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Abstract

We propose a new method for selecting the local estimation window for forecasting and
trading financial returns. It is built around one particular definition of predictive complexity
and we apply it in the simplest of predictors, the sample mean. We derive the exact
conditions for the process of optimally selecting the local estimation window among a,
theoretically found, grid of potential values of it. We use different loss functions, statistical
and financial, which are considered individually and then pooled under two selection
concepts, stochastic dominance and minimum description length, and find exact expressions
as to how the associated complexities and their combinations can be derived and applied.
Our results are based on a set of probabilistic assumptions for the time series under study
and, based on those, we offer an inferential procedure for testing the presence of excess
trading returns. Our empirical illustration on a set of diverse exchange trade funds (ETFs)
across different asset classes suggests that the method works very well in practice and that
it can generate both statistical and financial performance enhancements. A number of
extensions to different predictors and different underlying assumptions is discussed.
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1 Introduction 2

1 Introduction

There is a vast literature, both among academics and finance professionals, about

the ability to time the market and accurately forecast market swings. The claims lay

at either one of the extremes, some saying that market timing is impossible and a

futile exercise and others claiming that the opposite is true and forecasting market

returns is indeed a viable and profitable occupation. In this paper we take the path

of the mean between these two extremes and suggest that, when it is possible to time

the market and predict and trade successfully future returns, it can be done by a

coherent and consistent procedure that minimizes the minimum predictive complexity

associated with a set of loss function or alternatively comes as close as possible to be

the infeasible unanimous choice of predictive complexities associated with individual

losses in a stochastic dominance framework.

Our suggested methodology rests on two pillars, that cover at the same time

simplicity and complexity. Our first point of departure relates to the space of loss

functions: successful trading requires accurate sign forecasts and not necessarily

accurate magnitude forecasts of future returns. Thus, any attempt of forecasting

future returns should be a blend of statistical and financial loss functions. To achieve

this blending one must resort to some form of “model selection criteria” and we show

how two such approaches could be used that are based on the notion of predictive

density and predictive complexity. Our second point of departure relates to the

method of generating forecasts of future returns: one does not necessarily need a

complex method or complex model to generate successful sign forecasts, the sample

mean (or a weighted sample mean) is more than enough for that, if one can select

successfully the local window of observations over which that sample mean is computed.

That this is so can be easily understood via a simple example. Suppose that your
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last 5, say, returns of an asset are these: -0.02, -0.01, 0.00, 0.03, -0.01. If you use all

five observations your average would be -0.002, and if you use the last 2, 3 and 4

observations your average would be 0.01, 0.0067 and 0.0025. Now, if the next period’s

return is positive you have 3 windows that will give you the right sign while if the

next period’s return is negative you only have one window that will give you the right

sign; the point is that there always going to be a local window of observations whose

sample mean will give you the correct sign for next period’s return. So, the method

for getting a sign forecast can be as trivial as the sample mean, but the choice of

the local window is far from a trivial problem to solve. We thus combine the two

points of departure and provide a suggested solution for the “optimal choice” of a

local, rolling, window based on the notion of predictive complexity.

Our work relates to four lines of research: prior work on predictive complexity,

prior work on market timing, prior work on forecasting asset returns, and prior work

on approximate bounds and stochastic dominance. Below we briefly review some of

the literature on the above mentioned lines of research, mainly indicating that the

work on market timing and, even more, on forecasting market research is actively

pursued.

An important early work on the concept of predictive complexity, in the context of

universal prediction and prediction with experts is that of Vovk and Watkins (1998);

Vovk has made very important contributions to game-theoretic finance, prediction

with experts and the latter years he is the one who introduced conformal prediction.1

This work of Vovk and Vatkins was followed with a stream of other papers on the

concept of predictive complexity from which we sample Kalnishkan and Vyugin (2002)

[38] and Kalnishkan et al. (2004) on the foundations of predictive complexity [39],

1 For a book length treatment of the concept of conformal prediction see Vovk, Gammernam and
Shafer Algorithmic Learning in a Random World, 2nd ed. (2022) [78].
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Vyugin and Vyugin (2005) [80] on the relationship between predictive complexity and

information, and Chernov et al. (2010) [12] on the relationship of supermartingales

in prediction with expert advice. Kalnishkan (2022) [40] has an excellent review, and

practical introduction paper, for prediction with experts and one can consult this for

additional references.2

Turning next to the concept of market timing we go quite a bit back and the

literature below is entirely representative of earlier foundational papers and some

recent advances. Sharpe (1975) [72], Henriksoon and Merton (1981) [31] and Hen-

riksson (1984) [32] have initiated the post-1970s discussion on the concept of market

timing and how to test for it. Following their work, and sampling across different time

periods, we can find works like those of Jeffrey (1984) [34] calling market timing a

“folly”, Cumby and Modest (1987) [15] that provided another test for market timing

in the context of forecast evaluation, Droms (1989) [20] who discussed market timing

as an investment policy, Busse (1991) [9] who is an early reference on volatility timing

and Shilling (1992) [73] that supported market timing as better than the passive

buy& hold. Then, Pesaran and Timmermann (1994) [60] offered a generalization of

the market timing test of Henriksson and Merton, Larsen and Wozniak (1995) [44]

who also support market timing as a real-world, profitable strategy and Beebower and

Varikooty (1999) [5] who analyzed market timing strategies. Getting into the 2000’s

we have Bollen and Busse (2001) [7] on the market timing ability of fund managers,

Li and Lam (2002) [50] who fully explored in a mathematical context the optimal

market timing strategies under transaction costs, Jiang (2003) [36] who suggested a

non-parametric test for market timing and Lam and Li (2004) [43] who re-evaluated

the previous work of Li and Lam on how good is the optimal market timing strategy.

2 Additional material on the above concepts and the foundations of game-theoretic finance see
Shafer and Vovk Game-Theoretic Foundations for Probability and Finance (2019) [71].
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Christoffersen and Diebold (2006) [13] provided a seminal analysis on the interplay

between direction-of-change (sign) forecasting and the impact of volatility dynamics

– with additional work on the topic by Thomakos and Wang (2010) [75]; Then we

have Jiang et al. (2007) [35] again on the ability of mutual funds to time the market,

Thomakos et al. (2007) [74] on asset rotation for market timing – with follow-up

work on asset rotation by Schizas and Thomakos (2015) [70]. Finally, we note the

works of Elton et al. (2012) [22] once again for the ability of mutual funds to time

the market, Matallin-Saez (2015) [53] on performance measures on market timing

and Ferson and Mo (2016) [24] on a similar issue of performance measurement and

finally Ding et al. (2023) [19] for a very recent non-parametric test of market timing.

Our next piece of literature relates to the forecastability of asset returns. One

migth start with the Cowles (1934) [14] paper on whether stock market forecasters can

actually successfully forecast the market – but the forecasting literature on the topic

is older than that.3. We then “jump” to papers on or after 2020’s just to illustrate

the continued strong research interest on this topic. For example, Dai et al. (2020)

[17] who consider technical indicators for forecasting stock returns, Dichtl (2020) [18]

on forecasting excess returns of the gold market, Kyriazi and Thomakos (2020) [42]

on the existence and interpretation of predictability in currencies, Liang et al. (2022)

[48] on the use of dimensionality reduction methods for predicting market returns, Li

et al. (2022) [49] on forecasting US stock market returns and Lv and Qi (2022) [52]

that examine return predictability from a combination forecasting perspective. A

stream of very recent papers includes Brennan and Taylor (2023) [8] on the interplay

of expected returns and risk in the stock market, Casta (2023) [10] on the relationship

between inflation, interest rates and the predictability of asset returns, Chen et al.

3 See the review paper of Thomakos and Xidonas (2023) [76] on the foundations of forecasting
pre-1940s.
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(2023) [11] on use of economic policy uncertainty indices as predictors of market

returns – with additional work on the topic by Huang et al. (2023) [33], Cotter et al.

(2023) [16] on commodity futures return, Guerard et al. (2023) [29] on the long-term

historical predictability of the S&P500 and Dow Jones indices, Haase and Neuenkirch

(2023) [30] on the predictability of market returns during different regimes, Li and

Sun (2023) [50] on predicting market returns using aggregate credit risk, Qiu et al.

(2023) [67] on the use of long-term volatility for forecasting market returns, Saenz et

al. (2023) [68] on the use of clustering and finally Zhang and Wang (2023) [81] on

forecasting oil futures market returns.

Stochastic dominance relations are pre-orders on sets of probability measures

on the real line (see Fishburn (1976) [25] for definitions). heir study has gained

importance in the fields of economics, finance and statistics/econometrics (see among

others Kroll and Levy (1980) [41], McFadden (1989) [54], Levy (1992) [45], Levy (2015)

[46], Mosler and Scarsini (1993) [57], Gayant and Le Pape (2017) [26]), since it among

others enables the investigation of issues of conservative choice under uncertainty, over

large classes of preferences. This is due to that stochastic dominance relations usually

have characterizations in terms of classes of utility functions (see Fishburn (1976) [25],

Levy (1992) [45], Levy (2015) [46], Levy and Levy (2002) [47], whereas dominance

w.r.t. such a relation is equivalent to preference by every utility in the class. Thus,

those relations are among others useful for the characterization of robust choices in

the case of ambiguity about the exact preferences of the decision maker. Since in the

context of the expected utility paradigm, a loss function is dual to a utility function,

the stochastic dominance maxim is applicable in forecasting whenever some form

of robustness w.r.t. the choice of a loss function is desired; see for example Jin et

al. (2017) [37], and Arvanitis et al. (2021) [3] in relation to the concept of superior
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predictive ability, or Post et al. (2019) [63] for the concept of robust optimization of

forecast combinations.

From this very representative literature review above, we conjecture that we are

not amiss in pursuing the theme of the current paper, as the recent literature shows

continued and growing attention to the issue of market return predictability. Thus,

synthesizing the above, and for a class of loss functions related to both statistical and

financial considerations, we utilize the associated predictive complexity functionals as

indicated in the works of Rissanen (1996) [64] and Rissanen (1997) [65]. Those are

essentially the empirical risks of the loss functions involved, appropriately penalized

so as to reflect the notion of statistical complexity as defined in the above-mentioned

papers. They are functions of the predictive pairs consisting of the latent-at the time

of prediction-random return and the past means, which are themselves functions

of the estimating window. Then our methodology defines the optimal windows as

either a minimizer of the minimal predictive complexity of the loss function class,

or alternatively, as an approximate simultaneous minimizer of every complexity in

the class in the context of stochastic dominance. We derive the limit theories of the

extrema of the empirical processes associated with the predictive complexities involved.

This enables the design and the derivation of the asymptotic properties of a statistical

test of whether the population optimal window emerging from either the minimal

predictive complexity part, or the stochastic dominance part of our methodology is

also a population minimizer of a non-penalized risk over a loss function of interest.

We apply our theory on a set of diverse exchange trade funds (ETFs) across different

asset classes; the results suggest that the method works very well in practice and that

it can generate both statistical and financial performance enhancements.

The rest of the paper is structured as follows: section 2 has the theoretical
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framework previously described, section 3 has the data, empirical implementation and

discussion of results and section 4 offers some concluding remarks and conclusions

for future research. The appendix holds all figures and tables that are appear in the

main body of the paper.

2 Theoretical framework

2.1 Foundations & Definitions

(Xt)t∈Z is an observable stochastic process of asset returns. At an arbitrary t ∈ N⋆,

Xt is unknown, the sample realization (Xi)i=0,...,t−1 is available to the researcher, and

Xt is predicted by the α-weighted mean yt(δ, α) := (
∑t−1

i=t−δ−1 i
α)−1

∑t−1
i=t−δ−1 i

αxi.

Here, α is a non-negative fixed parameter that is pre-defined by the researcher. When

α = 0 the usual sample mean over the window δ is obtained. The averaging window

δ is a strictly positive integer chosen by the researcher from a non-empty parameter

set ∆ ⊂ N⋆. We are interested in the optimal choice of the averaging window; the

optimality considerations are directly related to a non empty set of loss functions, say

L, that is available to the researcher, which represent potential preferences towards the

risk of the forecast pair (Xt, yt(δ, α)). Given a total sample realization (Xt)t=1,...,T , the

realized forecast pair time series available to the researcher is then (Xt, yt(δ, α))t=1,...,T ;

this is usable for inference on the optimal choice of the window.

Following Rissanen (1996) [64] and Rissanen (1997) [65], for ℓ ∈ L, the predictive

density associated with the loss ℓ, fℓ,t(x) = 2−ℓ(x,yt(δ,α))(
∫ max0≤i≤t−1 Xi

min0≤i≤t−1 Xi
2−ℓ(z,yt(δ,α))dz)−1

is considered, provided that −ℓ is exponentially integrable. The predictive complexity

of (Xt)t=1,...,T associated with the loss ℓ, and the estimation window δ, is then

defined by the functional Q(ℓ, δ) := EPT
[Qt(ℓ, δ,min0≤i≤t−1Xi,max0≤i≤t−1Xi)], with
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Qt(ℓ, δ, y⋆, y
⋆) := ℓ(Xt, yt(δ, α)) + log2(Pt(ℓ, δ, y⋆, y

⋆)), and where for the penalization

term we have that Pt(ℓ, δ, y⋆, y
⋆) :=

∫ y⋆

y⋆
2−ℓ(x,yt(δ,α))dx; PT is the empirical distribution

of the random element (Xt, yt(δ, α),min0≤i≤t−1Xi,max0≤i≤t−1Xi)t=1,...,T,δ∈∆.

The minimization of Q(ℓ, δ) over L ×∆ produces the MDL optimal averaging

window, associated with Rissanen (1996) [64] and Rissanen (1997) [65]; the finiteness

of the parameter space L ×∆ ensures its existence and measurability:

Definition 1. The MDL-optimal averaging window, δMDL, satisfies:

δMDL ∈ arg min
δ∈∆,ℓ∈L

Q(ℓ, δ). (1)

The predictive complexities over the loss functions’ set can be further used in

order to construct a stochastic dominance relation on ∆. An averaging window δ

dominates another δ⋆, iff the first attains lower predictive complexity for any loss

function in the class. Formally:

δ ⪰ δ⋆ iffQ(ℓ, δ)) ≤ Q(ℓ, δ⋆), ∀ℓ ∈ L.

Notice that δMDLis an efficient element of the order; it is not dominated by any

other estimation window.

Given the stochastic dominance ordering, it is possible to choose the window

optimally by the approximate super-efficiency criterion of Arvanitis et al. 2021 [2]:

Definition 2. The approximate bound of the SD relation, say δSD satisfies:

δSD ∈ argmin
δ∈∆

sup
ℓ∈L,δ⋆∈∆

(Q(ℓ, δ)−Q(ℓ, δ⋆)). (2)
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The issue of existence and measurability for the approximate bound is also trivial.

δSD ”is as close as possible” to minimizing the predictive complexity regarding every

loss function in the class. If such a ”super-efficient” element exists, then δSD = δMDL.

In general, whenever for example L is compact in some topology (e.g. of uniform

convergence), then,

sup
ℓ∈L

(Q(ℓ, δSD)−Q(ℓ, δMDL)) ≥ 0.

Additionally, δSD is (Pareto) efficient (non-dominated); if it were dominated, then

it would not optimize the criterion. Furthermore, δSD is generally characterized as

an approximate bound. It can be justified as a conservative optimal selection under

uncertainty concerning risk preferences. A sufficient condition for δMDL to be an

approximate bound is that it is a bound for a subset of L-this is trivial for at least a

singleton set-and that it achieves almost optimality for the remaining loss functions.

2.2 Loss functions

Presently we work with a set of four loss functions; two statistical, namely the

squared error and the absolute error, and two financial, namely the negative of the log

cumulative wealth and the proportion of of incorrect sign predictions. Our motivation

for window selection using multiple criteria that focus on both the statistical properties

of the forecast errors Xt−yt(δ, α), t = 1, . . . , T , as well as blending financial along with

statistical information in a framework of that is suitable for testing the market timing

ability of our methodology (via the active trading from the signs of our forecasts).

Thus L is finite and at most equal to {ℓSE, ℓAE, ℓW, ℓsgn}, where ℓSE(x, yt(δ, α)) := (x−

yt(δ, α))
2, ℓAE(x, yt(δ, α)) := |x− yt(δ, α)|, ℓW(x, yt(δ, α)) := − ln(xsgn(yt(δ, α))+ 1),4

4 This is a well defined real function as long as x assumes its values in the interior of [−1, 1].
Since our applications involve daily net financial returns, such a restriction is satisfied in the
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and ℓsgn(x, yt(δ, α)) = I[sgn(x) ̸= sgn(yt(δ, α))].

For the above it is easily obtained that:

Q(ℓSE, δ) :=
1

T

T∑
t=1

[(Xt − yt(δ, α))
2 + log2(Pt(ℓSE, δ, min

0≤i≤t−1
Xi, max

0≤i≤t−1
Xi))], (3)

with

Pt(ℓSE, δ, y⋆, y
⋆) := Φ(y⋆; yt(δ, α); ln

−1/2(4))− Φ(y⋆; yt(δ, α); ln
−1/2(4)),

and Φ(·;µ; v) denotes the cdf of N(µ, v), and y⋆ < y⋆. Furthermore,

Q(ℓAE, δ) :=
1

T

T∑
t=1

[|Xt − yt(δ, α)|+ log2(Pt(ℓAE, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi)], (4)

with

Pt(ℓAE, δ, y⋆, y
⋆) =

2− 2−(y⋆−yt(δ,α)) − 2−(yt(δ,α)−y⋆)

ln(2)
,

Q(ℓW, δ) := − 1

T

T∑
t=1

[ln(Xtsgn(yt(δ, α)) + 1)− log2(Pt(ℓW, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi))],

(5)

where

Pt(ℓW, δ, y⋆, y
⋆) =

(y⋆sgn(yt(δ, α)) + 1)ln(2)+1

(ln(2) + 1)sgn(yt(δ, α))
− (y⋆sgn(yt(δ, α)) + 1)ln(2)+1

(ln(2) + 1)sgn(yt(δ, α))
,

totality of our sample. In cases where the supremum of the support of the distribution of X
is greater than or equal to one, ℓW, can be modified to − ln(xsgn(yt(δ, α)) + C), where C >
max(1,max0≤t≤T Xt). The penalization term that is presented below would then be modified to

Pt(ℓW, δ, y⋆, y
⋆) = (y⋆sgn(yt(δ,α))+C)ln(2)+1

(ln(2)+1)sgn(yt(δ,α))
− (y⋆sgn(yt(δ,α))+C)ln(2)+1

(ln(2)+1)sgn(yt(δ,α))
.
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and,

Q(ℓsgn, δ) :=
1

T

T∑
t=1

[I[sgn(Xt) ̸= sgn(yt(δ, α))]+log2(Pt(ℓsgn, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi))],

(6)

where,

Pt(ℓsgn, δ, y⋆, y
⋆) =



y⋆

2
, yt(δ, α) < 0, y⋆ > 0, y⋆ ≤ 0

−y⋆
2
, yt(δ, α) ≥ 0, y⋆ > 0, y⋆ ≤ 0

y⋆−y⋆
2

, yt(δ, α) < 0, y⋆ > 0

y⋆−y⋆
2

, yt(δ, α) ≥ 0, y⋆ < 0.

Finiteness of the combined parameter space L ×∆ implies that the optimizations

involved for the derivations of the optimal windows via both the MDL and the SD

principles are trivial. This also facilitates the extraction of the limit theories of the

extrema of the empirical processes implied by the definitions above. Those limit

theories are investigated in the following paragraph in order to construct statistical

testing procedures about the relation of the population MDL or SD optimal windows

with the optimization of the un-penalized financial loses.

2.3 Limit theory and inference

The interest in this section lies in the asymptotic behavior, as T → ∞, of the following

stochastic extremes:

M1(L⋆,∆,PT ) := inf
ℓ∈L⋆

inf
δ∈∆

1

T

T∑
t=1

ℓ(Xt − yt(δ, α)),
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M2(L⋆,∆,PT ) := inf
ℓ∈L⋆

inf
δ∈∆

1

T

T∑
t=1

Qt(ℓ, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi),

and

M3(L⋆,∆
2,PT ) := inf

δ∈∆
sup
ℓ∈L⋆

(
1

T

T∑
t=1

Qt(ℓ, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi)

− inf
δ∈∆

1

T

T∑
t=1

Qt(ℓ, δ, min
0≤i≤t−1

Xi, max
0≤i≤t−1

Xi)).

L⋆ ⊆ {ℓSE, ℓAE, ℓW, ℓsgn} is non-empty, and ∆ is a non empty subset of N⋆, with the

obvious restriction that max∆ ≤ T .

The derivation of the limit theories for the empirical extremals above is considered

with a view towards statistical inference. The establishment of rates and limiting

distributions can be used in order to construct testing procedures about the popula-

tion counterparts of methodologies that derive optimal windows, via inversions of

confidence regions for the extremes.

Whenever L⋆ is a singleton, M1 denotes the optimal empirical value associated

with the window choice from minimization of the empirical risk associated with

the loss function at hand. The optimal value can be used in order to construct

confidence regions that could be helpful in testing whether windows obtained from

other methodologies do not deviate significantly from being optimal w.r.t. the

population risk associated with the particular loss. When L⋆ has more than one

elements, M1 is associated with optimal choice based on the minimal empirical risk

across the set of loss functions. This is not generally the same with the MDL extreme,

as the penalization constants associated with normalization do not appear there.

When the penalization terms are included, then M2 is obtained; Whenever L⋆ = L,



2 Theoretical framework 14

the optimal value obtained from the MDL methodology is recovered. Whenever this

equality does not hold, M2 is interpretable as the optimal value of a restricted (on

L⋆) MDL criterion. In an analogous sense, M3 is associated with the optimal value

obtained from a restricted (on L⋆) stochastic dominance criterion, that coincides with

the optimal value of the criterion that results to the empirical approximate bound

whenever L⋆ is full, i.e. no dominance relations associated with losses that lie in

L − L⋆ are discarded.

The following assumption framework facilitates the derivation of the asymptotic

behavior sought:

A.1 The returns’ process (Xt)t∈Z is stationary and absolutely regular, with mixing

coefficients (βk)k∈N that satisfy βk = O (k−r) for r > 1.

A.2 The supremum of the support of the distribution of X0 is less than one. The

cdf of the distribution is continuous at -1, and the distribution has a second

logarithmic and a second inverse moment.

A.3 #∆ = O(
√
T ).

A.4 There exist sequences aT , a
⋆
T , bT , b

⋆
T , for which

mint≤T Xt−bT
aT

, and
maxt≤T Xt−b⋆T

a⋆T

weakly converge to non degenerate random variables.

The mixing condition in A.1 holds for strictly stationary versions of ARMA, GARCH-

type, and stochastic volatility processes (see for example Basrak et al. (2002) [4]). A.2

implies first the well-definiteness as a real function of the ℓW loss P almost everywhere

and its inclusion at the weighted Sobolev spaces used for the derivation of tightness for

the empirical processes involved. The cdf continuity at -1 implies that the probability

of a zero price is zero, and the moment existence restrictions imply restrictions on the
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rates of decay of the left tail of the distribution. Given that our application involves

daily financial returns the support restriction in A.2 is considered plausible. It can be

extended to a more general compact support assumption, with a potentially greater

than or equal to one supremum, if the modified wealth loss − ln(xsgn(yt(δ, α)) + C),

for C > max(1,max0≤t≤T Xt) is considered. If the wealth loss is totally excluded from

the analysis then the cdf continuity and the moment existence conditions can also be

dropped. In any case, either the present form of the assumption or its aforementioned

modification, ensure the
√
T -tightness for the penalization terms that appear in

the definitions of M2 and M3. The upper bounded support condition-either in its

current form, or modified as mentioned above-can be weakened if A.4 is appropriately

strengthened, at the cost of asymptotic negligibility of the non-penalization terms that

appear in the aforementioned extremes and potentially unknown rates that depend

on the aT , a
⋆
T , bT , b

⋆
T rates that appear in A.4. A.3 controls the rate of growth of ∆.

The upper bound support restriction ensures that the parameter space’s growth is

tame enough so that a maximal inequality on the empirical processes associated with

the extremes above is applicable. A.4 can be established, using Theorem 6.4.15 from

Meerschaert and Scheffler (2001) [55], and the proof of Lemma 2.4 of Meerschaert et

al. (2013) [56], if the occurrence of an extreme value for a base asset return at some

time instance has asymptotically negligible effects on the occurrence of extremes at

sufficiently distant epochs. Condition (2.16) in Basrak et al. (2002) [4] verifies this

property for processes that satisfy general stochastic recurrence equations, including

GARCH-type ones. The strictly stationary versions of the ARMA and stochastic

volatility models are also qualified, if the relevant errors are serially iid.

The required limit theory is obtained in the following result; there ⇝ denotes

convergence in distribution, and
rank
⇝ denotes convergence in distribution condi-
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tionally on the filtration (FT )T∈N⋆ where FT is generated by the rank statistics

{mint≤T Xt,maxt≤T Xt}:

Theorem 1. Under A.1, A.2, A.3, and A.4, as T → ∞,

√
T (M1(L⋆,∆,PT )−M1(L⋆,∆,P))⇝ inf

(ℓ,δ)∈ΓM1

GM1(ℓ, δ),

√
T (M2(L⋆,∆,PT )−M2(L⋆,∆,P)) rank

⇝ inf
(ℓ,δ)∈ΓM2

GM2(ℓ, δ),

√
T (M3(L⋆,∆

2,PT )−M3(L⋆,∆
2,P)) rank

⇝ inf sup(δ,ℓ,δ⋆)∈ΓM3
GM3(ℓ, δ, δ

⋆),

where, GM1, GM2, and GM3 are zero mean Gaussian processes with covariance kernels:

VarGM1
((ℓ1, δ1), (ℓ2, δ2)) :=

∑
t∈Z

Cov(ℓ1(X0 − y0,δ1), ℓ2(Xt − yt,δ2)),

VarGM2
((ℓ1, δ1), (ℓ2, δ2)) :=

∑
t∈Z

Cov(Q0(ℓ1, δ1, X,X), Qt(ℓ2, δ2, X,X)),

and,

VarGM3
((ℓ1, δ1, δ

⋆
1), (ℓ2, δ2, δ

⋆
2)) :=

∑
t∈Z

Cov(Q⋆
0(ℓ1, δ1, δ

⋆
1, X,X), Q⋆

t (ℓ2, δ2, δ
⋆
2, X,X)).

There, X,X respectively denote the infimum and the supremum of the support of the

distribution of X0, Q
⋆
t (ℓ, δ, δ

⋆, y⋆, y
⋆) := Qt(ℓ, δ, y⋆, y

⋆)−Qt(ℓ, δ
⋆, y⋆, y

⋆), and ΓM⋆ ⊆

L⋆ ×∆, ΓM ⊆ L⋆ ×∆, ΓN ⊆ L⋆ ×∆×∆ are the sets of optimizers that appear in

the definitions of M⋆, M and N respectively.

Proof. For each δ ∈ ∆, (yt(δ, α))t adheres to A.1 with the super-harmonic mix-

ing coefficients, as well as to A.2. Also, the functions sets involved are bounded
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subsets of the weighted Sobolev space H1
l

(
R2, ⟨x⟩2+δ

)
, i.e. the semi-normed spacef : R2 → R,

∥f∥l,2+δ,µ :=(∫
R2

[∣∣∣ f(x)

(1+∥x∥)2+δ

∣∣∣l + ∣∣∣D f(x)

(1+∥x∥)2+δ

∣∣∣l] dµ)1/l

< +∞

, whereD denotes

partial derivation in the sense of distributions, and µ denotes the Lebesgue measure

on R2-see 3.3.2 of Nickl and Potcher (2007) [58], due to A.2. In the notation of the

aforementioned paper, choosing l = 2, r = 2 + ε and γ = 3 + δ, β = 2 + δ, M the

singleton set consisted of the population measure, we have that, due to Corollary 4.2

of Nickl and Potcher (2007) [58], and for large enough T , the bracketing entropy of the

functions involved in the definitions of Mi, i = 1, 2, 3, for each δ ∈ ∆ as a function of

ϵ > 0, is universally bounded from above by cϵ−1 for some universal constant c > 0.

Then, from (i) above, (ii) the fact that βk ∼ bk, and (iii) the fact that the class has

an L2+ε (P)-integrable envelope due to A.2, and due to A.3 and the bounding from

above of a finite max by a sum, we get that Theorems 1 and 2 of Doukhan, Massart,

and Rio (1995) [21] are applicable. Then the results are obtained from Theorem 2.1

and Lemma B.1 of Fang and Santos (2014) [23]-the lemma can be extended to hold

for totally bounded metric spaces, where the metric is not necessarily norm-induced-

and then ∆ is considered as a closed subset of N⋆ ∪ ω endowed with the metric

d(m,n) = | 1
m
− 1

n
|, where 1

ω
:= 0, and an extension of Lemma 21.19 of van der Vaart

(2000) [77] to stationary and strongly mixing sequences, where in the original proof

the Lindeberg-Feller CLT for strongly mixing sequences (see for example Theorem 3

in Phillip (1969) [61]) substitutes the classical Lindeberg-Feller CLT. The extension

of Lemma 21.19 of van der Vaart (2000) [77] is applicable due to A.1, A.2, and

A.4.

The results are based on limit theorems for empirical processes, as well as the

generalized delta method of Fang and Santos (2014) [23], applicable due to the
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Hadamard differentiability of the optimization operators involved. For the second and

the third cases the convergence is conditionally on the order statistics that appear

in the penalization terms; the asymptotic independence between this conditioning

information and the random elements obtained via summation that are present in the

definitions of the stochastic extremes, along with a Cramer-Wald argument, imply

that the results above can be easily re-expressed as a conditional joint convergence

for the three extremal processes considered. The limiting distributions are latent; the

covariance kernels of the Gaussian processes involved are unknown since they among

others depend on latent temporal dependence characteristics of the processes involved.

The sets of optimizers involved in the definitions of the limits are also latent, since

they among others depend on the unknown population distribution.

Despite the aforementioned latency, Theorem 1 allows for the construction of a

feasible inferential procedure based on subsampling in the spirit of Linton et al. (2014)

(see also Linton et al. (2005)) that approximates the asymptotic quantiles of the limits

that appear in the result. Let 0 < bT ≤ T , and consider the subsamples from the

original observations (Xj)j=t,...t+bT−1 for all t = 1, 2, . . . , T − bT + 1. For α ∈ (0, 1),

and for any i = 1, 2, 3, denote with qi,BT
(1− α) the 1 − α quantile of the subsam-

ple empirical distribution of
(√

bT (Mi (L⋆,∆⋆,Pt,bT )−Mi (L⋆,∆⋆,PT ))
)
t=1,...,T−bT+1

,

where Pt,bT denotes the empirical distribution of (Xj)j=t,...t+bT−1, and ∆⋆ equals ∆

when i = 1, 2, while it equals ∆2 when i = 3.

Our second result depends on a condition on the elements of ΓMi
that avoids

limiting degeneracies and an immediate adaptation of A.3 to the subsampling rate:

A.3’ #∆ = O(
√
bT ) while max∆ ≤ bT .

A.5 For all i = 1, . . . , 3, the variance of GMi
evaluated at any element of ΓMi

is
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strictly positive.

The assumption A.5, due to a uniform integrability argument enabled by A.2, holds

whenever lim infT→∞ infδ∈∆ E[(ℓ(X0 − y0,δ))
2] > 0 for all ℓ ∈ L⋆, which in the present

context of stationarity simply holds if (a) X0 is not degenerate, and (b) the support

of X0 −X−κ contains an interval centered at zero for every κ > 0; when (a) holds,

A.1 implies (b) for large enough κ.

The following result is then obtained:

Theorem 2. Suppose that A.1, A.2, A.3’, A.4, and A.5 hold, and bT → ∞, while

bT
T

→ 0. Then, for all i = 1, 2, 3, and as T → ∞,

lim
T→∞

P
[
Mi(L⋆,∆⋆,P) ∈

[
Mi (L⋆,∆⋆,PT )∓

qi,BT
(1− α)√
T

]]
= 1− α. (7)

Proof. The result follows from Theorem 1 Proposition 7.3.1 of Politis, Romano and

Wolf (1999) [62], as long as the cdf of the distribution ofQi :=

infΓMi
Gi, i = 1, 2

inf supΓM3
G3, i = 3,

is continuous at its 1− α quantile. To this end, and from Lemma 18.15 of van der

Vaart (2000) [77], we have that for µ, v ∈ Γi and Gi,µ,Gi,v the Gaussian process Gi

evaluated there,

0 ≤ σ2 := supΓi
E
[
G2
i,µ

]
≤ supµ,v∈Γi

E
[
(Gi,µ − Gi,v]

2) < +∞.

Hence due to the zero mean function of Gi,µ, and Furnique’s inequality (see Relation

(1,1) in Samorodnitsky (1991) [69]), we have that for 0 < ε < 1, there exists a κ (ε),

such that

E
[
supΓi

G2
i,µ

]
=

∫ +∞
0

P
(
supΓi

|Gi,µ| >
√
y
)
dy ≤ 2κ (ε)

∫ +∞
0

exp
(

−(1−ε)
2σ2 y

)
dy < +∞.
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Then, Ch. 2 of Nualart (2006) [59], (see the remark after the proof of Proposition

2.1.11 (p. 109)) implies the existence of the square integrable Malliavin derivative for

Gi,µ. Nualart (2006) [59] implies then that the Malliavin derivative of Gµ equals zero

only at trivial triples. The previous along with A.5 imply the validity of Assumption

1 of Arvanitis, Scaillet and Topaloglou (2019) [2] for T = ∅ in their notation. Then,

Theorem 1 of Arvanitis, Scaillet and Topaloglou (2019) [2], implies (7).

The result in (7) allows for asymptotically exact inference for several hypotheses

structures; for example consider the optimal δ arising from the MDL criterion, say

δMDL (respectively let δSD denote the optimal window arising as an approximate

bound) obtained via the optimization defined in the definition of M2(L⋆,∆,PT )

(respectively M3(L⋆,∆,PT )) above, for L⋆ = {ℓSE, ℓAE, ℓW, ℓsgn}.

Suppose that the researcher is interested in testing the null hypothesis that every

weak accumulation point of the optimal MDL (respectively SD) window is also optimal

for the population risk formed by the wealth loss function. This could be motivated by

the question of whether the window chosen by minimizing an algorithmic complexity

(respectively the stochastic dominance) criterion is ”close” to the one obtained by

focusing only on financial wealth maximization.

Given M1({ℓW} ,∆,PT ), a significance level α ∈ (0, 1), and for i = MDL, SD,

consider the decision rule that the null is not rejected iff the empirical inclusion

1
T

∑T
t=1 ℓW(Xt, yt,δi) ∈

[
M1 ({ℓW} ,∆,PT )∓

q1,BT
(1−α)

√
T

]
holds. Our final result derives

limiting properties of this testing procedure:

Theorem 3. For i = MDL, SD, consider the premises of Theorem 2. Then,

the testing procedure that rejects the composite hypothesis that E(ℓW(X0, y0,δ⋆i )) =

M1({ℓW} ,∆,P), for δ⋆i assuming every value that attain the accumulation points of
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δi, iff
1
T

∑T
t=1 ℓW(Xt, yt,δi) /∈

[
M1 ({ℓW} ,∆,PT )∓

q1,BT
(1−α)

√
T

]
is asymptotically exact.

If δ⋆i is unique, then it is also consistent.

Proof. Theorem 1 along with Lusin’s Theorem and the results of Georganopoulos

(1967) [27] regarding the approximability of continuous real functions on compact met-

ric spaces by Lipschitz continuous functions, imply the asymptotic independence be-

tween the weak accumulation points of δi and M1 ({ℓW} ,∆,PT ). Then the first result

follows directly from Theorem 2. When δ⋆i is unique, then, since due to the proof of The-

orem 1, 1
T

∑T
t=1 ℓW(Xt, yt(δ, α)) converges uniformly in probability to E(ℓW(X0, y0,δ)),

δi converges in probability to δ⋆i . If E(ℓW(X0, y0,δ⋆i )) ̸= M1({ℓW} ,∆,P), then the

fact that q1,BT
converges in probability to the 1 − α quantile of the distribution

of inf(ℓ,δ)∈ΓM1
GM1(ℓ, δ), implies that with probability converging to one, the null

hypothesis gets rejected.

The testing procedures thus defined are asymptotically exact due to Theorem 1

and an asymptotic independence argument between the aforementioned (potentially

stochastic) accumulation points and M1 ({ℓW} ,∆,PT ). They are consistent when

the δMDL (respectively the δSD) has a well defined non stochastic probability limit;

uniqueness is not generally expected to hold due to non-convexities arising in the

population risks associated with the financial loss functions.

2.4 Discussion

In the above the space of criteria L and the set of potential forecasts are finite.

The parameter α is considered fixed. The analysis is extendable beyond those

considerations.
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The set L can be allowed to contain large classes of loss functions. It can for

example be augmented with the class of convex loss functions; those are the ones that

are uniquely minimized at zero, exhibit convexity and are continuous on the boundary

of the support. Given Assumption A.2 it can be proven that any member of the

particular class can be expressed as a sum of convex mixtures of Russell-Seo ramp

functions (see Russell and Seo (1989) [66]), one on the positive and one on the negative

part of the support, i.e. ℓ(x, yt(δ, α)) =
∫
I[z < 0]w−(z − (x− yt(δ, α)))+dz +

∫
I[z ≥

0]w+((x− yt(δ, α))− z)+dz, with w−, w+ ≥ 0, and Lebesgue integrable to one (see

Arvanitis et al. (2021) [2]). This representation can be used in order to facilitate

the optimization over L that lies inside the definitions of δMDL and δSD, as well as

the derivation of the limit theory of testing procedures like the ones defined in the

previous section.

The optimal selection of α from a finite set of potential values is readily feasible.

Optimization can be extended on (larger parts of) the convex hull of the finite set

of forecast means obtained from each choice of a pair (δ, α), whereas yt(δ, α) can be

replaced by
∑

δ,αwδ∈∆,α∈Ayt(δ, α), where A is the set of admissible values for α, and

the weights satisfy wδ,α ≥ 0,
∑

δ,αwδ∈∆,α∈A, i.e. they are elements of the standard

simplex of dimension #(∆× A)-1. Thus the optimization w.r.t. δ in the procedures

above can be replaced by optimization w.r.t. (a non-empty subset of) ∆ × A, so

that optimal convex forecast combinations can be obtained. The present analysis

is essentially a restriction of this more general framework to the case where A is

singleton and optimization is performed on the set of extremal points of ∆× A.

The numerical aspects related to the more general optimization procedures implied

by the aforementioned extensions can be involved and are left for future research. A

taste of the performance of some forecast combinations is obtained in the empirical
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analysis.

3 An empirical application

We illustrate the theoretical concepts presented above by an empirical application

on financial time series of asset returns. We offer a rather complete view on the way

the theoretical arguments can be put into practice and showcase the efficacy of the

method as an efficacious approach to market timing.

3.1 Data

We choose to work with publicly available data on Exchange Traded Funds (ETFs)

that cover a broad spectrum of asset classes. ETFs are highly liquid with minimal

transaction costs and available to anyone with access to a brokerage account. We

opt for the use of daily data covering two years, 2022 and 2023, that correspond

to the downmarket of 2022 and the upmarket of 2023 – both being years of high

volatility and sudden direction changes. Figure 1 has the daily price evolution of

the S&P500-equivalent ETF, SPY, which shows the main characteristics of these

two years, and for comparison we have Figure 2 with the daily price evolution of the

Bitcoin.

Besides the SPY ETF we also consider the following asset classes:

1. For emerging markets the EEM ETF,

2. For oil services the OIH ETF,

3. For gold the GLD ETF,
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4. For aggregate commodities the DBC ETF,

5. For agricultural commodities the DBA ETF,

6. For small capitalization the leveraged TNA ETF,

7. For cryptocurrencies the price of Bitcoin, BTC.5

All data are open-sourced from the Yahoo! Finance website. The descriptive statistics

of the daily percent returns are presented in Table 1 and their associated correlations

in Table 2.

We can observe that we have a variety of volatility levels and considerable fluc-

tuations in the average and total returns across the ETFs under examination. For

example, the leveraged ETF, TNA, has annualized volatility of 74.2%, an almost

identical maximum drawdown of -74.9% and a total loss of -52.6%; in comparison the

market ETF, SPY, has an annualized volatility of 19.9%, a maximum drawdown of

-24.5% and a total gain of 3.24%, while the oil services ETF, OIH, has an annualized

volatility of 41.7%, a maximum drawdown of -36.4% and a total gain of 71.5%. So,

there is plenty of variation across asset classes and descriptive metrics to provide us

with different information as input to our empirical analysis.

The correlations among the ETFs also illustrate the different informational content

of their returns. We can see that the Bitcoin, for example, has minimal correlation

with the agricultural and commodity index ETFs, DBA and DBC, and also with the

gold ETF, GLD, and has maximal correlation of 44.5% with the market ETF, SPY.

The latter in turn has minimal correlation with the agricultural ETF, DBA, and

5 We expect that the limit theories and the inferential procedures investigated in Section 2.3 are
not directly applicable to BTC as its price dynamics show strong indications of local mild explocivity
and thereby of implausibility for A.1-see the analysis in Anyfantaki et al. 2021 [1].
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with the gold ETF, GLD, and maximal correlation wit of 69.8% with the emerging

markets ETF, EEM. Similar observations can be made and for the other correlations

among these ETFs, for we cannot observe correlations of more than 50% but only

in four pairs (SPY, EEM), (SPY, TNA), (EEM, TNA) and (DBC, OIH) - these are

quite high but this is a fairly anticipated result.

3.2 Implementation and discussion of results

The empirical implementation of our suggested methodology needs the following

required inputs: the number of required windows δ ∈ ∆, the exponent parameter

α > 0 and the number of observations n ≤ T over which one evaluates the loss and

predictive complexity functions. The choice of the rolling window δ clearly does not

coincide with the observations n used for this evaluation, and we explain more of this

below. We proceed as follows:

• Out of the total T = 501 observations (the maximum available over the

sample period 2022-2023 for the SPY ETF) we construct our ∆ space as in

δ ∈ ∆ =
{
2, 3, . . . ,

√
T
}

so that the maximum δ is
√
T and the #∆ =

√
T − 1.

• Given a parameter value of α ∈ A = {0, 0.5, 2, 5, 7}, we then compute all

required quantities for all the loss functions and predictive complexities, over

all rolling windows in ∆, for all observations t =
√
T + 1,

√
T + 2, . . . , T , and

where the evaluation of the loss functions and predictive complexities is done

either recursively (as T increases) or over a local window of n < T observations;

we used n = {2, 5, 7} local observations.

• In our empirical analysis we include one more, complexity-based, order selection

criterion that is simpler and based on past work by Rissanen (1987), denoted
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by ℓMDL in the tables and termed the “plain” MDL.

• Having computed the loss functions and the predictive complexities, we then

proceed to compute, for all periods t, the optimal rolling windows for: (a)

each of the 5 individual loss functions and predictive complexities, denoted

by (ℓSE, ℓAE, ℓW, ℓsgn, ℓMDL) in the tables (b) for the combination of the two

statistical loss functions in the context of the SD approach, denoted by LSE,AE

in the tables (c) for the combination of the two financial loss functions in

the context of the SD approach, denoted by LW,sgn in the tables (d) for the

combination of all loss functions in the context of the SD approach, denoted by

LA,SD in the tables; (e) for the combination of all loss functions in the context

of the MDL approach, denoted by LA,MDL in the tables; and, finally, (f) from

the average window across all individual loss functions, denoted by δ̄A in the

tables.

• Using the optimal rolling windows from the previous step (computed using

information only up to period t) we then select the optimal forecasts (for the

next period t+ 1, so no hindsight is involved), according to each loss function

or combination thereof, trade the sign of the optimal forecast and store the

corresponding optimal forecast error.

• Finally, we evaluate the statistical performance of our optimally selected fore-

casts and the financial performance of the resulting trading returns; for the

latter we also report the significance of our findings based on the results of

Theorem 3.

• We tabulate and report the best performing loss function and predictive com-

plexity, or combinations of them, for each possible combination of (α, n), for
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each ETF, and then proceed to aggregate the distribution of the loss functions

according to each performance attribution criterion.

Based on this set-up we will provide some tentative answers to the following

questions:

Q1. Does the suggested methodology “work”, in the sense of providing us with

financial performance over and above the passive benchmark? And are the

potential excess returns significant, in the sense of Theorem 3?

Q2. Which loss function or combination thereof works better most of the time?

Q3. Is the “optimal” loss function dependent on the performance attribution mea-

sure?

Q4. Should we be using the suggested methodology for any performance attribution

measure?

Q5. Do the results relate to the properties of the data on which the methodology

was applied?

Our results are summarized in 15 Tables in total, which are grouped according to

the attribution measure used to evaluate performance. We thus start with Tables

3, 4 and 5 that refer to results based on total excess returns. The excess returns

refer to the difference between the active trading returns based on the forecasts

of our methodology minus the passive returns of the buy & hold strategy of the

corresponding ETF. A star, ∗, indicates that we reject the corresponding hypothesis of

Theorem 3, thus indicating significance of the corresponding entry.6 Table 3 has half

6 A significant excess return implies that the method selected optimal local windows that out-
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our ETFs under examination and Table 4 the other half. The tables present the best

performing loss function and next the total excess return. We start with Table 3 which

has the results for BTC, DBA, DBC and EEM. As a reminder, see Table 1, these

ETFs have the following characteristics: BTC has maximum drawdown of -66.8%,

annualized volatility of 57.2% (second largest below TNA) and negative total return,

DBA has maximum drawdown of -15.9%, annualized volatility of 13.6% (the smallest

across ETFs) and positive total return, DBC has maximumd drawdown of -27.3%,

annualized voaltility of 22.1% and positive total return (equivalent to that of DBA)

and, finally, EEM has maximum drawdown of -32.7%, annualized volatility of 20.3%

and negative total return. A casual look at Table 3 reveals that the results indicate

that in all cases considered (across combinations of (α, n)), except in just 4 (equivalent

to only 4% in the table), we have positive excess returns. Different assets have different

distribution of good performance across the (α, n) combinations: for example, looking

at BTC we find that the top performance with an excess return of 181.8% is given

by the stochastic dominance methodology with all loss functions being included in

the selection of the optimal window and a recursive evaluation of the loss function

with the plain sample mean as the forecasting function. However, this is not a unique

occurrence for we can find similar performance across different combinations like the

use of the stochastic dominance methodology using the statistical loss functions and

n = 7-period evaluation with a total excess return of 170/9%, and the sample mean

as the forecasting function. Or, you can see the use of the wealth loss function with

an α = 7 weighted mean as the forecasting function, an n = 5-period evaluation and

a total excess return of 169.3%.

performed the ex-post optimal individual window; a non-significant excess return implies that the
method has not performed statistically better than the ex-post optimal local window but it might
have performed better it financially.
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This is illustrative of the argument that we made in the introduction of the paper,

on the simplicity of sign forecasting of returns, but also on the importance of having

a method that selects the local window successfully. For the other assets in the table

what we can observe is that their top performing loss functions are concentrated for

larger values of the α-parameter and smaller values of the n-parameter: for DBA

the top excess return performance is 31.8% with a combination of α, n) = (7, 7)

and the optimal local window being obtained from the use of all loss functions and

the MDL criterion and a close second with a total excess return of 30.0% with a

combination of (7, 5) and the use of the stochastic dominance criterion using the

financial loss functions. The magnitude of excess returns does not necessarily matter

for the interpretation of our results, not so much as the parametrization being used

and the loss functions that perform at the top. For the DBC and the EEM ETFs

the top performance is obtained by statistical loss functions (SE loss at the top

position, AE loss at the second top position) for DBC and by stochastic dominance

loss functions (financial loss at the top position, statistical loss at the second top

position) for EEM. From the results of this Table what we can say conclusively is

that selecting the local window via the suggested methodology works almost all the

time but we cannot conclude as to a “globaly optimal” loss function across all ETFs;

it does show, however, that there is at least one loss functions from each of the

considered groups that will provide positive out-performance.

The results are similar if we look into Table 4, with some notable exceptions.

First, we see that now we have more instances where none of the methods will provide

positive excess returns, in particular for the oil services ETF, OIH, and mostly for the

market ETF, SPY. For this latter ETF we have that in 15 out of 24 combinations the

excess return is negative, but still we can get positive excess returns of up to 38.9%
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and 22.0%, as we can see at the lower panel of the table. Second, it appears that

volatility is helping the method perform quite well. If one looks at the OIH and TNA

ETFs (which have the third and first largest annualized volatilities of 41.7% and

74.2%) will easily see that there are notable excess returns to be made by different

combinations of the (α, n) parameters. What makes these two ETFs important for

our analysis, besides their large volatility, is that they have the largest and smallest

passive total return among all ETFs being examined (with 71.5% for OIH and -52.63%

for TNA respectively). Therefore, to achieve overperformance on both instances using

a optimally-selected local window is of considerable theoretical and practical interest.

We note that for the OIH ETF the top two performing parameter combinations

are as follows: for OIH we have (α, n) = (7, 7) using stochastic dominance with the

two financial loss functions and a total excess return of 52.8%, with the second best

performance of 47.3% being obtained with the same loss functions and a similar

combination of parameters at (7, 5); for TNA we have (α, n) = (0, 2) and a total

excess return of 221.9% and the use of stochastic dominance with the two statistical

loss functions, with the second best performance being given by the (7, 5) parameter

combination, again with the same loss functions, and a total excess return of 181.1%.

In actual practice getting the best or the second best performing loss function is

not an event of very high probability. Thus, it is imperative to examine further the

average, across assets and loss functions, performance of our suggested methodology

and for this we turn now to Table 5. There we have tabulated the distribution of

all loss functions across all ETFs and some interesting, and practical results, can be

obtained from it. First, it is very clear that the most frequently top performing loss

function is the most standard one, the square loss; it appears in Tables 3 and 4 with

a frequency of 31%, one third thus of the time one can obtain top performance using
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this loss function. The next top performing loss function is the “plain” MDL (which

in essence is also a square loss with a different penalty function) with a participation

of 17.7% in the two tables, and the third best performing loss is the stochastic

dominance combination of the two statistical loss functions with a participation of

9.90%. These three loss functions account for almost 60% of the top performing loss

functions in Tables 3 and 4. If we next find the average excess return for each of

these loss functions (across all 8 ×24 instances of combinations) we find them to

be 5.46% for the square loss, 3.74% for the “plain” MDL loss and 3.79% for the

stochastic dominace with the statistical loss functions. It is furthermore interesting

to note that the next best average excess return is given by the stochastic dominance

with all loss functions at 3.07%, although this loss function accounts for only 5.7%

in the total participation of loss functions. If we concentrate only on the instances

in which these loss functions appeared in the tables to compute their average excess

return (i.e., not in all 8×24 combinations) then a different result emerges, which is

of equal practical significance: the order of average performance reverses. Now, the

average excess return for the stochastic dominance with all loss functions is 53.6%,

for stochastic dominance with the statistical loss functions is 38.3%, for the “plain”

MDL loss function is 21.1% and for the square loss is 17.8%. Thus, there is a trade-off

between performance magnitude and performance occurrence, with the less frequently

appearing, as top performer, stochastic dominance approach to provide higher excess

returns.7

We conclude our discussion of Tables 3 to 5 by addressing the issue of significance,

per the notion of the test of Theorem 3. As previously explained, the theorem

7 Note, however, that in this statement we are not taking into account how many other times the
stochastic dominance approach has appeared in the totality of results, available on request. This
implies that the actual average return of the stochastic dominance approach will be of necessity
smaller than the 53.6% appearing here.
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provides for a way of assessing whether the method-based choice of the optimal

local window outperforms statistically the optimal ex-post individual window. Thus,

the advantages of having such a significance test are twofold: first, we can locate

(and possibly devise some cross-validation procedure) the parametrizations that lead

to consistent statistical significance (that has to be combined with financial excess

returns); second, we can relate the comparisons of significant parametrizations to

non-significant ones (but with financial over-performance in terms of total excess

returns) to the characteristics of the asset under study. Scanning again Tables 3 and

4 we first note that in all ETFs examined either all top 3 performing loss functions or

at least one of them give rise to total excess returns that are statistically significant:

that implies that our suggested method did outperform the ex-post optimal individual

window. We note in particular that the two most volatile assets, the Bitcoin and

TNA, are the ones that have instances of parametrizations that provide considerable

total excess returns but these are not statistically significant, in the sense of Theorem

3. If we next concentrate on where the bulk of significant results lies, in terms of

parametrizations, and we count the significant entries per α-block in the two tables

we find that the extreme values of α i.e., 0 for the plain sample mean and 7 for the

weighted sample mean, we have the highest concentration of significant total excess

returns and, in fact, for α = 7 we have 24 out of 32 of n combinations to provide us

with significant total excess returns, followed by α = 0 where we have 18 out of 32

such combinations. This result is of potential theoretical and practical usefulness: one

the one hand we can further explore the impact of joint optimizations of the (α, δ)

pair, and on the other hand one can device additional benchmarking options, where

the case of the plain sample mean with α = 0 serves as a yardstick for performance

comparisons.
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We next turn to Tables 6 through 11 that contain the evaluation results for the

statistical measures, the MAE and the MSE. We first note that there is no real

benchmark for comparison here, as we are using the simplest possible method for

forecasting, the sample mean. Direct comparisons are thus possible between the plain

sample mean, α = 0, and the weighted sample mean, α > 0, from the tables. Starting

off with Tables 6 and 7 we immediately note that the MAE does not vary considerable

within each ETF but only across ETFs: we have significant performance equivalence

based on this attribution measure. However, what is also immediately eminent is

that the plain sample mean leads to best MAE-based statistical performance overall

and this is true whether we look into Table 6 or Table 7. This is a significant finding

for practical purposes because it indicates that top statistical performance and top

financial performance are not to be obtained via the same “model” or method. It also

implies that the objective loss function for active trading and the the objective loss

function for performance evaluation need not be the same - remember that we found

in Table 5 how the statistical loss functions can bring performance enhancements

in terms of financial performance. If we look into Table 8 we find another critical

result: almost 66% of the top performing loss function is the “plain” MDL one, with

the stochastic dominance with statistical loss functions being top performing with

a 17.2% participation rate and the average local window across all individual loss

functions covering the rest 15.1% across all loss functions and ETFs. What we can

meaningfully get from this table is that the stochastic dominance approach with

statistical loss functions has a participation of 10% or more in both the financial

evaluation criterion of total excess returns and in the statistical evaluation criterion

of the MAE.

In Tables 9 and 10, where the evaluation criterion is the MSE, the results are
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almost completely in line with Tables 6 and 7 - a non-surprising result. We find

that, again, the plain sample mean, α = 0, gives overall the best performance -

although we note that the differences with the weighted sample mean, α > 0, are

now much less pronounced that they were before with the MAE. This result can be

interpreted in two different ways: one would be that the MSE is not sensitive enough

to differentiate model performance (the well-known scaling issue, taking the square

root of the MSE will change the scaling of the results), and the other way would be

that the MSE is a “robust” evaluation method when one sees it along with the results

of Tables 3 to 5 (i.e., that the MSE gives top financial performance most of the time).

The final interpretation rests with the researcher and the objective one has in mind.

Finally, the results of Table 11 are also in line with those in Table 8, with the “plain”

MDL being top performing loss function 48.4% of the time, followed by the average

local window across individual loss functions with a participation of 16.7% and the

stochastic dominance with statistical loss funcitons with a participation of 12.5% -

here it is interest to note that non-zero participation rates as top performing loss

functions have other ones, like the MDL with all loss functions with 7.3%, stochastic

dominance with financial loss functions with 5.2% and stochastic dominance with

all loss functions with 4.2%. In our view these latter results support those found in

Tables 3 through 5 and make for a practical recommendation on the use of those loss

functions as discussed in Table 5, for they practically coincide with those presented

in Table 8.8

We finally turn to our last performance attribution measure, the sign success ratio

which counts the percentage of times that the forecasts captured accurately the sign

of next period’s returns. This is an important performance measure because getting

8 It might be claimed that in this respect the squared error is robust both as a loss function and
as an evaluation measure.
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the sign of next period right is important for active trading. The results in Tables 12

through 14 show higher variation compared to the statistical evaluation measures

but lower compared to the excess returns evaluation measure. What is important to

point out in this context is that the results are now more “scattered” across different

values of α and one can find the same or very similar SSRs within each ETF in both

Table 12 and Table 13. Furthermore, it is also evident that now we have different

loss functions as top performers. Starting with the comparison on the differentiation

of the SSRs we see that there is a tendency to have top performance for both α = 0

and for α = 7, with the in-between results being in general less good compared to

these extremes. Second, it is also evident that now the stochastic dominance and

MDL loss functions appear much more frequently in the tables than they were before

in the statistical evaluation measures - and this recommends a further comparison

of the results in Tables 3 and 4 with the current Tables 12 and 13. Third, we see

that the SSRs do not deviate significantly from the 50% benchmark but nevertheless

the financial performance is very good; this suggests that the method is able to

potentially capture the signs of critical periods (either in upmarket or downmarket

conditions) and thus all that is required is that one gets just a numerically different

from 50% SSR. Turning next to Table 14 we find the same variety of top performing

loss functions as we did find in Table 5. Here the results are as follows: the “plain”

MDL is the top participating loss function with a rate of 25.0% closely followed by

the square loss function with a participation rate of 19.3% and then by the stochastic

dominance with statistical loss functions with 12.5% participation rate. If note is

that the full MDL also participates as a top loss function with a rate of 7.8% followed

by the average local window across individual loss function with a rate of 7.3%,

then followed by stochastic dominance with financial loss functions with 6.8% and

stochastic dominance with all loss functions with a participation rate of 5.7%. Again
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we see the same loss functions as we did in Table 3, making an even stronger case for

the use of financial loss functions for performance attribution with a variety of the

more advanced loss functions for local window selection and forecasting.

The combined results of all tables prompt us to make one final comparison using

the results of Tables 3, 4, 12 and 14, so as to better understand which loss functions

jointly appear the most under the two financial performance attribution measures. We

do this in Table 15. In the table we first list the top 3 performing loss functions based

on total excess return attribution and then we list the corresponding loss functions

for the same parametrizations but that appeared in the sign success ratio attribution.

The results of the table are not entirely conclusive (for they are clearly dependent on

the particular dataset that we have used) but they are highly suggestive: for each ETF

examined there are at least two (one for SPY) loss functions that are top performers

which are the same in the total excess returns attribution and sign success ratio

attribution. Among the loss functions appearing in the table we have that the square

loss function ℓSE appears 4 times and the stochastic dominance with the financial loss

functions LW,sgn also 4 times, with the stochastic dominance with the statistical loss

functions appearing 3 times. Thus, from the 24 top 3 performing loss functions we

have that 15 of them match i.e., 62.5%, and we might make the modest claim that

our methodology works fairly robust across the two financial performance attribution

measures. Furthermore, and this of practical importance, if one were to look at the

top 3 performing loss functions based on the sign success ratio attribution would not

obtain best total excess return performance: it is not just how many correct signs you

forecast that matters that will lead to financial performance, it is the combination of a

loss function that combines timing (of market turning points) and sign predictability

at the same time.
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We end our discussion by reviewing and summarizing our answers on the questions

posed at the beginning of this section - with the understanding that our results

are representative and suggestive for a broader class of asset returns. Thus, our

suggested methodology readily works on providing a theoretically grounded, coherent

way of selecting the optimal local window to use in generating forecasts. It works

by providing a very agreeable blend of financial performance across a broad range of

asset classes, as represented by the corresponding ETFs we used, and that financial

performance can be obtained by a number of different loss functions. Our results allow

us to conjecture that the standard square loss function will work most of the time but

it will not necessarily give optimal financial performance; the latter is obtained by the

more “advanced” combinations of loss functions either by the stochastic dominance

principle or by the MDL principle. We find that the combination of the two statistical

loss functions and the combination of the two financial loss functions, and also all

four of them, provides a very solid approach for local window selection that leads

to very good financial performance. This performance is, in about 40% of our total

parametrizations, statistically significant, thus providing positive total returns that

outperform the ex-post optimal local window. We further illustrated that the two

financial performance attribution measures, the total excess returns and the sign

success ratio, give consistent selection of the loss function compared to the statistical

performance attribution measures; for the latter we find that not only the optimal

selections are for different loss functions, but also that they do not allow for sufficient

separation across parametrizations. Finally, our results are fairly consistent across all

ETFs we have examined. We propose some further suggestions for future research in

the concluding remarks that follow.
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4 Concluding remarks

We propose a new methodology for selecting the optimal local window of estimation

for forecasting asset returns. At this stage of our research our results are confined

to the simplest of predictors, the (weighted) sample mean, and we fully develop the

theory and implementation of the method. Our approach is based on a notion of

predictive complexity, whose minimization results in the optimal selection of the

local window. We work within the confines of five individual loss functions and their

combinations based on the stochastic dominance and the minimum description length

principles and derive explicit formulas that are of immediate applicability and easy to

use. We implement the derived theoretical results into an empirical application using

several exchange trade funds across different asset classes. Our results indicate that

the method is commendable for practical work as it provides accurate estimation of

the local window, as judged by the derived financial performance: we can generate

excess returns (compared to the passive benchmark) that are found to be (in most

tested instances) “significant” according to the inference theory developed for the

method.

The implications of our results are multi-fold. First, the current research illustrates

that market timing is possible even with the simplest of predictors, if the information

window is chosen appropriately and “objectively”. Second, it provides for expanding

our analysis to more complex predictors, that can be built gradually over the simple

predictor considered here, and thus examine the need and requirements for additional

complexity in forecasting asset returns. Third, it opens-up comparisons with the first

part of the literature in the introduction i.e., prediction with expert advice; this is of

particular practical usefulness as both our method and the prediction with expert

advice work on the same foundational premise: that there is a range of possible
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combinations of information/models/parameters each of which might be appropriate

to use in prediction. Fourth, we can further examine the potential of our method to

an expanded asset universe and data frequencies. We are pursuing some of the above

in our continued research on this topic.

The deeper understanding of the possible conflations between the notions of

statistical/predictive complexity of Rissanen (see for example [64]-[65]) with the

stochastic dominance paradigm provides an interesting path of research that may

be proven fruitful for some of the extensions above; predictive complexity interprets

the exponentially integrable signed loss functions as densities, thus providing with

parametric statistical models and penalized likelihoods that approximate the algo-

rithmic complexity of the data. Stochastic dominance interprets the loss functions as

preferences towards risk of erroneous predictions (or of economic loss due to erroneous

predictions). The first methodology seeks to minimize complexity over the class of

statistical models involved; the second seeks to do so by also taking into account the

risk of misspecified preferences in a conservative manner. The derivation of theoretical

results investigating the relations between the optimal choices of each approach as

functions of the loss function classes involved could thereby be another interesting

path of further research.
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Tab. 1: Descriptive statistics of ETFs, 2022-2023, daily data, annualized

Mean SD Sharpe Sortino TR MaxDD
BTC 11.59% 57.21% 0.203 4.604 -9.09% -66.74%
DBA 6.04% 13.62% 0.443 10.219 10.35% -15.94%
DBC 8.31% 22.12% 0.376 8.270 11.95% -27.34%
EEM -5.45% 20.31% -0.268 -6.338 -13.46% -32.71%
GLD 6.86% 14.59% 0.470 11.280 11.82% -21.03%
OIH 36.70% 41.68% 0.881 20.646 71.50% -36.42%
SPY 3.62% 19.82% 0.183 4.173 3.24% -24.50%
TNA -11.29% 74.17% -0.152 -3.487 -52.63% -74.85%

(a) Mean is the annualized average return, SD is the annualized standard
deviation, Sharpe is the annualized Sharpe ratio, Sortino is the annualized
Sortino ratio, TR is the total return and MaxDD is the maximum drawdown.

Tab. 2: Correlations of ETFs, 2022-2023, daily data

BTC DBA DBC EEM GLD OIH SPY
DBA 9.03%
DBC 9.41% 59.08%
EEM 39.84% 14.45% 21.57%
GLD 12.77% 22.56% 39.89% 27.64%
OIH 18.79% 37.97% 65.74% 36.27% 23.14%
SPY 44.51% 13.64% 18.56% 69.79% 13.08% 41.38%
TNA 42.78% 12.90% 21.06% 69.20% 12.25% 49.73% 88.56%
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Tab. 5: Distribution of top performing loss functions by total excess returns

Loss BTC DBA DBC EEM GLD OIH SPY TNA Total %
ℓSE 6 14 15 1 14 5 4 59 30.73%
ℓAE 2 1 3 1.56%
ℓW 3 4 4 4 1 1 17 8.85%
ℓsgn 5 1 2 2 10 5.21%
ℓMDL 1 8 3 13 9 34 17.71%
LW,sgn 2 1 2 1 2 3 2 13 6.77%
LSE,AE 1 3 7 5 3 19 9.90%
LA,SD 4 1 3 1 2 11 5.73%
LA,MDL 3 2 3 1 3 3 15 7.81%

δ̄A 1 3 6 1 11 5.73%
(a)The table counts and numbers and percentages, over the total, of the distribution of loss
functions appearing in Tables 3 and 4 for performance attribution by total excess returns.
(b) The loss function nomenclature is the following: LA,SD is the collection of all 4 loss functions
using SD; LA,MDL is the same but using MDL; LSE,AE is the collection of the two statistical loss
functions using SD; LW,sgn is the collection of the two financial loss functions using SD; δ̄A is the
average optimal δ from all individual loss functions (including ℓMDL).



4 Concluding remarks 56

T
a
b
.
6
:
T
op

p
er
fo
rm

in
g
lo
ss

fu
n
ct
io
n
s,

at
tr
ib
u
ti
on

b
y
M
A
E
,
P
ar
t
I

α
n

B
T
C

M
A
E

B
T
C

D
B
A

M
A
E

D
B
A

D
B
C

M
A
E

D
B
C

E
E
M

M
A
E

E
E
M

0
T

ℓ M
D
L

1.
97
%

L
S
E
,A

E
0.
68
%

L
S
E
,A

E
1.
05
%

L
S
E
,A

E
0.
98
%

2
ℓ M

D
L

1.
97
%

L
S
E
,A

E
0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
99
%

5
ℓ M

D
L

1.
97
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
98
%

7
ℓ M

D
L

1.
96
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

L
S
E
,A

E
0.
98
%

0.
5

T
ℓ M

D
L

1.
98
%

L
S
E
,A

E
0.
68
%

ℓ M
D
L

1.
05
%

ℓ M
D
L

0.
98
%

2
ℓ M

D
L

1.
98
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

L
S
E
,A

E
0.
99
%

5
ℓ M

D
L

1.
98
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
98
%

7
ℓ M

D
L

1.
97
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
98
%

1
T

ℓ M
D
L

1.
99
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
99
%

2
ℓ M

D
L

2.
00
%

ℓ M
D
L

0.
68
%

L
S
E
,A

E
1.
06
%

ℓ M
D
L

0.
99
%

5
ℓ M

D
L

2.
00
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
99
%

7
ℓ M

D
L

1.
98
%

ℓ M
D
L

0.
68
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

0.
99
%

2
T

L
W

,s
g
n

2.
02
%

ℓ M
D
L

0.
69
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

1.
00
%

2
ℓ M

D
L

2.
03
%

ℓ M
D
L

0.
69
%

L
S
E
,A

E
1.
06
%

ℓ M
D
L

1.
00
%

5
ℓ M

D
L

2.
03
%

ℓ M
D
L

0.
69
%

L
S
E
,A

E
1.
06
%

ℓ M
D
L

1.
00
%

7
ℓ M

D
L

2.
02
%

ℓ M
D
L

0.
69
%

ℓ M
D
L

1.
06
%

ℓ M
D
L

1.
00
%

5
T

L
S
E
,A

E
2.
10
%

ℓ M
D
L

0.
71
%

ℓ M
D
L

1.
09
%

ℓ M
D
L

1.
03
%

2
ℓ M

D
L

2.
12
%

ℓ M
D
L

0.
71
%

ℓ M
D
L

1.
09
%

ℓ M
D
L

1.
04
%

5
ℓ M

D
L

2.
12
%

ℓ M
D
L

0.
71
%

ℓ M
D
L

1.
09
%

ℓ M
D
L

1.
03
%

7
L

S
E
,A

E
2.
10
%

ℓ M
D
L

0.
71
%

ℓ M
D
L

1.
09
%

ℓ M
D
L

1.
03
%

7
T

δ̄ A
2.
56
%

δ̄ A
0.
83
%

ℓ s
g
n

1.
24
%

δ̄ A
1.
24
%

2
δ̄ A

2.
43
%

δ̄ A
0.
81
%

δ̄ A
1.
24
%

δ̄ A
1.
19
%

5
δ̄ A

2.
45
%

δ̄ A
0.
81
%

δ̄ A
1.
25
%

δ̄ A
1.
20
%

7
δ̄ A

2.
45
%

δ̄ A
0.
82
%

δ̄ A
1.
25
%

δ̄ A
1.
20
%

(a
)
W

h
en

m
u
lt
ip
le

lo
ss

fu
n
ct
io
n
s
gi
ve

th
e
sa
m
e
re
su
lt

th
en

on
ly

on
e
is

li
st
ed

b
as
ed

on
it
s
si
m
p
li
ci
ty

as
fo
ll
ow

s:
if

st
a
ti
st
ic
a
l
o
n
ly

th
en

li
st

sq
u
a
re

lo
ss
;
if
fi
n
a
n
ci
a
l
o
n
ly

th
en

li
st

w
ea
lt
h
lo
ss
,
if
st
a
ti
st
ic
a
l
a
n
d
fi
n
a
n
ci
a
l
th
en

li
st

sq
u
ar
e
lo
ss
,
if
co
m
p
le
x
it
y
-b
as
ed

an
d
in
d
iv
id
u
al

lo
ss

th
en

li
st

th
e
in
d
iv
id
u
al

lo
ss
,
if
co
m
p
le
x
it
y
-b
as
ed

on
ly

th
en

li
st

th
e
“s
im

p
le
r”

on
e.

(b
)
T
h
e
lo
ss

fu
n
ct
io
n
n
o
m
en
cl
a
tu
re

is
th
e
fo
ll
ow

in
g
:
L
A
,S

D
is

th
e
co
ll
ec
ti
o
n
o
f
a
ll
4
lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;

L
A
,M

D
L
is
th
e
sa
m
e
b
u
t
u
si
n
g
M
D
L
;
L
S
E
,A

E
is
th
e
co
ll
ec
ti
on

of
th
e
tw

o
st
at
is
ti
ca
l
lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;
L
W

,s
g
n

is
th
e
co
ll
ec
ti
on

of
th
e
tw

o
fi
n
an

ci
al

lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;
δ̄ A

is
th
e
av
er
ag
e
op

ti
m
al

δ
fr
om

al
l
in
d
iv
id
u
al

lo
ss

fu
n
ct
io
n
s
(i
n
cl
u
d
in
g
ℓ M

D
L
).

(c
)
M

A
E

X
X

X
d
en
ot
es

th
e
m
ea
n
-a
b
so
lu
te

er
ro
r
o
f
th
e
fo
re
ca
st
s
fo
r
ti
ck
er

X
X
X
.



4 Concluding remarks 57

T
a
b
.
7
:
T
op

p
er
fo
rm

in
g
lo
ss

fu
n
ct
io
n
s,

at
tr
ib
u
ti
on

b
y
M
A
E
,
P
ar
t
II

α
n

G
L
D

M
A
E

G
L
D

O
IH

M
A
E

O
I
H

S
P
Y

M
A
E

S
P
Y

T
N
A

M
A
E

T
N
A

0
T

L
A
,S
D

0.
71
%

L
S
E
,A

E
2.
04
%

L
S
E
,A

E
0.
94
%

L
S
E
,A

E
3.
65
%

2
ℓ M

D
L

0.
71
%

L
S
E
,A

E
2.
04
%

ℓ M
D
L

0.
94
%

L
S
E
,A

E
3.
65
%

5
ℓ M

D
L

0.
71
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
94
%

L
S
E
,A

E
3.
65
%

7
ℓ M

D
L

0.
71
%

L
S
E
,A

E
2.
04
%

ℓ M
D
L

0.
94
%

ℓ M
D
L

3.
65
%

0.
5

T
ℓ M

D
L

0.
71
%

L
S
E
,A

E
2.
04
%

ℓ M
D
L

0.
95
%

ℓ M
D
L

3.
67
%

2
ℓ M

D
L

0.
71
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
95
%

ℓ M
D
L

3.
67
%

5
ℓ M

D
L

0.
71
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
94
%

ℓ M
D
L

3.
66
%

7
ℓ M

D
L

0.
71
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
94
%

ℓ M
D
L

3.
66
%

1
T

ℓ M
D
L

0.
72
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
95
%

ℓ M
D
L

3.
70
%

2
ℓ M

D
L

0.
72
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
96
%

ℓ M
D
L

3.
70
%

5
ℓ M

D
L

0.
72
%

L
S
E
,A

E
2.
05
%

ℓ M
D
L

0.
95
%

L
A
,S
D

3.
96
%

7
ℓ M

D
L

0.
72
%

ℓ M
D
L

2.
05
%

ℓ M
D
L

0.
95
%

ℓ M
D
L

3.
69
%

2
T

ℓ M
D
L

0.
73
%

ℓ M
D
L

2.
07
%

ℓ M
D
L

0.
97
%

L
S
E
,A

E
3.
76
%

2
ℓ M

D
L

0.
73
%

ℓ M
D
L

2.
08
%

ℓ M
D
L

0.
97
%

ℓ M
D
L

3.
76
%

5
ℓ M

D
L

0.
73
%

L
S
E
,A

E
2.
08
%

ℓ M
D
L

0.
96
%

ℓ M
D
L

3.
75
%

7
ℓ M

D
L

0.
73
%

ℓ M
D
L

2.
08
%

ℓ M
D
L

0.
96
%

ℓ M
D
L

3.
75
%

5
T

L
S
E
,A

E
0.
76
%

L
S
E
,A

E
2.
14
%

ℓ M
D
L

1.
00
%

L
S
E
,A

E
3.
90
%

2
L

S
E
,A

E
0.
77
%

ℓ M
D
L

2.
15
%

ℓ M
D
L

1.
00
%

ℓ M
D
L

3.
91
%

5
L

S
E
,A

E
0.
77
%

L
S
E
,A

E
2.
14
%

ℓ M
D
L

1.
00
%

ℓ M
D
L

3.
90
%

7
L

S
E
,A

E
0.
77
%

L
S
E
,A

E
2.
14
%

ℓ M
D
L

1.
00
%

ℓ M
D
L

3.
90
%

7
T

δ̄ A
0.
91
%

L
S
E
,A

E
2.
52
%

δ̄ A
1.
19
%

L
S
E
,A

E
4.
41
%

2
δ̄ A

0.
88
%

δ̄ A
2.
47
%

δ̄ A
1.
14
%

δ̄ A
4.
39
%

5
δ̄ A

0.
87
%

δ̄ A
2.
47
%

δ̄ A
1.
15
%

δ̄ A
4.
44
%

7
δ̄ A

0.
88
%

δ̄ A
2.
47
%

δ̄ A
1.
15
%

δ̄ A
4.
44
%

(a
)
W

h
en

m
u
lt
ip
le

lo
ss

fu
n
ct
io
n
s
gi
ve

th
e
sa
m
e
re
su
lt

th
en

on
ly

on
e
is

li
st
ed

b
as
ed

on
it
s
si
m
p
li
ci
ty

as
fo
ll
ow

s:
if

st
a
ti
st
ic
a
l
o
n
ly

th
en

li
st

sq
u
a
re

lo
ss
;
if
fi
n
a
n
ci
a
l
o
n
ly

th
en

li
st

w
ea
lt
h
lo
ss
,
if
st
a
ti
st
ic
a
l
a
n
d
fi
n
a
n
ci
a
l
th
en

li
st

sq
u
ar
e
lo
ss
,
if
co
m
p
le
x
it
y
-b
a
se
d
a
n
d
in
d
iv
id
u
a
l
lo
ss

th
en

li
st

th
e
in
d
iv
id
u
a
l
lo
ss
,
if
co
m
p
le
x
it
y
-b
a
se
d
o
n
ly

th
en

li
st

th
e
“s
im

p
le
r”

on
e.

(b
)
T
h
e
lo
ss

fu
n
ct
io
n
n
o
m
en
cl
a
tu
re

is
th
e
fo
ll
ow

in
g
:
L
A
,S

D
is

th
e
co
ll
ec
ti
o
n
o
f
a
ll
4
lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;

L
A
,M

D
L
is

th
e
sa
m
e
b
u
t
u
si
n
g
M
D
L
;
L
S
E
,A

E
is

th
e
co
ll
ec
ti
o
n
o
f
th
e
tw

o
st
a
ti
st
ic
a
l
lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;

L
W

,s
g
n
is

th
e
co
ll
ec
ti
o
n
o
f
th
e
tw

o
fi
n
a
n
ci
a
l
lo
ss

fu
n
ct
io
n
s
u
si
n
g
S
D
;
δ̄ A

is
th
e
av
er
a
g
e
o
p
ti
m
a
l
δ
fr
o
m

a
ll

in
d
iv
id
u
al

lo
ss

fu
n
ct
io
n
s
(i
n
cl
u
d
in
g
ℓ M

D
L
).

(c
)
M

A
E

X
X

X
d
en
ot
es

th
e
m
ea
n
-a
b
so
lu
te

er
ro
r
o
f
th
e
fo
re
ca
st
s
fo
r
ti
ck
er

X
X
X
.



4 Concluding remarks 58

Tab. 8: Distribution of top performing loss functions by MAE

Loss BTC DBA DBC EEM GLD OIH SPY TNA Total %
ℓSE 0 0.00%
ℓAE 0 0.00%
ℓW 0 0.00%
ℓsgn 1 1 0.52%
ℓMDL 17 17 16 17 15 11 19 14 126 65.63%
LW,sgn 1 1 0.52%
LSE,AE 2 3 4 3 4 10 1 6 33 17.19%
LA,SD 1 1 2 1.04%
LA,MDL 0 0.00%

δ̄A 4 4 3 4 4 3 4 3 29 15.10%
(a)The table counts and numbers and percentages, over the total, of the distribution of loss
functions appearing in Tables 5 and 6 for performance attribution by MAE.
(b) The loss function nomenclature is the following: LA,SD is the collection of all 4 loss functions
using SD; LA,MDL is the same but using MDL; LSE,AE is the collection of the two statistical loss
functions using SD; LW,sgn is the collection of the two financial loss functions using SD; δ̄A is the
average optimal δ from all individual loss functions (including ℓMDL).
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Tab. 11: Distribution of top performing loss functions by MSE

Loss BTC DBA DBC EEM GLD OIH SPY TNA Total %
ℓSE 1 1 0.52%
ℓAE 0 0.00%
ℓW 4 4 2.08%
ℓsgn 4 1 1 6 3.13%
ℓMDL 10 16 19 12 19 17 93 48.44%
LW,sgn 2 2 6 10 5.21%
LSE,AE 6 4 1 8 1 4 24 12.50%
LA,SD 2 2 4 8 4.17%
LA,MDL 11 3 14 7.29%

δ̄A 4 4 3 4 6 4 4 3 32 16.67%
(a)The table counts and numbers and percentages, over the total, of the distribution of loss
functions appearing in Tables 7 and 8 for performance attribution by MSE.
(b) The loss function nomenclature is the following: LA,SD is the collection of all 4 loss functions
using SD; LA,MDL is the same but using MDL; LSE,AE is the collection of the two statistical loss
functions using SD; LW,sgn is the collection of the two financial loss functions using SD; δ̄A is the
average optimal δ from all individual loss functions (including ℓMDL).
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Tab. 14: Distribution of top performing loss functions by SSR

Loss BTC DBA DBC EEM GLD OIH SPY TNA Total %
ℓSE 13 10 9 5 37 19.27%
ℓAE 1 1 0.52%
ℓW 3 3 2 7 4 3 1 23 11.98%
ℓsgn 1 1 2 2 6 3.13%
ℓMDL 8 1 6 6 2 16 9 48 25.00%
LW,sgn 2 1 3 1 2 4 13 6.77%
LSE,AE 5 1 6 1 5 6 24 12.50%
LA,SD 2 5 2 1 1 11 5.73%
LA,MDL 3 2 6 1 3 15 7.81%

δ̄A 2 3 4 2 1 2 14 7.29%
(a)The table counts and numbers and percentages, over the total, of the distribution of loss
functions appearing in Tables 9 and 10 for performance attribution by SSR.
(b) The loss function nomenclature is the following: LA,SD is the collection of all 4 loss functions
using SD; LA,MDL is the same but using MDL; LSE,AE is the collection of the two statistical loss
functions using SD; LW,sgn is the collection of the two financial loss functions using SD; δ̄A is the
average optimal δ from all individual loss functions (including ℓMDL).
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Tab. 15: Comparison of loss functions on total excess returns and sign
success ratio

Total Excess Returns Corresponding
Ranking Sign Success Ratios

1st 2nd 3rd of 1st of 2nd of 3rd
BTC 181.80% 170.90% 169.30% 50.14% 50.07% 52.95%

LA,SD LSE,AE ℓW LSE,AE LSE,AE ℓW
DBA 31.80% 30% 27.80% 51.49% 53.18% 50.74%

LA,MDL LW,sgn ℓSE LW,sgn LSE,AE ℓSE
DBC 69.70% 66.10% 65.80% 53.83% 53.89% 53.81%

ℓSE ℓAE ℓSE ℓSE ℓW ℓSE
EEM 56.40% 33.90% 25.20% 53.68% 51.27% 50.85%

LW,sgn LSE,AE ℓW LW,sgn ℓMDL ℓW
GLD 30.30% 28.30% 16.60% 0.52 52% 51.99%

δ̄A δ̄A LW,sgn ℓsgn δ̄A LW,sgn

OIH 52.80% 47.30% 43.30% 54.45% 53.60% 53.19%
LW,sgn LW,sgn ℓSE LW,sgn LW,sgn ℓSE

SPY 38.90% 22% 18.60% 52.21% 50.85% 50.43%
ℓW LSE,AE LSE,AE ℓW ℓMDL ℓMDL

TNA 221.90% 181.10% 127.40% 53.68% 54.24% 49.15%
LSE,AE LSE,AE LW,sgn LSE,AE LSE,AE ℓSE

(a) The table lists the top 3 performing loss functions for total excess returns and
then lists the corresponding sign success ratio loss functions that appeared for
the same parametrizations as in the total excess returns attribution.
(b) The loss function nomenclature is the following: LA,SD is the collection of all
4 loss functions using SD; LA,MDL is the same but using MDL; LSE,AE is the
collection of the two statistical loss functions using SD; LW,sgn is the collection
of the two financial loss functions using SD; δ̄A is the average optimal δ from all
individual loss functions (including ℓMDL).
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