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Abstract

An empirical investigation of whether topological properties associated with point
clouds formed by cryptocurrencies’ prices could contain information on (locally) explo-
sive dynamics of the processes involved. Those dynamics are associated with financial
bubbles. The PSY method as well as notions associated with the TDA like persistent
simplicial homology and landscapes are employed, on a data set consisting of the time
series of daily closing prices of the Bitcoin, Ethereum, Ripple, and Litecoin. The note pro-
vides some empirical evidence that TDA could be useful in detecting and time-stamping
financial bubbles. If robust, such an empirical conclusion opens some interesting paths
of further research.

Key words: Financial Bubbles; Mild Explocivity, PSY, Bubble Detection and Time-
stamping, Topological Data Analysis, Persistent Simplicial Homology, Persistent Land-
scapes, EGARCH, Cryptocurrencies.

1 Introduction

The present note provides with an empirical investigation of whether topological properties
associated with point clouds formed by cryptocurrencies’ prices could contain information
on (locally) explosive dynamics of the processes involved. Those dynamics are associated
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with financial bubbles. The interest lies on both the issue of the statistical inference on the
existence and timestamping of bubbles, as well as on the empirical predictability of their
formation and/or termination dates. The analysis here, uses tools from the econometrics
of locally explosive auto-regressive processes as well as from the topological data analysis-
hereafter TDA.

Bubbles are known to form in the price processes of financial assets due to-among others-
speculative behavior, see Diba and Grossman (1988) [8]. The determination of whether they
have already occurred in some historical sample could of interest to theoretical and empirical
finance and economics. Early empirical detection of the formation and more importantly of
the collapse of a financial bubble could also be important to theoreticians and/or practitioners,
since speculative bubbles may be associated to financial crashes, with sometimes detrimental
effects for the functioning of the financial markets and of the real economy.

Bubbles are partially latent. One methodology for their empirical detection and time
stamping-that is also used in this note-is proposed by Phillips, Shi and Yu (2015) [18], [19],
hereafter PSY. The method is based on the Philips and Magdalinos (2007) [17] argument
that underlying bubble behavior is signalled via locally explosive behavior of asset prices.
The PSY method relies on right-tailed Dickey-Fuller unit root tests via a recursive estimation
over rolling windows of increasing sizes. It can detect the existence of more than one bubble
within a sample, as opposed to the method of Phillips, Wu and Yu [20], hereafter PWY. Also,
PSY can consistently timestamp bubbles associated with mildly explosive autoregressive linear
dynamics, i.e. in such probabilistic environments it can estimate consistently the origination
and the termination date. It thus provides an empirical account for the existence, duration
and time-stamping of in-sample speculative bubbles. One question regarding PSY is whether
it is robust to local expocivity that deviates from linear dynamics.

TDA constitutes a recent and fast-growing branch of Computational and Applied Math-
ematics relying on the field of Algebraic Topology, see for example Hatcher (2001) [13], and
Munkres (2018) [14]. Its applications spread out to several fields with highly significant con-
tributions, such as the case of detecting a new subgroup of breast cancers, see Nicolau, Levine,
and Carlsson (2011) [15], or the study concerning the spread of corona virus, see Chen and
Volic (2021) [7]. It extracts robust topological information from complex and high dimensional
datasets with noisy elements with computational convenience. It can thus provide with useful
tools for data analysis, as it employs topological and geometric techniques, see Edelsbrunner,
Letscher, and Zomorodian (2002) [9] in order to observe how data can be analyzed in spe-
cific spaces, how their analysis can be quantified and how statistics and other computational
methods can be used for investigating a plethora of questions and topics in different fields
and subfields, such as financial time series analysis see for example Gidea (2017) [11], Gidea
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and Katz (2018) [12], extracting, eventually, useful and robust conclusions.
The results of Gidea and Katz (2018) [12] essentially motivate the present empirical ex-

ercise. They find that topological information associated with persistent homology could
provide with empirical early warning for financial crashes. The research question here, is
whether there is empirical evidence on whether TDA could either provide with tools that
could help in the detection and time-stamping of speculative bubbles, and/or provide with
some early indicators for their initiation and/or burst. Given the non-parametric nature of
the analysis, such tools could remain robust to deviations from linear locally explosive pro-
cesses. Thus, here tools related to persistent homology are employed in order to investigate
whether there is empirical topological information that signals the formation or the begining
or collapse of financial bubbles, already empirically timestamped via the aforementioned PSY.

The PSY method and the TDA are employed on a data set consisting of the time series
of daily closing prices for the four largest cryptocurrencies by market capitalization, i.e. the
Bitcoin, Ethereum, Ripple, and Litecoin. The empirical cryptocurrencies’ analysis occupies
now a large strand of the empirical finance literature, given research questions about their
potential diversification benefits, their relations to other asset classes, etc-see Anyfantaki et
al. (2021) [1] along with the references therein. Cryptocurrencies empirically show asym-
metric risk profiles since their returns exhibit high volatility along with significant (and often
negative) empirical skewness and kurtosis (see Table 1 of summary statistics). Their dynamic
behavior is consistent with the existence of bubbles and mild explosivity (see again Anyfan-
taki et al. (2021) [1]), making them an ideal dynamic empirical environment for the current
research question.

The results do not seem to indicate that TDA could provide early warnings. They however
provide some empirical evidence that TDA could be useful in detecting and time-stamping
financial bubbles. If robust, such an empirical conclusion opens some interesting paths of
further research.

The remaining note is organized as follow: in the following section the PSY and TDA
methodologies used, are presented. In Sections 3 we describe our data and provide with the
empirical analysis, and in the final section we conclude.

2 Methodology

Initially, the PSY algorithm is applied on the dataset consisting of time series of daily logarith-
mic prices of the aforementioned four cryptocurrencies. This intends to detect and time-stamp
in-sample mildly explosive behavior-see Phillips and Magdalinos (2007) [17]. Any such pe-
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riod of explosive dynamics is interpreted as a speculative bubble. As mentioned before, the
algorithm provides consistent estimates regarding the existence and the location of each bub-
ble. Specifically, the methodology relies on the augmented Dickey-Fuller (ADF) test, which
tests whether the prices follow a random walk, against the alternative of mild explocivity-
see Phillips and Magdalinos (2007) [17]. The following formula describes the discrete time
autoregressive dynamics in the presence of M multiple bubbles within the time interval [1, T ]:

pt = (pt−1 + εt) · 1{t ∈ T0}+ (δT · pt−1 + εt) · 1 {t ∈ Bj}

+

M∑
j=1

 t∑
d=τf+1

εd + p∗τf

 · 1 {t ∈ Tj} ,

where T0 = [1, τ1s] and Tj =
(
τjf , τ(j+1)s

)
, for j = 1, 2, . . . ,M − 1 and TM = (τMf, T ),

Bj = [τjs, τjf ], for j = 1, 2, . . . ,M , p∗τf = pjs + p∗j with p∗j = Op (1) and δT = 1+ c · T−η with
c > 0 and η ∈ (0, 1). The algorithm conducts recursive ADF tests on a rolling window, which
depends on the sample size. Then, a sequence of BSADF (Backward Supremum Augmented
Dickey Fuller) test statistics is derived and the elementwise comparison of this sequence with
the respective bootstrap critical values provides with consistent estimators of the bubbles’
origination and termination dates.

Next, tools of TDA-related to the concept of persistent homology-are implemented on
the logarithmic returns of the cryptocurrencies under consideration. We work either with
pairs, or with the ensemble of cryptocurrencies, thus constructing via the relevant time series,
point clouds inside R2 or R4, respectively-see Carlsson (2009) [4], and (2014) [5]. Specifically,
selecting a sliding window w ≪ n, where n is the size of the sample, we construct n −
w + 1 point clouds, each of which has the form of the w × 2 and w × 4 matrix Xi :=
(xi, xi+1, . . . , xw+i−1) , i = 1, · · · , n−w+1, where xj is the column vector of the logarithmic
returns in the analysis included cryptocurrencies observed at time j in the sample.

Then, for arbitrary ε > 0, each point cloud is transformed into an abstract simplicial
complex. Specifically, the Vietoris-Rips complex-hereafter VRC- R (Xi, ε) of the point cloud
is considered-see for example Ch. 2 of Ghrist (2014) [10]; there a k-simplex is actually the
set of k + 1 points in the cloud, if any, defined by the property that the Euclidean distance
between each pair of points in the simplex is less than or equal to ε. Allowing the radius ε
to vary, for each i = 1, · · · , n − w + 1, a filtration of VRCs (R (Xi, ε))ε>0 is obtained, since
0 < ε1 < ε2 implies that R (Xi, ε1) ⊆ R (Xi, ε2).
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For each VRC its’ k-dimensional simplicial homology group Hk (R (Xi, ε)) is considered-
see Ch. 4 of Ghrist (2014) [10]; there H0 (R (Xi, ε)) is the group generated by independent
elements that correspond to connected components, H1 (R (Xi, ε)) is generated by indepen-
dent elements that correspond to loops, H2(R(Xi, ε)) is the group generated by elements
that correspond to voids, and generally, Hk(R(Xi, ε)) is the group generated by indepen-
dent elements that correspond to k-dimensional holes. The simplicial homology (with integer
coefficients) of R (Xi, ε) is then the sequence of homology groups(Hk(R(Xi, ε)))k∈N. The
filtration property of the VCRs directly implies an analogous property for each level of ho-
mology; 0 < ε1 < ε2 implies that Hk(R(Xi, ε1)) ⊆ Hk(R(Xi, ε2)). This means that for any k
there exist canonical inclusion homomorhisms Hk(R(Xi, ε1)) ↪→ Hk(R(Xi, ε2)), which along
with obvious arguments of total boundedness for the point clouds at hand, then imply that
for any ε > 0, and any homology class c ∈ Hk(R(Xi, ε)), there exist 0 < ε1 ≤ ε < ε2 such
that ∀0 < δ < ε1, c /∈ Hk(R(Xi, ε1 − δ)), c ↪→ cε⋆ ̸= 0, ∀ε1 ≤ ε⋆ < ε2, and c ↪→ 0, ∀ε⋆ ≥ ε2.
In simple terms, c is born at the time ε1, and dies at the time ε2. Hereafter, bc := ε1 and
dc := ε2 denote the birth and the death of the topological features represented by the par-
ticular homology class, and the interval [bc, dc] the lifespan that it persists. The accounting
of the lifespan of the underlying homology classes is then termed persistent homology; this
is thus an algebraic method that gives us information about the lifespans of the topological
features that reside in the VRCs. If a topological feature ‘lives’ for a large time period, then
it is considered as a significant feature. On the other hand, if its ‘life’ is small, then it is
considered as a noisy one. In the present note analysis is restricted to H1(R(Xi, ε)) for each
VRC and ε as in Gidea and Katz (2018) [12].

A way to represent the persistence information of the generators of the order one homology
group is via persistence diagrams of order one-see for example Carlsson et al. (2005) [6]. Those
are two dimensional. Their horizontal axis shows birth values while their vertical one shows
the death values. The diagrams contain the birth and death values of each homology class
at the group, along with information about its multiplicity. They also contain the diagonal
of R2, the points of which are interpreted as trivial homology generators with zero life span
and infinite multiplicity. Analysis of the persistence diagrams can be facilitated by endowing
the set of all possible suchlike diagrams with the Wasserstein metric of degree p > 1-see
Gidea and Katz (2018) [12] and the references therein; this has the advantage of pertubation
robustness, yet it does not enjoy useful analytical properties like completeness that could
facilitate statistical analysis. A way to overcome this, is by embedding the aforementioned
space, to some complete function space-see Bubenik (2015) [3]. As in the present work the
TDA methodology of Gidea and Katz (2018) [12] is followed, we work with such an embedding
producing the notion of persistence landscapes of order one: if P is a persistence diagram (of
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order one) and (b, d) ∈ P off the diagonal, define the piecewise linear function:

f(t) :=


t− b , t ∈ [b, (b+ d)/2]

d− t , t ∈ [(b+ d)/2, d]

0 , t /∈ [b, d].

Then the first persistence landscape function is obtained as a pointwise maximum w.r.t. the
off-diagonal elements of the persistence diagram:

λ1(t) := max {f(t)|(b, d) ∈ P, (b, d) non diagonal} .

Whenever the maximum does not exist as a real number, λ1(t) is set equal to zero. This is
not however relevant to our analysis which concerns by construction finite point clouds.

Each persistent diagram of order one is hence represented via a bounded integrable real
valued function, and even though this representation is not full-see Par. 2 of Gidea and Katz
(2018) [12], the representation’s image becomes a complete metric space when endowed with
the standard Lp-norm, p ≥ 1, w.r.t. the Lebesgue measure, i.e. ∥λ1∥pp :=

∫
R |λ1(t)|pdt. Thus,

the topological information present in the persistent homology (of order one) of each point
cloud in the analysis, is represented by a real number-the Lp norm of the associated persistent
landscape of order one. When the above is performed at each point cloud defined in the rolling
window, a time series of such norms is obtained (∥λ1∥p)i=1,··· ,n−w+1.

The analysis is then focused on properties of this series. Gidea and Katz (2018) [12] provide
empirical evidence that the growth and the moving window variability of the Lp norms of
particular financial time series seem to provide some early information of financial crashes.
The present paper takes a somewhat different route. As in the previous work, the analysis is
restricted to p = 1, 2. Instead of constructing explicit moving average variability filters for the
times series of the associated norms, a volatility filter is provided via the maximization of the
Gaussian (Quasi-) likelihood function of the EGARCH(1,1) model-see for example Straumann
(2005) [21]. Specifically, the demeaned norms time series (ji)i=1,··· ,n−w+1 is assumed to be
approximated by a conditionally heteroskedastic process of the form: ji = zi

√
hi, hi :=

exp(ω + αzi−1 + γ|zi−1| + β ln(hi−1)), where zi represents a martingale difference process,
and hi is a conditional volatility process obtained as a solution of the Stochastic Recurrence
Equation above. Hence j is approximated by a martingale transform process, whereas both
elements of the transform, along with the (pseudo-) true values of the associated parameter
θ := (ω, α, γ, β). The particular conditionally heteroskedastic model is selected due to its
versatility in embodying several stylized facts of conditional second moments of financial time
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series-see again Straumann (2005) [21]. The methodology however allows for the consideration
of other suchlike models.

Given, the sample (ji)i=1,··· ,n−w+1, and an initial condition ĥ1 for the latent volatil-

ity process, the Gaussian Log-likelihood function ℓ(ω, α, γ, β; ĥ0) :=
∑n−w+1

i=1 ln(ĥi(θ)) +
j2i

ĥi(θ)
, ln(ĥi(θ)) = ω + α ji−1√

ĥi(θ)
+ γ |ji−1|√

ĥi(θ)
+ ln(ĥi−1(θ)), i > 1, is then maximized w.r.t.

θ, to obtain the Gaussian QMLE θ̂ for the parameter, upon which and the initial condition
the volatility filter (ĥi(θ̂))i=1,n−w+1 is then constructed. Blasques et al. (2018) [2] provide
with sufficient conditions that ensure the strong approximation of the volatility filter by a
process that conveys probabilistic properties of the associated time series as n → ∞, even if
the EGARCH model is misspecified.

Finally, and in the spirit of Gidea and Katz (2018) [12], the time-path of the filter is
contrasted to the PSY time stamping of the bubbles in order to descriptively extract empirical
topological information about the bubbles formation and burst.

3 Empirical Analysis

3.1 Data

The financial time series used in the analysis consist of the four cryptocurrencies’ daily closing
prices (in US dollars) that span the period between August 07, 2015 and August 31, 2021.
They are obtained from the Bitfinex exchange market through the CoinMarketCap. In total,
the dataset involves 2217 daily observations on each cryptocurrency involved. TDA is per-
formed on the relevant daily logarithmic returns; this sample thus contains 2216 observations
for each cryptocurrency. Table 1 exhibits summary statistics for the latter.

Mean S.D. Skewness Kurtosis

Bitcoin 0 0.04 -0.81 11.77

Ethereum 0 0.07 -3.23 67.17

Ripple 0 0.07 2.08 33.87

Litecoin 0 0.06 0.35 11.93

Table 1: Summary statistics of the logarithmic returns of each cryptocurrency.

7



As mentioned in the introduction, those empirical moments suggest a risk profile that is
characterized by high volatility (compared to the mean), and even higher levels of (absolute)
skewness and kurtosis. It is noted though that the possibility of local non-stationarity for the
returns could imply that those empirical moments may not approximate well the analogous
population moments (even if asymptotically stationary versions of the later are well defined).

3.2 Numerical Environment

The numerical aspects of the analysis are mostly performed inside the programming environ-
ment of R. Specifically the package psymonitor is used for the PSY method, and the package
TDA is used for the extraction of persistence homology and landscapes. The optimization of
the Gaussian log-likelihood function, and the subsequent derivation of the filter was performed
in Matlab, via the optimization routine fmincon.

3.3 Results

The PSY algorithm is applied to the daily logarithmic closing prices of each cryptocurrency.
The minimum window size equals 106 implied by the algorithm’s formula T · (0.01 + 1.8/

√
T),

where T is the length of logarithmic prices, i.e. 2217. For each cryptocurrency, the sequence
of BSADF test statistics is a vector of dimension 2112. Its’ elements are compared to the
analogous critical values obtained via bootstrap, and every exceedance is counted as a bubble
date. Table 2 presents the bootstrap critical values for each cryptocurrency for the 90%, 95%
and 99% significance levels.

Bitcoin Ethereum Ripple Litecoin

90% 0.26 0.28 0.27 0.34

95% 0.58 0.72 0.74 0.60

99% 1.42 1.35 1.36 1.39

Table 2: The bootstrap critical values for Bitcoin, Ethereum, Ripple and Litecoin.

The first day the BSADF test statistic lies above the corresponding 95% level critical
values is counted as the origination day of a bubble. Given an origination, the consequent
first day at which the statistic lies below the critical value counts as the termination date
for the particular epoch of mild explocivity. Figure 1 depicts the resulting inference for the
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in-sample bubbles superimposed to the time series path of the logarithmic closing prices for
the Bitcoin, Ethereum, Ripple and Litecoin.

[Insert Figure 1 about here]

All cryptocurrencies seem to have several instances of explosive behavior for the time period at
hand, and at least one period of significant duration initiated during 2017 in all cases. Given
our larger and more recent dataset, the current results refresh the analogous and similar
results of Par. 3.1 of Anyfantaki, Arvanitis and Topaloglou (2021) [1].

The TDA methodology is then implemented to the time series of the logarithmic returns of
the four cryptocurrencies, each of 2216 observations. The data are transformed to sequences
of point clouds via a. the choice of the set of cryptocurrencies included in the analysis, and
b. the choice of the sliding window. As mentioned in the methodology section, the analysis
is either performed on every possible pair of cryptocurrencies, hence the resulting clouds are
in each such subsets of R2, or performed in the totality of the assets, hence the resulting
clouds are subsets of R4. The results of the analysis of the pairs are presented below in
some indicative cases-the remaining cases are similar and available to the interested reader
upon request. For b., two values for w are investigated. The first is relevant to the window
used in the PSY procedure, i.e. w = 105. In this case 2112 point clouds are obtained. The
second choice of sliding window covers the duration of the largest bubble period as estimated
in-sample by PSY; w′ = 200. Then 2017 point clouds are obtained. For each choice of the
sliding window, the time series of the Lp-norms and normalized Lp-norms of the persistent
landscapes of order one, for p = 1, 2, are then derived.

Figures 2 and 3 show the paths of the aforementioned norms for each choice of the sliding
window. Superimposed to the PSY estimates of the bubble periods, it is noted that the
trajectories for both the normalized norms for the point clouds obtained from the totality of
the cryptocurrencies, for both choices of the sliding window-see the fourth panel in Figure
3-seem to have a neighborhood of their maxima at which the paths assume quite large and
volatile values, and those neighborhoods seem to lie in close vicinity to the large duration
bubbles filtered by the PSY analysis.

[Insert Figures 2-3 about here]

Figures 4-7 depict the analogous analyses for the respective filtered EGARCH volatility
paths of the associated norms. Those are superimposed in each case to the PSY timestamps
of the relevant bubbles. Again, especially for the clouds that correspond to the entire set
of cryptocurrencies, neighborhoods of ”intensive activity” around the the maxima of the
EGARCH volatilities seem to depict at least the large duration PSY bubbles in several cases.
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[Insert Figures 4-7 about here]

4 Discussion

The abovementioned results seem somewhat dissimilar to the empirical results of Gidea and
Katz (2018) [12]. Specifically, the intensive activity of the trajectories of the norms and of
their volatilities seem to be related to the PSY timestamps of bubbles of considerable duration,
even though they do not seem to provide some early warning for the formation and/or the
burst of speculative bubbles.

The results-if robust w.r.t. the choice of the associated parameters-raise however the re-
search question of whether-complementary to methodologies like the PSY-formal inferential
procedures based on persistent homology and landscapes could be designed for the detec-
tion and timestamping of time series local explosive behavior. Such procedures if possible,
could be related to more general forms of locally explosive behavior compared to the linear
autoregressive ones used in PSY.

The robustness of the aforementioned descriptive results can be tested via further choices
of the parameters; the sliding windows that specify the sequence of available point, the sets of
assets that are included in the clouds, the orders of the homology groups utilized, the choice of
norms, and of the volatility models. Moreover, further models of conditional heteroskewness
and/or heterokurtosis can be employed in order to assess the behavior of the aforementioned
conditional higher moments of the norms of the persistent landscapes during bubbles.

More generally the specification of the probabilistic properties of the persistent landscapes
that may carry the topological information of local explocivity could be of central importance
to the aforementioned research question and is thereby left to future research. Suchlike
research could also be benefited from research on the derivation of the limiting properties
of random elements associated with persistent homology in the spirit of Owada (2018) [16].
Especially cases where the point clouds employed are associated with non stationary time
series and heavy tailed marginals seem quite an exciting line of further research.
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Figure 1: The green areas represent the periods of bubbles for Bitcoin (upper left), Ethereum
(upper right), Ripple (lower left), and Litecoin (lower right).
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Figure 2: Time series of Lp-norms (left) and normalized Lp-norms (right), p = 1 (blue), p = 2
(red), for the pair Bitcoin - Ethereum, for w = 105 (up) and for w′ = 200 (down).
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Figure 3: Time series of Lp-norms (left) and normalized Lp-norms (right), p = 1 (blue), p = 2
(red), for the ensemble of cryptocurrencies, for w = 105 (up) and for w′ = 200 (down).
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Figure 4: Time series of EGARCH(1, 1) filtered volatility of the normalized L2-norms, for
the pair Bitcoin - Ethereum and the ensemble of cryptocurrencies, and the periods of bubbles
of Bitcoin and Ethereum (w = 105).
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Figure 5: Time series of EGARCH(1, 1) filtered volatility of the normalized L2-norms, for
the pair Ripple - Litecoin and the ensemble of cryptocurrencies, and the periods of bubbles
of Ripple and Litecoin (w = 105).
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Figure 6: Time series of EGARCH(1, 1) filtered volatility of the normalized L2-norms, for
the pair Bitcoin - Ethereum and the ensemble of cryptocurrencies, and the periods of bubbles
of Bitcoin and Ethereum (w′ = 200).
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Figure 7: Time series of EGARCH(1, 1) filtered volatility of the normalized L2-norms, for
the pair Ripple - Litecoin and the ensemble of cryptocurrencies, and the periods of bubbles
of Ripple and Litecoin (w′ = 200).
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