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Abstract

We establish a limit theorem for partial sums of martingale transforms with multi-
plicative noise and ergodic transform processes, resulting to regularly varying rates and
stable limits. We first derive an extension of Breiman’s Theorem to empirical distribu-
tions, and then obtain the limit theorem by combining the former with the Principle of
Conditioning.
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α-Stable Distribution, Regular Variation, Breiman’s Theorem.

1 Introduction
Similarly to the Gaussian limit theory, stationarity and ergodicity are not by themselves
sufficient to extend to dependent processes, i.i.d. limit theorems to stable laws. Such results
for weakly dependent processes exist in the literature; for two quite general formulations see
Davis and Hsing [13] for a point processes based approach, and Bartkiewicz et al. [7] for
an approach based on characteristic functions. When the process is a martingale transform,
those results depend on conditions that may be either tedious to verify and/or more restrictive
than necessary. In this paper we discuss weaker conditions for a limit theorem to stable laws
for martingale transforms with multiplicative i.i.d. noise and ergodic transform processes.
We utilize the so-called Principle of Conditioning (see Jakubowski [24]) which allows for
deriving limit theorems for sums of dependent random variables from existing limit theory
for independent processes.

Our motivation stems from the GARCH models literature (see for example the references
in Ch. 3-7 of Straumann [35]) and the determination of the asymptotic properties of the
computationally convenient Gaussian Quasi Maximum Likelihood Estimator (QMLE), in
the context of such models. Under mild conditions, the score process there assumes the form
of a multiplicative martingale transform where the squared innovations act as noise. When
∗Dept. of Economics, AUEB. Email address: stelios@aueb.gr
†Foundation for Industrial and Economic Research - IOBE. Email address: loukaalex@aueb.gr
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the i.i.d. innovations possess fourth moments, the estimator is known to be
√
n-consistent

and asymptotically normal (see Ch. 5 of Straumann [35]). However, the empirically relevant
possibility of the non-existence of the fourth moment (see e.g. Rachev and Mittnik [32] and
Mittnik et al. [29]) raised the issue of its implications on the limit theory of the QMLE.

In this paper we extend previous results connected to this literature (see Hall and Yao
[20], and Mikosch and Straumann [28]) to a limit theorem for martingale transforms with
regularly varying rates and stable limits under weaker conditions regarding temporal depen-
dence and existence of moments. Our derivations exploit the multiplicative structure of the
transform and the local representations of the characteristic function of the noise (see Ibrag-
imov and Linnik [23] and Aaronson and Denker [1]). In several cases they are facilitated
by our asymptotic extension of the Denisov and Zwart [14] version of Breiman’s Theorem
(see Breiman [10]) to empirical distributions. Our approach does not require the verifica-
tion of extremal index conditions (see Davis and Hsing [13]) in order to establish asymptotic
non-degeneracy. It also avoids use of restrictions on the mixing rates and/or the existence
of higher order moments for the transform process, at the cost of restrictions on the regular
variation properties of the martingale difference process.

Our results fully characterize the limiting distributions beyond the index of stability in
terms of the relevant parameters of the noise and moments of the transform process. They
are readily extendable to multivariate transform processes via Cramér’s Theorem. The case
where the index of stability equals 2 yields Gaussian limits. Thus our results incorporate
asymptotic normality, with rates of convergence potentially slower than

√
n. This occurs

when the truncated second moment of the noise slowly diverges to infinity. In this case
we only require the existence of the second moments for the transform process, something
weaker than the condition implied in Hall and Yao [20], while we also avoid the conditional
Lindberg condition (see Jeganathan [26]) which would fail in this framework. Finally our
results constitute an essentially unified limit theory since they also incorporate the classical
case involving stationary and ergodic square integrable transforms.

The remaining paper is organized as follows. In the following section, we establish notation
as well as derive and discuss our main result. The final section contains the proofs.

2 Notation, Assumption Framework and Results
We work in the context of a complete probability space (Ω,G,P). The abbreviation P a.s.
signifies almost sure events with respect to P. We denote convergence in distribution of
sequences of random elements with  and equality in distribution with d

=. All limits are
considered as n→ +∞ unless otherwise specified. The stochastic processes under consider-
ation are defined on Z or N. The results are presented for the first case, yet they also hold
for the second with appropriate modifications that involve initial values, etc. F will denote
some filtration on G, i.e. an increasing double sequence (Gi)i∈Z of G sub-σ-algebras. Given a
non empty set A, `∞ (A) denotes the set of bounded real functions on A equipped with the
uniform metric. ‖·‖ denotes the Euclidean norm.

We are interested in the asymptotic behavior of the partial sums of the process ((ξi − γ)Vi)i∈Z
where (ξi)i∈Z is an i.i.d. process, γ is a location parameter, and (Vi)i∈Z is a stationary ergodic
process. We employ measurability properties of the constituent processes w.r.t. F , that
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enable characterization of the pointwise product ((ξi − γ)Vi)i∈Z as a martingale transform
of (ξi)i∈Z by (Vi)i∈Z. The term is inaccurate in the cases where E [|ξ0V0|] = +∞, yet we
universally adopt it in the spirit of Mikosch and Straumann [28].

In order to derive the limit theory of the partial sums of ((ξi − γ)Vi)i∈Z, we first present
our assumption framework on properties of the constituent processes.

Let Sα(β, c, γ) be the (univariate) stable distribution with parameters α, β, c, γ denoting
stability, skewness, scale and location respectively (see Ibragimov and Linnik [23]). When
α = 2, then s = 0 and S2(0, c, γ) = N(γ, c).

Assumption 1. For some α ∈ (0, 2], β ∈ [−1, 1], c > 0 and γ ∈ R, (ξi)i∈Z is i.i.d. and the
distribution of ξ0 lies in the domain of attraction (DoA) of Sα (β, c, γ).

Assumption 2. For some filtration F ≡ (Gi)i∈Z, (ξiVi)i∈Z is F-adapted, ξi is independent
of Gi−1 and Vi is Gi−1-measurable for all i ∈ Z.

Assumption 3. (Vi)i∈Z is stationary and ergodic with E [|V0|α] < ∞ and P(|V0| > x) =
o (P(|ξ0| > x)) as x→∞.

Remark 1. Our motivation behind Assumption 1 is the issue of the fourth moment existence
for the innovations of GARCH-type models in the framework of empirical finance. In this
respect (ξi)i∈Z represents the squared innovations-potentially translated by −γ = −1, as
those appear in parts of the Gaussian quasi log-likelihood function and its derivatives. It
encompasses the usual case where α = 2 and E [ξ2

0 ] < +∞. It also allows for cases where
E [ξ2

0 ] = +∞ and E
[
ξ2

01|ξ0|≤x
]
is either regularly varying at infinity with index 1 − α

2
or it

is slowly varying, whereas the usual ergodic square integrable martingale difference CLT is
inapplicable to

∑n
i=1 (ξi − γ)Vi.

Remark 2. For any α ∈ (0, 2] the distribution of ξ0 belongs to the DoA of Sα (β, c, γ) if and
only if its log-characteristic function has the following representation as t→ 0:{

γit− c|t|αL(|t|−1)
(
1− iβ sgn(t) tan

(
1
2
πα
))

+ o (|t|L (|t|−1)) , α 6= 1

(γ +H(|t|−1)) it− c|t|L(|t|−1)
(
1− 2Ciβ

π
sgn(t)

)
+ o (|t|L (|t|−1)) , α = 1

, (1)

where i :=
√
−1, L(x) is a slowly varying function in the sense of Karamata (see for example

Bingham et al. [8]), H(λ) =
∫ λ

0
x

1+x2
L(x)(2βcπ−1 + k(x))dx and k(x) → 0 as x → ∞ and

−C is the Euler-Mascheroni constant. This is due to Theorem 2.6.5 in Ibragimov and Linnik
[23], with the case α = 1 clarified in Aaronson and Denker [1] (see Theorems 1 and 2 there).

Remark 3. In some applications F represents the history of the (ξi)i∈Z process, i.e. it is
defined by Gi = σ (ξi−j, j ≥ 0). In such cases the independence of ξi from Gi−1 in Assumption
2 follows readily from Assumption 1. The Gi−1-measurability of Vi could among others follow
when this is defined as some measurable transformation of causal solutions to stochastic
recurrence equations (SRE) involving solely elements of Gi−1. In any case Assumption 2
along with the Principle of Conditioning (see Jakubowski [24]) implies that the limiting
distribution of σ−1

n (
∑n

i=1 (ξi − γ)Vi − τn) for the appropriate choice of (τn, σn), if any, will
be determined by the limiting behavior of exp

(
τn
σn

)∏n
i=1 E [exp (itσ−1

n (ξi − γ)Vi) /Gi], t 6= 0.
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Remark 4. Stationarity and ergodicity for the (Vi)i∈Z process, whenever this is defined as some
measurable transformation of solutions of stationary and ergodic SREs, can be established
via conditions on the Liapunov exponents of the relevant dynamical systems; see for example
Bougerol and Picard [9]. The existence of the α moment for the stationary distribution can
in a similar set up be derivable via results like the ones in Goldie [17]. The final part of the
assumption employs a comparison between the tails of the stationary distributions of ξ0 and
V0. In view of Assumption 1, it certainly holds whenever E

[
|V0|α+δ

]
< +∞ for some δ > 0,

but this is not necessary. Regular variation of the tails of V0 with index α would suffice as
long as the slowly varying part is asymptotically dominated by L. This obviously allows for
cases where E

[
|V0|α+δ

]
= +∞ for any δ > 0 even when E [|ξ0|α] < +∞.

Define rn by the asymptotic relation L(n
1
α r

1
α
n )/rn → 1, and notice that (rn)n∈N is a well

defined slowly varying sequence-see Paragraph 1.9 of [8] and Proposition 1.(iv) of [6]. As-
sumption 3 controls the behavior of the maximum order statistic for the (|Vi|)i∈Z process; the

result below shows that the latter cannot diverge at a rate faster than n
1
α r

1
α
n with probability

converging to one.

Lemma 1. Suppose that Assumptions 1-3 hold. Then for any M > 0,

P
(
n−

1
α r
− 1
α

n max
1≤i≤n

|Vi| > M

)
→ 0. (2)

Remark 5. Assumption 1 implies that for any M > 0,

P
(
n−

1
α r
− 1
α

n max
1≤i≤n

|ξi| > M

)
→ Φα (M) ,

where Φα denotes the Fréchet distribution; see Embrechts et al. [16]. This and Lemma 1
partially imply that the index of the tail variation properties for the limiting distribution
of the appropriately scaled partial sum of the transform is essentially determined by the
distribution of ξ0.

In view of the final observation in Remark 3, Lemma 1 implies that for σn = n
1
α r

1
α
n ,

E [exp (itσ−1
n (ξi − γ)Vi) /Gi] can be approximated with high probability by the local repre-

sentation

− c|t|α
nrn
|Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
+ 1 {α = 1}H(n1/αr

1/α
n |tVi|−1)it Vi

n1/αr
1/α
n

|t|α
nrn

iβc sgn(t) tan
(

1
2
πα
)

sgn(Vi) |Vi|α L
(
n1/αr

1/α
n |tVi|−1

)
.

This is due to Assumption 1 and the fact that tn−
1
α r
− 1
α

n max1≤i≤n |Vi| lies in the neighborhood
of validity of the representation in (1) with probability converging to one, for any t. A
simple calculation (see the proof of Theorem 1) then shows that the limit theory would
be greatly facilitated by the determination of the asymptotic behavior of terms similar to

1
nrn

∑n
i=1 |Vi|

α L
(
n

1
α r

1
α
n /(|t||Vi|)

)
. Given Assumption 3, and Birkhoff’s LLN, if there exists some

Tauberian-type result that would allow for the asymptotic factoring out from the sum of the
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slowly varying component, the required limits would be easily derivable from ergodicity.
Towards the establishment of such a result, the Denisov and Zwart [14] representation of
a slowly varying function at infinity in terms of pairs of long-tailed random variables will
be useful. Remember that a random variable U is said to be long tailed iff P (U > x) ∼
P (U > x+ y) as x tends to ∞ for any y, which then implies that P (U > log x) is slowly
varying:

Lemma 2. (Lemma 2.1 of Denisov and Zwart [14]) If L is slowly varying then it admits one
of the following four representations:

1. L(x) = c(x),

2. L(x) = c(x)/P(U > log x),

3. L(x) = c(x)P(U > log x),

4. L(x) = c(x)P(U > log x)/P(U? > log x),

where c(x) is a function converging to a strictly positive constant, while U and U? are inde-
pendent long-tailed random variables with hazard rates converging to 0.

When α < 2, due to Assumptions 1-3 1
nrn

∑n
i=1 |Vi|

α L
(
n

1
α r

1
α
n /(|t||Vi|)

)
is P a.s. asymp-

totically equivalent to P?n
[
vn|ξ0|> 1

|t|n
1
α r

1
α
n

]
/P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

]
, where P?n denotes the stochastic prod-

uct measure between the empirical distribution of (|Vi|)1≤i≤n and P, and vn is a random
variable that follows this empirical distribution and is independent of ξ0. This ratio is par-
tially an empirical analogue of the random variables product appearing in Breiman’s The-
orem (see Breiman [10]). This in our setting states that if, in addition to Assumption 3,
E
[
|V0|α+δ

]
< +∞ for some δ > 0, then as n→∞, P

[
|V0ξ0|> 1

|t|n
1
α r

1
α
n

]
/P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

]
→ E [|V0|α].

Denisov and Zwart [14] extend this result by essentially assuming the second part of As-
sumption 3, while imposing further conditions on the properties of L and/or the comparison
between the tails of the involved distributions. Hence the marginal distribution of the trans-
form has regularly varying tails with index equal to α, while the properties of V0 only affect
the scale, symmetry and location parameters.

Our first result extends the Theorem of Breiman (see Breiman [10]) and the corresponding
extension of Denisov and Zwart [14] to be valid for P?n. This result is to our knowledge new
and enables handling of the limiting behavior of the P?n

[
vn|ξ0|> 1

|t|n
1
α r

1
α
n

]
/P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

]
ratio. It

employs conditions partially stronger to the ones of Denisov and Zwart [14], and it also in
some cases requires restrictions on the weak dependence of the (Vi)i∈Z process given the fact
that it involves empirical distributions.

Proposition 1. Suppose that Assumptions 1-3 hold for α < 2. Suppose furthermore that
either one of the following conditions hold:

1. lim sup
x→∞

sup 1≤y≤xL(y)/L(x) <∞, or

2. for some δ > 0, E
[
|V0|α+δ

]
<∞.
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Then, for any real sequence mn →∞, as n→∞,

P?n [vn |ξ0| > mn]

P [|ξ0| > mn]
→ E [|V0|α] ,P a.s. (3)

where P?n denotes the product measure between the empirical distribution of (|Vi|)1≤i≤n and
P, and vn is a random variable that follows this empirical distribution and is independent of
ξ0.

Now suppose that neither of Conditions 1-2 hold, and, in addition to Assumptions 1-3,
assume that (Vi)i∈Z is strongly mixing and either one of the following conditions hold:

3. L assumes the representation (3) or (4) of Lemma 2,
limx→∞

∫ x
0

P[U>x−y]
P[U>x]

P [U > y] dy = 2
∫∞

0
P [U > y] dy < +∞ and for some 0 < ε < 1,

xαPε[|V0|>x]
P[U>log x]

→ 0 as x→∞, or

4. lim supx→∞ sup√x≤y≤x
L(y)
L(x)

< ∞ and for some 0 < ε < 1,
Pε[|V0|>x]
P[|ξ0|>x]

∫ x
0
tαdP [|ξ0| ≤ t]→ 0 as x→∞.

Then for any real sequence mn →∞, as n→∞,

P?n [vn |ξ0| > mn]

P [|ξ0| > mn]
→ E [|V0|α] , in probability. (4)

Remark 6. Condition 1 implies the first two cases of Lemma 2. Hence it among others covers
normal DoAs or eventual monotonically diverging slow variation for ξ0 (for sufficient condi-
tions on the existence of monotone versions of L see Buldygin et al. [11]). It corresponds to
the empirical distribution extension of Proposition 2.1 of Denisov and Zwart [14]. Condition
2 requires the existence of α + δ moment for |V0|. It corresponds to the empirical distri-
bution extension of the original result of Breiman [10]. Both imply the strong array LLN;

1
nrn

∑n
i=1 |Vi|

α L
(
n

1
α r

1
α
n /(|t||Vi|)

)
→ E [|V0|α] P a.s. without any further dependence restrictions

for (Vi)i∈Z .

Remark 7. In Condition 3 the integrability requirement for P [U > x] is equivalent to that
the tail distribution function is a sub-exponential density, or equivalently that the random
variable U belongs to the class S∗ (see Klüppelberg [27]). In the case 3 of Lemma 2 this

is equivalent to
∫ x

0

L(ex−y)
L(ex)

L (ey) dy = 2
∫∞

0
L (ey) dy < +∞ (see Denisov and Zwart [14]).

Whenever L assumes the representation 3 or 4 of Lemma 2, Condition 4 essentially handles
cases where

∫∞
0

P [U > y] dy diverges. A sufficient condition for the asymptotic boundedness
required in Condition 4 is that L◦ exp is of bounded variation, while it is easy to see that the
result holds if

√
x is replaced with xβ for any β ∈ (0, 1) (see again Denisov and Zwart [14]).

The remaining asymptotic negligibility requirements in both Conditions 3-4 are stronger
analogues to the ones in Propositions 2.2-3 of Denisov and Zwart [14]-the latter are allowed
to hold for ε = 1. They essentially constitute more refined comparisons between the tails
of the stationary distributions of ξ0 and V0. The stronger requirement that ε < 1 along
with strong mixing for (Vi)i∈Z, allow for asymptotic handling of a scaled approximation error
of the empirical distribution of (|Vi|)1≤i≤n to the stationary distribution of |V0| uniformly
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over appropriate classes of events. Strong mixing can be substituted by a more general
mixingale restriction (see Theorem 1 of Hill [22] and the derivation of (14) in the proof of the
proposition) without affecting the validity of the results. A weak array LLN is then obtained;

1
nrn

∑n
i=1 |Vi|

α L
(
n

1
α r

1
α
n /(|t||Vi|)

)
→ E [|V0|α] in probability.

The asymptotic representation of 1
nrn

∑n
i=1 |Vi|

α L
(
n

1
α r

1
α
n /(|t||Vi|)

)
as the probability ratio

in eq. (3) or (4), is not valid when α = 2. In this case a simple calculation shows that the sum
equals∑n

i=1 E
[
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|> 1
|t|
/Gi−1

]
. Our second result handles the asymptotic proper-

ties of this representation.

Proposition 2. Suppose that Assumptions 1-3 hold for α = 2. Then for any M > 0,
n∑
i=1

E
[

1

nrn
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|≤M
√
nrn/Gi−1

]
→ E

[
V 2

0

]
,P a.s. (5)

Remark 8. The proof of this proposition closely parallels the proof of Proposition 1 under
Condition 1, due to the monotonicity of L. Notice that when rn converges, then (5) implies
the conditional Lindberg condition typically encountered in several martingale limit theorems
(see for example Hall and Heyde [19], Jeganathan [26]).

Hence, Propositions 1-2 provide with the Tauberian type result required above. Mod-
ulo further details exemplified in the proof, they facilitate the derivation of our martingale
transform limit theorem that we now state:

Theorem 1. Under the premises of Propositions 1-2: If α 6= 1, then

1

n1/αr
1/α
n

n∑
i=1

(ξi − γ)Vi  Sα

(
β
E [|V0|α sgn (V0)]

E [|V0|α]
, cE [|V0|α] , 0

)
. (6)

If α = 1 and
E [|V0|| log(|V0|)|] <∞, when β 6= 0

then,

1

nrn

n∑
i=1

(ξi − γ −H (nrn))Vi − 2βcπ−1 (CE (V0)− E [V0| log(|V0|)|])

 S1

(
β
E [V0]

E [|V0|]
, cE [|V0|] , 0

)
. (7)

If α < 1 and either for any M > 0,

P
(

max
1≤i≤n

|Vi| > Mq
1
α
n n

1
α

)
→ 0, (8)

where qn = O(r
1/(1−α)
n ) , or for some δ > 0,

E
[
|V0|α+δ

]
<∞, (9)
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then,
1

n1/αr
1/α
n

n∑
i=1

ξiVi  Sα

(
β
E [|V0|α sgn (V0)]

E [|V0|α]
, cE [|V0|α] , 0

)
. (10)

Remark 9. In unison with Remark 5 the rate n1/αr
1/α
n reflects tail variation patterns of the

distribution of ξ0 while it is not affected by properties of the (Vi)i∈Z process. The limiting
distribution is stable with stability parameter strictly determined by Assumption 1. The
distribution of V0 affects only the scale and symmetry parameters of the limit. It also affects
the form of the translating constants in the case where α = 1. Notice that in this case,
we do not impose conditions that restrict the translating sequence to zero as in Theorem
1-Condition 5 of Bartkiewicz et al. [7]. When the attractor is symmetric, V0 affects only
the limiting scale, in which case (Vi)i∈Z can be characterized as a stochastic scaling process
for the transform. In this case and for α = 1, the term 2βcπ−1 (CE (V0)− E [V0| log(|V0|)|])
disappears from the centering sequence, thus (7) coincides with (6) and the limit becomes a
Cauchy distribution. When α < 1, and due to the zero location, when c2 = 0 (resp. c1 = 0),
the limiting distribution is supported on [0,+∞) (resp. (−∞, 0]). Furthermore, when α < 1
and either (8)-that strengthens (2), or the stricter (9) hold, then the translating sequence

γ

n1/αr
1/α
n

∑n
i=1 Vi becomes asymptotically negligible. Finally, when Vi = 1, P a.s. for all i, then

the classical i.i.d. results are recovered for all α.

Remark 10. When α = 2 and rn converges-necessarily to E [ξ2
0 ]-then we obtain a version of

the classical CLT for stationary and ergodic martingale difference sequences with limit the
N (0,E [V 2

0 ]) distribution. When rn diverges we still obtain a CLT, albeit with slower rates√
n
rn

and the same limiting distribution. The rate reflects the divergence properties of the
truncated second moment of ξ0. Due to the monotonicity of the mapping x→ E

[
ξ2

01|ξ0|≤x
]
,

this case is derivable without the need for existence of E
[
|V0|α+δ

]
for some δ > 0, or any

mixing conditions for (Vi)i∈Z. Furthermore, then, the conditional Lindberg condition requir-
ing that

∑n
i=1 E

[
1
nrn

(ξi − γ)2 V 2
i 1|(ξi−γ)Vi|>M

√
nrn/Gi−1

]
→ 0 in probability for any M > 0,

fails. Jeganathan [26] considers it as in some sense necessary condition for the martingale
convergence, hence such cases constitute almost counter-examples. For a simple example
suppose that ξ0 ∼ t2. Then the result assumes the form 1√

n logn

∑n
i=1 ξiVi  N (0,E [V 2

0 ])

by a simple calculation. This essentially generalizes the results of Abadir and Magnus [2] to
dependent processes.

Remark 11. Theorem 1 can be readily extended when V0 is an Rd-valued random vec-
tor via the use of the Cramer’s Theorem. Suppose that for any λ ∈ Rd different than
zero, when α 6= 0, we have that 1

n1/αr
1/α
n

∑n
i=1 (ξi − γ)λTVi converges in distribution to

Sα

(
β

E[|λTV0|α sgn(λTV0)]
E[|λTV0|α]

, cE
[∣∣λTV0

∣∣α] , 0), while when α = 1 we obtain the same result by

re-centering with
2βcπ−1

(
CE

(
λTV0

)
− E

[
λTV0| log(|λTV0|)|

])
.

When α ≥ 1, Example 3.3.4 of Samorodnitsky and Taqqu [33] implies that the multivariate
limits are identified as multivariate α-stable distributions with spectral measures Γ deter-

8



mined by

β (λ) =
∫
Sd−1 |sTλ|α sgn(sTλ)Γ(ds)∫

Sd−1 |sTλ|αΓ(ds)

cα (λ) =
∫
Sd−1

∣∣sTλ∣∣α Γ (ds)
, (11)

and

γ (λ) =

{
γTλ , α 6= 1

γTλ− 2
π

∫
Sd−1 |sTλ| log

(
|sTλ|

)
Γ (ds) , α = 1

, (12)

where Sd−1 denotes the d− 1 dimensional sphere. Theorem 2.3 of Gupta et al. [18] and the
zero location in (6) implies that the same is true for α < 1. Notice though that our results
cannot accommodate the case where ξi is an Rd-valued random vector since this would require
a non trivial extension of results like the ones in Proposition 1 involving spectral measures.
Such a consideration is delegated to future research.

Remark 12. (The multivariate analogue of) Theorem 1 extends the results of Mikosch and
Straumann [28] (and partly the ones in the GARCH type model specific framework of Hall
and Yao [20]). This is due to that: i) it avoids simultaneously requiring the existence of
E
[
|V0|α+δ

]
for some δ > 0 and mixing conditions for the (Vi)i∈Z process. A fortiori in the case

corresponding to Condition 1 of Proposition 1 neither mixing nor the existence of E
[
|V0|α+δ

]
is required. ii) It avoids conditions requiring strict positivity for the extremal index of the
process ((ξi − γ)Vi)i∈Z. Remember that this index reflects information on the clustering of
the process above large thresholds-see for example Davis and Hsing [13], and its evaluation
need not be trivial in applications. Its positivity ensures that the limiting distribution is not
degenerate at zero. This, in our case follows simply when E [|V0|α] is strictly positive (in the
multivariate case when E

[∣∣λTV0

∣∣α] is strictly positive for some allowable λ). iii) It is more
informative on the characterization of the limiting distributions. iv) It generally allows for
α ≤ 1. Theorem 1 extends the results in Surgailis [36] since it allows for E [|V0|]α+δ = +∞
for any δ > 0, α ≤ 1 and does not require normal DoAs-consider for example Condition 1
of Proposition 1 for L monotonically diverging. Due to the latter it analogously extends the
results of Jakubowski [25].

Remark 13. Theorem 1 can be also useful for processes that admit decompositions involving
multiplicative martingale transforms. Suppose for example that (Xi,Gi)i∈Z is a stationary
L1-mixingale of size −1 (see Ch. 16 of Davidson [12]). By the proof of Theorem 5.4 of
Hall and Heyde [19], it admits the decomposition Xi = Yi + Zi − Zi−1, where (Yi,Gi)i∈Z is a
martingale difference sequence and (Zi)i∈Z is stationary with E [|Z0|] < +∞. Suppose that
for all i ∈ Z, Yi can be factored as (ξi − γ)Vi, for which the premises of Propositions 1-2 are
valid for α > 1. Then due to the previous we obtain that maxi≤n P

[
|Zi|

n1/αr
1/α
n

> M
]
→ 0 for all

M > 0, and thereby due to Theorem 1, 1

n1/αr
1/α
n

∑n
i=1 Xi  Sα

(
β E[|V0|α sgn(V0)]

E[|V0|α]
, cE [|V0|α] , 0

)
.

Remark 14. In the case where V0 is P a.s. positive and the transform process is independent
of the noise, (ξiVi)i∈Z can be characterized as a stochastic volatility process (see Andersen
et al. [4]). Then Theorem 1 extends the results of Proposition 2 of Bartkiewicz et al. [7]
without assuming that (lnVi) is a Gaussian ARMA process, or that, when α = 1, ξ0 is

9



symmetric, while it allows for Gaussian limits even if the martingale difference process has
infinite variance.
Remark 15. Theorem 1 is inapplicable in cases where

∏n
i=1 E [exp (itσ−1

n (ξi − γVi)) /Gi] can
only converge weakly to some non-degenerate limit. Such a result would generalize Wang
[37] and in turn could be useful in several applications including non linear co-integration
(see for example Wang [37]), or the limit theory of the OLSE in frameworks of moderate
deviations from a unit root (see for example Phillips and Magdalinos [31], etc. We delegate
this to further research.
Remark 16. Suppose that (Θ, d) is a totally bounded metric space, (Vi (θ))i∈Z is stationary
ergodic and E

[
|V0|α+δ (θ)

]
< +∞ for all θ ∈ Θ and some δ > 0, |Vi (θ)− Vi (θ?)| ≤ vid (θ, θ?),

for all i ∈ Z and θ, θ? ∈ Θ, where (vi)i∈Z is stationary ergodic, and E
[
vα+δ

0

]
exists. Suppose

furthermore that γ = 0 if α ≥ 1, and β = 0 if α = 1. Then, for any ε, η > 0 there exists
δ > 0 small enough, such that

P

(
sup

θ,θ?∈Θ,d(θ,θ?)<δ

1

n1/αr
1/α
n

n∑
i=1

ξi |Vi (θ)− Vi (θ?)| > ε

)

≤ P

(
sup

θ,θ?∈Θ,d(θ,θ?)<δ

d (θ, θ?)

n1/αr
1/α
n

n∑
i=1

ξivi > ε

)
≤ P

(
Op (1) >

ε

δ

)
≤ η, (13)

where the Op (1) term in the previous display is obtained by the application of Theorem 1
(in the case where α < 1 then 10 holds) to 1

n1/αr
1/α
n

∑n
i=1 ξivi. (13) then implies stochas-

tic equicontinuity and therefore along with the application of Theorem 1 to the FIDIs of
1

n1/αr
1/α
n

∑n
i=1 ξiVi (θ), the weak convergence of the latter to a stochastic process with α-stable

marginals in `∞ [Θ]. In the special case where α < 1 and min {ξ0, V0} ≥ 0 P a.s., the limiting
process is equal in distribution to ZE [V α

0 (θ)], where Z ∼ Sα(1, c, 0) for some c > 0. In
that case, suppose also that arg maxθ∈Θ E [V α

0 (θ)] = {θ0} ⊂ Θ. Then the CMT implies that
arg maxΘ

1

n1/αr
1/α
n

∑n
i=1 ξiVi (θ)  {θ0} since Z has positive support. This could be useful

for establishing consistency of M-estimators in very heavy tailed cases even when the appro-
priately scaled objective functions have stochastic limits, as long as parameter identification
holds.

The consideration of heavy-tailed distributions for the squared innovation process in
GARCH-type models became of interest in financial applications (see e.g. Rachev and Mit-
tnik [32] and Mittnik et al. [29]). Focusing on the issue of its implications on the limit
theory of the Gaussian QMLE for the GARCH(p, q) model, Mikosch and Straumann [28]
employ their martingale limit theorem which among others depends on a mixing condition
for the volatility process and strict positivity for the extremal index of the associated mar-
tingale transform appearing in the score vector. They indicate that such conditions seem
indispensable and thereby have to be in each case confirmed, in order for their results to
be extended to other GARCH-type models. Our martingale limit theory avoids mixing in
cases 1 and 2 of Proposition 1, as well as the consideration of the relevant extremal index.
Case 2 is relevant in many such models, hence one obvious application of our main result

10



concerns the subsequent extension of the Mikosch and Straumann [28] limit theory in such
examples. When the squared innovation process for such models obeys i) Assumption 1 for
α > 1, and ii) the volatility gradient is stationary, ergodic and admits α+ δ moments, as well
as iii) the remaining standard assumption framework that appears in the literature (see for
example Ch. 4 in [35]), holds, employing Theorem 1, we can extend the existing results for
the Gaussian QMLE in the GARCH(p, q) case to a variety of conditionally heteroskedastic
models. Examples are the GQARCH(1, 1), AGARCH(p, q) and EGARCH(1, 1) models-for
their definitions see Sentana [34], Ding et al. [15] and Nelson [30] respectively, as well as
Arvanitis and Louka [5], Straumann [35] and Wintenberger and Cai [38] for establishing the
consistency between i), ii) and iii) in each model respectively.

3 Proofs
Proof of Lemma 1. We have that P

(
max1≤i≤n |Vi| > Mr

1
α
n n

1
α

)
equals

P (∪ni=1

{
|Vi| > Mr

1
α
n n

1
α

}
) ≤

n∑
i=1

P
(
|Vi| > Mr

1
α
n n

1
α

)
= nP

(
|V0| > Mr

1
α
n n

1
α

)
,

due to the stationarity of (Vi)i∈Z. Then the result follows by Assumptions 1 and 3.

Proof of Proposition 1. As in Denisov and Zwart [14] (see the proofs of Propositions 2.1, 2.2
and 2.3) we can work by replacing |V0|, |ξ0| and mn with |V0|α, |ξ0|α and m

1
α
n respectively,

and thereby we can assume that α = 1, and without loss of generality we can assume that
P (|V0| = 0) = 0. Notice first that

lim inf
n→∞

P?n [vn |ξ0| > mn]

P [|ξ0| > mn]
= lim inf

n→∞

∫ ∞
0

P [t |ξ0| > mn]

P [|ξ0| > mn]
dPn [vn ≤ t] ≥

∫ ∞
0

tdP [|V0| ≤ t] ,

where the last inequality in the previous display follows from Fatou’s lemma with varying
measures, Birkhoff’s LLN, the regular variation of index −1 of the tail of |ξ0|. For an upper
bound consider

P?n [vn |ξ0| > mn] =
3∑
j=1

P?n [vn |ξ0| > mn, vn ∈ Ai,n] ,

with A1,n = (0, ε), A2,n = [ε, gnmn), and A3,n = [gnmn,∞) for some ε > 0, and, gn ↓ 0 with
gnmn → ∞, such that P [|V0| > gnmn] = o (P [|ξ0| > mn]). Denote the respective terms as
I1,n, I2,n, I3,n. Due to the UCT for regularly varying varying functions with negative index
(see Theorem 1.5.2 of Bingham et al. [8]) and Birkhoff’s LLN we obtain

lim sup
n→∞

I1,n

P [|ξ0| > mn]
= E [|V0| 1 (0 < |V0| < ε)] , a.s.

Furthermore by the construction of gn and the Glivenko-Cantelli Theorem (see Theorem 1
of Adams and Nobel [3])

lim sup
n→∞

I3,n

P [|ξ0| > mn]
≤ lim sup

n→∞

Pn [vn > gnmn]

P [|ξ0| > mn]
= lim sup

n→∞

Pn [|V0| > gnmn]

P [|ξ0| > mn]
= 0, a.s.,

11



since P [|V0| > gnmn] = o (P [|ξ0| > mn]). Using the above we have that

lim sup
n→∞

P?n [vn |ξ0| > mn]

P [|ξ0| > mn]
≤ E [|V0| 1 (0 < |V0| < ε)] + lim sup

n→∞

I2,n

P [|ξ0| > mn]
.

Thus, it suffices for (3) that the last term in the rhs of the previous display converges a.s. to
zero as n→∞ and then ε→∞. Notice that for this term we have that

I2,n

P [|ξ0| > mn]
=

∫ gnmn

ε

L(mn
t

)

L(mn)
tdPn [vn ≤ t] .

Suppose that Condition (1) holds. Then for Cn := sup
y∈[1,mn]

L (y)

L (mn)
= sup

t∈[1,mn]

L(mn
t

)

L (mn)
, and

due to Birkhoff’s LLN we obtain

lim sup
n→∞

I2,n

P [|ξ0| > mn]
≤ lim sup

n→∞
CnEn [un1 (un > ε)] ≤ E [|V0| 1 (|V0| > ε)] lim sup

n→∞
Cn, P a.s.

Since lim sup
n→∞

Cn <∞ and E [|V0|] <∞ the result follows.

Suppose that Condition (2) holds. Given δ, we can choose ε large enough so that Potter’s
Theorem (see Theorem 1.5.6 (i)-(ii) of Bingham et al. [8]) is applicable and via Birkhoff’s
LLN we obtain that

lim sup
n→∞

I2,n

P [|ξ0| > mn]
≤
∫ ∞
ε

t1+ δ
αdP [|V0| ≤ t] = E

[
|V0|1+ δ

α 1 (|V0| > ε)
]
,

and the result follows since E
[
|V0|1+ δ

α

]
<∞.

For establishing (4) notice first that due to the previous, it suffices that I2,n
P[|ξ0|>mn]

converges
in probability to zero. Secondly, notice that due to Markov’s, the generalized von Bahr-Esseen
(see Theorem 1 of Hill [22]) and the Cr inequalities, for any δ > 0, and for η > 0 such that
(1 + η) ε < 1, we have that for some C > 0 and r = 1 + η

P
[
|Pn [vn > t−]− P [|V0| > t]|

Pε [|V0| > t]
> δ

]
≤ C

δ1+ηnη
(
P1−(1+η)ε [|V0| > t] + P1−ε [|V0| > t]

)
, (14)

and the rhs of the previous display converges to zero uniformly in t. Hence
Pn[vn>t−]−P[|V0|>t]

Pε[|V0|>t]
is bounded with probability converging to one uniformly in t.

Suppose now that Condition (3) holds. Define c?n := supt∈[ε,gnmn] c
(
mn
t

)
/c (mn) and notice

that (c?n) is bounded since by construction c (x) converges to a positive real number as x→∞.
Then

I2,n

P [|ξ0| > mn]
≤ c?n

∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
tdPn [vn ≤ t] .

Hence it suffices to show that integral in the rhs of the previous display a.s. converges to zero
as n → ∞ and then ε → ∞. Let sε (x) := xPε[|V0|>x]

P[U>lnx]
which converges to zero as x → ∞ due

to (2). Using the integration by parts formula for the Lebesgue-Stieljes integral-see Theorem
21.67 in Hewitt and Stromberg [21]-we have that

1

P [U > lnmn]

∫ gnmn

ε

P [U > lnmn − ln t] tdPn [vn ≤ t]

12



= −Pn [vn > gnmn]
P [U > − ln gn]

P [U > lnmn]
gnmn + Pn

[
vn > ε−

] P [U > lnmn − ln ε]

P [U > lnmn]
ε

+

∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
Pn
[
vn > t−

]
dt+

∫ gnmn

ε

Pn
[
vn > t−

]
tdt

P [U > lnmn − ln t]

P [U > lnmn]
.

The first term is the rhs of the previous display is less than or equal to zero and thereby
can be ignored for the construction of an upper bound. For the second term since U ∈ S∗
(i.e. U has a sub-exponential tail distribution function; see Klüppelberg [27]) and due to the
Glivenko-Cantelli theorem we have that

lim sup
n→∞

Pn
[
vn > ε−

] P [U > lnmn − ln ε]

P [U > lnmn]
ε ≤ εP [|V0| > ε] , a.s.

For the third term we have that since ε < 1∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
Pn
[
vn > t−

]
dt

≤ sup
t≥ε

sε (t)

∫ gnmn

ε

P [U > lnmn − ln t]P [U > ln t]

P [U > lnmn]

Pn [vn > t−]

Pε [|V0| > t]
d ln t, (15)

and thereby the rhs of (15) is bounded from above with probability converging to one by

(1 +Op (1)) sup
t≥ε

sε (t)

∫ gnmn

ε

P [U > lnmn − ln t]P [U > ln t]

P [U > lnmn]
d ln t ≤ 2E [U ] sup

t≥ε
sε (t) ,

since U ∈ S∗. For the fourth term we analogously have that with probability converging to
one ∫ gnmn

ε

Pn
[
vn > t−

]
tdt

P [U > lnmn − ln t]

P [U > lnmn]

≤ sup
t≥ε

sε (t)

∫ gnmn

ε

Pn [vn > t−]

Pε [|V0| > t]
dtP [U > lnmn − ln t]

= (1 +Op (1)) sup
t≥ε

sε (t)

∫ gnmn

ε

dtP [U > lnmn − ln t] ≤ 2 sup
t≥ε

s (t) .

The previous imply that with probability converging to one

1

P [U > lnmn]

∫ gnmn

ε

P [U > lnmn − ln t] tdPn [vn ≤ t]

≤ εP [|V0| ≥ ε] + 2 (E [U ] + 1) (1 +Op (1)) sup
t≥ε

sε (t) ,

and the latter converges to zero as ε→∞.
Suppose finally that Condition (4) holds. As in the proof of Proposition 2.3 of Denisov

and Zwart [14] we can assume that eventually gn > 1√
mn

. Using this we have that I2,n
P[|ξ0|>mn]

=∫ √mn
ε

L(mn
t

)

L(mn)
tdPn [vn ≤ t] +

∫ gnmn√
mn

L(mn
t

)

L(mn)
tdPn [vn ≤ t]. Then, due to Birkhoff’s LLN

lim sup
n→∞

∫ √mn
ε

L(mn
t

)

L(mn)
tdPn [vn ≤ t] ≤ E [|V0| 1 (|V0| > ε)] lim sup

n→∞
sup√

mn≤t≤mn

L(mn
t

)

L(mn)
, a.s.,
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and as ε → ∞, the term in the rhs of the previous display converges to zero. Furthermore,
for the second integral above, using the integration by parts formula for the Lebesgue-Stieljes
integral we obtain∫ gnmn

√
mn

L(mn
t

)

L(mn)
tdPn [vn ≤ t] = −

L( 1
gn

)

L(mn)
Pn [vn > gnmn] gnmn

+
L(
√
mn)

L(mn)
Pn
[
vn >

√
mn
−]√

mn +
1

L(mn)

∫ gnmn

√
mn

Pn
[
vn > t−

]
dt

(
tL
(mn

t

))
.

As previously the first term in the rhs of the previously display is less than or equal to zero
and therefore can be ignored. For the second term we have that it is less than or equal to

1

n

n∑
i=1

|V0| 1 (|V0| >
√
mn) sup√

mn≤t≤mn

L(mn
t

)

L(mn)
,

and the latter converges a.s. to zero as n → ∞ since E [|V0|] < ∞. For the final term let
Q (x) :=

∫ x
0
tαdP [|ξ0| ≤ x]. Due to the previous we have that as n → ∞ with probability

tending to 1
1

L(mn)

∫ gnmn

√
mn

Pn
[
vn > t−

]
dt

(
tL
(mn

t

))
≤

o(1) (1 +Op (1))

∫ gnmn

√
mn

mn
P [|ξ0| > t]

L (mn)Q (t)
dP
[
|ξ0| ≤

mn

t

]
,

and the integral in the rhs of the previous display is bounded from above exactly as in the
proof of Proposition 2.3 of Denisov and Zwart [14].

Proof of Proposition 2. Notice first that since as x → ∞, L (x) ∼ E
[
(ξi − γ)2 1|ξi−γ|>x

]
,

L has an equivalent monotone version. Assumption 3 and Birkhoff’s LLN implies that∑n
i=1 E

[
1
nrn

(ξi − γ)2 V 2
i 1|(ξi−γ)Vi|>M

√
nrn/Gi−1

]
is asymptotically equivalent to

L(M
√
nrn)

nrn

∑n
i=1 V

2
i

L

(
M
√
nrn

|Vi|

)
L(M

√
nrn)

. The same argument implies that we can replace L by its mono-
tone equivalent version. Denote the latter with L for brevity. Let ε > 0 and consider

L
(
M
√
nrn
)

nrn

n∑
i=1

V 2
i 1|Vi|>ε

L
(
M
√
nrn
|Vi|

)
L
(
M
√
nrn
) ≤ L

(
M
√
nrn
ε

)
L
(
M
√
nrn
) L (M√nrn)

nrn

n∑
i=1

V 2
i 1|Vi|>ε.

Due to Assumption 3, Birkhoff’s LLN, the slow variation of L, the defining property L(n
1
α r

1
α
n )/rn →

1 of (rn)n∈N implying that it is a slowly varying sequence-see Paragraph 1.9 of [8] and Propo-
sition 1.(iv) of [6], the rhs of the previous display converges P a.s. to E

[
V 2

0 1|V0|>ε
]
. Further-

more, let g(x) = x−2L(x) and notice that

1

n

n∑
i=1

∣∣∣∣g(M
√
nrn|Vi|−1)

g(M
√
nrn)

− |Vi|−2

∣∣∣∣ 1|Vi|≤ε
≤ sup

λ∈[ε−1,∞)

∣∣∣∣g(λM
√
nrn)

g(M
√
nrn)

− λ−2

∣∣∣∣ 1

n

n∑
i=1

1|Vi|≤ε.
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Due to Assumption 3 and Birkhoff’s LLN 1
n

∑n
i=1 1|Vi|>ε = O (1) P a.s. Due to the UCT for

regularly varying varying functions with negative index (see Theorem 1.5.2 of Bingham et al.
[8]) supλ∈[ε−1,∞)

∣∣∣g(λn1/αr
1/α
n |t|−1)

g(n1/αr
1/α
n |t|−1)

− λ−α
∣∣∣ = o (1). Hence

L
(
M
√
nrn
)

nrn

n∑
i=1

V 2
i 1|Vi|≤ε

L
(
M
√
nrn
|Vi|

)
L
(
M
√
nrn
) =

L
(
M
√
nrn
)

rn

(
1

n

n∑
i=1

V 2
i 1|Vi|≤ε + oP a.s. (1)

)
.

Again, due to Assumption 3, Birkhoff’s LLN, the slow variation of L, and the defining
property of (rn)n∈N , the rhs of the previous display converges P a.s. to E

[
V 2

0 1|V0|>ε
]
. The

result then follows from Assumption 3 by letting ε→∞, since E [V 2
0 ] < +∞.

Proof of Theorem 1. By the Main Lemma for Sequences in Jakubowski [25] (see, equivalently,
Theorem 1.1 along with Paragraph 3 of Jakubowski [24]) the result would follow if we would
prove that for all t ∈ R

n∏
i=1

E

(
exp

(
it

1

n
1
α r

1
α
n

ρi,α

)
/Fi

)
, (16)

for i :=
√
−1, pointwise converges P a.s. to the characteristic function of

Sα

(
β
(

E[|V0|α sgn(V0)]
E(|V0|α)

)
, cE (|V0|α) , 0

)
, where

ρi,α =

{
(ξi − γ)Vi, α 6= 1

(ξi − γ −H(nrn))Vi − rn2βcπ−1 (CE (V0)− E [V0| log(|V0|)|]) , α = 1

Given the local representation in Assumption 1 hold for all t ∈ (−t0, t0), where t0 > 0. Then
notice that for any t 6= 0 by defining the event

Cn,K ≡
{
ω ∈ Ω : |Vi| ≤ Kt (nrn)

1
α ,∀i = 1, . . . , n

}
where Kt <

t0
|t| , we have that P(Cc

n,K) which by Lemma 1 tends to 0. When α 6= 1, due to
Assumption 1 if ω ∈ Cn,K then the logarithm of (16) equals

− c|t|α
nrn

∑n
i=1 |Vi|

α L
(
n1/αr

1/α
n |tVi|−1

)
+

|t|α
nrn

iβc sgn(t) tan
(

1
2
πα
)∑n

i=1 sgn(Vi) |Vi|α L
(
n1/αr

1/α
n |tVi|−1

)
.

(17)

Notice that when α < 2, due to Lemma 1, Assumption 1, and the asymptotic representation
of the tail of the distribution of |ξ0| (see Appendix 1 in Ibragimov and Linnik [23]), and
the the defining property L(n

1
α r

1
α
n )/rn → 1 of (rn)n∈N implying that it is a slowly varying

sequence-see Paragraph 1.9 of [8] and Proposition 1.(iv) of [6], we have that

P?n[vn|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

=
E?n
[
P
[
|ξ0|>n1/αr

1/α
n

un

]]
P
[
|ξ0|>n1/αr

1/α
n

]
= nrn

(1+o(1))L
(
n1/αr

1/α
n

)E?n
[

(1+o(1))uαn
nrn

L
(
n1/αr

1/α
n |Vi|−1

)]
= (1+o(1))

(1+o(1))2rn

1
n

∑n
i=1 |Vi|

α L
(
n1/αr

1/α
n |Vi|−1

)
,
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and the rhs of the previous display is asymptotically equivalent to 1
nrn

∑n
i=1 |Vi|

α L
(
n1/αr

1/α
n |Vi|−1

)
,

which, due to Lemma 1, that t is fixed and non-zero, and that L is slowly varying to infinity,
is asymptotically equivalent to 1

nrn

∑n
i=1 |Vi|

α L
(
n1/αr

1/α
n |tVi|−1

)
. Analogously it is easy to

show that P?n[vn1{vn≥0}|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

− P?n[|vn|1{vn<0}|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

is asymptotically equivalent to
1
nrn

∑n
i=1 sgn(Vi) |Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
. Hence (17) is asymptotically equivalent to

−c|t|α P?n[vn|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

+

|t|αiβc sgn(t) tan
(

1
2
πα
) [P?n[vn1{vn≥0}|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

− P?n[|vn|1{vn<0}|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

] .
When α = 2, (17) is asymptotically equivalent to

−c|t|2
n∑
i=1

E
[

1

nrn
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|>M
√
nrn/Gi−1

]
.

The result then follows from Propositions 1 and 2 respectively.
When α = 1, by Assumption 1, if ω ∈ Cn,K then the logarithm of (16) equals

− c|t| 1

nrn

∑
|Vi|L

(
nrn |tVi|−1)+ i2βcπ−1Ct

1

nrn

∑
ViL

(
nrn|tVi|−1

)
+ it

1

nrn

∑
Vi
[
H
(
nrn |tVi|−1)−H(nrn)

]
,

where the first two terms of the above expression can be treated analogously to obtain their
P a.s. limit as

−c|t|E [|V0|] + i2βcπ−1CtE [V0] = −cE [|V0|] |t|
[
1− i2βπ−1C sgn(t)

E [V0]

E [|V0|]

]
.

For the third term, first notice that

H(kλ)−H(λ) =

∫ k

1

λ2x

1 + λ2x2
(c1 − c2 + k(λx))L(λx)dx.

Then we have that

1

nrn

∑
Vi
[
H
(
nrn |tVi|−1)−H(nrn)

]
=
L(nrn)

rn

(
2βcπ−1 + o(1)

) 1

n

∑
Vi

∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx,

since for any constant A, supx∈[(max |Vi|)−1,A] k(nrn|t|−1x) = k(nrn|t|−1x∗n) for some x∗n. Note
that Lemma 1 implies that (max |Vt|)−1n1/αr

1/α
n → ∞ in P probability, hence we have that
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k(nrn|t|−1x∗n) = o(1). Furthermore using a similar to the above truncation argument we have
that

1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx

=
1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

dx

+
1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx.

Then notice that for some A2 = [a1, a2] with 0 < a1 ≤ a2 and possibly dependent on the
choice of ε

1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx

≤
∫
x∈A2

x
1

n2r2n
+ x2

∣∣∣∣L(xnrn)

L(nrn)
− 1

∣∣∣∣ dx 1

n

n∑
i=1

|Vi| 1{|Vi| ≤ ε}

and the dominant part of the previous display converges to zero P a.s. via the use of the
Dominated Convergence Theorem and Assumption 2. Regarding the first term, first notice
that ∫ |tVi|−1

1

x
1

n2r2n
+ x2

dx1{|Vi| ≤ ε} =
1

2

[
log
(
1 + n2r2

nx
2
)]|tVi|−1

1
1{|Vi| ≤ ε}

=
1

2
log

(
1 + n2r2

n|tVi|−2

1 + n2r2
n

)
1{|Vi| ≤ ε} = log |tVi|−11{|Vi| ≤ ε}+ o(1),

where the o(1) term is independent of Vi using the fact that

sup
x∈[(tε)−1,∞)

∣∣∣∣log

(
1 + λ2x

1 + λ2

)
− log x

∣∣∣∣→ 0 as λ→ +∞.

Therefore

1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

= log
1

|t|
1

n

n∑
i=1

Vi1{|Vi| ≤ ε} − 1

n

n∑
i=1

Vi log |Vi|1{|Vi| ≤ ε}+ o(1).

Next, we treat the analogous term obtained by truncating Vi1{|Vi| > ε}, i.e.

1

n

n∑
i=1

Vi1{|Vi| >}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx
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by noticing that |tVi|−1 < 1, since ε can be chosen large enough. Suppose first that Condition
C.1 holds. Notice that,

∣∣∣∣∣
∫ 1

|tVi|−1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx

∣∣∣∣∣ ≤
∫ 1

|tVi|−1

x1−δ

1
n2r2n

+ x2
xδ
∣∣∣∣L(xnrn)

L(nrn)
− 1

∣∣∣∣ dx
= o (1)

∫ 1

|tVi|−1

x1−δ

1
n2r2n

+ x2
dx ≤ o (1)

∫ 1

|tVi|−1
x−(1+δ)dx = o (1)

(
1 + |Vi|δ

)
,

where the second inequality follows from the UCT for regularly varying functions with positive
index (see Theorem 1.5.2 of Bingham et al. [8]). Hence, and due to that x

1

n2r2n
+x2
≤ 1

x
for all

x, we obtain that ∣∣∣∣∣ 1n
n∑
i=1

Vi1{|Vi| > ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

∣∣∣∣∣
≤ o (1)

1

n

n∑
i=1

|Vi|
(

1 + |Vi|δ
)

1{|Vi| > ε}+
|ln |t||
n

n∑
i=1

|Vi| ln |tV | 1{|Vi| > ε},

and the result follows by letting n→∞ and then ε→∞.
Suppose now that C.2 holds. Notice that,∫ 1

|tVi|−1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx =

1

L(nrn)

∫ 1

|tVi|−1

x2

1
n2r2n

+ x2
nrn

1

xnrn
L(xnrn)dx

=
nrn

L(nrn)

∫ 1

|tVi|−1

x2

1
n2r2n

+ x2
P [|ξ0| > xnrn] dx

=
1

L(nrn)

∫ nrn

nrn|tVi|−1

u2

1 + u2
P [|ξ0| > u] du =

∫ nrn

nrn|tVi|−1

u

1 + u2

L(u)

L(nrn)
du. (18)

Then, since with probability converging to one nrn |tVi|−1 ≥ 1, u
1+u2

≤ 1
u
for all u, the rhs

integral in (18) is for ε large enough with the same probability less than or equal to

lim sup
n→∞

sup 1≤y≤nrn
L(y)

L(nrn)

∫ nrn

nrn|tVi|−1

1

u
du ≤ C ln |tVi| .

Hence, as before we obtain that with probability converging to one∣∣∣∣∣ 1n
n∑
i=1

Vi1{|Vi| > ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

∣∣∣∣∣ ≤ C
ln |t|
n

n∑
i=1

|Vi| |ln |Vi|| 1{|Vi| > ε},

and the result follows again by letting n→∞ and then ε→∞.
For the cases where either C.3 or C.4 holds consider the following. First we have that

H
(
nrn |tVi|−1)−H (nrn) = −

(
2βcπ−1 + o(1)

) ∫ |tVi|
1

x
|tVi|2
n2r2n

+ x2

L(xnrn |tVi|−1)

L(nrn)
dx,
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and that due to that x2

|tVi|2
n2r2n

+x2
≤ 1 uniformly in n, x and i,

∫ |tVi|
1

x
|tVi|2
n2r2n

+ x2

L(xnrn |tVi|−1)

L(nrn)
dx ≤ |Vi|−1

∫ |tVi|
1

P
[
|Vi| |ξ0| > x

|t|nrn

]
P
[
|ξ0| > x

|t|nrn

] dx.

Notice that the results in the proofs of Propositions 2.2-3 of Denisov and Zwart [14], con-
cerning upper bounds for P[|Vi||ξ0|>δnrn]

P[|ξ0|>δnrn]
hold uniformly in δ as long as this is bounded away

from zero. Hence the rhs of the previous display is less than or equal to E [|V0|]
(
1 + |Vi|−1),

and thereby, ∣∣∣∣∣ 1n
n∑
i=1

Vi1{|Vi| > ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

∣∣∣∣∣
≤ E [|V0|]

1

n

n∑
i=1

|Vi|
(
1 + |Vi|−1) 1{|Vi| > ε},

and again the result follows by letting first n → ∞, and then ε → ∞.Combining the above
results we obtain (7).

Finally, when α < 1 and under (8), observe that

1

n1/αr
1/α
n

n∑
i=1

|Vi| ≤
1

n1/α−1r
1/α
n

max
1≤i≤n

|Vi|1−α
1

n

n∑
i=1

|Vi|α ≤ Oa.s. (1)
q

1−α
α

n

r
1/α
n

M,

with P probability approaching 1 as n→∞. The result follows as we can chooseM arbitrarily
small. Under (9), for δ small enough (so that α + δ < 1),(

1

n1/αr
1/α
n

∑n
i=1 |Vi|

)α+δ

≤ 1

n
δ
α r

1+ δ
α

n

1
n

∑n
i=1 |Vi|α+δ and the result in (10) follows since nkrn →∞

for any k > 0.
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