointly Student-t distributed.

Results lead to several interesting conclusions. First, they indicate that ignoring the endo-

geneity of threshold variable zt causes serious biases in the estimates of threshold parameter δ.

Specifically, it tends to overestimate the true value of δ. Moreover, as expected, the bias of δ is

substantial in magnitude when the correlation between zt and εt is high, i.e., 0.75. The magnitude

of the bias also depends on the different values of γ considered. The bias is bigger, the smaller

value of γ considered, i.e. γ = 1.5, than γ = 3.5, and it remains even if T increases.

A second conclusion is that our method can successfully control for the endogeneity problem

of the threshold variable. The method can substantially reduce the estimation bias of δ. This is

true even if the sample size is small (i.e., T = 50). As expected, the bias of δ reduces as the sample

increases (i.e., T = 250). The bias also reduces, when γ increases (i.e., the LSTRmodel approaches

the TAR, where the shifts of the model are faster across the two regimes). Similar conclusions to

the above also hold for theRMSE. These results are also robust to the different distribution of εht

and zt considered, namely the Student’s t. This is clearer for the case of the larger size of T = 250.
Note that, for the case that both εht and zt are normally distributed, the performance of our

method successfully compares to that of KST. Actually, our method seems to have better small

sample (i.e., T = 50) performance relative to KST.

Finally, the results indicate that the estimation of the augmented regression model, which

controls for the endogeneity of the threshold variable, leads to unbiased estimates of δ even if

there is no threshold variable endogeneity (i.e., ρεz = 0). This result is more clear cut for the cases

that T is large.

References
Lundbergh, S., Teräsvirta, T. and D. van Dĳk (2003). Time–Varying Smooth transition Autore-

gressive Models, Journal of Business & Economic Statistics, 21, 104–121.
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Table A.1: Monte Carlo results of the BIAS and RMSE of the estimator of δ

γ T/ρεz 0.00 0.55 0.75 0.00 0.55 0.75

(i): β22 = 1.5 (ii) β22 = 3.0

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

A: Ignoring the endogeneity of zt (zt and εt are normally distributed)

1.5 50 −0.613 1.732 −0.975 2.986 −1.002 3.238 −0.811 2.420 −0.990 3.257 −0.991 3.464

1.5 250 −0.213 0.417 −0.827 1.697 −1.043 2.113 −0.153 0.324 −0.529 0.982 −0.716 1.250

3.5 50 −0.398 0.961 −0.816 2.120 −0.929 2.533 −0.331 1.197 −0.647 1.651 −0.694 1.879

3.5 250 −0.020 0.057 −0.439 0.899 −0.782 1.528 −0.012 0.049 −0.174 0.343 −0.358 −0.592

B: Controlling for the endogeneity of zt (zt and εt are normally distributed)

1.5 50 −0.775 1.611 −0.729 1.829 −0.567 1.799 −0.732 1.522 −0.650 1.588 −0.485 1.561

1.5 250 −0.456 0.662 −0.343 0.614 −0.293 0.647 −0.381 0.546 −0.245 0.425 −0.165 0.421

3.5 50 −0.619 1.331 −0.503 1.287 −0.409 1.289 −0.522 1.098 −0.424 1.007 −0.266 0.884

3.5 250 −0.149 0.204 −0.135 0.204 −0.114 0.167 −0.073 0.111 −0.065 0.091 −0.072 0.092

C: Controlling for the endogeneity of zt based on Mill’s ratios (zt and εt are normally distributed)

1.5 50 −0.891 2.363 −0.935 2.433 −0.928 2.423 −0.818 2.130 −0.863 3.202 −0.867 2.271

1.5 250 −0.398 0.811 −0.425 0.863 −0.428 0.873 −0.314 0.635 −0.315 0.661 −0.312 0.653

3.5 50 −0.691 1.559 −0.678 1.514 −0.667 1.500 −0.530 1.218 −0.572 1.295 −0.585 1.317

3.5 250 −0.091 0.189 −0.126 0.231 −0.129 0.234 −0.034 0.088 −0.057 0.125 −0.062 0.031

D: Controlling for the endogeneity of zt (zt and εt are Student-t distributed)

1.5 50 −0.920 2.516 −0.993 2.615 −0.901 2.378 −0.878 2.425 −0.902 2.434 −0.846 2.214

1.5 250 −0.240 1.104 −0.516 1.381 −0.683 1.638 −0.133 0.847 −0.334 1.010 −0.518 1.295

3.5 50 −0.678 2.012 −0.696 1.954 −0.630 1.790 −0.599 1.838 −0.619 1.737 −0.499 1.393

3.5 250 −0.004 0.401 −0.231 0.508 −0.337 0.656 −0.035 0.218 −0.108 0.245 −0.150 0.271
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B Power of the Test Statistic LRsup

Wepresent values of the power performance of statisticLRsup
for the LSTRmodel (A.1), employed

in our previous MC exercise, where the threshold parameter value δ is set at its 3rd quantile. For

reasons of space, we do not report results for the case that δ is at the 1st quantile and we consider

only the case of β22 = 1.5. The remaining slope parameters are set as in the previous MC exercise.

We also consider the same simulation scenarios with that exercise for ρεz = {0.0, 0.55, 0.75} and
T = {50, 250}.

To calculate the power of the test statistic, we need first to obtain its distribution under the null

hypothesis H0: β1 = β2 = β and obtain its critical value, corresponding to the 95
th
-quantile of its

simulated distribution. To this end, for each iteration we generate the error term εt ∼ IID(0, 1)
and threshold variable zt ∼ IID(3, 1) from a joint distribution of them, while x2t and x3t are

generated as x2t ∼IID N (0, 1) and x3t ∼IIDN (0, 1), respectively. Given these generated series, we

then generate series yt under null hypothesis based onmodel yt = x′tβ+ εt, where β = 1
2 (β1 +β2);

β1 and β2 are defined as in the previous exercise.

Based on the generated series yt, next we estimate model (A.1) under both the null and

alternative hypotheses and, then, we calculate the test statistic LRsup
, over all possible values of

γ and δ, based on 1, 000 iterations. In so doing, note that we trim out the top and bottom 10

percentiles of the distribution of δ, while for γ we rely on the set of valuesQγ =
[

1
10σz ,

100
σz

]
.
2
Also,

under the alternative hypothesis, the model is adjusted by the bias correction terms z∗ht, h = {1, 2},
to control for the endogeneity of the threshold variable.

Given the critical values of LRsup
, at the 5% level, the power of the test, which represents

rejection frequencies of the above null hypothesis, is calculated by generating data under the

alternative hypothesis the alternative hypothesisHa: β1 6= β2, namelymodel (A.1). The remaining

steps of theMC exercise are as above. For each iteration, the error term εt, the variables x2t and x3t,

and the threshold variable zt are generated as before, while in estimating δwe trim out the top and

bottom 10 percentiles of its distribution, while for γ we rely on the set of values Qγ =
[

1
10σz ,

100
σz

]
.

To see if the power of the test depends on ignoring the issue of the endogeneity of the threshold

variable zt, we also present results for the case that model (A.1) is not adjusted by the terms z∗ht,

h = {1, 2} to calculate statistic LRsup
.

The results of the power of the test are reported in Table B.1. These indicate that the power of

the test statistic LRsup
is high and close to unity for all the cases of γ and ρεz considered. They

also indicate that ignoring the endogeneity of the threshold variable leads to a version of the test

statistic which has less power. However, this is more clear for the case that γ = 3.5. Another

interesting result is that the power performance does not depend on the adjustment of model (5)

for possible endogeneity of threshold variable (see model (14)) when ρεz = 0. This result was

expected. Unless there is a serious degrees of freedomproblem, itmeans that augmentation of this

auxiliary regression by the transformed variables z∗ht does not affect the power of statistic LRsup

and, hence, it can be safely implemented, in practice, for all possible values of the correlation

coefficient ρεz . The above results are robust to the different values of γ and T considered.

2
We found that extension ofQγ to include higher values of γ does not affect our simulation results.
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Table B.1: Power of test statistic LRsup
with β22 = 1.5

No Controlling For

Endogeneity Endogeneity

ρεz γ = 1.5

0.00 0.910 0.926 0.896 0.936

0.55 0.837 0.886 0.870 0.934

0.75 0.781 0.826 0.868 0.925

ρεz γ = 3.5

0.00 0.852 0.893 0.827 0.896

0.55 0.766 0.833 0.812 0.896

0.75 0.687 0.762 0.804 0.895

T 50 250 50 250

Note. The table presents the power of test statistic

LR
sup ≡ sup

(γ,δ)∈Qγ×Qz
LR(γ, δ)

under the alternative hypothesisHa: β1 6= β2, at the 5% nominal size, for model (A.1). The critical values of the test statistic are simulated

under the nullH0: β2 = β2, for alternative N and T . We use the parameter values from Appendix A but concentrate on the β22 = 1.5
case.
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C Prediction with the Threshold Factor Model

In this section we examine the framework in light on forecasting exercises. Specifically, we

evaluate the predictive properties of the dynamic OL allowing for STR effects,MDOL
STR

, based on

(18) and threshold factor variable zft. We investigate if it can improve upon the performance of

the exogenous threshold case as well as the AR and dynamic OL benchmarks to predict yt. The

latter twomodels were those reported in Table 1. These comparator models we label, respectively,

asMDOL

STR(X)
,MAR

andMDOL
.

We conduct in- and out-of-sample prediction exercises based on pair model comparisons. To

evaluate the robustness of our results to possible missing sources of non-linearities in the data

and structural instabilities (uncertainty), the out-of-sample prediction exercise is based on rolling

regression estimates of the models. For both exercises, we report results based on the realized

values of cyclical unemployment seriesut and the sample estimates of the threshold factor variable,

but also based on predicted values of ut and zft using sample information at time t − 1 and the

exponential smoothing method suggested by Bergmeir et al. (2016) (henceforth BHB). These

predictions make comparison with theMAR
model predictions more fair, as they are based on

sample information at the same time.

The BHB method constitutes an expansion of the standard exponential method of forecasting.

It decomposes a time series into its trend, seasonality and remainder components, where the latter

is bootstrapped and is added to the trend and seasonal components to generate a newbootstrapped

series. Based on these series, we obtain one-quarter ahead predictions based on the exponential

smoothing method. We take the median of these predictions to provide the resulting prediction

of the model since it is less sensitive to outliers.
3
The bootstrap aggregation involved in the BHB

method can improve the accuracy of predictions, by addressing issues of data irregularities and

parameter uncertainty.

C.1 In-sample prediction

Table C.1 presents the in-sample exercise. Panel A presents the case that realized values of ut and

estimates of zft are used to predict yt, and Panel B for the case that predicted values of ut and

zft are used, based on sample information at time t − 1 and the BHB method, described above.

We report the root mean square and mean absolute error (respectively, RMSE andMAE) and fit

tests based, respectively, on the Diebold and Mariano (1995) statistic (DM ), and Vuong’s (1989)

statistic (see also Rivers and Vuong (2002)).
4
These are one-sided test statistics calculated for all

model pairs. Under the null, they assume that the models compared are equivalent, and under

the alternative that the forecasts of theMDOL
STR

dominate those of the others (MDOL
, orMAR

, or

MDOL

STR(X)
has superior forecasting properties compared to theMDOL

. The long-run variance of

the DM test is calculated based on the HAC estimator (see Harvey et al. (1997)).

MDOL
STR

has theglobally smallestRMSE andMAE and its predictive superiority canbe formally

justified by all the tests reported at the 5% level (or below). Most tests select modelMDOL
STR

. Its

superiority means that capturing the instability of the OL relationship is an important step in

improving its predictive performance. These results hold for both the A and B cases. For the

3
Note that, to stabilize the variance of time series, the BHH method relies also on the Box-Cox transformations of the

original series, requiring an inversion of the bootstrapped series to obtain the ones used for forecasting.

4
Note that the Voung test statistic is more appropriate for non-nested models. We present its values for completeness and

to appraise the fitness of the models, given that it is based on an information criterion.
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Table C.1: In-Sample Forecast Exercises

A: Sample values of B: Predicted values of

ut and estimates of zft ut and zft

RMSE MAE RMSE MAE

MAR
0.00512 0.00386 0.00512 0.00386

MDOL
0.00469 0.00355 0.00464 0.00356

MDOL
STR

0.00432 0.00332 0.00437 0.00335

MDOL

STR(X)
0.00446 0.00342 0.00443 0.00396

Diebold–Mariano test

MDOL vs MDOL
STR

4.074 3.953

[0.0001] [0.0001]

MAR vs MDOL
STR

2.636 2.477

[0.0044] [0.0070]

MDOL

STR(X)
vs MDOL

STR
1.8222 1.409

[0.0348] [0.0800]

V oung test

MDOL vs MDOL
STR

-4.640 -4.142

[0.0001] [0.0010]

MAR vs MDOL
STR

-2.263 -2.554

[0.0035] [0.0050]

MDOL

STR(X)
vs MDOL

STR
-1.833 -1.424

[0.0344] [0.0773]

Note. This table shows the in-sample forecasting metrics for the PC threshold model under cases (A) Sample values of ut and estimates of

zft and (B) Predicted values of ut and zft. Numbers in brackets represent probability values.

latter, the superiority of the MDOL
STR

model is stronger in terms of the reported p-values. This

may be attributed to the ability of the BHB method to reduce the effects of parameter and data

uncertainty on the predictions of the models.

TheMDOL
STR

model also notably improves upon the performance of its non-endogenous thresh-

old counterpartMDOL

STR(X)
. The close-to-5%, or less, p-values of the test statistics reported in Panel

A reject null thatMDOL
STR

andMDOL

STR(X)
have equal predictive ability, at 3.5% level. The former also

has lower RMSE andMAE.
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Table C.2: Out-of-Sample Forecast Exercises

A: Sample values of B: Predicted values of

ut and estimates of zft ut and zft

RMSE MAE RMSE MAE

MAR
0.00298 0.00183 0.00440 0.00340

MDOL
0.00259 0.00188 0.00360 0.00232

MDOL
STR

0.00258 0.00174 0.00330 0.00237

MDOL

STR(X)
0.00263 0.00177 0.00380 0.00229

Diebold–Mariano Out of Sample test

MDOL vsMSTR
DOL 4.018 7.068

[0.0411] [0.0009]

MAR vsMDOL

STR
5.506 4.419

[0.0144] [0.0250]

MDOL

STR(X)
vsMDOL

STR
3.481 5.905

[0.0660] [0.0005]

Mixed–Window Out of Sample test

MDOL vsMSTR
DOL 1.794 2.957

[0.0400] [0.0015]

MAR vsMDOL

STR
2.214 1.865

[0.0130] [0.0245]

MDOL

STR(X)
vsMDOL

STR
1.462 2.276

[0.0718] [0.0110]

Note. This table shows the out-of-sample forecasting metrics for the PC threshold model under cases (A) Sample values of ut and estimates

of zft and (B) Predicted values of ut and zft. Numbers in brackets represent probability values.

C.2 Out-of-sample prediction

Table C.2 presents the out-of-sample exercises. Panel A presents results based on the out-of-

sample window realized values of ut and values of zft. Panel B shows the case that predicted

values of the one-quarter ahead are used based on the rolling window information and the BHB

method. In addition toRMSE,MAE we show the test statistic of Clark andWest (2007), CW and

the mixed estimation window statistic of Calhoun (2016) (denotedCW andCMW , respectively).
5

To calculate the values of the above metrics and statistics, our exercises are based on a fixed-

length rolling window estimates of the models consisting of 232 observations, implying that we

use a number of 80% observations to calculate the prediction errors. For each window, we update

the estimates of the models and calculate the one-period ahead, out-of-sample prediction of yt

and their associated prediction errors based on the sample window estimates of the threshold

factor zt and ut. We carry out similar pair comparisons of the models to those of the in-sample

exercise. Under the null hypothesis, both theCW andCMW statistics are asymptotically normally

distributed. For CMW , normality is achieved by estimating the benchmark model recursively

5
These statistics have good size and power properties for one-period ahead out-of-sample forecasts (see Clark and

McCracken (2011), for a survey).
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(using an expanding window). In brackets, we give probability values for the CMW test based

on the standard normal distribution and bootstrapped for the CW , as it is approximately normal

in small samples (Clark and West (2007)). The results show that modelMSTR
DOL outperforms the

other models in terms of out of sample predictive accuracy. All tests select this model.

In addition FigureC.1 graphically reports the values ofGiacomini’s andRossi (2010) fluctuation

test statistic (GR) against the 5% critical value. This is based on the quadratic loss function (like

the DM ), and can examine the relative superiority that a model holds at each point in the out-of-

sample period.
6
Conclusions echo those of the in-sample exercise. TheMDOL

STR
model improves

significantlyupon thepredictiveperformanceof theMAR
(at a below 5% level), upon thepredictive

performance of theMDOL
model, and the version ignoring the endogeneity of zft at close to the

5% level.

The inspection of the graphs of the GR test reveals that the superiority of theMDOL
STR

model

relative to theMAR
holds across all time points of the out-of-sample interval. For this pair of

models, the values of the GR test statistic shows that modelMDOL
STR

forecasts better than model

MAR
as the null hypothesis of equal predictive ability at each point in time is rejected against the

alternative at 5% critical level thatMDOL
STR

forecasts the best at least one point in time.

These results hold based on both sets of theGR test values reported in the table; i.e., the sample

values of ut and the estimates zft, and their predicted out-of-sample values. Compared to the

MDOL
model, the values of the GR test favor theMDOL

STR model for both sets of results, at 5%.

Finally, the model seems to perform better than that ignoring the endogeneity of the threshold

variable for most tests reported in the tables and the figure, at the 10% level or below.

Summing up, our results provide interesting evidence in supporting the use of the MDOL
STR

model to provide short-term (one-quarter ahead) predictions of the output gap. The cyclical

regime-dependent sensitivities of unemployment can help in this direction, as it can capture the

instability of the OL relationship.
7

Figure C.1: Out of Sample Forecasting One-Sided t Tests
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A: Sample values of ut and zt
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B: Predicted values of ut and zt

Note. The figure plots the values of the GR (Giacomini-Rossi) fluctuation tests of the out-of-sample exercise. Panel A presents results for

the case that the sample (realized) values of ut and sample estimates of threshold factor zst are used to predict output gap, while panel

B for the case that the predicted values of these variables one-period ahead are employed. The horizontal line represents the one-sided

critical value.

6
As with theDM , the long-run variance of all the above tests is calculated using the HAC estimator.

7
We also examined the models through the Rossi and Sekhposyan (2016) forecast rationality test, without any indication

that any of the models reject forecast rationality. Details available.
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D Additional Material

D.1 Filtered Series

In Figure D.1 we plot various measures of the cyclical series of log output and unemployment.

Specifically we show the one and two sided HP filter, the Christiano-Fitzgerald series (our pre-

ferred series marked in thick blue) and the Baxter-King and the Hamilton series. To a simple

approximation their cyclical behaviors are quite similar, although typically the Hamilton filter is

more volatile (see also the discussion in Schüler, 2018).

In Figure D.2 and Figure D.3, we plot the spectral density of the various filtered series in the

order Series are ordered asHP 1 sided then 2-sided filter, Baxter-King Filter, Christiano-Fitzgerald,

and Hamilton filter. The vertical lines are consistent with the business-cycle frequencies of 6 and

32 quarters. Thus, 32−1 = 0.031 and 6−1 = 0.167. It can be seen that the bulk of the frequency

representation falls within the bands most obviously for the CF filters.

Figure D.1: Filtered Cyclical Series
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Figure D.2: Spectral Density of Filtered Output Series
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Note. Series are ordered as HP 1 sided then 2-sided filter, Baxter-King Filter, Christiano-Fitzgerald, and Hamilton filter.
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Figure D.3: Spectral Density of Filtered Unemployment Series

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

C
y
c
le

 o
f 
U

N
1
0
0
 (

o
n
e
−

s
id

e
d
)

L
o
g
 P

e
ri
o
d
o
g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

C
y
c
le

 o
f 
U

N
1
0
0
 (

tw
o
−

s
id

e
d
)

L
o
g
 P

e
ri
o
d
o
g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

B
K

: 
U

N
1
0
0

L
o
g
 P

e
ri
o
d
o
g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

C
K

: 
U

N
1
0
0
 (

I(
1
))

L
o
g
 P

e
ri
o
d
o
g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

−
6
.0

0
−

4
.0

0
−

2
.0

0
0
.0

0
2
.0

0
4
.0

0
6
.0

0

H
a
m

ilt
o
n
: 
U

N
1
0
0

L
o
g
 P

e
ri
o
d
o
g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

Note. Series are ordered as HP 1 sided then 2-sided filter, Baxter-King Filter, Christiano-Fitzgerald, and Hamilton filter. By “natural

frequencies”, we mean the standard frequencies divided by 2π. The vertical lines are consistent with the business-cycle frequencies of 6
and 32 quarters. Thus, 32−1 = 0.031 and 6−1 = 0.167.

D.2 Miscellaneous Additional Material

Figure D.4: Actual vs. Fitted (2007-2018)
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Note. This figure takes the full sample implied fit of the dynamic Okun’s law and scatter plots these predictions with realized out turns

from 2007q1-2018q4. The predictions are mostly below the actual values suggesting that the Okun coefficient is lower (more negative) than

would be required over this period.
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Figure D.5: Comparisons of FRED Labor Income Share Series

Nonfarm Business Sector: Labor Share (PRS85006173)
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Note. These figures compare the level and percentage change characteristics of two measures of the US labor income share.

Table D.1: Threshold Okun Law Results: Ignoring Endogeneity

para./zt labsh† ul π is,xw is cu il

ρ 0.541∗∗∗ 0.559∗∗∗ 0.586∗∗∗ 0.686∗∗∗ 0.687∗∗∗ 0.865∗∗∗ 0.766∗∗∗
(0.080) (0.073) (0.075) (0.070) (0.070) (0.085) (0.073)

β −0.509∗∗∗ −0.967∗∗∗ −0.623∗∗∗ −0.273∗∗ −0.272∗∗ −0.183 0.023
(0.138) (0.195) (0.153) (0.138) (0.138) (0.163) (0.184)

b −0.346∗∗∗ 0.861∗∗∗ −0.171 −0.319∗∗∗ −0.318∗∗∗ 0.123 −0.943∗∗
(0.127) (0.259) (0.125) (0.120) (0.114) (0.156) (0.444)

δ 107.642 0.0279 0.0404 4.100 4.100 0.835 9.420
{107.610-107.645} {0.0268-0.0288} {0.0106-0.060} {4.02-4.150} {4.04-4.140} {0.807-0.860} {9.110-9.652}

γ 5.500 0.100 732.500 6.600 8.900 461.400 0.800
{4.10-6.90} {0.010-0.4} {731.099-733.500} {4.90-8.00} {7.100-10.800} {460.00-463.00} {0.091-0.097}

β∗1 −1.109 −2.193 −1.505 −0.869 −0.869 −1.356 0.098

β∗2 −1.863 −0.240 −1.918 −1.885 −1.885 −0.444 −3.932

AIC −1028.876 −1030.348 −1026.544 −975.474 −975.510 −802.645 −912.298

D2 70.100 10.000 27.540 53.125 53.750 25.490 10.000

Note. This table shows the results from estimation of (18) for the threshold candidates that rejected a linear specification. We show the case

where there is no endogeneity modelled, ω1 = ω2 = 0. Numbers in parentheses below the coefficients represent bootstrapped standard errors,

and those in braces represent bootstrapped 95% confidence intervals. The terms β∗1 and β∗2 are as defined in (19). D222 is the sample percentage

residing in the second regime.
†
The labor share measure used is the quarterly indexed one provided by FRED where 2012 = 100.
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Figure D.6: Endogenous Threshold Variables and Transition Probabilities with NBER reference

dates (Demand)
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Note. Blue solid line represent the threshold variable, z, red dashed line represent the {0, 1} transition probabilities. The horizontal solid line

represents the estimated threshold parameter, δ̂. The β∗ values on the rhs edge are the Okun parameters in the respective regimes.

Figure D.7: Endogenous Threshold Variables and Transition Probabilities with NBER reference

dates (Structural)
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Note. See notes to Figure D.6.

Figure D.8: Endogenous Threshold Variables and Transition Probabilities with NBER reference

dates (Policy/Financial)
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