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A machine learning approach to construct quarterly data on

intangible investment for Eurozone

Angelos Alexopoulos∗ Petros Varthalitis† ‡
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Abstract

We develop a novel approach to construct quarterly time series data for annually measured intangible
investment variables. We accomplish this by using machine learning methods to explore the relationship
between these variables and key macroeconomic time series available on a quarterly frequency. The
proposed approach offers some advantages over other econometric techniques. Specifically, it does not
require any ex-ante assumptions for the link between the quarterly time series and their annual counterparts,
and it is free from issues such as multicollinearity and endogeneity, requiring almost no data pre-processing.
To demonstrate the usefulness of the constructed data, we present some business cycles facts for the
intangible economies of Eurozone and estimate a dynamic factor model.

Keywords: Machine Learning, Intangible Investment, Factor Model, Business Cycles

JEL Classification: E01, E22, E32, C49, C80

1 Introduction

Intangible assets are increasingly important in modern economies, but they are difficult to measure accurately.
Corrado et al. (2016) have developed a comprehensive database that provides harmonized cross-country data on
intangible investment for 15 EU countries. Using these data, Bontadini et al. (2023) have extended the widely
known EUKLEMS productivity database with intangible investment (see EUKLEMS & IntanProd). However,
these data are available only on an annual frequency. On the other hand, most key macroeconomic variables,
such as gross domestic product, gross value added (GVA), consumption, and investment, are available on a
quarterly frequency. Having harmonized data related to the intangible economy on a quarterly frequency is
crucial for policymakers, academics, and practitioners to construct empirically relevant macroeconomic models
and make accurate macroeconometric inferences. The need for such data has become more pronounced in
recent decades, as the intangible intensity of modern economies has risen rapidly. In Eurozone, the share of
intangible investment has steadily increased from 9.5% in 1995 to 14% in 2016, while the ratio of intangible
to tangible investment has almost doubled.1

Our aim is to construct quarterly time series for the intangible economy of Eurozone countries. While
various econometric techniques deal with mixed frequency data their primary objective is to enhance the
accuracy of macroeconomic forecasting. In contrast, our focus is distinct in that we prioritize using all the
available information of (macroeconomic) indicators observed at lower frequency to construct the quarterly
time series.2. Here, we adopt a machine learning approach (see e.g., Ballarin et al. (2022)), namely, the
extreme gradient boosting (XGboost) regression method (Friedman, 2001; Chen and Guestrin, 2016) to
construct quarterly time series. The XGboost regression relies on an ensemble of decision trees to construct a
prediction model for a target variable by using a set of auxiliary variables.

Our approach has several merits. First, it does not require any ex-ante assumptions for the link between the
high frequency and the low frequency variables of interest. Second, it is free of issues commonly encountered
in OLS estimation such as multicollinearity and endogeneity, and it does not require complicated and

∗Department of Economics, Athens University of Economics and Business, Greece. Email: angelos@aueb.gr.
†Department of Economics, Athens University of Economics and Business, Greece. Email: pvarthalitis@aueb.gr.
‡Corresponding author
1See Figures S.1 and S.2 in the supplementary material. A similar trend is also observed in the US economy, where intangible

investment amounted to 17% of GDP in 2021, compared to only 8.5% for tangible investment. For a recent review see Corrado
et al. (2022).

2These include but are not limited to: (i) the bridge model approach (Baffigi et al., 2004); (ii) the mixed data sampling
(MIDAS) regressions (Ghysels et al., 2007); and (iii) vector autoregressive and dynamic factor models (Mariano and Murasawa,
2010); see Foroni et al. (2015) for a review.
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computationally expensive estimation algorithms, e.g., Bayesian techniques. Third, it does not rely on
assumptions usually made in standard econometric time series (e.g., stationarity) and thus requires almost no
data preprocessing. These characteristics make the proposed approach easy to implement by macroeconomists
and other practitioners. We demonastrate the performance of the machine learning approach on macroeconomic
variables that are available on both annual and quarterly frequency (e.g., GVA). Subsequently, we construct
quarterly data for the variables for which we only have annual observations, namely GVA adjusted for
intangible assets not measured in national accounts, intangibles assets not measured in national accounts and
total intangibles assets.

To illustrate the usefulness of the constructed data we derive some key business cycles statistics for Eurozone
intangible economies. Then, we estimate a dynamic factor model to measure the degree of synchronization
among these economies.3 We find that intangible investment is two or three times more volatile as GVA and
procyclical; whereas intangible investment is less volatile and less procyclical than tangible investment. Our
estimated global factor captures recent trends observed in standard Eurozone macroeconomic aggregates
quite well. Interestingly, our analysis implies a relatively high degree of synchronicity among the intangible
economies of Eurozone countries of our sample and also provides evidence about the existence of global drivers
behind the fluctuations of intangible economies.

Our paper contributes to the existing literature in the following ways. Firstly, we propose a novel approach
to construct high-frequency macroeconomic variables using low-frequency macroeconomic variables by adopting
a machine learning method. This approach is easy to implement and relaxes some of the strong assumptions
used in other popular econometric techniques. Secondly, we construct quarterly time-series measurements
of the intangible economy for Eurozone countries. This dataset enables macroeconomists and practitioners
to utilize the data for macroeconomic modeling and policy evaluation. Finally, we utilize the constructed
quarterly time-series to measure the business cycle characteristics of intangible economies and the degree of
their synchronicity in Eurozone countries. The rest of the paper is organized as follows. Section 2 presents
the developed data construction method, in Section 3 we present our results and analysis and Section 4 closes
the paper. For readers interested in more technical details an online supplementary appendix is available.

2 Methodology

2.1 Data

We employ data from two sources. First, we draw annual macroeconomic aggregates related to intangible
economy from the EUKLEMS & INTANPROD database which comprises harmonized time series for intangible
investment over the period 1995-2018.4 Second, we draw standard quarterly macroeconomic aggregates from
the national accounts of Eurostat for the same period. Table 1 lists our dataset, panel A presents the time
series that are available only in annual frequency, while panel B presents the macroeconomic time series that
we use to construct quarterly observations for the variables in panel A.

3Estimating such a model would be problematic without the construction of quarterly time series, as annual data only spans
for a 23-year period.

4The countries in our sample include 14 Eurozone countries, namely, Austria, Belgium, Estonia, Finland, France, Germany,
Ireland, Italy, Netherlands, Latvia, Lithuania, Luxembourg, Portugal, Slovenia, Slovakia and Spain while we exclude Croatia,
Cyprus and Malta due to data availability.
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Table 1: Data

Variable Annual Quarterly

Panel A

Gross Value Added adjusted ygvat (ygvatq )

Total Intangibles yIt (yItq )

Non-National Accounts Intangibles yNI
t (yNI

tq )

Panel B

Gross Value Added x
(1)
t x

(1)
tq

Gross domestic product x
(2)
t x

(2)
tq

Final consumption expenditure x
(3)
t x

(3)
tq

Gross fixed capital formation x
(4)
t x

(4)
tq

Tangible Investment x
(5)
t x

(5)
tq

Exports of goods and services x
(6)
t x

(6)
tq

Imports of goods and services x
(7)
t x

(7)
tq

Compensation of employees x
(8)
t x

(8)
tq

Wages and salaries x
(9)
t x

(9)
tq

Total employment domestic concept x
(10)
t x

(10)
tq

Taxes on production and imports x
(11)
t x

(11)
tq

Taxes on products x
(12)
t x

(12)
tq

Final consumption expenditure of general government x
(13)
t x

(13)
tq

Household and NPISH final consumption expenditure x
(14)
t x

(14)
tq

Final consumption, durable goods x
(15)
t x

(15)
tq

Final consumption, semi-durable goods x
(16)
t x

(16)
tq

Final consumption, non-durables x
(17)
t x

(17)
tq

Final consumption, services x
(18)
t x

(18)
tq

Employees domestic concept x
(19)
t x

(19)
tq

Self-employed domestic concept x
(20)
t x

(20)
tq

Employees domestic concept x
(21)
t x

(21)
tq

Notes: Variables in parentheses are not observed at the frequency indicated by the corresponding column.

The two columns on the right hand side present the notation used for the value of each variable at time

t. Tangible investment (x
(5)
t , x

(5)
tq

) is computed by subtracting intellectual property products (gross) from

total fixed assets (gross).

2.2 Data construction by using machine learning

We adopt a machine learning approach to construct quarterly time series for which we have access to their
annual counterpart. We utilize two sets of observed time series: the variables of interest at an annual frequency
and a set of macroeconomic aggregates observed at both annual and quarterly frequencies We denote by yt
the observation at year t (t = 1, . . . , T ) and aim to estimate the variables ytq such that yt =

∑4
q=1 ytq , where

tq is the q-th quarter of year t. We also denote by x
(d)
tq the value of the d-th (d = 1, . . . , D) quarterly observed

time series data (macroeconomic features) in the q-th quarter of year t.
The proposed technique relies on the gradient boosting method where an ensemble of decision trees is

employed to predict the values of an annually observed variable in each one of the four quarters of the year.

First we set x
(d)
t =

∑4
q=1 x

(d)
tq to be the annual measurement of the the quarterly observed variable x

(d)
tq , for each

d = 1, . . . , D. By employing the XGboost algorithm we learn a function G, such that ŷt = G(x
(1)
t , . . . , x

(d)
t )

and the quadratic loss
∑T

t=1(yt − ŷt)
2 is minimised. The function G encodes all the available information

about the relationship between the target yt and the macroeconomic features {x(d)
tq }Dd=1. Then, we estimate

the target variables, ytq , by applying the function G on the quarterly version of the macroeconomic features,

i.e., we set ŷtq = G(x
(1)
tq , . . . , x

(d)
tq ). Finally, by noting that the sum of the quarterly measured variables over a

year t should be equal to the observed value yt we further improve the estimation of ytq by calculating the error

ϵt = yt −
∑4

q=1 ŷtq and setting ỹtq = ŷtq + ϵt/4 if ϵt > 0 and ỹtq = ŷtq − ϵt/4 otherwise. In the supplementary
appendix we provide all the technical details of the XGboost algorithm that we used to construct the function
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G as well an algorithmic description of our developed method for the calculation of ỹtq .

3 Results

3.1 Evaluation of the machine learning approach

To evaluate the proposed approach for quarterly data construction we work with a macroeconomic variable

for which we have available time series at both annual and quarterly frequencies such as GVA, x
(1)
t and x

(1)
tq

respectively in Table 1. We construct x̃
(1)
tq and we compare it with the true variable x

(1)
tq . Figure 1 presents

the true quarterly time series of gross value added (shown in black solid lines) and the constructed quarterly
time series (shown in red dashed lines) for the largest Eurozone economies in our sample. It is clear that our
technique performs quite well in replicating both the macroeconomic trend and the cyclical properties of the
true quarterly time series. We report that the mean absolute error across the different countries is quite small
and ranges between 0.5% and 1% of the country’s GVA.

Figure 1: Constructed vs true GVA
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Notes: GVA is scaled with GVA deflator.

3.2 Business cycles facts for the intangible economies of Eurozone using the
constructed quarterly time series

Figure 2 presents the constructed quarterly counterparts for time series that are only available on an annual
frequency, namely intangible investment not currently measured in the System of National Accounts (SNA)
(a), total intangible investment (b), and GVA adjusted (c) for the six largest economies in the Eurozone.
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Figure 2: Constructed quarterly time series for intangible economies

(a) Non-National Accounts Intangible Investment, ỹNI
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(b) Total Intangible Investment, ỹItq
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(c) GVA adjusted, ỹgvatq
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We use these time series to derive the cyclical properties of the Eurozone’s intangible economies drawing
from the conventional business cycle analysis (see, e.g., Fiorito and Kollintzas (1994)). Table 2 presents the
volatility of the constructed series relative to GVA in columns 1 to 3 and to tangible investment in column 4
for each country. Table 3 presents the correlations of the constructed series with GVA in columns 1-3 and
the correlation of total intangible to tangible investment in column 4 Tables 2 and 3 reveal some interesting
stylized facts about the business cycle properties of the intangible economy in Eurozone countries. Firstly, total
intangible investment and intangible investment not measured in the SNA are two to three times more volatile
than GVA (see columns 1 and 2 in Table 3). Secondly,intangible investment is less volatile than tangible
investment for most countries (see column 4); while GVA adjusted (i.e., GVA augmented with intangible
investment) is more volatile than GVA currently reported in the SNA (see column 3). From Table 3 it is clear
that intangible investment is positively correlated with GVA (i.e., procyclical) and tangible investment (see
columns 1, 2 and 4). The intangible-adjusted GVA correlation with the SNA, GVA is weaker than expected,
which makes the accurate measurement of non-national accounts intangibles quite important.
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Table 2: Relative volatilities of intangible variables
with respect to GVA and tangible investment

Countries
σ(ỹNI

tq
)

σ(x
(1)
tq

)

σ(ỹI
tq

)

σ(x
(gva)
tq

)

σ(ỹgva
tq

)

σ(x
(1)
tq

)

σ(ỹI
tq

)

σ(x
(5)
tq

)

Austria 1.64 2.20 1.06 0.71
Belgium 3.88 3.25 1.16 0.65
Germany 1.37 1.32 0.94 0.48
Estonia 1.35 1.40 1.04 0.49
Spain 1.61 1.52 1.20 0.43
Finland 1.01 1.18 1.01 0.54
France 1.62 1.84 1.20 0.65
Ireland 2.27 3.77 1.41 1.39
Italy 1.20 1.25 1.06 0.41
Lithuania 3.79 3.40 1.45 0.88
Luxembourg 1.00 1.11 0.85 0.24
Latvia 1.98 1.82 1.11 0.46
Netherlands 1.84 5.67 1.41 1.30
Portugal 2.09 2.07 1.43 0.43
Slovenia 1.47 1.47 1.37 0.36
Slovakia 1.57 1.99 0.95 0.51
Notes: We denote by σ(·) the volatility of the variable in the

parenthesis; x
(1)
tq

and x
(5)
tq

denote GVA and tangible investment

respectively both observed on quarterly frequency. The volatility

of each time series has been computed for the first differences of

the log-transformed variables.

Table 3: Correlations of intangible variables with respect to GVA and tangible investment

Countries Cor(ỹNI
tq , x

(2)
tq ) Cor(ỹItq , x

(2)
tq ) Cor(ỹgvatq , x

(2)
tq ) Cor(ỹItq , x

(21)
tq )

Austria 0.46 0.36 0.77 0.25
Belgium 0.23 0.21 0.63 0.16
Germany 0.64 0.53 0.85 0.61
Estonia 0.59 0.52 0.75 0.40
Spain 0.46 0.35 0.61 0.58
Finland 0.60 0.56 0.76 0.47
France 0.54 0.54 0.79 0.48
Ireland -0.29 0.20 0.33 0.23
Italy 0.64 0.59 0.79 0.44
Lithuania 0.37 0.40 0.77 0.23
Luxembourg 0.27 0.30 0.30 0.28
Latvia 0.54 0.54 0.70 0.40
Netherlands 0.21 0.10 0.47 0.12
Portugal 0.50 0.50 0.56 0.45
Slovenia 0.66 0.56 0.69 0.46
Slovakia 0.46 0.45 0.66 0.24
Notes: x

(1)
tq

and x
(5)
tq

denote GVA and tangible investment respectively; both observed on quarterly

frequency. The correlations have been computed for the first differences of the log-transformed

variables in each of the time series.

3.3 Econometric application: A dynamic factor model

We utilize the constructed quarterly data to estimate a standard dynamic factor model. The purpose of this
experiment is to illustrate the need for measuring the intangible economy at a quarterly frequency, rather
than to provide a meticulous econometric analysis of the intangible economies in the Eurozone. We consider
an one-factor model in which the constructed quarterly variables of the i-th country, i.e. the total intangible
investment, the non-national account intangible investment and the GVA adjusted are jointly modelled. We
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set ỹi,j,tq to be the measurement constructed for the j-th variable5, j = 1, 2, 3, of the i-th country, i = 1, . . . , N ,
in the q-th quarter of year t, t = 1, . . . , T and we assume that,

ỹi,j,tq = wijftq + ei,j,tq , ei,j,tq ∼ N(0, σ2
ij), (1)

where ftq denotes the value of the common factor in the q-th quarter of the t year and wij is the factor loading
that corresponds to the j-th variable and the i-th country. To model the time evolution of the latent factor
we assume an autoregressive process of order one,

ftq = ϕft−q + ηtq , ηtq ∼ N(0, σ2
η)

where ft−q denotes the value of the factor one quarter before tq and ϕ ∈ (−1, 1) to ensure a stationary process.

To estimate the model we follow the Bayesian paradigm as Kose et al. (2012) and Berger et al. (2021). After
assigning prior distributions to the parameters of the model we employ a Markov Chain Monte Carlo algorithm
to draw samples from the joint posterior of the latent factor path, the factor loadings and the variances of the
error terms in (1). In the supplementary material we provide all the details for the prior distributions that we
assign to the parameters of the model.

Figure 3 illustrates that the estimated global factor captures the macroeconomic cyclical fluctuations
(booms/busts) observed in Eurozone the 1995Q1-2018Q4 period. The light grey shaded area depicts the
Euphoria period that preceded and followed the introduction of the common currency. The grey shaded
area depicts the eruption of the Global Financial Crisis (GFC) in 2007Q1-2009Q4, while the light dark grey
illustrates the subsequent European Debt Crisis (EDC), i.e., 2010Q1-2014Q1. The dark grey shaded area
shows the period of recovery, i.e., 2014Q2-2018Q4. Clearly, the constructed time series data series exhibit
cyclical properties similar to those observed in standard quarterly macroeconomic series of Eurozone.

We also decompose the volatility of the intangible economy in each country to the volatility generated
by the common factor and other unobserved characteristics. By inspecting Table 4 we conclude that the
global factor accounts for a fraction of the variation in Eurozone intangible economies. This implies a relative
synchronization in the cycles of Eurozone intangible intensive production activities. By comparing the
decomposition of intangible economy as measured by total intangible investment and/or intangible investment
not currently included in the SNA with the respective decomposition of total economy as it is measured by
GVA, we can claim that intangible measurements across most Eurozone countries seems more synchronized
than the aggregate business sector (e.g., compare the 1st and/or 3rd with the 5th column).

Figure 3: A global factor for Eurozone intangible economies

5Before applying the dynamic factor model we calculate the first differences of the log-transformed constructed variables.
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Table 4: Volatility decomposition

ỹNI
tq ỹItq ỹgvatq

Countries Factor Error Factor Error Factor Error
Austria 0.19 0.81 0.25 0.75 0.15 0.85
Belgium 0.21 0.79 0.03 0.97 0.07 0.93
Germany 0.30 0.70 0.49 0.51 0.24 0.76
Estonia 0.06 0.94 0.39 0.61 0.25 0.75
Spain 0.31 0.69 0.39 0.61 0.36 0.64
Finland 0.08 0.92 0.35 0.65 0.33 0.67
France 0.26 0.74 0.36 0.64 0.24 0.76
Ireland 0.26 0.74 0.47 0.53 0.01 0.99
Italy 0.36 0.64 0.42 0.58 0.36 0.64
Lithuania 0.33 0.67 0.03 0.97 0.12 0.88
Luxembourg 0.22 0.78 0.49 0.51 0.14 0.86
Latvia 0.03 0.97 0.22 0.78 0.18 0.82
Netherlands 0.36 0.64 0.17 0.83 0.02 0.98
Portugal 0.09 0.91 0.17 0.83 0.25 0.75
Slovenia 0.17 0.83 0.19 0.81 0.25 0.75
Slovakia 0.17 0.83 0.21 0.79 0.03 0.97

4 Conclusions

In this paper, we adopted a machine learning approach to construct quarterly time series measurements for
intangible economies in Eurozone countries. Our proposed approach offers several advantages over other
popular econometric techniques. It requires minimal preprocessing of the data and does not raise concerns
of multicollinearity and/or endogeneity. The constructed time series can be used in various macroeconomic
applications, such as macroeconomic modelling, estimation of macroeconometric models and macroeconomic
policy evaluation.

Data availability

Data will become available upon request.
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Appendix

A: Additional Figures
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Figure 4: (a) GVA share of intangible investment and (b) GVA share of intangible investment (normalized
1995=1)
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Figure 5: Intangible to tangible investment EU average

B: Technical details of data construction

By using the XGboost method (Chen and Guestrin, 2016) we wish to construct a function G such that

ŷt = G(x
(1)
t , . . . , x

(d)
t ) is an accurate prediction for the true value yt. XGboost is an ensemble of S regression

trees (gs, s = 1, . . . , S) where a prediction ŷt is obtained as

ŷt = G(xt) =

S∑
s=1

gs(xt), gs ∈ G, (2)

where xt = (x
(1)
t , . . . , x

(d)
t ), G is the space of the regression trees and each function gs corresponds to an

independent tree structure with M number of leaves and leaf scores V ∈ RM . The functions gs are determined
by minimizing the regularized objective

L =

T∑
t=1

ℓ(ŷt, yt) +

S∑
s=1

Ω(gs), (3)

where ℓ is a differentiable convex loss function which measures the difference between the predicted and the
target label and

Ω(g) = Mγ + (1/2)λ

M∑
m=1

v2m,
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is a regularization term which penalizes the complexity of the model to avoid over-fitting with vm being
the score on the mth leaf, while γ and λ are constants that control the degree of regularization. Since the
parameters of the model in (3) are the functions gs, traditional optimization methods of the Euclidean space
cannot be used. Instead the model is trained in an additive manner by first noting that the additive structure

of the prediction in (2) implies that ŷ
(i)
t = ŷ

(i−1)
t + gi(xt), where the superscript i denotes the ith iteration of

the optimization procedure. Then, objective in (3) becomes

L(i) =

T∑
t=1

ℓ(yt, ŷ
(i−1)
t + gi(xt)) + Ω(gt). (4)

After a second order Taylor approximation, and by removing all the constant term, it is the case that

L̃(i) =

T∑
t=1

[gtgi(xt) +
1

2
htg

2
t (xt)] + Ω(gi), (5)

where gt = ∂ŷ(i−1)ℓ(yt, ŷ
(i−1)) and ht = ∂2

ŷ(i−1)ℓ(yt, ŷ
(i−1)) are first and second order gradient of the loss

function and ŷ(i−1) is the history of the predictions up to the (i−1)th iteration of the algorithm. By expanding
the regularization term Ω, and noting the quadratic form of equation (5), it is straightforward to find the
optimal weights V . Therefore, for a given tree structure we can compute the optimal leaf weights V and
calculate the corresponding value of (4). Since it is impossible to make these calculations for all the possible
tree structures, Chen and Guestrin (2016) show that for the loss function in (4) it is straightforward to
calculate a score for a leaf node during splitting and, based on this score, they propose to utilize the so-called
exact greedy algorithm in order to detect the split point that results in maximum loss reduction.

The proposed Algorithm for construction of quarterly time series data

Algorithm 1 summarizes the steps of the technique that we developed to construct quarterly time series for
which we have access to their annual counterpart.

Algorithm 1 The developed algorithm for construction of quarterly time series

Input: Time series {yt}Tt=1 observed on annual frequency, D time series observed on quarterly frequency

{x(d)
tq }Dd=1, for q = 1, 2, 3, 4 and t = 1, . . . , T .

1: Set x
(d)
t =

∑4
q=1 x

(d)
tq , for each d = 1, . . . , D and t = 1, . . . , T .

2: Train XGboost on a regression model with responses (y1, . . . , yT ) and features (x1, . . . ,xT ) where xt =

(x
(1)
t , . . . , x

(D)
t ) to learn a function G such that ŷt ≈ yt where ŷt = G(xt) for each t = 1, . . . , T .

3: Set ŷtq = G(x
(1)
tq , . . . , x

(d)
tq ), for each t = 1, . . . , T and q = 1, 2, 3, 4.

4: for t = 1, . . . , T do
5: Set ϵt = yt −

∑4
q=1 ŷtq

6: if ϵt > 0 then
7: Set ỹtq = ŷtq + ϵt/4
8: else
9: Set ỹtq = ŷtq − ϵt/4

10: end if
11: end for

Output: Time series {ỹtq}Tt=1, q = 1, 2, 3, 4.

C: Prior distributions for the dynamic factor model

To assign prior distributions on the parameters of the dynamic factor model presented by Section 3.3 of
the main paper we work as follows. To ensure identifiability of the latent factor and its loadings we follow
Kose et al. (2003) and we assume that σ2

η = 1 and that w11 > 0 in equation (1) of the main paper. We also

assume that σ2
ij follow inverse gamma (IG) distributions; σ2

ij
iid∼ IG(TQ, 0.1TQ) (Berger et al., 2021), where

i = 1, . . . , N , j = 1, 2, 3 and TQ denotes the length of each one of the constructed quarterly time series. For
w11 we assume a truncated standard normal as prior distribution and for the rest wij parameters we set

wij
iid∼ N(0, 1). Finally, for the parameter ϕ of the autoregressive process of the latent factor we assume that

it is uniformly distributed on (−1, 1).
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