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Abstract

We develop and implement methods for determining whether relaxing sparsity con-

straints on portfolios improves the investment opportunity set for risk-averse investors.

We formulate a new estimation procedure for sparse second-order stochastic spanning

based on a greedy algorithm and Linear Programming. We show the optimal recovery

of the sparse solution asymptotically whether spanning holds or not. From large equity

datasets, we estimate the expected utility loss due to possible under-diversification, and

find that there is no benefit from expanding a sparse opportunity set beyond 30 assets.

The optimal sparse portfolio invests in 10 industry sectors with a larger weighting on

small size, high book-to-market, and momentum stocks from the S&P 500 index and

cuts tail risk when compared to a sparse mean-variance portfolio. On a rolling-window

basis, the number of assets shrinks to 10 assets in crisis periods.
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1 Introduction

We know for decades that the diversification benefits measured by the volatility of portfolio

returns are limited when we invest beyond 10 to 20 assets; see e.g. Evans and Archer (1968),

Klemkosky and Martin (1975), Elton and Gruber (1977). Practitioners coin the term over-

diversification. At the opposite end of the spectrum, we often observe under-diversification

among households (Campbell (2006), Calvet, Campbell and Sodini (2007)). It might be

caused by information acquisition costs (Van Nieuwerburgh and Veldkamp (2010)), overcon-

fidence (Anderson (2013)), solvency requirements (Liu (2014)), or overweighting low prob-

ability events (Dimmock et al. (2021)). A characteristic-based demand system might also

explain why institutions and households hold a small set of stocks (Koijen and Yogo (2019)).

Possible over-diversification contributes to motivating the recent literature on sparse con-

struction of mean-variance (MV) portfolios within the Modern Portfolio Theory (Markowitz

(1952)) through imposing constraints on the portfolio weights; see e.g. Jagannathan and Ma

(2003), DeMiguel et al. (2009), Brodie et al. (2009), Fan, Zhang and Yu (2012), Ao, Li and

Zheng (2019), and Caner, Medeiros and Vasconscelos (2021). Such a construction limits the

impact of transaction costs, and eases monitoring and risk management. It also achieves

statistical regularisation of the investment portfolio in the presence of ill-conditioned large

covariance matrices. Whether limitations of diversification benefits beyond a given small

number of assets still hold true when we leave the MV paradigm is an open problem. This

paper targets the following questions: Is it possible to build a sparse portfolio of dimension

q from a large set of assets of dimension p so that we cannot get further improvement from

considering additional assets in a second-order stochastic dominance (SSD) paradigm? If

not, how much do we loose by limiting ourselves to this sparse portfolio in terms of expected

utilities compatible with SSD? Can we design an optimization algorithm to compute this

sparse portfolio from available data? Do we have the asymptotic statistical guarantee that

we cannot improve on the estimated expected utility loss due to under-diversification by

considering another sparse portfolio of the same fixed dimension?
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The theory of stochastic dominance (SD) gives a systematic framework for analyzing in-

vestor behavior under uncertainty (see Chapter 4 of Danthine and Donaldson (2014) for an

introduction oriented towards finance). Stochastic dominance ranks portfolios based on gen-

eral regularity conditions for decision making under risk (Hadar and Russell (1969), Hanoch

and Levy (1969), and Rothschild and Stiglitz (1970)). SD uses a distribution-free assumption

framework which allows for nonparametric statistical estimation and inference methods. We

can see SD as a flexible model-free alternative to MV dominance of Modern Portfolio The-

ory (Markowitz (1952)). The MV criterion is consistent with Expected Utility for elliptical

distributions such as the normal distribution (Chamberlain (1983), Owen and Rabinovitch

(1983), Berk (1997)) but has limited economic meaning when we cannot completely char-

acterize the probability distribution by its location and scale. Simaan (1993), Athayde and

Flores (2004), and Mencia and Sentana (2009) develop a mean-variance-skewness framework

based on generalizations of elliptical distributions that are fully characterized by their first

three moments. SD presents a further generalization that accounts for all moments of the

return distributions without necessarily assuming a particular family of distributions.

Second-order SD (SSD) spanning (Arvanitis et al. (2019)) is a model-free alternative

to MV spanning of Huberman and Kandel (1987) (see also Jobson and Korkie (1989), De

Roon, Nijman, and Werker (2001)). Spanning occurs if introducing new securities or relaxing

investment constraints does not improve the investment possibility set for a given class of

investors. MV spanning checks if the MV frontier of a set of assets is identical to the MV

frontier of a larger set made of those assets plus additional assets (Kan and Zhou (2012),

Penaranda and Sentana (2012)). Here we investigate such a problem for investors with risk-

averse preferences which are interested in the whole return distributions generated by two

sets of assets, a sparse subset of dimension q (10 assets) with a limited number of assets

coming from a much larger set of dimension p (500 stocks).

The first contribution of the paper is to introduce the concept of sparse SSD spanning.

We propose a theoretical measure for sparse spanning based on second-order stochastic

3



dominance. For economic interpretation, we provide with a representation based on a class

of concave utility functions without assuming differentiability. When sparse SSD spanning

occurs, a risk-averse investor will not improve her expected utility by shifting from the sparse

subset to the larger investment opportunity set. On the contrary, if it does not occur, the risk-

averse investor will suffer an expected utility loss since we work with a subset instead of the

full set of assets. Hence we further provide a lower bound that takes the interpretation of an

optimal utility loss that cannot be improved upon by any sparse subset made of q assets. We

know that we suffer a loss because of the sparsity constraint but we cannot do better though

investing optimally in only q assets under an SSD criterion. To check sparse SSD spanning on

data, we develop consistent and feasible estimation procedures based on Linear Programming

(LP) and a greedy algorithm, namely the Forward Stepwise algorithm. We use a finite set

of increasing piecewise-linear functions, restricted to the bounded empirical supports, that

are constructed as convex mixtures of appropriate “ramp functions” (in the spirit of Russel

and Seo (1989)) in our representation as in Arvanitis, Scaillet and Topaloglou (2020a,b).

For every such utility function, we solve two embedded linear maximization problems. It is

an improvement over the implementation in Arvanitis and Topaloglou (2017) and Arvanitis,

Scaillet and Topaloglou (2020b) where they formulate the empirical counterpart in terms

of Mixed-Integer Programming (MIP) problems. MIP problems are NP-complete, and far

more difficult to solve. Our numerical approximations are simple and fast since they are

based on standard LP. They suit better computationally intensive optimisation methods,

which otherwise become quickly computationally demanding in empirical work on large data

sets. Those formulations are reminiscent of the LP programs developed in the early papers

of testing for SSD efficiency of a given portfolio by Post (2003) and Kuosmanen (2004) (see

also Scaillet and Topaloglou (2010)).

Since we aim at a sparse solution computed from a large dimensional problem, we rely on

a greedy optimisation algorithm. We use a discrete combinatorial algorithm for maximizing

a function subject to a cardinality constraint. It starts with the empty set, and then adds
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elements to it in r iterations. In each iteration, the algorithm adds to its current solution

the single element increasing the value of this solution by the most, i.e., the element with

the largest marginal value with respect to the current solution. In the context of submod-

ular maximization (see Buchbinder and Feldman (2018) for a survey), this simple Forward

Stepwise algorithm checking for incremental gain at each step using nested models is usually

referred to simply as “the greedy algorithm”. In the case of submodular functions, it returns

a solution that is provably within a constant factor of the optimum (Nemhauser, Wolsey and

Fisher (1978)), and it turns out to be the best approximation ratio possible for the problem

(Nemhauser and Wolsey (1978)). Submodular functions have a natural diminishing return

property: adding an element to a larger set results in smaller marginal increase in the value

of the function compared to adding the element to a smaller set. Bian et al. (2017) extend

guarantee results of the greedy algorithm for cardinality constrained maximization of non-

submodular nondecreasing set functions, in particular nondecreasing standard LP problems

with non-degenerate basic feasible solution (Bertsimas and Tsitsiklis (1997), Ch. 3) that we

implement in our empirics.

We choose that approach over penalization methods currently used for building sparse

MV portfolios for two reasons. First, we wish to bound the relative error without any

assumptions on the underlying sparsity for the true parameter. It is useful to show the

consistency of our empirical strategy irrespective of sparse spanning being present or absent.

Our proof relies on the recent work of Elenberg et al. (2018) (see Das and Kempe (2011)

for the linear regression case). Contrary to prior work in the MV setting, we require neither

assumptions on the sparsity of the underlying problem nor i.i.d. returns. Rather, we exploit

their result establishing multiplicative approximation guarantees from the best-case sparse

solution. Our results improve over previous work by providing bounds on a solution that is

guaranteed to match the desired sparsity and cannot be further decreased. Convex methods

for linear regressions such as the standard LASSO objective (Tibshirani (1996)) require

strong assumptions on the model and the data, such as the unrepresentable condition on the
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parameter vector and i.i.d. data (Zhao and Yiu (2006), Meinshausen and Buhlmann (2006)),

in order to provide exact sparsity guarantees on the recovered solution (see Zhang (2009)

for use of these assumptions in greedy least squares regression). More specifically, when the

number r of iterations is equal to r = q lnT , T being the time-series sample size, we show

that the algorithm provides a consistent estimate of the bound of the expected utility loss

computed from financial returns satisfying a mixing condition. Mixing holds true for many

time series models such as ARMA models as well as several GARCH and stochastic volatility

processes (see Francq and Zakoian (2011) for several examples). It allows us to build a path

of the estimated bound as a function of the sparsity constraint q, and verify when we have a

sufficiently large q to get sparse SSD spanning, namely when the bound vanishes. Second, the

only input we need is the sparsity number q of assets. Hence, we avoid the selection problem

of a tuning parameter, namely the regularization parameter in penalization methods. As

discussed in Brodie et al. (2009), a portfolio selection with a LASSO approach regulates

the amount of shorting. In our setting, we use short-sales constraints which corresponds

to using an implicit large regularisation parameter for the LASSO penalty. Our numerical

approach based on a greedy algorithm however does not require the true portfolio to be

sparse, and a large regularisation parameter is not required for developing valid statistical

inference. As a by-product, our approach also provides a selection algorithm for sparse MV

spanning under multivariate normality using the equivalence with sparse SSD spanning for

elliptical distributions. It allows to bypass the regularization of ill-conditioned estimates of

large covariance matrices (see e.g. Fan, Liao, and Shi (2015), Ledoit and Wolf (2017)).

The second contribution of the paper aims at checking on large data sets of equity returns

whether sparse SSD holds or not.

The paper is organized as follows. In Section 2, we establish our probabilistic framework,

and review the definition of SSD. In Section 3, we define the relevant concept of sparse SDD

spanning and provide with convenient functional representations. We discuss the concept of

approximate sparse spanning in Section 4. Given a fixed support dimension, it specifies the
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low dimensional portfolio set that comes closer (in an appropriate sense defined later on in the

paper) to span the high dimensional one. In Section 5, we construct an estimate of the bound

for sparse SSD spanning by using empirical analogues. We exploit the limiting distribution of

the empirical process underlying the estimator which has the form of a Gaussian process. Our

estimation strategy builds on LP and a Forward Stepwise algorithm. We show the asymptotic

optimal recovery of the sparse solution, namely statistical approximation guarantee of the

greedy algorithm output for a given q when T becomes large. In Section 6, we describe the

numerical implementation aspects of our empirical procedures. We perform a Monte Carlo

experiment in Section 7. In Section 8, we analyze large data sets of equity returns to study

whether sparse SSD holds or not and compare with results given by the construction of

sparse MV portfolios with the MAXSER approach of Ao, Li and Zheng (2019). We provide

concluding remarks in Section 9. We provide our proofs in the Appendix.

2 Background-Second Order Stochastic Dominance

We describe our limiting economy for a large number of financial assets. We denote the

financial returns by a process X∞ living in ℓ∞ (N,R), which is the space of bounded real

valued sequences equipped with the uniform metric. Xi denotes the ith, i ∈ N coordinate,

X denotes the projection of X∞ in the first p coordinates, and P denotes the distribution of

X∞. We suppress dependence on p for brevity. F denotes the cdf of the distribution of the

random vector X.

We introduce the associated portfolio weights with short-sales constraints. Short-sales con-

straints on the asset allocation promote sparsity (Brodie et al. (2009)); our approach can be

used to trace further patterns of (desired) sparsity. The set Λ∞ is a non-empty subset of the

N-simplex
{
λ ∈ RN : λi ≥ 0, i ∈ N,

∑∞
i=0 λi = 1

}
, and for p ∈ N, Λ =

{
λ ∈ Λ∞,

∑p−1
i=0 λi = 1

}
denotes the p − 1 dimensional unit sub-simplex of Λ∞ and K is a non-empty closed subset

of Λ. In the present context X is a random vector of financial returns for p base assets,
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while Λ represents a set of portfolios formed on X. The process X∞ idealizes the high

dimensional situation in the limiting case where p → ∞. Our first assumption specifies

probabilistic properties for X∞. It requires mild moment existence conditions (bounded

sequence of first order moments), and a lower bound on the associated supports consistent

with non-logarithmic returns. Here c̄o denotes the closure of the convex hull. Given the

restrictions that its elements satisfy, Λ∞ is considered topologized by the l1 norm and λ, κ

denote generic elements of Λ∞.

Assumption 1. max0<i≤+∞ E [|Xi|] < +∞. Z := c̄o [∪isupp (Xi)] and inf Z > −∞.

In this context, for any λ ∈ Λ∞,
∑∞

i=0 λiXi is a well defined random variable since due

to the monotonicity of the integral, E [|
∑∞

i=0 λiXi|] ≤ maxi E [|Xi|] < +∞. It implies that

E
[
(z −

∑∞
i=0 λiXi)+

]
is continuous in z, λ via dominated convergence, and that it is also

bounded in λ for any z, even though Λ∞ is not (l1-) totally bounded. Along with the

Lipschitz continuity property of (·)+, it also implies that for any λ ̸= κ,

sup
z∈R

∣∣∣∣∣E
[(

z −
∞∑
i=0

κiXi

)
+

]
− E

[(
z −

∞∑
i=0

λiXi

)
+

]∣∣∣∣∣ ≤ max
i

E [|Xi|]
∞∑
i=0

(κi + λi) , (1)

i.e. the Lower Partial Moment Differential (LPMD) D (z, κ, λ,P) := E
[
(z −

∑∞
i=0 κiXi)+

]
−

E
[
(z −

∑∞
i=0 λiXi)+

]
is also bounded and continuous in z, λ, κ. Assumption 1 thus facilitates

the definition of Second order Stochastic Dominance (SSD) for the constructed portfolios:

Definition 1. κ SSD dominates λ, written κ ⪰
SSD

λ, iff D (z, κ, λ,P) ≤ 0 for all z ∈ Z.

The definition is simply an adaptation of the usual SSD relation in our high dimensional

framework. Using the classical Russell and Seo (1989) utility representations one obtains

the well known result that κ ⪰
SSD

λ iff the former is preferred to the latter by every increasing

and concave utility. Thus, SSD exemplifies universal choices w.r.t. every insatiable and risk

averse investor.
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3 Sparse SSD Spanning

Arvanitis et al. (2018) define the notion of SSD Spanning as an extension of the Mean-

Variance analogue. It involves comparison of portfolio sets that are not necessarily singletons.

Definition 2. K ⪰
SSD

Λ iff ∀λ ∈ Λ, ∃κ ∈ K : κ ⪰
SSD

λ.

If the sets are not related by inclusion and K ⪰
SSD

Λ then we have necessarily K ⪰
SSD

K ∪ Λ. Furthermore, spanning would be trivial if K ⊇ Λ were allowed. Hence, we can

always consider that K lies inside Λ. Spanning admits an interesting economic interpretation

precisely when K ⊆ Λ; it means that extension of the investment possibility set from K to Λ

does not improve investment opportunities for any risk averter. Hence, no spanning means

that the extension contains a non dominated element. This is formalized as follows: K ⪰̸
SSD

Λ

iff ∃λ ∈ Λ : ∀κ ∈ K, κ ⪰̸
SSD

λ, i.e. λ is maximal (efficient) w.r.t. K.

Under some further structure on K, SSD spanning admits an empirically useful charac-

terization involving a saddle-type point of the LPMDs.

Lemma 1. Under Assumption 1, and if moreover K is compact, then K ⪰
SSD

Λ iff

supΛ infK supz∈Z D (z, κ, λ,P) ≤ 0.

We extend the notion in the high dimensional setting, by also allowing a potentially un-

known low dimensional investment opportunity set to SSD span a high dimensional superset.

In order to formally define this and extend it to the limiting case where p → ∞ we introduce

the following notation for the support of a portfolio set: csupp (K) := # {i : κi ̸= 0, κ ∈ K}.

By construction csupp (Λ) = p. We suppose that as p → +∞ and limp→∞ Λ = Λ∞ where

the limit is interpreted in the Painleve-Kuratowski convergence mode. The sequence (Λ)p is

by construction monotone increasing.

Definition 3 (Sparse Spanning SSD). For some fixed q, there exists a K ⊂ Λ with csupp (K) ≤

q and such that K ⪰
SSD

Λ.
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Definition 3 generalizes Definition 2 in a twofold manner; First it allows for a limiting

high dimensional setting thus providing the proper framework for addressing the empirical

finance questions that were presented in the Introduction. Second, it only prescribes the

existence of a “low-dimensional” spanning subset of Λ, whereas for the original definition

the spanning subset is exogenously given. It implies that any procedure designed to test

whether SS-SSD holds, would have to search for a spanning set inside the collection of “low-

dimensional” subsets of Λ. It is useful even in the case where SS-SSD does not hold. As the

following paragraph suggests, such a procedure, if consistent, would end up with a sparse

portfolio set that “comes as close as possible” to SSD span its high dimensional universe of

portfolios.

As in Lemma 1, we obtain a useful characterization of SS-SSD by assuming some further

topological structure on the portfolio weights sets. Consider the collection

Lp,q = {K ⊂ Λ : K closed, 0 < csupp (K) ≤ q}. When Λ is itself a simplicial complex, then

Lp,q is also a simplicial complex of dimension q−1. Then and if p ≥ 2q, Lp,q has a geometric

realization as a sub-simplex of the standard p − 1 simplex (see the Geometric Realization

Theorem in Edelsbrunner (2014)).

Lemma 2. Under Assumption 1, suppose moreover that Λ is closed in the Euclidean topology.

Then, SS-SSD is equivalent to that for large enough p, and fixed q < p,

infLp,q supΛ infK supz∈Z D (z, κ, λ,P) ≤ 0. The latter is equivalent to that

infL∞,q supΛ∞ infK⋆ supz∈Z D (z, κ, λ,P) ≤ 0.

The possibility of interchanging the order of appearance of the optimization operators in

the characterization infLp,q supΛ infK supz∈Z D (z, κ, λ,P) ≤ 0 to supz∈Z supΛ infLp,q infK will

greatly facilitate numerical aspects as well as the derivations of limiting properties for the

empirical procedures. It actually holds via the use of appropriate minimax theorems and the

extension of our assumption framework.

Lemma 3. Suppose that Assumptions 1 and 3 hold, and that Λ is closed in the Euclidean
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topology. Then, for all p,

inf
Lp,q

sup
Λ

inf
K

sup
z∈Z

D (z, κ, λ,P) = sup
z∈Z

sup
Λ

inf
Lp,q

inf
K

D (z, κ, λ,P) .

This eases the numerical optimization implementation. Given an arbitrary threshold z,

supΛ infLp,q infK D (z, κ, λ,P) = infLp,q infK E
[
(z −

∑∞
i=0 κiXt,i)+

]
−infΛ E

[
(z −

∑∞
i=0 λiXt,i)+

]
,

so that we can separate the optimizations w.r.t. the “parameter sets” Λ and Lp,q ×K. This

is useful especially in the case where we approximate the outer optimization over Z by some

discretization, as is usually the case in empirical numerical implementations.

3.1 Approximate Sparse Spanning

We consider the optimization problem M (Λ,Lp,q,P) := supz∈Z supΛ infLp,q infK D (z, κ, λ,P).

Even if M (Λ,Lp,q,P) > 0, so that there exists no K with csupp (K) ≤ q for which SS-SSD

holds, any solution to this problem has an interpretation as an approximate sparse spanning

subset of Λ in the sense of an expected utility loss as stated in the next proposition. For

P (Z) the set of probability distributions (or equivalently cdfs) supported on Z, and for any

F there, consider the Russell-Seo increasing and concave utility (see Russell and Seo (1989))

uF (x) :=
∫
Z
min (0, x− z) dF (z).

Proposition 1. K ∈ Lp,q does not solve supΛ supz∈Z infLp,q infK D (z, κ, λ,P), iff there exists

some λ ∈ Λ and some uF such that E [uF (
∑∞

i=0 λiXi)]−E [uF (
∑∞

i=0 κiXi)] > M (Λ,Kp,q,P)

for any κ ∈ K.

Hence, M (Λ,Lp,q,P) is the optimal expected utility difference that the elements of any

sparse subset of Λ of support dimension equal to q can achieve w.r.t. the elements of Λ

uniformly over the Russell-Seo utilities. The solutions to supΛ supz∈Z infLp,q infK D (z, κ, λ,P)

are those subsets that actually achieve this optimality bound. Lemma 3 along with the

monotonicity of (Λp) implies also that as p → ∞, M (Λ,Lp,q,P) → M (Λ∞,L∞,q,P).
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3.2 Sparse Approximately Efficient Elements

For any z ∈ Z, due to the Russell-Seo utilities set up (see Russell and Seo (1989)) and

the utility representations in Proposition 1, any solution to infΛ E
[
(z −

∑∞
i=0 λiXt,i)+

]
is an

efficient element of Λ since it must be non-dominated as an optimizer of the utility that

corresponds to F that concentrates its mass on z. In this respect any portfolio that re-

sults from the solution to infLp,q infK E
[
(z −

∑∞
i=0 κiXt,i)+

]
must be a sparse element of

Λ of support at most q. That sparse element optimally approximates the efficient ele-

ment sincesupΛ E [uF (
∑∞

i=0 λiXi)] − supLp,q
supK E [uF (

∑∞
i=0 κiXi)] is less than or equal to

≤ supΛ [uF (
∑∞

i=0 λiXi)]−E [uF (
∑∞

i=0 κiXi)], for any κ of support at most q. It is also an ef-

ficient element of maximizer over Lp,q of supK E [uF (
∑∞

i=0 κiXi)]. When M (Λ,Lp,q,P) ≤ 0,

the solution to infLp,q infK E
[
(z −

∑∞
i=0 κiXt,i)+

]
is also efficient in Λ. When K ∈ Lp,q

maximizes supK E [uF (
∑∞

i=0 κiXi)] uniformly in z, but does not span Λ, then there nec-

essarily exist efficient elements of Λ that are not in K. Then the portfolio that solves

supK E [uF (
∑∞

i=0 κiXi)] uniformly in z, is by construction an efficient element of K that

minimizes E [uF (
∑∞

i=0 λiXi)]−E [uF (
∑∞

i=0 κiXi)] uniformly w.r.t. the efficient set of Λ and

the Russell-Seo utilities. Interestingly, it is an efficient element of K that maximizes a utility

that corresponds to a distribution F that concentrates its mass on some threshold z.

As p → ∞, any accumulation point of the solution to infLp,q infK E
[
(z −

∑∞
i=0 κiXt,i)+

]
is a q-sparse approximate efficient element of Λ∞. If it is unique and independent of z, then

it is also a portfolio bound for the set of q-sparse portfolios (for the concept of portfolio

bounds on finite dimensional portfolio spaces see Arvanitis et al., (2020)). In this case every

efficient element of Λ∞ is approximated by the same q-sparse approximate efficient element

of Λ∞. If infΛ∞ E
[
(z −

∑∞
i=0 λiXt,i)+

]
has also a unique solution independent of z, then this

is also a portfolio bound-of potentially infinite support-of Λ∞. When SS-SSD holds and q is

large enough, then those two bounds coincide, and thereby Λ∞ admits a q-sparse bound.
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4 Sparse Optimization: Greedy Algorithm and Statisti-

cal Guarantees

In this section, and given the latency of D (z, κ, λ,P), we are interested in the empirical

approximation of the element of Lp,q that approximately spans Λ for a fixed q. We employ

the empirical analogues of the functionals above that characterize spanning, and design the

sparse optimization involved via a greedy algorithm. We establish consistency using the

results on statistical guarantees by Elenberg et al. (2018). We derive the usual parametric
√
T rate and the limiting distribution, and construct a conservative inferential procedure

based on subsampling.

Consider the sequence (X∞
t )t∈Z where for all t, X∞

t =
d
X∞ and =

d
denotes equality in

distribution. Suppose, that for some p, a sample of (Xt)t=1,...,T is available from the sequence

(Xt)t∈Z. Denote with PT its empirical distribution function in Rp (in what follows P also

identifies the distribution of X0 in Rp without inconsistency due to the Daniel-Kolmogorov

Theorem). We approximate D (z, κ, λ,P) by D (z, κ, λ,PT ) and design a procedure that

evaluates infLp,q supΛ infK supz∈Z D (z, κ, λ,PT ).

Given Lemma 3, we design our empirical procedure as follows: for fixed q, formulate the

empirical optimization problem supz∈Z supΛ infLp,q infK D (z, κ, λ,PT ), as

M (Λ,Lp,q,PT ) := supz∈Z [K (Λ,Lp,q, z,PT )− L (Λ, z,PT )] ,

K (Λ,Lp,q, z,PT ) := infLp,q infK
1
T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+

L (Λ, z,PT ) := infΛ
1
T

∑T
t=0 (z −

∑∞
i=0 λiXt,i)+ .

, (2)

Given K (Λ,Lp,q, z,PT ) the numerical technology that evaluates L (Λ, z,PT ) and M (Λ,Lp,q,PT )

is the same with the one employed in the SD literature in the low dimensional settings. The

main issue here is to design a procedure that evaluates K (Λ,Lp,q, z,PT ). The outer optimiza-

tion there involves searching over low dimensional subsets of Λ. As explained in the introduc-

tion we favor a procedure based on a greedy algorithm that approximates K (Λ,Lp,q, z,PT )

13



over procedures based on penalization. We use the Forward Stepwise Selection Algorithm

(Algorithm 2 in Elenberg et al. (2018)). Let us denote rT (q) the number of iterations per-

formed.

Algorithm 1. Forward Stepwise Selection (see p. 3542 of Elenberg et al. (2018)).

Inputs: the sparsity Parameter q < p, the # of iterations rT (q), for a given set S the

set function 2p → R defined as

f (S) := inf
csupp(S)≤q

1

T

T∑
t=0

(
z −

∞∑
i=0

κiXi,t

)
+

.

a Choose the initial set S0,

b for i = 1, . . . , rT (q) do,

c s := argmaxj∈[p]/Si−1
f (Si−1 ∪ {j})− f (Si−1),

d Si := Si−1 ∪ {s}.

The last step (d), for i = rT (q), returns KFS (Λ,Lp,q, z,PT , rT (q)) namely the numerical

approximation of K (Λ,Lp,q, z,PT ) in (2) by the greedy algorithm. Next section provides

with details on the numerical aspects of the three optimizations appearing in (2), including

the implementation of FSS.

We now examine the issues of consistency, rates of convergence and limiting distribu-

tion of M (Λ,Lp,q,PT ) given KFS (Λ,Lp,q, z,PT , rT (q)). In order to study these, we use an

assumption concerning a property of restricted strong convexity (see Ch. 9 of Wainwright

(2019) for reviewing restricted strong convexity in high-dimensional statistics) and smooth-

ness for the LPMs as p → ∞. In this section, we also denote Λ with Λp whenever it is

important to keep track of the dimension of the portfolio space. For p ≫ m ∈ N, we denote

the set {(λ, λ⋆) ∈ Λp × Λp : csupp (λ) ≤ m, csupp (λ⋆) ≤ m, csupp (λ− λ⋆) ≤ m} with Λ(m).

Λ̃(m) denotes the set obtained by keeping the first component λ of the pairs (λ, λ⋆) that

define the elements of Λ(m).

14



Assumption 2. [Restricted Strong Convexity-Restricted Smoothness (RSC/RS)] X has a

continuous density f . E (z −
∑∞

i=0 κiX0,i)+ is twice differentiable w.r.t. any κ appearing

in some pair of Λ(⌊q(ln(T+1))⌋) for all z ∈ Z. For m⌊q(ln(T+1))⌋ denoting the supremum and

M⌊q(ln(T+1))⌋ the infimum over Λ(⌊q(ln(T+1))⌋), of the smallest and the largest eigenvalues of the

Hessian matrix of E (z −
∑∞

i=0 κiX0,i)+, we have that as T → ∞, m⌊q(ln(T+1))⌋
M⌊q(ln(T+1))⌋

lnT → +∞

uniformly in Z.

Let us characterize that assumption on an example, which shows that this assump-

tion is mild. For the ⌊q (ln (T + 1))⌋-dimensional, due to Assumption 1, Theorem 1 of

Savare (1996) and given the distributional derivative of (x)+ (see p.1 in Savare (1996)),

we obtain that E (z −
∑∞

i=0 κiX0,i)+ is twice differentiable and the Hessian assumes the

form
∫
Rq XXT δ

(
z − κTX

)
f (X) dX, where δ denotes the Dirac Delta function. Using Ex-

ample 27 in Estrada and Kanwal (2012), the latter equals Cκ

∫
z−κTX

XXTf (X) dX, for

a constant Cκ > 0 that depends on κ and emerges in the surface measure of the hy-

perplane z − κTX. Suppose now that f is a normal density. Then using the results

of Cong et al. (2017) (see their Algorithm 2) we have that the Hessian takes the form

Cz,κE
([(

Idq − 1
∆
V κκT

)
X + 1

∆
V κz

] [(
Idq − 1

∆
V κκT

)
X + 1

∆
V κz

]T), where V is the second

moment matrix of X, Cz,κ > 0 is an integration constant depending on both z and κ and

∆ = κTV κ. A simple calculation along with the constraint z = κTX, yields that the Hessian

equals Cz,κV . Given that supz,κ m

infz,κ M
≥ supz,κ

m
M

, Assumption 2 follows if Condition Number of V
lnT

→ 0,

i.e., if the condition number of V is dominated by lnT as T → ∞. It means that we

can also accommodate a slowly diverging condition number. The analysis in Par. 5 of

Kim and Pollard (1990) implies that the same condition suffices when f is continuously

differentiable, which is more inline with the bounded support framework of our applica-

tions. When V has a Kac-Murdock-Szego type Toeplitzian structure (Trench (1999)), where

Vi,j = v|i−j|, i, j = 1, . . . , p for v ∈ [0, 1), Assumption 2 holds trivially since the condition

number is then uniformly bounded in p (Trench (1999), p. 182). Such matrices appear in

zero mean normalised autoregressive progresses. In the case of the zero mean spiked identity
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model (Example 7.18 in Wainwright (2019)), where V = Id + µ11′ for some µ ∈ [0, 1), the

results in the aforementioned example imply that Assumption 2 holds when µ converges

to zero with T . The condition number asymptotic restriction above does not hold when

µ is strictly positive and fixed, a situation however that can accommodate RSC conditions

in temporally i.i.d. Gaussian frameworks (Example Theorem 7.16 of Wainwright (2019)).

When X is not necessarily zero mean, then the variational representations of the maxi-

mum eigenvalue λmax(A), and the minimum eigenvalue λmax(A), of a pd matrix A, imply

that Assumption 2 holds whenever Condition Number of Var(X)+Condition Number of E(X)E(X)′

lnT
→ 0 or

Condition Number of Var(X)
lnT

+ λmax(E(X)E(X)′)
λmin(Var(X)) lnT

→ 0.

The RSC/RS assumption along with Assumption 3 imply analogous RSC/RS proper-

ties for the empirical LPMs 1
T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+ with probability converging to one

(w.h.p.). It enables the use of the results of Elenberg et al. (2018) on statistical guarantees

for the Forward Selection Algorithm.

Our analysis also depends on the asymptotic behavior of the empirical processes
√
TD (z, κ, λ,PT − P), GT (z, κ, λ) :=

√
T [g (z, λ,PT )− g (z, λ,P)]T (κ− λ), and of the em-

pirical moment process 1
T

∑T
t=0 (zT −

∑∞
i=0 λiXt,i)+, where g (z, λ,Q) := EQ [XI {z ≥

∑∞
i=0 λiXi}]

and EQ denotes integration w.r.t. the measure Q. Specifically, consistency is facilitated if

the first and the second processes are asymptotically tight over appropriate subsets of pa-

rameters, and the third process (locally) uniformly converges to its population counterpart.

This behavior depends on stationarity and mixing rates for the returns process involved as

well as a stricter moment existence condition compared to Assumption 1.

Assumption 3. (X∞
t )t∈Z is strictly stationary and absolutely regular with mixing coefficients

(βm)m∈N that satisfy βm ∼ bm for some b ∈ (0, 1), as m → ∞, and max0<i≤+∞ E
[
|Xi|2+ε] <

+∞ for some ε > 0.

The stationarity, ergodicity and mixing rates conditions as well as the moment exis-

tence condition hold for several geometrically ergodic (finite dimensional), linear as well as

GARCH type models with values in Euclidean spaces. Those are frequently employed in em-
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pirical finance with data consistent parameter restrictions-see Francq and Zakoian (2011).

Using the Daniell-Kolmogorov Theorem we have that stationarity and mixing rates hold for

the (X∞
t )t∈Z process whenever they hold uniformly over the collection of finite dimensional

parts of the process. Thereby, they hold whenever the finite dimensional parts of the pro-

cess are consistent with the aforementioned models with appropriately uniform parameter

restrictions.

We obtain the following limit theory; let ℓ∞ (Z × Λ∞ × Λ∞) denote the space of real

valued bounded functions on Z × Λ∞ × Λ∞ equipped with the sup norm. We use ⇝ to

denote weak convergence.

Theorem 1. Suppose that Assumptions 1, 3 hold. Then, (a) 1
T

∑T
t=0 (zT −

∑∞
i=0 λiXt,i)+ ⇝

E
[
(z −

∑∞
i=0 λiXt,i)+

]
, for any z, zT ∈ Z with zT → z, and uniformly in Λ∞. Furthermore,

suppose also that ln p√
T
→ 0. Then as T → ∞, with κ ∈ Λ̃(⌊q(lnT+1)⌋) (b)

√
TD (z, κ, λ,PT − P)⇝

G (z, κ, λ), in ℓ∞ (Z × Λ∞ × Λ∞), where G (z, κ, λ) is a zero mean Gaussian process with co-

variance kernel defined by

V [(z1, κ1, λ1) , (z2, κ2, λ2)] :=
∑

t∈Z Cov [I (z1, κ1, λ1, X0) , I (z2, κ2, λ2, Xt)] , (3)

where I (z, κ, λ,Xt) := (z −
∑∞

i=0 κiXt,i)+ − (z −
∑∞

i=0 λiXt,i)+. Finally, (c)

lim sup
T→∞

E[sup
z

sup
Λ(⌊q(lnT+1)⌋)

GT (z, κ, λ)] < ∞.

The condition ln p√
T
→ 0 that appears in the final pair of results of the theorem is somewhat

stricter than the usual ln p
T

→ 0 that appears in the literature, it however facilitates standard

rates and limiting Gaussianity for the empirical processes involved and thus the results that

go beyond consistency. It ensures that the bracketing entropy of Λ grows at an appropriate

rate in order for tightness to hold in the limit. For the notion of the bracketing entropy

numbers of a metric space, see Section 5 of Andrews (1994) and Ch. 2 of van der Vaart

and Wellner (1996). In our context, it corresponds to the mapping that keeps track of the
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logarithm of the minimal number of δ-brackets (w.r.t. the l1 norm) of real sequences with

absolutely convergent series needed to cover the particular neighborhood, for each δ > 0.

Using the above we first obtain the following consistency result.

Theorem 2. Suppose that Assumptions 1, 2, 3, hold, that Λ is closed and for large enough

p it is also convex, and that ln p√
T
→ 0. For fixed q, as T → ∞, and uniformly in Z,

KFS (Λ,Lp,q, z,PT , q lnT )⇝ K (Λ∞,L∞,q, z,P) . (4)

Consequently, MFS (Λ,Lp,q,PT , q lnT )⇝M (Λ∞,L∞,q,P), where MFS (Λ,Lp,q,PT , rT (q)) :=

supz∈Z
[
KFS (Λ,Lp,q, z,PT , rT (q))− L (Λ, z,PT )

]
.

Whenever Assumption 2 holds for some q⋆ ∈ N, Theorem 2 implies then that the mapping

q → MFS (Λ,Kp,q,PT , q lnT ) converges in probability to q → M (Λ∞,K∞,q,P) uniformly in

q ≤ q⋆.

Theorem 2 holds whether we have sparse spanning or not at the limit. We do not need to

assume sparsity in the population. The statistical guarantee result of Theorem 2 is a strong

advantage of the greedy algorithm over penalization methods.

We are further occupied with the determination of the rates of convergence and the dis-

tributional limit for the deviation MFS
(
Λ,Lp,q,PT , q (lnT )

2)−M (Λ∞,L∞,q,P), that gauges

the gap between MFS
(
Λ,Lp,q,PT , q (lnT )

2), which is returned by the greedy algorithm on

the data, and the limit M (Λ∞,L∞,q,P). To this end, we augment rT to q (lnT )2, in order

to facilitate arguments that approximate the infimum of 1
T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+ over the

empirical solution in Lp,q, by the the infimum of E
[
(z −

∑∞
i=0 κiXt,i)+

]
over the population

solution. Given the second result of Theorem 1, we obtain standard rates and a distribu-

tional limit defined as a saddle type point of a zero mean Gaussian process, using among

others the generalized Delta method (see Fang and Santos (2019)).

Theorem 3. Suppose that Assumptions 1, 3, 2 hold, that Λ is closed and for large enough

p it is also convex, and that ln p√
T

→ 0. Suppose furthermore that the following conditions
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hold: i) (Condition CO) the mapping z → E
[
(z −

∑∞
i=0 κiXt,i)+

]
is strictly concave for any

κ with csupp (κ) ≤ q, and ii) (Condition CM) for any z > inf Z, E
[
(z −

∑∞
i=0 λiXt,i)+

]
has

a compact subset of minimizers over Λ∞ and E
[
(z −

∑∞
i=0 κiXt,i)+

]
has a compact set of

minimizers of support less than or equal to q. Then as T → ∞,

√
T
(
MFS (Λ,Lp,q,PT , q (lnT )

2)−M (Λ∞,L∞,q,P)
)
⇝ sup inf

(z,λ,κ)∈Γ
G (z, λ, κ) , (5)

where G (z, λ, κ) is a zero mean Gaussian process with covariance kernel defined by

V [(z1, λ1, κ1) , (z2, λ2, κ2)] :=
∑

t∈Z Cov [I (z1, λ1, κ1, X0) , I (z2, λ2, κ2, Xt)] , (6)

I (z, λ, κ,Xt) as in Theorem 1, and Γ := argmaxz∈Z,λ∈Λ∞ mincsupp(κ)≤q D (z, λ, κ,P).

Since Λ∞ is separable, there are no measurability problems with the definition of

sup inf(z,λ,κ)∈Γ G (z, λ, κ). Furthermore, for any λ⋆ ∈ Λ∞, Gλ⋆ (z, κ) = G (z, λ⋆, κ). Regarding

CO, E (z −
∑∞

i=0 κiX0,i)+ is twice differentiable w.r.t. z and the second derivative assumes

the form
∫
Rq δ

(
z − κTX

)
f (X) dX. It is equal to the probability attributed by f to the

hyperplane z =
∑∞

i=0 κiXi which is positive if X has a non degenerate covariance matrix.

Under normality, the condition is thus guaranteed by the aforementioned limiting behav-

ior on V that also guarantees Assumption 2. For CM, Theorem 4.5 of Beer and Lucchetti

(1991) says that compactness of the set of minimizers is a generic property in the sense

of Baire category. Hence, it is expected to hold at least for a dense subset of Z, due to

Assumption 1 and dominated convergence. The exclusion of the trivial threshold from the

considerations is innocuous since G (inf Z, λ, κ) is identically zero. CO and CM implies that

Γ−{inf Z}×Λ∞ × Λ̃(q) is compact and thereby the generalized Delta method is applicable.

Theorem 3 allows for the construction of an inferential procedure based on subsampling

that approximates the asymptotic quantiles of the limit in (5), avoiding the costly use of the

Forward Selection Algorithm inside the subsamples. To this end, let κz,T denote the solution

of infcsupp(κ)≤q
1
T

∑T
t=0 (zt −

∑∞
i=0 κiXt,i)+ over Lp,q. Denote with Γ⋆ the subset of Γ that
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contains the triplets at which some accumulation point of κz,T appears. Let 0 < bT ≤ T , and

consider the subsamples from the original observations (Xj)j=t,...t+bT−1 for all t = 1, 2, . . . , T−

bT +1. For α ∈ (0, 1), denote with qT,BT
(1− α) the 1−α quantile of the subsample empirical

distribution of
(√

bT

(
supZ×Λp

D (z, κz,T , λ,Pt,bT )−MFS
(
Λ,Lp,q,PT , q (lnT )

2)))
t=1,...,T−bT+1

,

where Pt,bT denotes the empirical distribution of (Xj)j=t,...t+bT−1.

Our final result depends on a condition on the elements of Γ⋆ that avoids limiting de-

generacies (Condition ND below). They would imply poor higher order properties for the

conservative inference that we consider in Proposition 2. We say that a triple in Γ⋆ is trivial

if the variance of G there is zero. We have triviality when the first element of the triple is

inf Z. It is also the case when λ coincides with the κ appearing in the triple. Then, λ is by

construction an efficient element of Λ∞ that is also q-sparse. Whenever the elements of Xp

are linearly independent for p larger than the maximum desired value of q for the analysis

at hand, trivialities can occur only if SS-SSD holds. This linear independence holds for the

Gaussian case that exemplifies Assumption 2 above.

Proposition 2. Suppose that (Condition ND) for the given q, Γ⋆ contains at least one non

trivial triplet. Under the premises of Theorem 3, if bT → ∞, bT
T

→ 0 and α < 1
2
, then we

get the conservative result:

lim sup
T→∞

P
[
M (Λ∞,L∞,q,P) ∈

(
MFS (Λ,Lp,q,PT , q (lnT )

2)∓ qT,BT
(1− α)

)]
≥ 1− α. (7)

If moreover there exists a unique q-sparse element of Λ that appears in every triple in Γ⋆,

then we get the exact result:

lim
T→∞

P
[
M (Λ∞,L∞,q,P) ∈

[
MFS (Λ,Lp,q,PT , q (lnT )

2)∓ qT,BT
(1− α)

]]
= 1− α. (8)

Under linear independence ND would hold whenever every q-sparse efficient element is

matched by an efficient element of appropriately large support compared to the maximum

desired level of q for the underlying analysis.
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The evaluation of the subsample quantile has small computational burden since we avoid

the costly sparse optimization w.r.t. κ inside each subsample. Usually, Z is approximated by

some finite discretization and optimization w.r.t. λ is performed via linearization of the SD

conditions and the use of LP methods. Then, the computational cost of sparse optimization

is avoided and the asymptotic results in (7)-(8) hold as long as the discretized set converges

to a dense subset of Z.

In the special case where M (Λ∞,L∞,q,P) has a unique solution, (5) implies asymptotic

normality. A unique solution is possible whenever SS-SSD does not hold. It occurs whenever

the maximal expected utility difference between an efficient element of Λ∞ and its approxi-

mate counterpart of dimension q occurs at a unique Russell-Seo utility for a unique pair of

efficient-approximate efficient portfolios. In such a case, we can exploit normality to obtain

a result like (8). A feasible normality result requires a consistent estimator for the limiting

variance. It can be obtained via a subsampling methodology that does not involve subsam-

ple optimizations, as long as stricter moment conditions hold for X0, and a non-degeneracy

condition for the covariance kernel of G holds in some neighborhood of the optimizer.

5 Numerical Implementation

For q < p, we consider the following empirical optimization problem

sup
z∈Z

sup
Λ

inf
Lp,q

inf
K

D (z, κ, λ,PT ) , (9)

The utility class interpretation of Arvanitis, Scaillet and Topaloglou (2020a,b) implies

that we can represent (9) in terms of expected utility as:

sup
λ∈Λ;u∈U

inf
Lp,q

inf
κ∈K

EP
[
u
(
XTλ

)
− u

(
XTκ

)]
, (10)

with U :=
{
u ∈ C0 : u(y) =

∫ x

x
v(x)r(y;x)dx v ∈ V

}
, V :=

{
v : X → R+ :

∫
X v (x) = 1

}
, and

21



r(y;x) := (y − x)1(y ≤ x), (x, y) ∈ X 2.

The set U is comprised of normalized, increasing, and concave utility functions that

are constructed as convex mixtures of elementary Russell et Seo (1989) ramp functions

r(y;x), x ∈ X . This representation is used in the numerical implementation via

sup
u∈U

inf
Lp,q

(
sup
λ∈Λ

EPT

[
u
(
XTλ

)]
− sup

κ∈K
EPT

[
u
(
XTκ

)])
. (11)

We approximate every element of U with arbitrary prescribed accuracy using a finite set

of increasing and concave piecewise-linear functions in the following way.

Let N1, N2 denote integers greater than or equal to 2. First, X is partitioned into N1

equally spaced values as x = z1 < · · · < zN1 = x, where zn := x+ n−1
N1−1

(x−x), n = 1, · · · , N1.

Second, [0, 1] is partitioned as 0 < 1
N2−1

< · · · < N2−2
N2−1

< 1. Using these partitions, consider:

sup
u∈U

(
sup
λ∈Λ

EPT

[
u
(
XTλ

)]
− sup

κ∈K
EPT

[
u
(
XTκ

)])
, (12)

with U :=
{
u ∈ C0 : u(y) =

∑N1

n=1 vnr(y; zn) v∈V
}

,

and V :=

{
v ∈

{
0, 1

N2−1
, · · · , N2−2

N2−1
, 1
}N1

:
∑N1

n=1 vn = 1

}
.

By construction, every u ∈ U consists of at most N2 linear line segments with end-

points at N1 possible outcome levels. Furthermore, U ⊂ U , which is finite as it has

N3 :=
1

(N1−1)!

∏N1−1
i=1 (N2 + i− 1) elements and ηT approximates ηT from below as the parti-

tioning scheme is refined (N1, N2 → ∞). Then, for every u ∈ U , the two embedded maxi-

mization problems in (12) can be solved using LP. Consider c0,n :=
∑N1

m=n (c1,m+1 − c1,m) zm,

c1,n :=
∑N1

m=n wm, and N := {n = 1, · · · , N1 : vn > 0}
⋃
{N1}. Then, for any given u ∈ U ,

supλ∈ΛEPT

[
u
(
XTλ

)]
is the optimal value of the objective function of the following LP

problem in canonical form: maxT−1
∑T

t=1 yt s.t. yt − c1,nX
T
t λ ≤ c0,n, t = 1, · · · , T , n ∈ N ,∑M

i=1 λi = 1, λi ≥ 0, i = 1, · · · ,M , and yt free, t = 1, · · · , T . The LP problem always

has a feasible solution and has O(T + N) variables and constraints. In the empirical ap-

plication, we take N1 = 10 and N2 = 5. Thus, we end up with N3 = 1
9!

∏9
i=1(4 + i) = 715
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distinct utility functions and 2N3 = 1430 small LP problems, which is perfectly manageable

with modern-day computer hardware and solver software. We use a desktop PC with a 3.6

GHz, 24-core Intel i7 processor, with 128 GB of RAM, using MATLAB and GAMS with the

Gurobi optimization solver. We start with an empty set, and then we gradually increase the

number of assets adding 1 asset at a time until we find a set K ⊂ Λ with csupp (K) ≤ q and

such that K ⪰
SSD

Λ. In each iteration, we search for the asset that increases (11) the most.

The overall procedure consists of the following steps:

For w = 1 to q:

1. If w = 1, we search for the single asset that maximizes the value of (11), thus Lp,q is a

singleton.

2. For 1 < w < q, we solve (11) for each additional asset, and we keep the subset K with

dimension w, that maximizes (11).

3. If we find a spanning set K inside the collection of all possible subsets of Λ with

dimension w, then the procedure stops.

4. Else, if w = q, we end up with a sparse portfolio set K that "comes as close as possible"

to SSD spanning its high dimensional universe of portfolios, and we evaluate the utility

loss.

Given the output of the last step of the procedure above, and since in the empirical

applications p is fixed, the optimal q, i.e., the one that provides the portfolio that comes

closest in eliminating the empirical utility loss, can be readily estimated. To do so, and if the

output of step 4 does not already imply zero optimal empirical utility loss, we may continue

for w > q up to p.
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6 Monte Carlo

We approximate finite sample properties of our sparse SD Spanning test via two Monte Carlo

(MC) experiments. We utilize data generated processes involving multivariate Gaussian

distributions. Specifically, we generate T mutually independent time-series observations

from N dimensional Gaussian distributions representing the joint stationary distributions of

N base assets. The MC design details and results are presented below.

6.1 First experiment

The first experiment is based on a problem with N = 49, 100, 500 mutually i.i.d. normally

distributed prospects with T = 300, 500, 1000 observations. Mutual iid-ness is used to invoke

the aforementioned argument by Samuelson (1967) and it can be empirically motivated by

the analysis of hedged returns of well-diversified portfolios. The number of prospects are

selected to match the results of the empirical application, where 49, 100, and 500 assets are

used.

The covariance matrix is fitted to the historical monthly returns of the three datasets

used in the in-sample empirical analysis: The 49 Industry portfolios from Kenneth French’s

web page, the 100 assets of the FTSE 100 index, and the 500 assets of the S&P500 index.

The mean vector in each case is calculated from the historical monthly returns of these

assets.

Based on the empirical application, we set q = 13, for N = 49, q = 25, for N = 100,

and finally, q = 45, for N = 500. For each combination of N and T , we repeat 500 times

the sparse optimisation model and check how many times we get a number of assets closed

to q on average. We additionally measure the variability of the loss. Table 6.1 exhibits the

results of the first MC experiment.
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Sample size T 300 500 1000
Case 1: N = 49, q = 13
Assets selected:
Average number 11.45 12.04 12.54
St Deviation 1.18 1.12 1.13
Variability of the Loss:
Average Loss 0.0002 0.0002 0.0001
Standard Error 0 0 0

Case 2: N = 100, q = 25
Assets selected:
Average number 22.57 23.02 23.88
St Deviation 1.33 1.30 1.29
Variability of the Loss:
Average Loss 0.0001 0.0001 0.0001
Standard Error 0 0 0

Case 3: N = 500, q = 45
Assets selected:
Average number 42.3 42.85 43.34
St Deviation 1.68 1.57 1.54
Variability of the Loss:
Average Loss 0.0001 0.0001 0.0001
Standard Error 0 0 0

Table 1: Monte Carlo Experiment 1. The experiment is based on a problem with N = 49, 100, 500 normally
distributed assets and T = 300, 500, 1000 time series observations. We compute the average number of assets
selected and the standard deviations of these. We also measure the variability of the loss, by computing the
average loss and the standard error of the loss.

6.2 Second experiment

The second experiment is based on a problem with N = 50 jointly normally distributed

prospects with again T = 300, 500, 1000 observations. In this experiment, we evaluate the

expected utility loss if q is low. We consider a set A of 5 asset returns with equal means

µA = 0.3 and equal standard deviations σA = 0.15, and a set B of 5 asset returns with equal

means µB = 0.15 and equal standard deviations σB = 0.1. Since (µA − µB)/(σB − σA) < 0,

there is no portfolio in set A that dominates any portfolio in set B by SSD, and vice versa.

The other 40 generated asset returns have equal means µ = 0.1 and equal standard deviations

σ = 0.5. The correlation coefficient of all N asset returns is set to ρi,j = 0.001 for any pairs

of i, j = 1, . . . , N, i ̸= j. Any convex combination of assets that belong to sets A and B

dominate any portfolio constructed from the other 40 assets by SSD. We set q equal to either
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5 or 10. For each T , we repeat 500 times the sparse optimisation model and we measure the

variability of the loss. Table 2 exhibits the results.

Sample size T 300 500 1000

Case 1: q = 5

Assets selected:

Average number 5 5 5

St Deviation 0.0 0.0 0.0

Variability of the Loss:

Average Loss 0.01 0.009 0.008

Standard Error 0.0003 0.0003 0.0002

Case 2: q = 10

Assets selected:

Average number 10 10 10

St Deviation 0.0 0.0 0.0

Variability of the Loss:

Average Loss 0.0 0.0 0.0

Standard Error 0.0 0.0 0.0

Table 2: Monte Carlo Experiment 2. The experiment is based on a problem with N = 50 normally

distributed assets and T = 300, 500, 1000 time series observations. We compute the average number of assets

selected and the standard deviations of these. We also measure the variability of the loss, by computing the

average loss and the standard error of the loss.

7 Empirical Application

In the empirical application, we analyze large data sets of equity returns to study whether

sparse SSD holds or not. We investigate the performance of our strategy based on the

S&P 500 index constituents, and we compare the results with the sparse mean-variance

efficient portfolios of Ao, Li, and Zheng (2019). We consider the period from January 1981

to December 2020, a total of 480 monthly return observations.
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7.1 In-sample Analysis

We start with the empty set, and then we add elements to it in r iterations. In each

iteration, the algorithm adds to its current solution the single element decreasing the value

of this solution by the most, i.e., the element with the largest marginal value with respect

to the current solution. The target is to get the optimal portfolio with size q that yields

the solution equal to zero (zero diversification loss). In that case, we are able to build a

sparse portfolio of dimension q from a large set of assets of dimension p so that we cannot

get further improvement from considering additional assets (full diversification).

In Figure 1, we observe that the number of assets that yield to zero diversification loss

is 45 (upper panel)1. In the same Figure (lower panel), we also observe that the MAXSER

portfolio of Ao, Li, and Zheng (2019) consists of 32 assets. We calculate the diversification

loss, namely the estimated expected utility loss, of the optimal MAXSER portfolio with

respect to the SSD portfolio with the smallest number of stocks reaching the zero bound.

In the same graph, we also report the upper bound of a 95% as well as 90% one-sided

confidence intervals (CI) corresponding to the portfolio reaching the zero bound (45 assets).

We observe that the diversification loss of the MAXSER portfolio is between the loss of the

SS-SSD portfolio for q = 32 and the 90% confidence interval.
1Analogous analysis has been done for the FTSE100 constituents as well as the 49 Industry portfolios of

Kenneth French. For the FTSE100, we get a subset K with size q = 25 that yields zero diversification loss,
while, for the 49 Industry portfolios, the size is 13 assets.
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Figure 1: The upper panel plots the diversification loss with respect to the number of assets for the SS-

SSD optimal portfolios. The lower panel plots the diversification loss of the optimal MAXSER portfolio with

respect to the SS-SSD portfolio with zero loss, and the upper bound of a 95% and 90% one-sided confidence

intervals (CI).

Table 3 reports the performance and risk measures of the in-sample performance of the

MAXSER and the SS-SSD optimal portfolios as well as the 1/N (equally-weighted) portfolio.

These measures allow us to better figure out the differences between the two portfolios. We
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observe that the mean as well as the standard deviation of the SS-SSD portfolio are higher

that those of the MAXSER portfolio, while the Sharpe ratio is slightly lower. It is expected,

since the Sharpe ratio is maximized in the construction of the MAXSER portfolio. The

skewness is less negative. The VaR and the Expected Shortfall are lower as expected when

investors want to mitigate the impact of large losses. The SS-SSD portfolio targets and

achieves a transfer of probability mass from the left to the right tail of the return distribution

when compared to the MAXSER portfolio. We also observe that both the SS-SSD and the

MAXSER portfolios outperform the 1/N portfolio in all performance and risk measures.

Table 3: In-sample performance: Parametric risk and performance measures

MAXSER SS-SSD 1/N

Performance Measures

Average return 0.0126 0.0129 0.0133

Standard Deviation 0.0314 0.0331 0.0458

Sharpe ratio 0.4013 0.3904 0.2899

Skewness -0.2122 -0.1986 -0.2689

Kurtosis 1.2521 1.7595 2.9690

Value-at-Risk 0.0430 0.0396 0.0615

Expected Shortfall 0.0651 0.0617 0.0959
Entries report the performance measures (Sharpe ratio, Skewness, Kurtosis, VaR, ES) for the MAXSER,

the SS-SSD optimal portfolios as well as the 1/N portfolio. The data cover the period from January, 1980

to December, 2020.

Finally, Table 4 reports the optimal average weights of the major Industries selected by

each one of the two portfolios. We observe that both portfolios are well diversified and invest

in almost the same Industries, with different overall weights.
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Table 4: In-sample analysis: Average S&P500 Industry weights

MAXSER SS-SSD

Weights

Capital Goods 4.50% 3.43%

Consumer Services 8.39% 6.57%

Financial 4.73% 3.60%

Consumer Staples 0.0% 3.24%

Food 3.21% 2.70%

Health care 7.43% 8.31%

Household 5.58% 4.37%

IMedia 4.58% 4.34%

Pharm 6.89% 5.69%

Retailing 17.21% 19.43%

Software 14.51% 16.21%

Technology 11.45% 12.79%

Transportation 5.62% 4.81%
Entries report the average Industry weights of the MAXSER and the SS-SSD portfolios in the major Indus-

tries of the S&P500 Index.

7.2 Rolling-window analysis

We conduct out-of-sample backtesting experiments and we evaluate the optimal SS-SSD

portfolios achieving a zero diversification loss in a rolling-window scheme. We use a window

width of 240 monthly return observations. A stock is excluded from the asset pool if it has

missing data in the 240-month training period. Therefore, the number of stocks varies over

time and can be smaller than the total number of constituents of the S&P500. Each month

the portfolios are constructed using the monthly returns during the prior 240 months. The

clock is advanced and the realized returns of the optimal portfolios are determined from
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the actual returns of the various assets. The same procedure is then repeated for the next

time period and the ex post realized returns over the period from 01/2001 to 12/2020 (240

months) are computed. The out-of-sample test is a real-time exercise avoiding a potential

look-ahead bias and mimicking the way that a real-time investor acts in practice.

We again compare the performance of the optimal SS-SSD portfolios with that of the

MAXSER portfolios of Ao, Li, and Zheng (2019). The upper panel of Figure 2 plots the

number of stocks of the optimal SS-SSD portfolios through time that eliminate the diversi-

fication loss, as well as the number of stocks of the efficient MAXSER portfolio. The lower

panel plots the estimated expected loss of the optimal MAXSER corresponding to the inef-

ficient SSD portfolios with the same number of stocks as MAXSER. The diversification loss

is zero for the efficient SS-SSD portfolios corresponding to the upper panel by construction.

On a rolling-window basis, the number of assets in the SS-SSD portfolios is always higher

than in the MAXSER portfolios. It shrinks to less than 25 assets in the crisis periods of

2008-2009 and at the beginning of the Covid-19 period. Otherwise the number of assets in

the SS-SSD portfolios is stable between 30 and 35. The number of assets in the MAXSER

portfolios is more volatile.

Figure 3 illustrates the out-of-sample cumulative returns of the SS-SSD, the MAXSER

and the 1/N portfolios during the period (January 2001 to December 2020). The grey areas

are the NBER recession periods. We observe that the SS-SSD optimal portfolio has a 19.3

times higher value at the end of the holding period compared to the beginning, while the

MAXSER portfolio has a 17.1 times higher value. The 1/N portfolio exhibits the worst

performance, with 14.3 higher value than at the beginning of the period.
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Figure 2: The upper panel plots the number of stocks of the optimal SS-SSD portfolios through time that

eliminate the diversification loss, as well as the number of stocks of the efficient MV portfolios. The lower

panel plots the estimated expected loss of the optimal MAXSER portfolios corresponding to the inefficient

SS-SSD portfolios with the same number of stocks as MAXSER. The grey areas are the NBER recession

periods

32



0

2

4

6

8

10

12

14

16

18

20

1/3
1/2
00
1

9/3
0/2
00
1

5/3
1/2
00
2

1/3
1/2
00
3

9/3
0/2
00
3

5/3
1/2
00
4

1/3
1/2
00
5

9/3
0/2
00
5

5/3
1/2
00
6

1/3
1/2
00
7

9/3
0/2
00
7

5/3
1/2
00
8

1/3
1/2
00
9

9/3
0/2
00
9

5/3
1/2
01
0

1/3
1/2
01
1

9/3
0/2
01
1

5/3
1/2
01
2

1/3
1/2
01
3

9/3
0/2
01
3

5/3
1/2
01
4

1/3
1/2
01
5

9/3
0/2
01
5

5/3
1/2
01
6

1/3
1/2
01
7

9/3
0/2
01
7

5/3
1/2
01
8

1/3
1/2
01
9

9/3
0/2
01
9

5/3
1/2
02
0

Fi
na

l W
ea

lth

Time Period

Cumulative Returns through Time

SS-SSD

MAXSER

1/N

Figure 3: Cumulative performance of the MAXSER, the SS-SSD and the 1/N portfolios for the out-of-

sample period from January 2001 to December 2020. The grey areas are the NBER recession periods.

Next, we compare the performance of the SS-SSD optimal portfolio with the performance

of the MAXSER optimal portfolio using both non-parametric tests as well as parametric

performance measures.

7.2.1 Non-parametric stochastic dominance performance test

We use the pairwise (non-)dominance test of Anyfantaki et al. (2022), for a risk-adjusted

comparison of the out-of-sample performance of the SS-SSD and MAXSER portfolios.

The definition for second order stochastic non-dominance is the following:

Definition 4. (Stochastic non-dominance): The SS-SSD portfolio λ does not strictly

second order stochastically dominate the MAXSER portfolio κ, say λ ⊁F κ, iff

∃z ∈ Z : D (z, λ, κ, F ) > 0, or ∀z ∈ Z : D (z, λ, κ, F ) = 0.

Strict second order stochastic non-dominance holds iff κ achieves a higher expected utility
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for some non-decreasing and concave utility function or achieves the same expected utility

for every non-decreasing and concave utility function. Equivalently, strict stochastic non-

dominance holds iff κ is strictly preferred to λ by some risk averter, or every risk averter is

indifferent between them.

We test the null hypothesis H ′
0 vis-á-vis the alternative :

H ′
0: SS-SSD portfolio λ does not strictly second order stochastically dominate MAXSER

portfolio κ,

H ′
1: SS-SSD Portfolio λ stochastically dominates MAXSER portfolio κ,

For the pairwise test of the two portfolios, the test statistic is the following:

ξT = sup
z∈Z

D (z, κ, λ, F ) . (13)

To calculate the p-value, we use block-boostrapping. The p-value is approximated by

p̃j = 1
R

∑R
r=1{ξ⋆T,r > ξT}, where ξT is the test statistic, ξ⋆T,r is the bootstrap test statistic,

averaging over R = 1000 replications. We reject the null hypothesis of non-dominance if the

p-value is lower than 5%.

The test statistic ξT is -0.0012, and the p-value is estimated at 4.4%. Thus, we reject the

null hypothesis of non-dominance of portfolio SS-SSD over MAXSER.

7.2.2 Performance summary of the optimal portfolios

We also compute a number of commonly used parametric performance measures for portfo-

lios: the Sharpe ratio, the downside Sharpe ratio of Ziemba (2005), the 95% Value-at-Risk

(with a positive sign for a loss), the 95% Expected Shortfall (with a positive sign for a loss),

the upside potential and downside risk (UP) ratio of Sortino and van den Meer (1991), the

portfolio turnover, and a measure of the portfolio risk-adjusted returns net of transaction

costs (DeMiguel et al. (2009)) and the opportunity cost.
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The definition of downside Sharpe ratio uses the downside variance (or more precisely

the downside risk) defined as

σ2
P− =

∑T
t=1(Rt)

2
−

T − 1
, (14)

where Rt is the return of portfolio P at day t which is below zero (i.e., those with losses).

Given that the total variance equals twice the downside variance 2σ2
P−

, the downside

Sharpe ratio is given by

SP =
R̄P − R̄f√

2σP−
, (15)

where R̄P is the average period return of portfolio P and R̄f is the average risk free rate.

The UP ratio compares the upside potential to the shortfall risk over a specific target

(benchmark):

UP ratio =
1
T

∑T
t=1(RP,t −Rf,t)+√

1
T

∑T
t=1((Rf,t −RP,t)+)2

, (16)

where RP,t is the realized monthly return of the portfolio P for the out-of-sample period, T is

the number of experiments performed, and Rf,t is the monthly return of the benchmark (the

riskless asset). The numerator equals the average excess return over the benchmark reflecting

the upside potential while the denominator measures the downside risk (i.e., shortfall risk

over the benchmark).

Both the downside Sharpe and UP ratios are viewed to be more appropriate measures

of performance than the typical Sharpe ratio given the asymmetric return distribution of

assets.

The portfolio turnover (PT) measures the degree of rebalancing required to implement

each one of the two strategies. For any portfolio strategy P , the portfolio turnover is defined

as the average of the absolute change of weights over the T rebalancing points in time and

across the N available assets:

PT =
1

T

T∑
t=1

N∑
i=1

(|wP,i,t+1 − wP,i,t|), (17)
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where wP,i,t+1 and wP,i,t are the optimal weights of asset i under strategy P (SS-SSD or

MAXSER) at time t and t+ 1, respectively.

The performance of the portfolios is also assessed under the risk-adjusted (net of trans-

action costs) returns measure of DeMiguel et al. (2009) which is an indicator of how the

proportional transaction cost generated by the portfolio turnover affects the portfolio re-

turns. We use a transaction cost of 35 bps, which is typical in the literature. For this, the

change in the net of transaction cost wealth NWP of portfolio P through time is first defined

as

NWP,t+1 = NWP,t(1 +RP,t+1)[1− trc×
N∑
i=1

(|wP,i,t+1 − wP,i,t|), (18)

where trc is the proportional transaction cost and RP,t+1 is the realized return of portfolio

P at time t+ 1.

Then, the portfolio return net of transaction costs is defined as

RTCP,t+1 =
NWP,t+1

NWP,t

− 1. (19)

The return-loss measures the additional return needed so that the MAXSER optimal

portfolio performs equally well with the SS-SSD portfolio is defined as

RLoss =
µSSD

σSSD

× σMAXSER − µMAXSER, (20)

where µMAXSER and µSSD are the out-of-sample mean of monthly RTC for the MAXSER

and the SS-SSD opportunity set respectively, and σMAXSER and σSSD are the corresponding

standard deviations.

Finally, the opportunity cost θ of Simaan (2013) is used, which is a useful measure for

the economic significance of the performance difference of two portfolios. It is defined as

the return that needs to be added to (or subtracted from) the MAXSER portfolio return

RMAXSER, so that the investor is indifferent (in utility terms) between the the two different
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portfolios.

E[U(1 +RMAXSER + θ)] = E[U(1 +RSS−SSD)]. (21)

A positive (negative) opportunity cost implies that the investor is better (worse) off if he

invests in the SS-SSD over the MAXSER portfolio.

Given that this measure takes into account the entire probability density function of asset

returns, it is suitable to evaluate strategies even when the asset return distribution is not

normal. For the calculation of the opportunity cost, exponential and power utility functions

are used, consistent with second degree stochastic dominance. For the coefficient of risk

aversion, alternative values are employed.

Table 5 reports the parametric performance measures for the MAXSER, the SS-SSD

optimal portfolios and the 1/N portfolio for the sample period. The higher the value of each

one of these measures, the greater the investment opportunities for the relative portfolio.

We observe that the average returns, the Sharpe ratios and the downside Sharpe ratios of

the SS-SSD optimal portfolios are higher than those of the MAXSER optimal portfolios. It

reflects an increase in the risk-adjusted performance (i.e., an increase in the expected return

per unit of risk) and hence expands the investment opportunities for risk-averse investors.

The same is true for the UP ratio. The Value-at-Risk and the Expected Shortfall (with a

positive sign for a loss) of the SS-SSD portfolios are lower, indicating lower downside losses.

Furthermore, the MAXSER portfolios induce slightly less portfolio turnover than the SS-

SSD. The return-loss measure that takes into account transaction costs, is positive. Finally,

the opportunity cost is always positive, indicating that a positive return should be added in

the MAXSER portolio to achieve the same expected return with the SS-SSD portfolio. The

1/N portfolio exhibits again the worst performance, dominated by both the SS-SSD as well

as the MAXSER portfolios.
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Table 5: Out-of-sample performance: Parametric portfolio measures

MAXSER SS-SSD 1/N

Performance Measures

Average return 0.0122 0.0127 0.0121

Standard Deviation 0.0258 0.0239 0.0450

Sharpe ratio 0.4056 0.4571 0.2313

Downside Sharpe Ratio 0.8614 1.1188 0.9311

Value-at-Risk 0.0403 0.0295 0.0744

Expected Shortfall 0.0532 0.0476 0.1004

UP ratio 1.0864 1.2014 0.7704

Portfolio Turnover 8.477% 8.835% 0.0

Return Loss 0.087% 0.156%

Opportunity Cost

Exponential Utility

ARA=2 0.073% 0.126%

ARA=4 0.081% 0.139%

ARA=6 0.092% 0.152%

Power Utility

RRA=2 0.070% 0.132%

RRA=4 0.079% 0.144%

RRA=6 0.091% 0.159%
Entries report the performance measures (Sharpe ratio, Downside Sharpe ratio, VaR, ES, UP ratio, Portfolio

Turnover, Returns Loss and opportunity cost) for the MAXSER, the SS-SSD and the 1/N portfolios. The

realized monhtly returns cover the period from January, 2001 to December, 2020.

Let us now analyze the composition of the SS-SSD and the MAXSER portfolios through

time. Figure 4 reports the optimal average weights of the major Industries selected by each

one of the two portfolios during the out-of-sample period. We observe that both portfolios
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are well diversified and invest in almost the same Industries, with different overall weights.

The optimal SS-SSD portfolio invests mainly in 9 industry sectors with a larger weighting

on small size, high book-to-market, and momentum stocks from the S&P 500 index.
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Figure 4: Average Industry weights through time. The upper panel plots the average Industry weights

of the optimal SS-SSD portfolios, while the lower panel plots the average Industry weights of the optimal

MAXSER portfolios, for the out-of-sample period from January 2001 to December 2020. The grey areas are

the NBER recession periods.

Figures 5 and 6 exhibit the range of the Alpha and Beta coefficients of the individual
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stocks of these portfolios during the out-of-sample period. For the calculations of the Alpha

and Beta coefficients, the previous 5 years of individual monthly returns have been used (60

monthly returns).
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Figure 5: The upper panel plots the range of the Alpha coefficients of the individual stocks of the optimal

SS-SSD portfolios through time. The lower panel plots the range of the Alpha coefficients of the individual

stocks of the optimal SS-SSD portfolios through time. The grey areas are the NBER recession periods.
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Figure 6: The upper panel plots the range of the Alpha coefficients of the individual stocks of the optimal

MAXSER portfolios, and the lower panel plots the range of the Alpha coefficients of the individual stocks of

the optimal MAXSER portfolios, for the out-of-sample period from January 2001 to December 2020. The

grey areas are the NBER recession periods.

Finally, we investigate which factors explain the returns of the active investors with SSD

preferences. To do so, we start with the classical single factor model, and we additionally use

five asset pricing models that are popular in the literature. Namely, we use, the Fama-French

6-factor model (2016), the q-factor model of Hou, Xue and Zhang, (2015), the M4 factor
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model of Stambaugh and Yuan, (2017), the Barillas and Shanken 6-factor model (2018) and

the 3-factor model of Daniel, Hirshleifer, and Sun (2020). The last is included to give an

economic insight on behavioral influence.

First, we consider linear regression models of the following form:

Rp,t −Rf,t = ai +
∑
i

biRi,t + ei,t,

where Rp,t is the return of either the MAXSER or SS-SSD optimal portfolio at period t,

and, Ri,t is the return on the ith factor. If the exposures bi to the various factors capture all

variation in expected returns, the intercept ai is zero since the factors are tradable.

ai RM −RF

MaxSer

Coef. 0.0105 -0.0148

t-stat 5.772 -0.348

p-values 0.0 0.7275

SS-SSD

Coef. 0.0119 -0.0077

t-stat 7.186 -0.201

p-values 0.0 0.8411

Table 6: Single factor model (CAPM). Entries report the coefficients and their respective

t-statistics and p-values for the MAXSER portfolio (upper panel) and the SS-SSD portfolio

(lower panel). The dataset spans 01/2001-12/2020 for optimal portfolios computed with

240-month windows rolled over one month.

42



ai RM −RF PEAD FIN

MaxSer

Coef. 0.0095 0.0750 0.0219 0.1231

t-stat 4.7770 1.3773 0.2244 2.0896

p-values 0.0 0.1700 0.8227 0.0380

SS-SSD

Coef. 0.0124 0.0293 -0.0738 0.0696

t-stat 6.5221 0.5643 -0.7938 1.2375

p-values 0.0 0.5732 0.4283 0.2174

Table 7: Daniel, Hirshleifer, and Sun (2020), three-factor model. Entries report the coeffi-

cients and their respective t-statistics and p-values for the MAXSER portfolio (upper panel)

and the SS-SSD portfolio (lower panel). The dataset spans 01/2001-12/2016 for optimal

portfolios computed with 240-month windows rolled over one month.

ai RM −RF SMB R− IA R−ROE HML− AQR UMD − AQR

MaxSer

Coef. 0.0104 0.0004 -0.0695 0.0492 0.0123 0.0466 0.0148

t-stat 5.4458 0.0079 -0.8498 0.3756 0.1071 0.4898 0.2104

p-values 0.0 0.9937 0.3964 0.7075 0.9148 0.6248 0.8336

SS-SSD

Coef. 0.0116 0.0065 -0.0808 -0.0634 0.0666 0.1202 0.0261

t-stat 6.7464 0.1350 -1.0955 -0.5364 0.6409 1.4021 0.4103

p-values 0.0 0.8927 0.2745 0.5922 0.5222 0.1623 0.6820

Table 8: Barillas and Shanken (2018), six factor model. Entries report the coefficients and

their respective t-statistics and p-values for the MAXSER portfolio (upper panel) and the

SS-SSD portfolio (lower panel). The dataset spans 01/2001-12/2020 for optimal portfolios

computed with 240-month windows rolled over one month.
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ai RM −RF SMB HML RMW CMA Mom

MaxSer

Coef. 0.0104 0.0044 -0.0586 -0.0472 0.0180 0.1355 -0.0154

t-stat 5.3465 0.0795 -0.7455 -0.5413 0.1605 1.0840 -0.3541

p-values 0.0 0.9367 0.4567 0.5888 0.8726 0.2796 0.7236

SS-SSD

Coef. 0.0121 -0.0040 -0.0708 0.0770 0.0153 -0.0503 -0.0139

t-stat 6.8617 -0.0788 -0.9930 0.9747 0.1512 -0.4443 -0.3544

p-values 0.0 0.9372 0.3218 0.3308 0.8799 0.6572 0.7234

Table 9: Fama-French (2016), six factor model. Entries report the coefficients and their

respective t-statistics and p-values for the MAXSER portfolio (upper panel) and the SS-SSD

portfolio (lower panel). The dataset spans 01/2001-12/2020 for optimal portfolios computed

with 240-month windows rolled over one month.

ai RM −RF SMB1 MGMT1 PERF1

MaxSer

Coef. 0.0105 0.0045 -0.0131 0.1789 -0.0710

t-stat 5.2433 0.0777 -0.1626 2.4328 -1.4994

p-values 0.0 0.9381 0.8710 0.0159 0.1355

SS-SSD

Coef. 0.0129 0.0026 -0.0498 0.1094 -0.0520

t-stat 6.7428 0.0464 -0.6478 1.5526 -1.1453

p-values 0.0 0.9630 0.5179 0.1222 0.2535

Table 10: Stambaugh and Yuan(2017), M4 four-factor model. Entries report the coefficients

and their respective t-statistics and p-values for the MAXSER portfolio (upper panel) and the

SS-SSD portfolio (lower panel). The dataset spans 01/2001-12/2016 for optimal portfolios

computed with 240-month windows rolled over one month.
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ai RM −RF ME IA ROE

MaxSer

Coef. 0.0106 0.0301 -0.0521 0.1102 0.0181

t-stat 5.5931 0.5541 -0.6879 1.0715 0.2213

p-values 0.0 0.5801 0.4923 0.2852 0.8251

SS-SSD

Coef. 0.0122 0.0263 -0.0452 0.0503 0.0331

t-stat 6.9438 0.5218 -0.6424 0.5270 0.4361

p-values 0.0 0.6024 0.5213 0.5987 0.6632

Table 11: Hou, Xue and Zhang, (2015) q- four-factor model. Entries report the coefficients

and their respective t-statistics and p-values for the MAXSER portfolio (upper panel) and the

SS-SSD portfolio (lower panel). The dataset spans 01/2001-12/2020 for optimal portfolios

computed with 240-month windows rolled over one month.

Tables 7- 11 reports the coefficient estimates of the factor models, as well as their respec-

tive t-statistics and p-values. The results indicate that none of the factor models could fully

explain the performance of the two strategies. The intercept ai is statistically different from

zero in all cases. We also observe that the only factors that are significant for the MAXSER

returns are the FIN factor of the 3-factor model of Daniel, Hirshleifer, and Sun (2020), and

the MGMT1 factor of the Stambaugh and Yuan(2017), four-factor model. On the other

hand, there is no significant factor that explains the returns of the SS-SSD portfolios. The

results indicate that perhaps other factors drive the performance of the these portfolios.

In both factor models, we observe that the beta market is slightly smaller than one

(defensive) for both portfolios as expected. The negative sign for the SMB factor loading

and positive sign for the HML factor loading correspond to an additional defensive tilt of the

SS-SSD portfolio returns. Defensive strategies overweight large value stocks and underweight

small growth stocks (Novy-Marx (2016)).
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8 Concluding remarks

Our new methodology designed to target sparse spanning portfolios shows that we can often

limit ourselves to a subset of a large investment opportunity set without sacrifying expected

utility because of under-diversification. It also reveals that a sparse mean-variance portfolio

selection yields under-diversification w.r.t. an optimal sparse spanning portfolio. This paper

focuses on second-order stochastic dominance but could be modified to accommodate higher-

order stochastic dominance. We could then check whether the empirical findings extend in

such settings as well.
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Appendix

The appendix contains the proofs of our results.

Proof of Lemma 1. The result is obtained by exploiting the continuity of D w.r.t. its first

triple of arguments, and the compactness of the parameter space K × Λ. It evolves by it-

eratively establishing that infK supz∈Z D (z, κ, λ,P) is continuous in λ, which then implies

that it has a maximizer. Specifically, D (z, κ, λ,P) is continuous in (z, κ, λ) (w.r.t. the prod-

uct of the Euclidean topology on R, l1 on K, Λ, respectively), due to the continuity of

(z −
∑∞

i=0 κiXt,i)+ − (z −
∑∞

i=0 λiXt,i)+, Assumption 1 and Dominated Convergence. The

CMT implies that supz∈Z D (z, κ, λ,P) is continuous in (κ, λ). We have that K ⪰̸
SSD

Λ iff

∃λ⋆ ∈ Λ −K such that ∀κ ∈ K, supz∈Z D (z, κ, λ⋆,P) > 0. The compactness of K and the

continuity of supz∈Z D (z, κ, λ⋆,P) on the second argument imply that the latter holds iff

infK supz∈Z D (z, κ, λ⋆,P) > 0. The compactness of K also implies via Theorem 3.4 of

Molchanov (2006) that infK supz∈Z D (z, κ, λ,P) is continuous w.r.t. its third argument.

Hence, infK supz∈Z D (z, κ, λ⋆,P) > 0 is equivalent to supΛ infK supz∈Z D (z, κ, λ,P) > 0.

Proof of Lemma 2. Follows by Lemma 1 and the monotonicity of Λ as a function of p.

Proof of Lemma 3. The proof evolves in the following steps: (i) we majorize supz∈Z D (z, κ, λ,P)

by the supremum of
∫
Z
D (z, κ, λ,P) d· w.r.t. a set of linear operators. (ii) we validate a max-

min result to interchange the order of optimization operators for infK sup·
∫
Z
D (z, κ, λ,P) d·.

(iii) we use an appropriate topology for Lp,q and establish appropriate continuity and general-

ized convexity properties for infK supF∈P(Z)

∫
Z
D (z, κ, λ,P) dF (z) as a function on Λ×Lp,q,

so that we validate a max-min result to interchange the order of the outer pair of op-

timization operators in infLp,q supΛ sup· infK
∫
Z
D (z, κ, λ,P) d·. (iv) Analogously to (iii),
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we validate a max-min result to interchange the order of the middle pair of optimiza-

tion operators in supΛ infLp,q sup· infK
∫
Z
D (z, κ, λ,P) d·. (v) We finally use the extreme

point properties of the set of linear operators in (i) and the max-min inequality to ob-

tain the result. Specifically, for (i) consider the space P (Z) comprised by the probabil-

ity distributions that are supported on Z, and equipped with the weak topology. The

space is convex and contains the degenerate distributions on the elements of Z as its ex-

treme points. Then, by Theorem 15.9 of Aliprantis and Border (2006) we deduce that

supz∈Z D (z, κ, λ,P) ≤ supF∈P(Z)

∫
Z
D (z, κ, λ,P) dF (z). For (ii), we have that due to As-

sumption 1, and the Lipschitz continuity property of (·)+, we have that supZ,Λ2 |D (z, κ, λ,P)| ≤

2maxi E [|Xi|] < +∞, hence the linear functional F →
∫
Z
D (z, κ, λ,P) dF (z) is also continu-

ous w.r.t. F for all κ, λ, due to the Portmanteau Lemma. Furthermore, E
[
(z −

∑∞
i=0 κiXt,i)+

]
is convex in κ, due to the convexity and monotonicity of (·)+ and the linearity of z −∑∞

i=0 κiXt,i w.r.t. κ. Hence, since K ∈ Lp,q is closed and Λ is compact, the dual version of

the Kneser-Fan Theorem (see Theorem 4.2’ of Sion (1958)) implies that

inf
K

sup
F∈P(Z)

∫
Z

D (z, κ, λ,P) dF (z) = sup
F∈P(Z)

inf
K

∫
Z

D (z, κ, λ,P) dF (z) .

For (iii), equip Lp,q with the PK-topology (see Definition 3.1.4 of Klein and Thompson

(1984)). Due to Theorem 4.3.4-5 of Klein and Thompson (1984) Lp,q is compact. Due to The-

orem 3.4 of Klein and Thompson (1984) and the boundedness and continuity of D (·, ·, ·,P),

the mapping infK
∫
Z
D (z, κ, λ,P) dF (z) : Lp,q×Λ → R is jointly continuous for all F . Then,

the boundedness of D (·, ·, ·,P) and the CMT imply that supF∈P(Z) infK
∫
Z
D (z, κ, λ,P) dF (z) :

Lp,q × Λ → R is also jointly continuous.

For any t ∈ (0, 1) and any K1, K2 ∈ Lp,q, we have that

t infK1

∫
Z
D (z, κ, λ,P) dF (z) + (1− t) infK2

∫
Z
D (z, κ, λ,P) dF (z)

≥ min
[
infK⋆

i

∫
Z
D (z, κ, λ,P) dF (z) , i = 1, 2

] ,
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where K⋆
i is any element of Lp,q of support q that contains Ki, i = 1, 2. Analogously, we

obtain from the previous and the monotonicity of sup

t supF∈P(Z) infK1

∫
Z
D (z, κ, λ,P) dF (z) + (1− t) supF∈P(Z) infK2

∫
Z
D (z, κ, λ,P) dF (z)

≥ mini=1,2 infK⋆
i

∫
Z
D (z, κ, λ,P) dF (z)

supF∈P(Z)

[
t infK1

∫
Z
D (z, κ, λ,P) dF (z) + (1− t) infK2

∫
Z
D (z, κ, λ,P) dF (z)

]
≥

supF∈P(Z) mini=1,2 infK⋆
i

∫
Z
D (z, κ, λ,P) dF (z)

,

and the previous pair of displays implies that the mapping infK
∫
Z
D (z, κ, λ,P) dF (z) :

Lp,q → R is convex-like for all (F, λ), and the mapping supF∈P(Z) infK
∫
Z
D (z, κ, λ,P) dF (z) :

Lp,q → R is convex-like for all λ (see Section 2 of Sion (1958)). For any t ∈ (0, 1) and any

λ1, λ2 ∈ Λ we have that due to Theorem 15.9 of Aliprantis and Border (2006)

t supF∈P(Z) infK
∫
Z
D (z, κ, λ1,P) dF (z) + (1− t) supF∈P(Z) infK

∫
Z
D (z, κ, λ2,P) dF (z)

= t supz∈Z infK D (z, κ, λ1,P) + (1− t) supz∈Z infK D (z, κ, λ2,P)
,

and the rhs of the previous display is less than or equal to maxλ supz∈Z infK D (z, κ, λ,P) and

the maximum exists due to the joint continuity and boundedness of D (·, ·, ·,P), the CMT and

the compactness of Λ. Hence, the mapping supF∈P(Z) infK
∫
Z
D (z, κ, λ,P) dF (z) : Λ → R

again see Section 2 of Sion (1958)).

For (iv), for any t ∈ (0, 1) and any F1, F2 ∈ P (Z), we have that

t infK
∫
Z
D (z, κ, λ,P) dF1 (z) + (1− t) infK

∫
Z
D (z, κ, λ,P) dF2 (z)

≥ infK
∫
Z
D (z, κ, λ,P) d [tF1 (z) + (1− t)F2 (z)]

,

and thereby the mapping infK
∫
Z
D (z, κ, λ,P) dF (z) : P (Z) → R is concave and hence

concave-like for all K ∈ Lp.q and λ. Using the previous and applying twice the dual version
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of the Kneser-Fan Theorem, we jointly obtain the required results in steps (iii)-(iv) as,

infLp,q supΛ supF∈P(Z) infK
∫
Z
D (z, κ, λ,P) dF (z) = supΛ infLp,q supF∈P(Z) infK

∫
Z
D (z, κ, λ,P) dF (z)

= supΛ supF∈P(Z) infLp,q infK
∫
Z
D (z, κ, λ,P) dF (z) .

Finally, for (v), again due to Theorem 15.9 of Aliprantis and Border (2006)

sup
Λ

sup
F∈P(Z)

inf
Lp,q

inf
K

∫
Z

D (z, κ, λ,P) dF (z) = sup
Λ

sup
z∈Z

inf
Lp,q

inf
K

D (z, κ, λ,P) .

The result follows by the max-min inequality.

Proof of Proposition 1. K does not solve supz∈Z supΛ infLp,q infK D (z, κ, λ,P) iff

supz∈Z supΛ infK D (z, κ, λ,P) > M (Λ,Kp,q,P). Using the same argument as in the proof of

Lemma 3 the latter is equivalent to supF∈P(Z) supΛ infK
∫
Z
D (z, κ, λ,P) dF (z) > M (Λ,Lp,q,P).

Now, due to Fubini’s Theorem we have that

supF∈P(Z) supΛ infK
∫
Z
D (z, κ, λ,P) dF (z)

= supF∈P(Z) supΛ infK
∫
Z
E
[
(z −

∑∞
i=0 κiXi)+

]
− E

[
(z −

∑∞
i=0 λiXi)+

]
dF (z)

= supF∈P(Z) supΛ infK
∫
Z
E ([min (0,

∑∞
i=0 λiXi − z)−min (0,

∑∞
i=0 κiXi − z)]) dF (z)

= supF∈P(Z) supΛ infK E
[∫

Z
min (0,

∑∞
i=0 λiXi − z)−min (0,

∑∞
i=0 κiXi − z) dF (z)

]
= supF∈P(Z) [supΛ E (uF (

∑∞
i=0 λiXi))− supK E (uF (

∑∞
i=0 κiXi))] ,

and the result follows.

Proof of Theorem 1. (a) we use the Ergodic Theorem uniformly in λ and continuously in z.

Specifically, we derive the limiting behavior of 1
T

∑T
t=0 (z −

∑∞
i=0 λiXt,i)+ from the locally

uniform in z and uniform in λ, version of the Ergodic Theorem applied on 1
T

∑T
t=0 (z −

∑∞
i=0 λiXt,i)+,

noting that it is applicable due to Assumption 1 and the l1 boundedness of Λ∞, which imply

that the rhs bound in (??) is independent of λ. Continuously uniform convergence then

implies continuous hypo-convergence by Molchanov (2006).
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For (b)-(c), (i) we establish that the associated set of functions has an integrable envelope,

(ii) we use the fact that the associated sets of functions-which admit generalized derivatives

w.r.t. the sample arguments-are bounded subsets of a weighted Sobolev space, and thus

have controllable bracketing entropy numbers, and (iii) we use the above and the time series

properties of X to verify the validity of an appropriate FCLT or maximal inequality. For (i)

we have that due to Jensen’s inequality,

E

supz,κ

µT

 (z −
∑∞

i=0 κiXi)+ − (z −
∑∞

i=0 λiXi)+

XT I {z ≥
∑∞

i=0 λiXi} (κ− λ)




2+ε ≤

CE
[(
supz,κ

(
(z −

∑∞
i=0 κiXi)+ − (z −

∑∞
i=0 λiXi)+

))2+ε
]
+

CE
[(
supz,κ

(
XT I {z ≥

∑∞
i=0 λiXi} (κ− λ)

))2+ε
]
≤

CE
[(
supz,κ ((

∑∞
i=0 (λi − κi)Xt,i))

)2+ε
]
+

CE
[
maxi (XiI {z ≥

∑∞
i=0 λiXi})2+ε

]
≤

21+εC
(
E
[(
supz,κ ((

∑∞
i=0 λiXi))

)2+ε
]
+ E

[(
supz,κ ((

∑∞
i=0 κiXi))

)2+ε
])

+

CE
[
maxi (|Xi|)2+ε] ≤ 21+εCE

[
maxi (Xi)

2+ε] < +∞.

(22)

For (ii) , we have that for any l ≥ 1, δ > 0, the function classes

M1 :=
{
R⌊q(lnT+1)⌋ ∋ x →

(
z − xTλ

)
+
−
(
z − xTκ

)
+

}

and

M2 :=

R⌊q(lnT+1)⌋ ∋ x → xT I

z ≥
⌊q(lnT+1)⌋∑

i=0

κ∗
ixi

 (κ− κ∗) , z, κ, κ∗


are bounded subsets of the weighted Sobolev space H1

l

(
R⌊q(lnT+1)⌋, ⟨x⟩2+δ

)
(this is the semi-

normed space

f : R⌊q(lnT+1)⌋ → R,
∥f∥l,2+δ,µ :=(∫

R⌊q(lnT+1)⌋

[∣∣∣ f(x)

(1+∥x∥)2+δ

∣∣∣l + ∣∣∣D f(x)

(1+∥x∥)2+δ

∣∣∣l] dµ)1/l

< +∞

,

where D denotes partial derivation in the sense of distributions, and µ denotes the Lebesgue
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measure on R⌊q(lnT+1)⌋-see 3.3.2 of Nickl and Potcher (2007)), due to the l1-boundedness

of K. In the notation of the aforementioned paper, choosing l such that ⌊q(lnT+1)⌋
l

→ 0,

r = 2 + ε and γ = 3 + δ, β = 2 + δ, M the set of finite dimensional distributions of X∞,

we have that, due to Corollary 4.2 of Nickl and Potcher (2007), and for large enough T ,

the bracketing entropy of M, as a function of ϵ > 0, is universally bounded from above by

ln c+ ⌊q (lnT + 1)⌋ ln
(
1
ϵ

)
for some universal constant c > 0.

Then, from (i) above, (ii) the fact that βk ∼ bk, and (iii) the fact that that the class have

an L2+ε (P)-integrable envelope due to (22), we get that Theorems 1 and 2 of Doukhan, Mas-

sart, and Rio (1995) are applicable and the results in (b) and (c) follow since
ln ( p

⌊q(lnT+1)⌋)√
T

+

⌊q(lnT+1)⌋√
T

→ 0. The latter holds since ln p√
T
→ 0 via Stirling’s approximation on factorials and

first order Taylor expansions on the logarithms.

Proof of Theorem 2. The proof works by (i) establishing that the empirical LPM,

1
T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+, satisfies uniformly over z, w.h.p. the weak sub-modularity prop-

erty of Elenberg et al. (2018), so that (ii) the guarantees results on the Forward Selection

Algorithm of the aforementioned paper hold w.h.p.. We do so by (iii) establishing that

the first order Taylor expansion restricted on appropriate parts of the empirical LPM, is

approximated by the analogous expansion of its population counterpart, uniformly over z,

w.h.p.. Given (i), the statistical guarantees for the overall optimization problem follow (iv)

by standard results on approximation of optimization problems and the CMT.

We first recall some notation mainly from convex analysis. Specifically, in what follows ∂

denotes the sub-gradient of an arbitrary real valued convex function defined on a locally con-

vex space (see Ch. D of Hiriart-Urruty and Lemaréchal (2004)-HUL). Besides, for Q := P,PT

and EQ denoting integration w.r.t. Q, EQ
[
(z −

∑∞
i=0 κiX0,i)+

]
is convex in the second ar-

gument due to the convexity and monotonicity of (·)+ and the linearity of z −
∑∞

i=0 κiXt,i

w.r.t. κ.

Then, for any κ ∈ Λ we have that gz,T (κ) := 1
T

∑T
t=0 XtIz≥∑∞

i=0 κiX0,i+ ∈ ∂EPT
(z −

∑∞
i=0 κiX0,i)+

due to Theorems 4.1.1. and 4.2.1 of HUL. Furthermore, due to Theorem 1 of Savare (1996)
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and the fact that Xt has a continuous density, we have that gz (κ) :=
∂E(z−

∑∞
i=0 κiX0,i)

+

∂κ
=

E
[
XtIz≥∑∞

i=0 κiXt,i

]
. Then, for any (κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋), define the Taylor expansions

Ez,T (κ⋆, κ) := 1
T

∑T
t=0 (z −

∑∞
i=0 κ

⋆
iXt,i)+ − 1

T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+ − (κ⋆ − κ)′ gz,T (κ),

and Ez (κ⋆, κ) := E
[
(z −

∑∞
i=0 κ

⋆
iXt,i)+

]
− E

[
(z −

∑∞
i=0 κiXt,i)+

]
− (κ⋆ − κ)′ gz (κ).

Working towards (iii), and using the previous theorem, we have that for any δ > 0 and

any C > 0, 0 < ϵ < 1
4
:

P
(
supz supΛ(⌊q(ln(T+1))⌋),∥κ−κ⋆∥> C

Tϵ

(
1

∥κ−κ⋆∥2 |Ez,T (κ, κ⋆)− Ez (κ, κ⋆)|
)
≥ δ
)

≤ P
(
supz supΛ(⌊q(ln(T+1))⌋),∥κ−κ⋆∥> C

Tϵ
(T 2ϵ |Ez,T (κ, κ⋆)− Ez (κ, κ⋆)|) ≥ δ

C

)
≤ P

(
supz supΛ(⌊q(ln(T+1))⌋)

∣∣∣√TD (z, κ, κ⋆,PT − P)
∣∣∣ ≥ 2δT

1
2−2ϵ

3C

)
+P
(
supz supΛ(⌊q(ln(T+1))⌋)

|GT (z, κ, κ⋆)| ≥ δT
1
2−2ϵ

3C

)
= o (1) ,

(23)

where the final equality in the previous display follows from the first two parts of 1, the Lips-

chitz property of D w.r.t. the parameters, the fact that T
1
2
−2ϵ → +∞, and the Portmanteau

Theorem.

Due to the bounds on the eigenvalues of E (z −
∑∞

i=0 κiX0,i)+ of Assumption 2, Theorem

6.1.2 of HUL, Paragraph 1.3.(d) in Ch. 4 of Hiriart-Urruty and Lemaréchal (2013), and the

dual form of Remark 1 of Elenberg et al. (2018), we have that uniformly w.r.t. z and for

any (κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋),
m⌊q(ln(T+1))⌋

2
∥κ− κ⋆∥2 ≤ Ez,T (κ⋆, κ) ≤ M⌊q(ln(T+1))⌋

2
∥κ− κ⋆∥2. Due

to this, and (23), uniformly w.r.t. z and for any (κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋) ∩
{
∥κ− κ⋆∥ > C

T ϵ

}
,

m⌊q(ln(T+1))⌋ + op (1)

2
∥κ− κ⋆∥2 ≤ Ez,T (κ⋆, κ) ≤

M⌊q(ln(T+1))⌋ + op (1)

2
∥κ− κ⋆∥2 , w.h.p.,

where the op (1) terms are independent of z, λ. Thus (i) is established.

Then, for (ii), by noting that Theorem 1 of Elenberg et al. (2018) is also valid if

the gradient in its proof is substituted by any fixed element of the sub-gradient, and us-

ing the previous display, the inclusion Λ(⌊q(lnT+1)⌋) ∩
{
∥κ− κ⋆∥ > C

T ϵ

}
⊆ Λ(⌊q(lnT+1)⌋) and

the discussion immediately after Remark 1 of Elenberg et al. (2018), we get that w.h.p.
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KFS (Λ,Lp,q, z,PT , q lnT ) ≤
(
1− 1

T γT

)
infLp,q infK

1
T

∑T
t=0 (z −

∑∞
i=0 κiXt,i)+, where γT :=

m⌊q(ln(T+1))⌋+op(1)

M⌊q(ln(T+1))⌋+op(1)
, establishing (ii). Finally, working towards (iv), note that Assumption 2,

Theorem 1, the PK-convergence of Λ(⌊q(lnT+1)⌋) ∩
{
∥κ− κ⋆∥ > C

T ϵ

}
to Λ(⌊q(lnT+1)⌋), and the

CMT imply then (4). The final result follows from the dual version of Theorem 3.4 (Ch. 5,

p. 338) of Molchanov (2006) and the CMT.

Proof of Theorem (3). The strategy of the proof evolves as: (i) we establish the existence of a

further subset of the above mentioned parameter set, which is compact and also contains the

part of the population optimizers associated with non-degeneracy of the limiting empirical

process, as well as the analogous empirical optimizers w.h.p.. (ii) we use the compactness

of the aforementioned set to apply the generalized Delta method on the restricted empirical

process.

For (i), first, due to Theorem 1 of Elenberg et al. (2018), the results of Theorem 2 are valid

since r = q (lnT )2. Using additionally CM, the final result of Theorem 1 and Theorem 3.4

(Ch. 5, p. 338) of Molchanov (2006), we also have the approximation
√
T
∣∣∣inf 1

T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+ − infcsupp(κ)≤q

1
T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+

∣∣∣ = op (1) where

the remainder is independent of z and the first empirical infimum is derived via forward

selection.

Then the limiting behavior of the empirical process
√
TD (z, κ, λ,PT − P) restricted on

Z × Λ∞ × Λ̃(⌊q(lnT+1)⌋) is obtained by the (b) part of Theorem 1. Now, for (i), the proof

of Lemma 3 and CO, imply that supΛ∞ infcsupp(κ)≤q

∫
Z
D (z, κ, λ,P) dF (z) : P (Z) → R is

strictly concave on Z − {inf (Z)}. Hence, the set of optimizers

argmaxZ−{inf(Z)} supΛ∞ infcsupp(κ)≤q D (z, κ, λ,P) is singleton. Thereby, Theorem 3.4 of

Molchanov (2006) implies that when M (Λ∞,L∞,q,P) > 0, Γ is compact , and when

M (Λ∞,L∞,q,P) = 0, Γ −
(
{inf Z} × Λ∞ × Λ̃(q)

)
is compact. Hence and due to Assump-

tion 2, there exists some ε > 0 for which Γε, i.e., the set of triples from Z × Λ∞ × Λ̃(q)

of infimum distance from Γ⋆, less than or equal to ε, is non-empty compact. Here, Γ⋆

equals Γ when M (Λ∞,L∞,q,P) > 0, and equals ∆ :=
(
Γ−

(
{inf Z} × Λ∞ × Λ̃(q)

))
∪
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(
{inf Z} × Λ⋆

∞ × Λ̃⋆
(q)

)
when M (Λ∞,L∞,q,P) = 0, where Λ⋆

∞× Λ̃⋆
(q) is the compact set com-

prised by the (λ, κ) that appear in some triplet of Γ for z > inf Z. The distance is the maxi-

mum between the Euclidean metric for the z parts of the triples, and the L1 distances for the

λ and κ parts. Due to Theorem 1 and Theorem 3.4 of Molchanov (2006), we have that Γε con-

tains solutions of supZ×Λ infcsupp(κ)≤q
1
T

∑T
t=0

[
(z −

∑∞
i=0 κiXi,t)+ − (z −

∑∞
i=0 λiXi,t)+

]
w.h.p.,

and the solutions that it may miss correspond only to the case M (Λ∞,L∞,q,P) = 0 and at

which the empirical optimization problem above is identically zero.

Finally, for (ii), we have that the result follows from Theorem 2, Theorem 3.4 of Molchanov

(2006) and, Theorem 2.1 and Lemma B.1 of Fang and Santos (2014), restricting the optimiza-

tions appearing in the empirical process on Γε, by noticing that when M (Λ∞,L∞,q,P) = 0,

sup inf∆ G (z, λ, κ) = sup infΓ G (z, λ, κ) due to the degeneracy at zero enforced by the ele-

ments of Γ−∆ on G, and the fact that ∆ already contains {inf Z}×Λ⋆
∞× Λ̃⋆

(q) the elements

of which also imply degeneracy at zero for the Gaussian process.

Proof of Proposition 2. The proof proceeds as follows: (i) we establish the weak convergence

of the scaled by bT , discrepancy between the subsampling empirical process, evaluated at any

convergent subsequence of the Forward Selection optimizers, and the population optimum, to

the sup inf of the Gaussian process appearing in the previous result over Γ⋆. (ii) we establish

conservativeness by showing that the cdf of the weak limit is continuous at its 1−α quantile.

For (i), we have that from the weak convergence to the empirical process in the proof of

Theorem 3, and applying Proposition 7.3.1 of Politis, Romano and Wolf (1999), we obtain

that √
bT (E⋆ [D (z, κ, λ,Pt,bT )]−D (z, κ, λ,PT ))⇝ G (z, λ, κ) ,

in ℓ∞ (Z × Λ∞ × Λ∞), where E⋆ [·] denotes expectation w.r.t. the empirical distribution of

D (z, κ, λ,Pt,bT ) across t = 1, . . . , T − bT + 1.

In what follows, we also denote with (T ) the index set of the subsequence of κz,T associated

with the examined accumulation point, for notational simplicity. Due to that (see the proof of
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Theorem 3),
√
T
∣∣∣inf 1

T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+ − infcsupp(κ)≤q

1
T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+

∣∣∣ =
op (1) uniformly in z, the definition of κz,T , and that bT

T
→ 0, we have that

√
bT
(
infcsupp(κ)≤q D (z, κ, λ,PT )−D (z, κz,T , λ,PT )

)
= op (1) uniformly on Z×Λ∞. It implies

that
√
bT
(
supZ×Λ infcsupp(κ)≤q D (z, κ, λ,PT )− supZ×ΛD (z, κz,T , λ,PT )

)
= op (1). Employ-

ing a) the use of Skorokhod representations, applicable due to Theorem 3.7.25 of Giné and

Nickl, (2016), b) the convergence above, c. Theorem 3.4 of Molchanov (2006), d) Theorem

2.1 and Lemma B.1 of Fang and Santos (2014) along with the compactness of Γ-working

similarly to the proof of Theorem 3 with Γε, e) the fact that (κz,T )z are optimizers of

KFS (Λ,Lp,q, z,PT , rT (q))−L (Λ, z,PT ), which due to Theorem 2 converges to the determin-

istic K (Λ∞,L∞,q, z,P) − L (Λ∞, z,P), and thereby (κz,T )z are asymptotically independent

to
√
bT
(
supZ×Λ E⋆ [D (z, κz,T , λ,Pt,bT )]−MFS

(
Λ,Lp,q,PT , q (lnT )

2)), and f) the fact that

bT
T

→ 0, we obtain that

√
bT

(
sup
Z×Λ

E⋆ [D (z, κz,T , λ,Pt,bT )]−MFS (Λ,Lp,q,PT , q (lnT )
2))⇝ sup inf

Γ⋆
G (z, λ, κ) .

For (ii), first, the definition of Γ⋆ implies that sup infΓ⋆ G (z, λ, κ) ≥ sup infΓ G (z, λ, κ). Then

conservativeness follows from this inequality as long as the cdf of sup infΓ⋆ G (z, λ, κ) is con-

tinuous at its 1− α quantile. From Lemma 18.15 of van der Vaart (2000), we have that for

µ, v ∈ Γ⋆ and Gµ,Gv the Gaussian process G evaluated there,

0 ≤ σ2 := supΓ⋆ E
[
G2
µ

]
≤ supµ,v∈Γ⋆ E

[
(Gµ − Gv]

2) < +∞.

Hence due to the zero mean function of Gµ, and Furnique’s inequality (see Relation (1,1) in

Samorodnitsky (1991)), we have that for 0 < ε < 1, there exists a κ (ε), such that

E
[
supΓ⋆ G2

µ

]
=
∫ +∞
0

P
(
supΓ⋆ |Gµ| >

√
y
)
dy ≤ 2κ (ε)

∫ +∞
0

exp
(

−(1−ε)
2σ2 y

)
dy < +∞.

Then, Ch. 2 of Nualart (2006), (see the remark after the proof of Proposition 2.1.11 (p. 109))
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implies the existence of the square integrable Malliavin derivative for Gµ. Nualart (2006)

implies then that the Malliavin derivative of Gµ equals zero only at trivial triples. The

previous imply the validity of Assumption 1 of Arvanitis, Scaillet and Topaloglou (2019) for

T = {0} in their notation, when trivial triples exist, and T = ∅ when trivial triples do not

exist. In the latter case Theorem 1 of Arvanitis, Scaillet and Topaloglou (2019), implies

(7) for any α ∈ (0, 1). In the former case, ND assumes the existence of the non trivial

(λ⋆, κ⋆, z⋆) ∈ Γ⋆ for which we have that,

P (sup infΓ⋆ G (z, λ, κ) > 0) ≥ P (sup infΓ⋆ G (z, λ, κ⋆) > 0) ≥ P (G (z⋆, λ⋆, κ⋆) > 0) = 1
2
,

due to non-degeneracy and zero mean Gaussianity. The result then follows again from

Theorem 1 of Arvanitis, Scaillet and Topaloglou (2019), and (8) follows from the previous

by noting that in this special case, Γ = Γ⋆ due to Theorem 3.4 of Molchanov (2006).
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