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Abstract

We propose non parametric estimators for the three pass regression filter for factor

extraction from large dimensional datasets when the factor loadings, the proxy and the

target equation parameters are allowed to vary stochastically over time. We provide

theoretically optimal and empirically efficient solutions for the choice of bandwidth of

the kernel-based estimators. Moreover, we prove consistency of the associated fore-

casts when both the time and the cross section dimensions of our dataset become large.

We also link our proposals with the time varying parameter constrained least squares

estimator and with the time varying partial least squares method, and show that these

are special cases of our approach. We asses the finite sample performance of our ap-

proach by an extensive set of Monte Carlo experiments, also comparing it with other

alternatives proposed in the literature. Finally, we illustrate the empirical advantages

of our approach in an out of sample forecasting exercise, using a large panel of macroe-

conomic series to predict key variables of interest.
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1 Introduction

Factor models can summarize efficiently information from large data sets and have re-

ceived extensive attention in the empirical macro and forecasting literature, starting from

the seminal contributions by Stock and Watson (2002a), Stock and Watson (2002b), Bai

(2003), Forni et al. (2000), Forni et al. (2005) (see also Stock and Watson (2011), Stock and

Watson (2015), for reviews). Stock and Watson (2009) and Bates et al. (2013) argue that

when the factor loadings undergo small instabilities, the factor estimates obtained via the

conventional principal component analysis (PCA) are still consistent. Simulation and em-

pirical support for this proposition are provided by Banerjee et al. (2008), who find robust-

ness of PCA also when there are limited changes in the dynamics of the factors. However,

since macroeconomic datasets typically span a long time period, it is restrictive to assume

that the factor loadings and their dynamic evolution are time-invariant or undergo negli-

gible changes during the whole period.

The problem of structural changes in factor loadings has received a great deal of at-

tention in recent years. Among the relevant contributions, some focus on detecting and

modeling a small number of large breaks, e.g., Chen et al. (2014), Breitung and Eickmeier

(2011), Cheng et al. (2016), Ma and Su (2018), Massacci (2017), others assume either slow

changes in the loadings, e.g., Su and Wang (2017),1 or propose a modified Kalman filter

based estimation of a fully parametric time-varying factor model, as in Eickmeier et al.

(2015).

Another strand of the factor literature focused on improving the efficiency of factor es-

timators and associated forecasts, by focusing on a relevant subset of the available large set

of variables, or factors. A first possibility is to pre-select the indicators that are most corre-

lated with the target variable of interest, see for example Boivin and Ng (2006) and Groen

and Kapetanios (2016). A more efficient solution is the three-pass regression filter (3PRF)

developed by Kelly and Pruitt (2015), (KP), which is computationally efficient as it is based

on a set of simple OLS regressions and has a number of (asymptotic) optimality proper-

ties, performs well in finite samples compared to more complex alternatives, and produces

good nowcasts and short-term forecasts for a variety of macroeconomic and financial vari-

ables, see KP. Basically, contrary to the method of principal components, 3PRF assures that

the estimated factors are those most relevant for predicting the target variable of interest.

1Su and Wang (2017) use a local kernel estimator in the time dimension to study gradual changes in a PCA
framework. This approach excludes sudden large changes and exploits only the data in a local neighborhood
of a particular time observation. Most importantly, they assume a deterministic parametrization for the
loadings which can be questionable for economic data.
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The 3PRF has been later extended to deal with mixed frequency data by Hepenstrick et al.

(2019) and to allow for Markov Switching in the factor loadings and dynamics by Guérin

et al. (2020). Yet, as Hansen (2001) points out, “it may seem unlikely that a structural break

could be immediate and might seem more reasonable to allow a structural change to take

a period of time to take effect”. Hence, it seems more realistic to assume smooth changes

rather than abrupt change.

The type of parameter time variation indeed is very important, as parametric meth-

ods are only optimal (and often only consistent) if the assumptions on the type of time

variation hold, but often testing these assumptions is difficult, as test statistics (e.g., An-

drews (1993), Corradi and Swanson (2014)) tend to have low power when applied with the

rather short time series typically available in macroeconomic applications. Hence, there

has been more and more interest in non-parametric modelling parameter time-variation.

While early studies, such as Robinson (1989), Robinson (1991), and Chen and Hong (2012)

assumed smooth deterministic changes, the more recent literature permits to have persis-

tent stochastic time variation and studies the properties of kernel-based estimators in this

context, see e.g. Giraitis et al. (2014), Giraitis et al. (2018), Giraitis et al. (2021).

In this paper, we assume stochastic non-parametric time variation in the parameters of

factor models, introduce kernel-based estimators in the context of the 3PRF for factor es-

timation and forecasting, establish the limiting distributions of the estimated factors and

factor loadings under the standard large N and large T framework, and prove consistency

of the associated forecasts. We also link our proposed method with the time varying pa-

rameter constrained least squares estimator and with the time varying partial least squares

method, and show that these are special cases of our approach. Finally, we propose a

BIC-type information criterion to determine the number of common factors in this context,

and suggest specific cross validation methods to select the bandwidths of the kernel based

estimators

We then assess the finite sample performance of our approach by an extensive set of

Monte Carlo experiments, also comparing it with other alternatives proposed in the litera-

ture, ranging from the standard 3PRF and PCA analysis, to more sophisticated PCA based

approaches. Overall, the relative performance of the TV-3PRF is quite satisfactory, with

gains up to 25-30% with respect to 3PRF, also for rather small sizes with comparable N and

T dimensions (N = 100, T = 100).

Finally, we illustrate the empirical advantages of our method in an out of sample fore-

casting exercise, using a large panel of US macroeconomic series to predict key variables

of interest, such as the Federal Funds Rate, employment, hours worked, housing starts, or
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the USD/pound exchange rate. The gains of the TV-3PRF are generally confirmed also in

this setting, making it not only an interesting theoretical contribution but also an additional

tool for applied econometrics and empirical economic analysis.

The rest of the paper is structured as follows. Section 2 describes the time-varying 3PRF

methods and the associated assumptions. Section 3 presents our theoretical contributions

and the relations with other popular methods in the literature. Section 4 discusses the

Monte Carlo results. Section 5 presents the empirical application. Section 6 summarises

the main results and concludes. All proofs are relegated to the Appendix.

2 The Model and the Estimators

In this section we discuss, in turn, the model, the estimation procedure, and the assump-

tions. The following section studies the properties of the estimators.

2.1 The model

Our set-up extends that of Kelly and Pruitt (2015) who first introduced the fixed parameter

three-pass regression filter (3PRF). We consider a target variable (y) that we wish to fore-

cast, by the use of a large set of predictors (x). Since the number of predictors (N) is large or

even larger than the number of time series observations (T), we assume a stochastic load-

ing, approximate factor model for the data. Yet, not all factors drive the target variable, but

a subset of them includes predictive information. We identify the set of relevant factors ( f )

by the use of (M) proxy variables (z), which are driven by the same factors as the target

variable. Formally, the stochastic parameter 3PRF model is described by the following set

of equations

yt+1 = β0t + β′
tFt + ηt+1 (1)

zt = λ0t + ΛtFt + ωt (2)

xt = ϕ0t + ΦtFt + εt (3)

where yt+1 is the variable that we wish to forecast (target variable); the full set of latent

factors is Ft = ( f ′t , g′t)
′, where ft is the set of K f > 0 relevant (for yt+1) factors, and gt is

the set of Kg > 0 factors that do not drive yt+1, but explain a portion of the large dataset

xt. According to this, we assume that the stochastic parameters of the equation (1) are

βt =
(

β′
f t, β′

gt

)′
, β

′
f t ̸= 0, β

′
gt = 0, Λt =

(
Λ f t, Λgt

)
, for the proxy equation and Φt =(

Φ f ,t, Φg,t
)
, for the large dataset equation, as well as β0t, λ0t, ϕ0t that correspond to the

stochastic intercepts. Since the set of M proxies in the vector zt, and the target variable

3



yt+1, are driven by the same factors ft, we set Λgt = 0 and require Λ f t to have full rank

(see assumptions below for more details). We can allow M << min (N, T). The full set

of K = K f + Kg factors in Ft drive the large set of predictors xt according to the stochastic

loading matrix Φt and the intercept ϕ0t.

Equations (1)-(3) define the factor structure. As mentioned, the target’s factor loadings,

βt =
(

β′
f t, 0′

)′
, allow the target to depend on a strict subset of the factors driving the

predictors. We refer to this subset as the relevant factors, which are denoted ft . The

irrelevant factors, gt, do not influence the forecast target but may drive the cross section of

predictive variables xt . The proxies zt are driven by the relevant factors. In addition, each

variable has an idiosyncratic component, whose properties are specified below.

2.2 The time-varying three pass regression filter

Our estimation algorithm is based on the use of kernels that are associated with weights,

kH,ts = K
( t−s

H
)
, KH,t = ∑T

s=1 kH,ts, where K (.) is generally specified as a probability den-

sity function. The bandwidth H governs the relative magnitude of the weights, with

H → ∞ and H = o (T). Popular choices for K (.) include the normal density kernel,

K (u) = exp
(
−1

2 u2
)

, the rolling window kernel, K (u) = I (0 ≤ u ≤ 1), and the exponen-

tial weighted moving average (EWMA) kernel, K (u) = exp (−u), for u ∈ [0, ∞).

Given the model in equations (1)-(3) the TV-3PRF consists of the following three steps.

Step 1: Run the time series regression of each predictor xit on the M proxies zt,

xit = ϕ0it + z′tΦit + ϵit, t = 1, .., T (4)

and retain the i-th predictor loading estimates Φ̂it, for t = 1, .., T as

Φ̂it =

(
T

∑
j=1

kH,tj
(
zj − zt

) (
zj − zt

)′)−1( T

∑
j=1

kH,tj
(
zj − zt

) (
xij − xit

)′) (5)

with zt = K−1
H,t ∑T

l=1 kH,ltzl, and xt = K−1
H,t ∑T

l=1 kH,ltxl. Collect the estimates of factor load-

ings, for all variables and each time period, in the matrix Φ̂t =
(

Φ̂1t, ..., Φ̂Nt

)′
.

Step 2: For each time period t, run the cross sectional regression, of xt = (x1t, .., xNt)
′ on Φ̂t,

so that each equation is

xit = ϕ0it + Φ̂′
itFt + εit, i = 1, .., N (6)

and retain the obtained estimates in the M × 1 vector F̂t obtained as

F̂t =
(

Φ̂′
t JNΦ̂t

)−1
Φ̂′

t JNxt (7)
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where JN ≡ IN − 1
N iNi′N, IN is the N-dimensional identity matrix, and iN an N-vector of

ones.

Step 3: Run the time series regression of the target variable on the estimated factors, that is,

yt+1 = β0t + F̂′
t βt + ηt+1, t = 1, .., T (8)

where β0t and βt are estimated by

β̂t =

(
T

∑
j=1

kL,tj

(
F̂j − F̂t

) (
F̂j − F̂t

)′)−1( T

∑
j=1

kL,tj

(
F̂j − F̂t

) (
yj+1 − yt

))
(9)

β̂0t = yt − F̂t β̂t

with F̂t = K−1
L,t ∑T

j=1 kL,jt F̂j, yt = K−1
L,t ∑T

j=1 kL,jtyj+1, F̂t is given by (7), and L is a bandwidth

parameter that can be different from H (used in step 1).

The TV-3PRF defined above extracts factors by first running N separate time series re-

gressions, one for each predictor and all periods t = 1, .., T. Here, the regression coefficients

describe the varying sensitivity of the predictors to the factors that drive the z variables,

and correspond to factor loadings. In the second pass, we run T cross sectional regressions

of all the variables on the loadings estimated in the first step, and the estimated coefficients

for each period t estimate the relevant factors for that period. The most important require-

ment is that the proxies’ common components span the space of the relevant factors. Or,

put it another way, proxies and target have the same source of variation, after netting out

the effect of the time varying parameters. In the final step, we run a single time series fore-

casting regression of the target variable yt+1 on the second-pass estimated factors F̂t, which

could be also denoted as f̂t as they are only the relevant ones. Intuitively, since the relevant

factor space is spanned by F̂t, the third stage regression delivers consistent forecasts, in the

sense that ŷt+1 = β̂0t + F̂′
t β̂t converges to β0t + F′

t βt. We will show this formally below.

To conclude, note that if all the factors are relevant, the 3PRF factors boil down to the

common principal component based factor estimators of Stock and Watson (2002a), Stock

and Watson (2002b). In this context, an M = K dimensional subset of x could be used as

proxies, and the TV-3PRF factors provide a general extension of the principal component

factor analysis to the time-varying case, assuming stochastic loadings.

2.3 Assumptions

To fully characterise the model described by equations (1), (2), (3), we introduce the follow-

ing definitions and assumptions. These provide the groundwork for the theoretical results
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developed in the next sections. For a generic random variable rjt, we write rjt ∈ Υ (ρ) ,

ρ > 0, to denote a thin-tailed distribution for rjt:

max
j,t

E exp(α|rjt|ρ) < ∞, for some α > 0, (10)

which implies

P
(
|rjt| ≥ ζ

)
≤ c0 exp (−c1ζρ) , c0, c1 > 0. (11)

Also, with rjt ∈ Ξ (θ), θ > 2 we denote a heavy tailed distributed random variable for

which it holds that:

max
j,t

E|rjt|θ < ∞, (12)

which implies

P
(
|rjt| ≥ ζ

)
≤ c1ζ−θ, c1 > 0. (13)

Moreover, the generic centered stochastic process rjt − E(rjt) is strong (α-) mixing (but

not necessairily stationary) with mixing coefficients αk,2 such that for some 0 < ϕ < 1, and

c > 0, αk ≤ cϕk, k ≥ 1.

Next, we characterize the factors, the stochastic parameter time variation, and the resid-

uals in model (1)-(3).

Assumption 1 1. For any (i, j) the processes (Fit − E(Fit)), (Fitηt),
(

Fitε jt
)
,
(

Fitωjt
)
, (ηt),

(
ε jt
)
,(

ωjt
)

are strong (α-) mixing process. In addition, Ft is allowed to be heavy tailed distributed, i.e.

Ft ∈ Ξ (θ), θ > 8 and E (Ft) = µ , cov (Ft) = ∆F.

2. Let Φjt be the vector of loadings of the j-th series in xt. Then N−1 ∑N
j=1 Φjt

p→
T→∞

Φ < ∞,

N−1Φ′
t JNΦt

p→
N→∞

∆Φ, N−1Φ′
t JNϕ0t

p→
N→∞

P1. Moreover, the elements of Φt =
(
Φjm,t

)
and

ϕ0t =
(
ϕ0jt
)

satisfy

∣∣ϕ0jt − ϕ0js
∣∣ = C

(
|t − s|

T

)1/2

ϕ0jts, (14)

∣∣Φjm,t − Φjm,s
∣∣ = C

(
|t − s|

T

)1/2

Φjm,ts,

for all j = 1, .., N, m = 1, .., K, 1 ≤ s, t ≤ T, and ϕ0jt, Φjm,t, Φjm,ts, ϕ0jts ∈ Υ (ρ), for some

C, ρ > 0.

3. E (εit) = 0, E
(
|εit|8

)
≤ C with C < ∞. It also holds that E (Ftεit) = 0 , E |Ftεit|r < C,

E (Φisεit) = 0 for all s, t, and E
(
|Φisεit|r

)
< C with r > 2.

2Let j, ..,∞ denote σ-fields generated by (rt, t ≤ j) and (rt, t ≥ j) respectively. Define the α-mixing coeffi-
cient as αk = supj sup

A∈j
−∞ ,B∈∞

j+k
|P (A) P (B)− P (A ∩ B)| .
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4. E (ωt) = 0, E ∥ωt∥4 < C, K−1/2
t ∑T

s=1 kt,sωs = Op (1), cov (ωt) = ∆ω

5. E (ηt+1|ηt, Ft, yt−1, Ft−1, ...) = 0, E
(
η2

t+1|ηt, Ft, yt−1, Ft−1, ...
)
= σ2

η and εη,t+1 = σ−1
η ηt+1.

Also, E
(
η4

t+1
)
≤ C, ηt+1 is independent of

(
Φij,t

)
, and (εit) with E (Ftηt+1) = 0 , E |Ftηt+1|r <

C < ∞, for all t, with r > 2.

6. The parameters β0t, β jt of the target equation evolve stochastically over time with

|β0t − β0s| = C
(
|t − s|

T

)1/2

β0ts, (15)

∣∣β jt − β js
∣∣ = C

(
|t − s|

T

)1/2

β jts,

where β0t,β0s,β jt,β js,β jts ,β0ts ∈ Υ (ρ), for some ρ > 0.

7. The elements of Λt =
(
Λmj,t

)
and λ0t =

(
λ0jt
)

satisfy

∣∣λ0jt − λ0js
∣∣ = C

(
|t − s|

T

)1/2

λ0jts, (16)

∣∣Λmj,t − Λmj,s
∣∣ = C

(
|t − s|

T

)1/2

Λmj,ts,

for all j = 1, .., K, m = 1, .., M and λ0jt, λ0jts, Λmj,t, Λmj,ts ∈ Υ (ρ), for some ρ > 0.

Assumption 2 For C < ∞ and any i, j, t, s, m,v:

1. E
(
εitε js

)
= σijts, |σijts| ≤ σij, and |σij,ts| ≤ τts and

(a) N−1 ∑N
i,j=1 σij ≤ C (b) N−1 ∑i,s |σii,ts| ≤ C

(c) K−1
l ∑T

t,s τts ≤ C, for all l (d) N−1K−1
l ∑i,j,t,s |σij,ts| ≤ C, for all l

2. E
∣∣∣N−1/2K−1/2

s ∑T
u=1 ∑N

i=1 ksu [εitεiu − E (εitεiu)]
∣∣∣2 ≤ C.

3. E
∣∣∣K−1/2

s ∑T
t=1 kstFm,tωv,t

∣∣∣2 ≤ C, for the m, v elements of vectors Ft, ωt.

4. E
∣∣∣K−1/2

s ∑T
t=1 kstεitωm,t

∣∣∣2 ≤ C, for all s = 1, .., T .

Assumption 3 ∆Φ = I and P1 = 0, ∆F is diagonal, positive definite, with each diagonal element

unique.

Assumption 4 Λt =
[
Λ f t 0

]
, and Λ f t is non singular.

Assumption 5 The bandwidth parameters H, L and the cross section size N satisfy

c0Nε ≤ H, L = o
(

T
(log T)ν

)
= o (1) , with ν =

ρ + 2
2ρ

, (17)

ε >
8

θ − 4
> 0, θ > 8, ρ > 0.
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The assumptions above are similar to those commonly used in the literature on factor

models (see e.g. Stock and Watson (2002a), Stock and Watson (2002b), Bai (2003), Kelly and

Pruitt (2015)), but amended to account for the stochastic time variation in the parameters

(see e.g. Giraitis et al. (2014), Giraitis et al. (2018), Giraitis et al. (2021)).

In Assumption 1, we require factors and loadings to be cross-sectionally regular in that

they have well-behaved covariance matrices for large T and N, respectively. Extending

the work of Kelly and Pruitt (2015), we allow for temporal dependence in the factors Ft,

through the strong (α-) mixing condition. We also assume that the factors are systematic,

in the sense that they affect an infinite number of cross sectional units xt. This is captured

by the full rank assumption of ∆Φ. We also impose the identification assumption that the

second moments of the factors do not vary over time. Note that this is not limiting the

generality of our model. For instance, replacing the factors Ft by F̃t = Ftcovt (Ft)
−1/2 ∆1/2

F ,

and the loadings Φt by Φ̃t = Φtcovt (Ft)
1/2 ∆−1/2

F , we can ensure that the assumption is

satisfied even in the case covt (Ft) changes over time.

Moreover, we allow all parameters of the model to vary over time through the assump-

tions given in equations (14), (15), (16). An example of a process that satisfies this set of

equations is the bounded random walk model, other examples are provided in Giraitis

et al. (2014), Giraitis et al. (2018). As discussed, we do not require a specific parametric form

for the evolution in Φt, Λt, βt, ϕ0t, λ0t, βt, β0t but allow for general stochastic relationships

among model parameters at different points of time. This permits a quite flexible speci-

fication, which nests the constant parameter 3PRF, while still preserving good properties

for the parameter estimators, as we will see. Furthermore, when all factors of xt drive the

target (and proxies) variable, the model nests the time varying PCA model developed in

Su and Wang (2017), but for deterministic processes of the loadings evolution.

In Assumption 2 we allow for some cross sectional correlation and serial dependence

(including GARCH effects) among εit (see also Stock and Watson (2002a)). Moreover, we

allow for some limited dependence among the errors of the equations for the proxies and

the factors and the idiosyncratic shocks.

Assumption 3 sets the identification conditions. We require the covariance of the pre-

dictor loadings to be the identity matrix (∆Φ = I), and the factors to be orthogonal to one

another. As with principal components, the particular normalization is not important. We

ultimately estimate a vector space spanned by the factors, and this space does not depend

upon the choice of normalization.

Assumption 4 states that, for all time periods t = 1, .., T, the proxies (i) have zero load-

ing on irrelevant factors, (ii) have linearly independent loadings on the relevant factors,
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and (iii) their number is equal to the number of relevant factors. Combined with the nor-

malization assumption, this says that the common component of the proxies spans the

relevant factor space, and that none of the proxy variation is due to irrelevant factors.

Assumption 5 is a technical requirement on the bandwidth parameters H, L which gov-

erns how much information we want to use from the neighboring periods or, put it in

another way, our prior assumption about the smoothness of the model parameters, as a

function of time. All asymptotic results rely on this condition on H and L.

3 Theoretical Properties of Forecasts and Estimators

With the assumptions introduced in the previous section in place, we now derive the

asymptotic properties of the time varying three-pass regression filter. Our proofs build

upon the seminal works of Stock and Watson (2002a), Bai (2003), Bai and Ng (2002), Bai

and Ng (2006), and Kelly and Pruitt (2015), combined with the theory on stochastic pa-

rameter time variation developed in Giraitis et al. (2014), Giraitis et al. (2018), Giraitis et al.

(2021), inter alia. The Theorems reported in the main text are our central new results, proofs

and additional results are provided in the Appendix.

3.1 Consistency results for the optimal forecast

Assumptions 1-5 contain the general conditions that are sufficient for consistency of the op-

timal forecasts. We set Szx,H,t = K−1
H,t ∑T

j=1 kH,tj
(
zj − zt

) (
xj − xt

)′, for xt = K−1
H,t ∑T

s=1 kH,tsxs,

zt = K−1
H,t ∑T

s=1 kH,tszs, for generic vectors xt, zt, and bandwidth H. Also, for generic band-

width L, we define Sxy,L,t = K−1
L,t ∑T

j=1 kL,tj
(
xj − xt

) (
yj+1 − yt

)′, for xt = K−1
L,t ∑T

s=1 kL,tsxs,

yt = K−1
L,t ∑T

s=1 kL,tsys+1. The next Theorem says that the TV-3PRF is consistent, in the sense

that the difference between the feasible and the infeasible forecast vanishes.

Theorem 1 Let Assumptions 1-5 hold. Then,

(i) The time varying three pass regression filter is consistent for the infeasible best forecast, that is

ŷt+1 = β̂0t + F̂′
t β̂t

p→
N,T→∞

β0t + F′
t βt. (18)

(ii) The target equation of the time varying three pass regression filter can be written as

ŷt+1 = yt + (xt − xt)
′ ât + op (1) , (19)

where ât = JNS′
zx,H,t

(
Szx,H,t JNSxx,L,t JNS′

zx,H,t

)−1
Szx,H,t JNSxy,L,t.

9



(iii) Also, let âit be the i-th element of ât. Then, for all i = 1, .., N ,

Nâit
p→

N,T→∞

(
Φit − Φt

)′
βt, (20)

where
(
Φit − Φt

)′
= Si JNΦt with Si being a 1 × N selector vector, with the i-th element equal to

1 and the remaining elements equal to zero.

In the Appendix we also provide probability limits for loadings Φ̂t, factors F̂t and third

stage predictive coefficients β̂t. The developed bounds depend on the kernel approxima-

tion and the number of cross-sectional and time-series observations, and in particular on

Assumption 5. Lemma A3 given in the Appendix, also provides these results for model

(1)-(3) as N, T increase to infinity, according to Assumption 5.

When the parameters are constant, this theorem reduces to the corresponding one in

Kelly and Pruitt (2015). Moreover, when there are no irrelevant factors so that the 3PRF

and PCA deliver the same factors (possibly up to rotation), Theorem 1 generalizes the

consistency of the feasible PC based forecasts obtained in the constant parameter case by

Stock and Watson (2002a).

The element (ii) of Theorem 1 provides an alternative characterization of the fitted tar-

get equation. This will be our main vehicle to derive asymptotic distributions as well as

to estimate the degrees of freedom. In this representation, ât can be interpreted as the

coefficients of the individual predictors xt.

As noted by KP, but in our time varying framework, ât links the factors to the target

variable via the large set of available indicators. Therefore, the probability limit of ât (el-

ement (iii) of Theorem 1) is the product of the loadings of xt on the relevant factors ft

(
(
Φit − Φt

)′) and of those of yt on the same factors (βt). Hence, ât can be also interpreted

as a constrained least squares coefficient estimator, and we will explore the implications of

this observation later in the paper. It is also interesting to note that ât is multiplied by N

to obtain its (non-degenrate) limit. As in KP, this is due to the fact that the dimension of ât

is the same as the number of predictors, N, so that when N grows the contribution of each

predictor in xt goes to zero.

Next, we consider the issue of the selection of the proxies. If there is a single relevant

factor, then the target variable itself, y, can be used as proxy. Following KP, we will refer

to this as the target-proxy approach. In a case like this, the resulting 3PRF factor can be

quite different from the first principal component, which instead aims at maximizing the

explanatory power for x.

A multiple factor extention of the above target-proxy approach is to use the following

automatic proxy selection algorithm, which was proposed by KP and also links the 3PRF

10



to partial least squares (PLS), as we will see in more details in the next subsections. This

method for proxy selection could be rather helpful in situations where economic theory

does not provide enough insights for choosing proxies.

Algorithm 1 Automatic proxy selection

Step 1 Initialize z0,t = yt+1, for k = 1, .., M do the following

Step 2 Define the k-th automatic proxy to be zk−1,t. Stop if k = M; otherwise proceed

Step 3 Compute the TV-3PRF for target yt+1 using cross section xt and statistical proxies

1 to k. Denote the resulting fitted values ŷt+1.

Step 4 Calculate zk,t = yt+1 − ŷt+1

The following Corollary is a direct extension of the corresponding one in KP.

Corollary 1 Let Assumptions 1-5 hold, except those related with the proxy equation and its error.

Then the automatic proxy three pass regression filter forecast of y automatically satisfies assump-

tions 1.4, 2.3, 2.4 when M = K f . As a result the automatic proxy is consistent according to

Theorem 1.

When we know the number of relevant factors, Algorithm 1 constructs proxies that

satisfy the relevance criterion in assumption 4. When K f = 1, the Corollary 1 proves that

the target proxy is consistent. When K f > 1, the target-proxy does not extract enough

factors to attain the infeasible best. In this case, the automatic proxy selection can be used

M-times, and Corollary 1 establishes consistency.

We conclude this subsection with a derivation of the degrees of freedom (DoF) of the

TV-3PRF, to be used later on to design information criteria for the selection of the number

of factors. To do so, we employ the generalized definition of DoF proposed by Efron (2004).

According to this, we derive the the DoF as the sensitivity of the fitted values ŷ, seen solely

as functions of y (see also Krämer and Sugiyama (2011)). The next theorem provides the

result.

Theorem 2 Let Assumptions 1-5 hold and define the time t weighted Krylov sequence as W(t) ={
JNSxy,H,t, JNSxx,H,t JNSxy,H,t, .., (JNSxx,H,t)

K−1 JNSxy,H,t

}
. The K-factor, auto-proxy TV-3PRF

forecast can be implemented in one step as

ŷt+1 = yL,t + (xt − xL,t)
′α̂t, (21)

11



with

ât = W(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t. (22)

Then, the Efron (2004), DoF is

DoFH,L,K =
T

∑
s=1

kL,ss

KL,s
+

T

∑
s=1

(xs − xL,s)
′ ∂as

∂ys+1
, (23)

where ∂at
∂yt+1

is the t-th row of the T × N matrix

dât =
(

S′
xy,L,t ⊗ IN + IN ⊗ S′

xy,L,t

)
H(t)
(1) ⊗

(
IN − H(t)Sxx,L,t

)
K−1

H,tU
′
KΛ(t)

H

(
IT − 1

KH,t
1TTΛ(2,t)

L

)
dy

(24)

+ K−1
L,t H(t)X̃(t)′

L Λ(t)
L

(
IT − 1

Kt
1TTΛ(2,t)

L

)
dy

and H(t)
(1) = W(t)

(
W(t)′S(t)

xx,L,tW
(t)
)−1

, UK =
{

X̃(t)
H JN, X̃(t)

H JNSxx,H,t JN, .., X̃(t)
H JN (Sxx,H,t JN)

K−1
}

,

1TT = 1T1′T, Λ(2,t)
L = Λ(t)

L Λ(t)
L , Λ(t)

H = diag
(√

kH,1t,
√

kH,2t, ..,
√

kH,Tt
)

, H(t) = H(t)
(1)W

(t)′,

X̃(s) =
[
k1/2

s,1 x̃s,1, .., k1/2
s,T z̃s,T

]′
, for x̃s,t = xt − xs, with xt = K−1

t ∑T
s=1 kt,lxl.

In empirical applications, the DoF can be used, together with an information criterion

(IC), to decide on the number of factors and the first and third step bandwidth parameters

H, L. All ICs are functions of the Degrees of Freedom (DoF) parameter. For instance, the

Bayesian IC (BIC) for a model with K factors can be written as

BIC (K) : ∥ŷK − y∥2 + log Tσ2
η DoF (K) , (25)

where σ2
η is the noise level which can be estimated from the residuals η̂t+1. Hence, the

optimal H, L, K can be chosen as the value that minimizes BIC (K). Bai and Ng (2002) also

use information criteria to determine the number of factors by focusing on penalty terms

that account for large N, T dimensions, rather than the Degrees of Freedom, which they set

equal to the number of factors.

3.2 Asymptotic distribution of the optimal forecast

In this section we provide theoretical results on the asymptotic distributions of the optimal

forecasts and underlying quantities. These are mainly based on the asymptotic distribu-

tions of three quantities: K−1
t ∑T

s=1 kt,sFsηs+1, K−1
t ∑T

s=1 kt,sFsεis, and N−1 ∑N
i=1 Φisεit. Under

Assumption 1, the limiting distributions of these quantities are provided in the Theorem 3,

elements (i), (ii), (iii) below.
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Theorem 3 Let Assumption 1-5 hold then,

(i) Let SFη,t = K−1
t ∑T

s=1 kt,sFsηs+1 , ΓFη,t = limT→∞ K−1
2,t ∑T

s=1 k2
t,sE

(
FsF′

sη2
t+1
)
, then

Kt

K1/2
2,t

Γ−1/2
Fη,t SFη,t

d→ N (0, I) . (26)

(ii) Let CFε,it = K−1
t ∑T

s=1 kt,sFsεis, Let ΓFε,it = limT→∞ K−1
2,t ∑T

s=1 ∑T
r=1 kt,skt,rE (FsF′

rεisεir), then

Kt

K1/2
2,t

Γ−1/2
Fε,it CFε,it

d→ N (0, I) . (27)

(iii) Let ΓΦε,st = p lim N−1 ∑N
i=1 E

(
ΦisΦ′

isε
2
it
)
, Cϕε,ist =

1
N ∑N

i=1 Φisεit. For every s, t = 1, .., T it

holds that

N1/2Γ−1/2
Φε,st Cϕε,ist

d→ N (0, I) . (28)

(iv) Let ât as in (19), and ãit = SiGa,tβt, where Si is a selector vector, then

√
KtN (âit − ãit)

Ait

d→ N (0, 1) . (29)

where, Ga,t = JNS′
zx,H,t

(
1

N2 Szx,H,t JNSxx,L,t JNS′
zx,H,t

)−1
1
N Szx,H,t JNSx f ,L,t and A2

it is the i-th

diagonal element of Âvar (âit), with

Âvar (âit) = Ωa,t

(
K−1

L,t

T

∑
j=1

kL,tjη̂
2
j+1
(
xj − xt

) (
xj − xt

)′)Ω′
a,t, (30)

for Ωa,t = JNS′
zx,H,t

(
N−2Szx,H,t JNSxx,L,t JNS′

zx,H,t

)−1
N−1Szx,H,t JN, and

Sx f ,L,t = K−1
L,t ∑T

j=1 kL,tj
(
xj − xt

) (
Fj − Ft

)′, for Ft = K−1
L,t ∑T

s=1 kL,tsFs.

(v) The automatic proxy three pass regression filter forecast given by Algorithm 1 is asymptotically

normal.

The element (iv) of Theorem 3 establishes the asymptotic distribution of the coefficients

ât which can then be used to construct the optimal forecast ŷt+1. Moreover, it can be

employed to derive feasible t- and F-statistics for inference on at, for example to decide

whether or not a single component of xt has predictive content for yt+1. Note that the ma-

trix Ga,t appears in ãit because factors are only identified up to an orthonormal rotation.

Next, using the results for ât, we can derive the asymptotic distribution of the TV-3PRF

forecast, which generalizes element (v) of Theorem 3.
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Theorem 4 Let Assumptions 1-5 hold. Then

(i) For Etyt+1 = β0t + F′
t βt it holds that√

KL,t (ŷt+1 − Etyt+1)

Qt

d→ N (0, 1) , (31)

where Q2
t is the i-th diagonal element of N−2 (xt − xL,t)

′ Âvar (ât) (xt − xL,t).

(ii) Let Σβ,t = Σ−1
z,t ΓFη,tΣ−1

z,t , Σz,t = Λt∆FΛt + ∆ω and Gβ,t = β̂−1
1,t β̂2,t β̂

−1
3,t N−1Szx,H,t JNSx f ,L,t,

where β̂1,t, β̂2,t, β̂3,t, given in Lemma A5 of the Appendix. Then

√
Kt

(
β̂t − Gβ,tβt

)
d→ N

(
0, Σβ,t

)
, (32)

where Âvar
(

β̂t

)
= Ωβ,tK−1

L,t ∑T
j=1 kL,tjη̂

2
j+1

(
F̂j − F̂t

) (
F̂j − F̂t

)′
Ωβ,t, and

Ωβ,t =

(
K−1

L,t ∑T
j=1 kL,tj

(
F̂j − F̂t

) (
F̂j − F̂t

)′)−1

This Theorem shows that the optimal TV-3PRF forecast is asymptotically normal, as in

the case of the static 3PRF, and it provides a standard error estimator for constructing pre-

dictive intervals that depends on Âvar (ât), the estimated variance covariance matrix of ât

(rather than on Âvar
(

F̂
)

and Âvar
(

β̂
)

, which would be slightly more complex to derive).

The second element of this Theorem (element (ii)), provides the asymptotic distribution of

the predictive loadings on the latent factors (βt) and a consistent estimator of their asymp-

totic covariance matrix, which can be relevant for inference on the factor coefficients when

the forecasting equation is written as in (1).

Finally, we derive the asymptotic distribution of the estimated TV-3PRF factors.

Theorem 5 Let H0,t = F̂A,t F̂−1
B,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNϕ0t, and Ht = F̂A,t F̂−1
B,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNΦtFt,

as in (106), (110). Under Assumptions 1-5 we have for every t,

(i) if
√

N
KH,t

→ 0, then

√
N
(

F̂t − (H0,t + HtFt)
)

d→ N (0, ΣF,t) ,

where ΣF,t = (Λt∆FΛ′
t + ∆ω,t) (Λt∆F∆FΛ′

t)
−1 Λt∆FΓFε,t∆FΛ′

t (Λt∆F∆FΛ′
t)
−1 (Λt∆FΛ′

t + ∆ω) .

(ii) if lim inf
√

N/KH,t ≥ τ ≥ 0, then

KH,t

(
F̂t − (H0,t + HtFt)

)
= Op (1) .
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In Theorems 4 and 5 the matrices Gβ,t and Ht exist since we are estimating a vector

space. As in KP, we do not provide an estimator for ΣF,t since the presence of irrelevant

factors complicates its derivation. This is also another reason for using the representation

of the forecast equation in terms of ât and xt to derive the asymptotic distribution of the

TV-3PRF forecast.

3.3 Relation with Partial and Constrained Least Squares

The method of partial least squares (PLS) is a special case of the fixed parameter three pass

regression filter. In particular, KP showed that the PLS forecasts are identical to those from

the fixed parameter 3PRF, when (i) the predictors are first demeaned and variance stan-

dardized, (ii) the first two regressions run without the constant terms, and (iii) proxies are

automatically selected. The fixed parameter PLS forecast (see Wold (1975)) is constructed

with the following steps.

Algorithm 2 Fixed parameter Partial Least Squares

Step 1 For i = 1, .., N, set the scalar ϕ̂i = x′iy and Φ̂ =
(
ϕ̂1, ϕ̂2,...,ϕ̂N

)′
Step 2 Set ût = x′tΦ̂, and û = (û1, û2, ..., ûT)

′

Step 3 Run the predictive regression of y on û

For one factor, and in one step, Algorithm 2 can be represented as ŷPLS
t+1 = y + x′tα̂1, for

α̂1 =
(

X′y (y′XX′XX′y)−1 y′XX′y
)

. For m factors, it can be shown that the PLS estimate

becomes α̂m = W (W ′SW)−1 W ′s, for S = X′X, s = X′y and W is the Krylov sequence{
s, Ss, ..., Sm−1s

}
.

Inspection of Theorem 2 allows us to infer the relationship between ŷPLS
t+1 and ŷt+1 im-

plied by the TV-3PRF, implemented via the automatic proxy approach. In particular, the

autoproxy estimate of α̂t given by equation (22), implies that the one step, multiple factor,

autoproxy estimate of TV-3PRF is identical to a time varying partial least squares method,

when we first demean and standardize predictors by their kernel based estimates.

To understand the relationship between the TV-3PRF and (TV-) constrained least squares,

we note that equation (19) allow us to infer the contribution of the i-th predictor xit, when it

is combined with the remaining predictors. To this end, ât is a projection coefficient relating

yt+1 to xt under the constraint that irrelevant factors do not influence forecasts. As in the

fixed parameter case, the TV-3PRF forecast may be derived as the solution to a constrained

least squares problem, as shown in the next theorem.
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Theorem 6 Let Assumptions 1-5 hold. The time varying three pass regression filter’s implied N-

dimensional predictive coefficient ât, given in equation (19), is the solution to the problem

arg min
a0t,at

T

∑
s=1

kL,st
(
ys+1 − a0t − x′sat

)2 (33)

subject to the constraint

(I − Wxz,H,t (Szx,H,tWxz,H,t)
−1 W ′

xz,H,t)at = 0,

where Wxz,H,t = JNSxz,H,t

The constraint in Theorem 6 has an intuitive explanation. Premultipling by (xt − xH,t)
′

we have that ((xt − xt)
′ − (xt − xt)

′ Wxz,H,t (Szx,H,tWxz,H,t)
−1 W ′

xz,H,t)at = 0. Notice that, as

in the proof of (19), it holds that

(xt − xt)
′ Wxz,H,t (Szx,H,tWxz,H,t)

−1 Szz,H,t = F̂t − K−1
H

T

∑
s=1

kH,st F̂H,s + op (1)

Then the constraint becomes

(xt − xt)− Φ̂t

(
F̂t − F̂t

)
= ε̂t

≈ εt + Φgtgt,

as in Lemma A6 and where gtare the irrelevant factors. Since the covariance of at,εt is zero,

the product of at with the target irrelevant common component Φgtgt is equal to zero. This

constraint ensures that factors irrelevant to yt+1 drop out of the TV-3PRF forecast.

3.4 Selection of the Tuning Parameters

Application of the TV-3PRF requires the selection of the bandwidth parameter for the

passes 1 and 3 of the estimation algorithm. An information criterion combined with the

degrees of freedom discussed above provides an avenue for selecting this parameter. An-

other possibility is the use of a cross validation method based on the mean squared forecast

error (MSFE).

Pass 1 and 3 of the TV-3PRF depend on bandwidths H and L, respectively. These

two parameters can be obtained as the optimization of an end of sample cross validation

scheme, as follows,

{H, L} = arg min
1
κ

T

∑
j=T−κ+1

(
yj − β̂0j−1 + β̂′

j−1F̂j−1

)2
, (34)
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where κ is the number of observations over which the MSFE is computed. In objective

(34), the H parameter does not vary with i = 1, .., N. This reduces the flexibility of our

approach to capture varying degrees of time variation in loadings processes, but facilitates

the implementation of the TV-3PRF by selecting only two parameters. It also leads to faster

computation, especially when N is large. Allowing the bandwidth H to vary over i (i.e.

Hi), in (34) can be a viable option only when N is small enough, as in this case objective

(34) will need to be optimized over N + 1 bandwidth parameters ({Hi}N
i=1, L).

To allow for different bandwidths across the large set of N series, without exploding the

computational burden, we propose a parametrisation of Hi that depends on the volatility of

series xit. To this end, let σi denote the volatility of the i-th series, and define the adjustment

factor for series i as

ci = 1 +
σi − min(σi)

max(σi)− min(σi)
(dH − 1), fordH ∈ (0, 1),i = 1, .., N. (35)

The ci maps the volatilities of xit on the interval [dH, 1]. The highest the σi, the lowest the

ci. Setting Hi = ciH, allows us to link individual bandwidths Hi with the global bandwidth

parameter H and the individual adjustment factors ci. When we choose dH = 1, there is

no heterogeneity for the bandwidths (Hi = H). As we deviate from 1, we allow for higher

degree of heterogeneity across the bandwidths Hi. At the end, we can choose a specific

value for dH (e.g. dH = 0.7) and optimize objective (34), or include the dH in the objective

of an end of sample cross validation, that is

{dH, H, L} = arg min
1
κ

T

∑
j=T−κ+1

(
yj − β̂0j−1 + β̂′

j−1F̂j−1

)2
. (36)

In our Monte Carlo section we fix dH = 0.7 while in our empirical section we also

choose it through cross validation.

4 Monte Carlo Evaluation

4.1 Design

We generate data according to the following model

xt = ϕ f ,t ft + ϕg,tgt + κεt (37)

yt+1 = ft + ηt (38)
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with ηt ∼ N
(

0, σ2
η

)
, where σ2

η is adjusted such that the infeasible best forecast has an R2

of 50%. This R2 was also chosen by Kelly and Pruitt (2015). We consider two sample sizes

with T = {200, 100}, and N = {200, 100}. The relevant ( ft) and irrelevant (gt) factors are

generated as

f jt = ρ f f jt−1 + ujt, ujt ∼ N (0, 1) (39)

glt = ρgglt + vlt, vlt ∼ N
(

0, σ2
l

)
(40)

for j = 1, .., k f , l = 1, .., kg. We choose k f = 1, and kg = 4 and σ2
l , l = 2, .., 4, such that the

irrelevant factors are dominant, in the sense that they have variances 1.25, 1.75, 2.25 and

2.75 times larger than the relevant factor. These choices make the relevant factor estimation

rather difficult, as the factor that drives yt+1 explains, overall, a small fraction of variability

of x.

For the idiosyncratic terms, we assume autoregressive dynamics

εit = aεit−1 + ςit

and cross sectional correlation specified via

ςt = (1 + d2)νi,t + dνi−1,t + dνi+1,t,

where νi+1,t is standard normal and the cross sectional parameter takes values of 0 and 1.

The κ parameter in the large dataset equation (37) controls the strength of the factor

model, such that the factor component ϕ f ,t ft + ϕg,tgt explains 10% or 30% of the variation

of xit on average, as measured by

R2
i =

̂Vari(ϕ f ,i,t ft + ϕg,i,tgt)

̂Vari(xit)
. (41)

The factor loadings for the five factors r = { f , g1, .., g4}, are generated according to the

following models

ϕrit =
urit√

t
, (42)

ϕrit = urit, (43)

ϕrit = εri, (44)

with urit = urit−1 + εu
rit, εu

rit ∼ N (0, 1), εri ∼ N (0, 1), for r = { f , g1, .., g4}. The loadings

are centered on zero to have a balanced contribution of the common component across the

time dimension.
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The process defined in (42) is a bounded random walk process, that satisfies the set

of assumptions discussed in Section 2.3, as discussed in Giraitis et al. (2018). The second

process considered, (43), is a random walk process that is not covered by the theory, but

since this is a common assumption in the empirical macroeconomic literature we will as-

sess the performance of TV-3PRF also in this case. The third process, defined in (44), has

fixed loadings.
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Figure 1: The more volatile lines are two realizations of time varying loadings generated by the bounded
random walk model (42). The smoothed curved lines are the TV-3PRF estimates of loadings, and the dashed
lines are the fixed parameter 3PRF estimated loadings.

In Figure 1 we present two realizations of the loadings process (42), which generate the

large dataset xit, their kernel based time varying estimates, as well as the fixed parameter

3PRF loadings estimates. The fixed parameter estimates of loadings capture only on aver-

age the path of the true loading process. On the other hand, our proposed kernel based

estimates are able to capture the upward and downward trends of the true process. As we

will see, this will imply a better forecasting performance

In our Monte Carlo exercise we compare the performance of the TV-3PRF with that of

the standard 3PRF (benchmark), standard principal component (PCA), and two targeted

predictors PCA methods (see Bai and Ng (2008)). In the first one, we first reduce the N-

dimension of the large dataset x by choosing the 30 most relevant regressors identified by

regressing yt+1 on xt by the LARS algorithm (see Efron et al. (2004)); then the reduced set

of regressors is used to extract factors, through PCA (PCA-lars). In the second targeted

predictors approach, the target variable yt+1 is regressed on each xit, and the regressor xit

is considered as relevant when its coefficient is significant at the 10% level (PCA-ht(10%)).

All the various methods are used to forecast the last observation of the target variable, and

average (across all simulations) relative mean squared forecast errors are computed.
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Time Varying Loadings, MSFE, DGP given by (42)

ρ f 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9
ρg 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3
β 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
a 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9

R2 =0.1, N =100, T =100 R2 =0.1, N =200, T =200

pca(5) 0.84 0.87 0.88 0.92 1 0.99 0.93 1.07 1.05 0.83 0.87 0.88 0.93 0.95 0.94 0.91 1.18 1.12
pca(1) 0.8 0.82 0.85 0.86 0.99 0.98 0.9 1.28 1.19 0.81 0.85 0.86 0.92 0.94 0.93 0.88 1.25 1.21

pca-lars(1) 0.82 0.84 0.85 0.87 0.99 0.99 0.92 1.16 1.16 0.84 0.88 0.91 0.94 0.95 1.01 0.92 1.1 1.12
pca-ht(10%)(1) 0.91 0.91 0.93 0.92 1 0.99 0.92 1.16 1.08 0.87 0.9 0.91 0.95 0.96 0.97 0.93 1.14 1.1

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.8 0.81 0.87 0.95 0.96 0.87 0.87 0.87 0.88 0.76 0.81 0.82 0.97 0.93 0.78 0.76 0.9 0.92

tv-3pr f (1, icH,L) 0.8 0.82 0.88 0.94 0.94 0.9 0.9 0.95 0.94 0.73 0.8 0.8 0.96 0.94 0.82 0.8 0.94 0.95
tv-3pr fHi(1) 0.79 0.8 0.87 0.99 0.97 0.87 0.86 0.87 0.88 0.76 0.82 0.82 0.96 0.93 0.78 0.77 0.88 0.91

R2 =0.3, N =100, T =100 R2 =0.3, N =200, T =200

pca(5) 0.87 0.87 0.86 0.91 0.97 0.95 0.94 1.11 1.08 0.84 0.92 0.88 0.96 0.94 0.96 0.96 1.15 1.11
pca(1) 0.81 0.82 0.84 0.85 0.92 0.91 0.9 1.2 1.15 0.81 0.88 0.85 0.95 0.92 0.95 0.97 1.25 1.1

pca-lars(1) 0.83 0.84 0.86 0.86 0.91 0.94 0.94 1.13 1.13 0.82 0.9 0.85 0.96 0.93 0.94 0.99 1.11 1.07
pca-ht(10%)(1) 0.91 0.88 0.91 0.91 0.96 0.94 0.95 1.1 1.07 0.85 0.93 0.87 0.95 0.95 0.98 0.97 1.16 1.09

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.72 0.73 0.75 0.86 0.86 0.78 0.77 0.92 0.97 0.67 0.69 0.69 0.82 0.86 0.73 0.74 0.87 0.81

tv-3pr f (1, icH,L) 0.69 0.74 0.71 0.88 0.84 0.82 0.79 0.93 0.91 0.64 0.65 0.66 0.82 0.87 0.69 0.72 0.89 0.87
tv-3pr fHi(1) 0.73 0.73 0.75 0.85 0.86 0.8 0.76 0.94 0.92 0.7 0.71 0.7 0.81 0.86 0.73 0.76 0.89 0.81

Table 1: Reported results are MSFE of each model over 1000 simulations. The pca(5) corresponds to the
PCA, five factors method, the pca-lars(1) corresponds to the targeted predictors, using lars algorithm, one
factor model, the pca-ht(10%, 1) corresponds to the targeted predictors, using t-test at 10% significance level,
one factor model. The 3pr f corresponds to the fixed parameter, one autoproxy factor, three pass regression
filter, and tv-3pr f , is the time varying parameter, one autoproxy factor, three pass regression filter, where
the bandwidth is selected through cross validation (see tv − 3pr f (1) for (34) and tv-3pr fHi (1) for (36)), or
through the BIC criterion (see tv-3pr f (1, icH,L)). The best performing is in red.

Time Varying Loadings, MSFE, DGP given by (43)

ρ f 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9
ρg 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3
β 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
a 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9

R2 =0.1, N =100, T =100 R2 =0.1, N =200, T =200

pca(5) 0.85 0.88 0.88 0.96 0.94 1.01 0.98 1.06 1.1 0.79 0.8 0.78 0.98 0.95 0.97 0.91 1.1 1.15
pca(1) 0.8 0.86 0.83 0.91 0.9 0.94 0.97 1.16 1.18 0.76 0.77 0.77 0.99 0.94 0.94 0.89 1.19 1.2

pca-lars(1) 0.82 0.89 0.85 0.94 0.92 0.99 0.95 1.07 1.14 0.79 0.81 0.79 0.96 0.97 0.99 0.96 1.05 1.08
pca-ht(10%)(1) 0.86 0.97 0.89 0.97 0.94 1 0.99 1.07 1.12 0.81 0.84 0.86 0.99 0.97 1 0.95 1.09 1.11

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.78 0.77 0.8 0.9 0.96 0.8 0.86 0.94 0.9 0.65 0.68 0.68 0.9 0.94 0.72 0.75 0.92 0.86

tv-3pr f (1, icH,L) 0.78 0.77 0.83 0.92 0.93 0.87 0.89 0.94 0.94 0.62 0.67 0.67 0.92 0.93 0.75 0.79 0.95 0.91
tv-3pr fHi(1) 0.79 0.77 0.78 0.92 0.97 0.8 0.86 0.95 0.9 0.67 0.68 0.67 0.91 0.95 0.73 0.76 0.95 0.85

R2 =0.3, N =100, T =100 R2 =0.3, N =200, T =200

pca(5) 0.78 0.84 0.84 0.99 0.93 0.92 0.92 1.09 1.09 0.75 0.82 0.84 0.88 0.94 0.88 0.9 1.18 1.1
pca(1) 0.7 0.79 0.77 0.92 0.92 0.86 0.92 1.21 1.25 0.69 0.77 0.79 0.85 0.92 0.91 0.88 1.19 1.12

pca-lars(1) 0.74 0.81 0.79 0.91 0.94 0.89 0.93 1.16 1.21 0.73 0.79 0.83 0.86 0.95 0.91 0.94 1.13 1.1
pca-ht(10%)(1) 0.83 0.88 0.91 0.95 0.96 0.96 0.96 1.12 1.15 0.79 0.83 0.88 0.93 0.96 0.93 0.95 1.12 1.05

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.6 0.67 0.62 0.78 0.78 0.7 0.77 0.94 0.95 0.56 0.59 0.61 0.72 0.76 0.69 0.66 0.84 0.83

tv-3pr f (1, icH,L) 0.59 0.66 0.64 0.8 0.79 0.71 0.76 0.9 0.93 0.51 0.57 0.59 0.73 0.75 0.67 0.64 0.85 0.82
tv-3pr fHi(1) 0.6 0.65 0.64 0.74 0.77 0.69 0.75 0.99 0.99 0.55 0.6 0.61 0.72 0.76 0.7 0.67 0.87 0.86

Table 2: See notes in Table 1
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Constant Loadings, MSFE, DGP given by (44)

ρ f 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9
ρg 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3
β 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
a 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9

R2 =0.1, N =100, T =100 R2 =0.1, N =200, T =200

pca(5) 1.04 1.06 1.06 1.12 1.06 1.08 1.12 1.14 1.09 0.97 1.02 1.14 1.22 1.2 0.97 1.1 1.21 1.2
pca(1) 1.17 1.17 1.09 1.12 1.02 1.23 1.26 1.37 1.25 1.41 1.45 1.31 1.21 1.19 1.35 1.33 1.38 1.36

pca-lars(1) 1.15 1.13 1.13 1.11 1.03 1.14 1.18 1.22 1.2 1.26 1.19 1.14 1.17 1.18 1.24 1.2 1.1 1.09
pca-ht(10%)(1) 1.05 1.07 1.1 1.07 1.03 1.02 1.1 1.23 1.17 1.17 1.19 1.14 1.15 1.16 1.12 1.15 1.21 1.19

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1.09 1.08 1.09 1.07 1.08 1.02 1.1 1 0.99 1.26 1.26 1.22 1.12 1.19 1.1 1.13 0.98 0.99

tv-3pr f (1, icH,L) 1.01 0.99 1 1 1.01 0.99 1 0.97 0.98 1 1 1 1.02 1.02 1.01 1 1 1
tv-3pr fHi(1) 1.11 1.07 1.11 1.12 1.08 1.05 1.08 1.01 0.99 1.27 1.27 1.24 1.2 1.25 1.11 1.15 1.01 1.03

R2 =0.3, N =100, T =100 R2 =0.3, N =200, T =200

pca(5) 0.93 0.93 0.97 1.26 1.29 0.9 0.99 1.14 1.14 0.92 0.96 0.94 1.31 1.38 0.92 0.96 1.19 1.21
pca(1) 1.56 1.46 1.55 1.4 1.44 1.64 1.56 1.46 1.38 1.84 1.64 1.65 1.51 1.54 1.81 1.74 1.66 1.58

pca-lars(1) 1.43 1.37 1.27 1.32 1.36 1.36 1.33 1.2 1.23 1.11 1.14 1.17 1.15 1.2 1.17 1.12 1.05 1.07
pca-ht(10%)(1) 1.31 1.26 1.24 1.3 1.33 1.31 1.24 1.18 1.16 1.59 1.44 1.5 1.38 1.44 1.56 1.5 1.24 1.23

3pr f (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1.29 1.17 1.23 1.09 1.15 1.21 1.29 1.1 1.12 1.44 1.28 1.3 1.21 1.15 1.32 1.32 1.16 1.09

tv-3pr f (1, icH,L) 1 1 1 1.01 1.02 1.01 1 1 0.98 1 1 1 1.01 1.01 1 1 1 1
tv-3pr fHi(1) 1.31 1.2 1.21 1.15 1.24 1.26 1.34 1.11 1.13 1.45 1.32 1.35 1.28 1.23 1.38 1.36 1.19 1.13

Table 3: See notes in Table 1

4.2 Results

Tables 1-3 present MSFE results for, respectively, the loadings specifications in (42), (43)

and (44). Table 4 presents the numbers of factors determined by the BIC-type information

criterion in (25) for the loadings specifications in (42). Some interesting findings emerge

from these tables.

First, focusing on the bounded random walk evolution of loadings (see Table 1 ), we

observe that the TV-3PRF methods are the best performing providing benefits in the 10%-

40% range. As we increase the factor strength (R2 from 10% to 30%) our approach is able

to forecast better, compared to the 3PRF, as expected. The three versions of TV-3PRF per-

form almost equivalently in this case. Selecting the bandwidths (H, L) through informa-

tion criteria is appropriate in all cases, while this approach seems to benefit more from the

strong factor model, than the cross validation methods for selecting bandwidths. The PCA

methods perform worse than 3PRF in terms of MSFE, except when the factors are highly

persistent. The two penalized regression versions seem to perform equaly well, and pro-

vide some slight advantages over the standard PCA methods. The above results are not

systematically affected by the the choices of ρ f , ρg, β, α that control the autocorrelation and

cross sectional dependence of the generated samples.
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Number of factors Selected by IC, DGP given by (42)

ρ f 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9
ρg 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3
β 0 0 1 0 1 0 1 0 1
a 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9

R2 =0.1

N = 100, T = 100 1.21 1.08 1.06 1.08 1.1 1.03 1.04 1.06 1.07
N = 200, T = 200 1.04 1.01 1.01 1.03 1.05 1.04 1.06 1.01 1.02
N = 200, T = 100 2.67 1.43 1.12 1.1 1.1 1.21 1.05 1.04 1.04
N = 100, T = 200 1.02 1.01 1.02 1.04 1.06 1.03 1.01 1.02 1.05

R2 =0.3

N = 100, T = 100 1.16 1.11 1.08 1.11 1.12 1.06 1.05 1.02 1.03
N = 200, T = 200 1.04 1.03 1.02 1.04 1.05 1.01 1.01 1.01 1.01
N = 200, T = 100 1.52 1.14 1.09 1.08 1.08 1.13 1.05 1.01 1.02
N = 100, T = 200 1.04 1.03 1.04 1.06 1.07 1.03 1.01 1.01 1.02

Table 4: Average number of factors selected for the stochastically evolving over time loadings processes (42).
The data are generated using one relevant factor.

Second, for the random walk loadings (see Table 2), the results are similar to those

discussed above for the bounded random walk loadings, a remarkable result as this case is

not covered by the theory but is often used in empirical analyses.

Third, focusing on the fixed parameter loadings case (see Table 3), we observe that the

3PRF method is now generally the best performing. Interestingly, the TV-3PRF, with band-

widths (H, L) selected using the information criterion, performs equally well in terms of

MSFE. This indicates the robustness of this version of TV-3PRF to capture general loading

dynamics.

Finally, Table 4 highlights the good performance of the BIC-type criterion in equation

(25) for selecting the number of factors. In fact, on average, the selected number of factors

is very close to 1 across all parameterizations and sample sizes, even more so when the

explanatory power of the factors is 0.3 rather than 0.1. Results in the Appendix show

that this finding remains broadly unchanged even when the loadings follow random walk

processes.

In summary, this extensive analysis based on simulated data supports the use of the

TV-3PRF as a proper method to handle the case of generic time variation in the factor load-

ings. Its performance is systematically better than constant parameters 3PRF and PCA, and

generally also of more elaborate versions of PCA, which makes it a particularly interesting

tool for empirical analysis of macroeconomic data.
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5 Empirical Application

As an empirical illustration of our proposal we use the FRED-QD dataset (McCracken and

Ng (2016)) to forecast a set of key U.S. macroeconomic variables 3. Our dataset starts at Q1-

1960 and ends at Q3-2022, for a total of 251 quarterly observations. The factors are extracted

from a large set of 206 macroeconomic and financial time series included in FRED-QD

dataset.
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Figure 2: Factor estimates across the different methods considered. For the TV-3PRF and 3PRF method, the
GDP growth is used as the target and proxy variable.

First, we report results from an insample illustrative exercise. Excluding the GDP

growth rate series, from the large dataset xit we estimate one factor ( f̂t) and its associated

loadings (Φ̂it) using all the methods considered in the Monte Carlo section. In the 3PRF and

TV-3PRF methods the GDP is used as a proxy variable (autoproxy). The estimated factor

is presented in Figure 2. This figure shows that the factors extracted from all the methods

considered are relatively similar and follow closely the US business cycle, as captured by

the NBER recession periods (highlighted in grey in Figure 2). To better understand which

approach provides the best insample fit we compute their insample, mean squared errors

(MSE). To this end, we regress the target variable, GDP growth, on the estimated factor

and compute the MSE using the residuals of this regression (η̂t in equation (1)). The the

PCA factor delivers the highest insample MSE (0.80), followed by the hard thresholding

PCA factor (0.74), the LARS PCA factor (0.71), the 3PRF factor (0.51) and TV-3PRF fac-

tor (0.36). This exercise suggests that our approach provides important information about

GDP growth, that is not necessarily reflected in the competing approaches.

3Data details and series transformations are available online at FRED-QD description.
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Figure 3: Factor loadings across time for the TV-3PRF and 3PRF methods. The vertical stripes indicate periods
of NBER recession.

As we have discussed, an attractive feature of our TV-3PRF method is its ability to

capture general dynamics of the loadings processes. Figure 3 shows the heat map of the

estimated loadings across the time span (horizontal axis) and the large set of series (vertical

axis). For comparison, we include the loadings of the 3PRF method, that remain constant

across time. Some relevant considerations can be drawn from this figure. First, there is

substantial time variation in all the loading processes, providing evidence in favor of our

TV-3PRF method. Second, as in factor estimates (see Figure 2), the timing of loading shifts

seems to coincide with the business cycle phases, as captured by the NBER recession dat-

ing. Macroeconomic series associated with substantial time variation include the consumer

loans, the number of employed persons, the total reserves, and the industrial production,

which can be directly related to the state of the business cycle.4 Overall, our results suggest

that the assumption of constant factor loadings often employed when studying this dataset

is likely to be too restrictive.

4In Appendix 7.5.3 we present the heatmap of series associated with high variability loadings
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Moving to the out of sample forecasting exercise, we focus on macroeconomic aggre-

gates that receive considerably attention in the literature and policy-making circles. The

series are presented in Table 5, and include GDP growth, industrial production, unem-

ployment rate, inflation indices, exchange rates, and several others. The evaluation period

starts at Q1-1985, including more than 150 quarterly observations. Following the approach

of Bai and Ng (2008) and Stock and Watson (2012), any variable that we eventually target

is removed from the set of predictors. Before forecasting each target, we first transform the

data by partialing the large set predictors and the target with respect to a constant and q

lags of the target. The lag length q is selected by the standard Bayesian Information Cri-

terion. This allows us to abstract from autoregressive model selection issues and focus on

the factor extraction, which is the main goal of our paper. At the end of this procedure,

we compute one and four step ahead direct forecasts using all methods considered in the

Monte Carlo section.

The forecasting performance of the alternative models is evaluated relative to that of the

standard 3PRF, using the relative mean squared forecast error (r-MSFE). For each model m

and target series s, it is:

r-RMSFE(m,s) =
∑T

t=t0

(
e(m,s)

t

)2

∑T
t=t0

(
e(3pr f ,s)

t

)2 , (45)

where e(m,s)
t = y(s)t − ŷ(m,s)

t is the one or four step ahead forecast error of model m for

series s, and e(3pr f ,s)
t = y(s)t − ŷ(3pr f ,s)

t is the counterpart for the benchmark 3PRF model.

When the r-MSFE(m,s) is less than one, model m out performs the benchmark 3PRF for

macroeconomic variable s. To assess the statistical significance of the MSFE differentials,

we use the common Diebold and Mariano (1995) test (henceforth DM test).5 To assess

whether the relative performance of a model is stable over time, we implement the forecast

fluctuation test developed by Giacomini and Rossi (2010) (henceforth GR test). The forecast

fluctuation test measures the relative local forecasting performance for the two models.

In contrast to the DM test, which measures the global performance over the forecasting

horizon, the GR test assesses the stability of the relative performance over the entire time

path. The test statistic is equivalent to the DM statistic computed over rolling windows of

forecasts. Both DM and GR tests are computed relatively to the 3PRF method.

The tuning parameters of the TV-3PRF are calibrated by the two cross validation schemes

((34) and (36)). As an alternative, we use the information criterion (25) to select both the

5Since our out of sample period contains a large number of observations, the small sample correction of
the DM test proposed by Harvey et al. (1997) is not necessary, as it would lead to very minor modifications of
the original DM statistic.
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Series Names: Macroeconomic Forecasting

TBILL 3-Month Treasury Bill: Secondary Market Rate
IP-DCG Industrial Production: Durable Consumer Goods
AE-WT All Employees: Wholesale Trade (Thousands of Persons)
FEDFUNDS Effective Federal Funds Rate
PCE-FSI Personal consumption expenditures: Financial services and insurance
PFI Real private fixed investment: Nonresidential
CPI-LFE Consumer Price Index for All Urban Consumers: All Items Less Food and Energy
IP-M Industrial Production: Manufacturing
UNRATE Unemployment Rate less than 27 weeks
AHEP Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing
CP 3-Month AA Financial Commercial Paper Rate
CLAIMS Initial Claims
HOUST Housing Starts: Total: New Privately Owned Housing Units Started
CUMFNS Capacity Utilization: Manufacturing
GCE Real Government Consumption Expenditures and Gross Investment: Federal
PAYEMS All Employees: Total nonfarm
EXPORTS Real Exports of Goods and Services
PCE-FE Personal Consumption Expenditures Excluding Food and Energy
GS10 10-Year Treasury Constant Maturity Rate
EXR-SUS Switzerland / U.S. Foreign Exchange Rate
UNRATE Civilian Unemployment Rate
GDP Real Gross Domestic Product
M2REAL Real M2 Money Stock
EXR-USUK U.S. / U.K. Foreign Exchange Rate
FPI Real private fixed investment

Table 5: Macroeconomic series used in the Out of sample forecasting Exercise. All series have been trans-
formed to stationary according to the recommendations of the FRED-MD database.

bandwidths (H, L), and the number of factors (labeled tv − 3pr f (ic) in the Tables). For

comparison, we also report results for the PCA method, when the number of factors is

selected by information criteria (see Bai and Ng (2002)).

In Table 6 we present the outcome of the forecast evaluation. Overall, across all the

predicted 25 variables and 2 horizons, the TV-3PRF models obtain the best forecasting re-

sults in 23 out of 50 cases, while they are among the best three performing models, in 37

cases. The 3PRF is best performing in 4 cases and the targeted predictors PCA methods

are the best performing in 5 cases. In the remainder of the cases, the two versions of the

standard PCA method perform best. More specifically, for 1-quarter ahead forecasting, the

TV-3PRF methods are the best performing in 17 out of 25 cases. The worse performance

at the longer forecast horizon is likely due to the use of the direct approach that, while

convenient in the large dataset context as it avoids the need of predicting a large number

of variables, weakens the relationship between target and explanatory variables. The most

significant improvements in forecasting with TV-3PRF are for the TBill, the Industrial Pro-

duction indexes (IP-DCG and IP-M), the Fed Funds rate, and the Commercial Paper. In

these cases, the TV-3PRF forecasts are also significantly different from their 3PRF counter-

parts in terms of DM and/or GW tests. It is interesting to note that the two cross validation

versions of TV-3PRF perform almost equivalently most of the times while, as in the Monte

Carlo section, the BIC-type specification of the TV-3PRF provides significant advantages in

some cases (e.g., for IP-DCG, AE-WT, IP-M).

In Table 7 we repeat the evaluation focusing on the NBER recession periods only, to
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examine whether this leads to any substantial changes in the model rankings. Overall, the

modifications are limited and point to an even slightly better performance of the TV-3PRF

during recessionary periods. In particular, now the TV-3PRF performs best in 27 cases, and

the 3PRF in 3 cases. As in the full evaluation period and in the Monte Carlo simulations,

the BIC-type based specification of the TV-3PRF performs particularly well.

Finally, results reported in the Appendix show that when the sample ends in 2019Q4, so

that the Covid-19 period is excluded, the TV-3PRF methods are best for a lower number of

cases, 16 out of 50. Hence, the allowed time variation performed particularly well during

the Covid-19 period.

6 Conclusions

Parameter time variation is pervasive in econometric models, due to the many sources of

changes in economic relationships. This is typically addressed by making specific assump-

tions on the type of parameter evolution, for example assuming autoregressive or random

walk evolution of the parameters. Yet, since parameter time variation is unobservable, any

specific parametric model is likely mis-specified. Hence, in this paper, we consider stochas-

tic non-parametric time variation in the parameters, focusing on the case of the loadings

in factor models for large datasets, which has attracted considerable interest in the recent

empirical macroeconomic and financial literature.

We have introduced kernel-based estimators in the context of the time-varying three

pass regression filter, an efficient estimation and forecasting algorithm that permits to tar-

get the estimated factors to a specific variable of interest. We have established consistency

of the resulting forecast for the unfeasible forecast based on true factors and parameters,

together with the the limiting distributions of the estimated factors and factor loadings

under the standard large N and large T framework. We have also linked our proposed

method with the time varying parameter constrained least squares estimator and with the

time varying partial least squares method, and shown that these are special cases of our

approach. Finally, we have proposed a BIC-type information criterion to determine the

number of common factors in this context, and specific cross validation methods to select

the bandwidths of the kernel based estimators.

We have used an extensive set of simulation exercises to asses the finite sample per-

formance of our approach, in comparison to the standard 3PRF and PCA, and also to a

variety of more sophisticated PCA based methods. Overall, the TV-3PRF performs quite

well, even for rather small samples (N=100, T=100).



Out of Sample Macroeconomic Forecasting

h 1 4 1 4 1 4 1 4 1 4

TBILL IP-DCG AE-WT FEDFUNDS PCE-FSI

pca(ic) 1.55 1.06 1.21 1.21 0.99 1 1.45 1.09 0.92 1.1
pca(1) 0.97 0.66 0.94 0.96 0.99 1.04 1.07 0.71 0.97 0.78

pca-lars(1) 1.2 0.81 0.92 1.1 0.94 1.06 1.55 0.78 0.96 0.96
pca-ht(10%)(1) 0.95 0.77 1.12 0.97 0.99 1.02 1.02 0.82 0.92 0.84

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.96⋄⋄ 0.75 0.72 1.11 0.81 1.09⋄ 0.83 0.83 0.88 1.06
tv-3pr f (ic) 0.94⋄⋄ 1.17⋄⋄ 0.91⋄⋄ 0.93 0.86 0.97⋄⋄ 0.85∗⋄⋄ 1.02⋄⋄ 1.01 0.92⋄⋄

tv-3pr fHi(1) 0.81⋄⋄ 0.8 0.7 1.15⋄ 0.81 1.11 0.79 0.87 0.89 1.07

PFI CPI-LFE IP-M UNRATE AHEP

pca(ic) 1.15 1.07 1.01 0.82 1 1.01 0.99 1.13 0.95 0.91
pca(1) 0.97 1.01 0.9 0.92 1.11 1.03 1.17 1.02 0.81 0.88

pca-lars(1) 1.04 1.19 1.06 1 1.02 1.14 1.07 1.16 0.83 0.91
pca-ht(10%)(1) 0.99 1 0.9 0.95 0.99 1.03 1.37 1.08 0.9 0.94

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.89∗ 1.22 0.9⋄⋄ 0.91 0.91 1.23 0.92 1.18 0.92 0.9
tv-3pr f (ic) 0.92∗∗⋄ 1.01 0.83∗⋄⋄ 0.98⋄⋄ 0.86⋄⋄ 0.97⋄⋄ 1.04 1 0.91∗∗⋄⋄ 0.91⋄⋄

tv-3pr fHi(1) 0.88∗ 1.14 0.93⋄⋄ 0.93⋄ 0.92 1.24⋄ 0.92 1.21 0.98 0.9

CP CLAIMS HOUST CUMFNS GCE

pca(ic) 1.53 1.06 0.95 1.07 1.02 1.18 1.11 1.02 0.92 0.98
pca(1) 0.99 0.79 1.09 1.02 1.01 0.88 1.18 1.16 0.87 0.98

pca-lars(1) 1.34 0.96 1.08 1.06 1.1 0.82 0.96 1.08 0.88 0.98
pca-ht(10%)(1) 0.99 0.85 1.12 1.03 1.01 0.91 0.85 0.98 0.89 0.99

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.92⋄⋄ 0.95 0.92 0.98 0.93 1.08 0.93 0.97⋄ 0.94 1.16
tv-3pr f (ic) 0.9⋄⋄ 1.04⋄⋄ 0.99 0.99 0.97 1 0.83⋄ 0.99⋄⋄ 0.87∗∗ 1.01

tv-3pr fHi(1) 0.87⋄⋄ 0.92 0.95 0.99 0.96 1.06 0.93 0.99⋄⋄ 0.97 1.15

PAYEMS EXPORTS PCE-FE GS10 EXR-SUS

pca(ic) 0.99 1 1.03 1.04 0.97 1.03 1.04 0.89 0.94 1.02
pca(1) 1.21 1.05 1 0.99 0.95 1 0.86 0.84 0.85 0.9

pca-lars(1) 1.18 1.19 1.01 1.01 1.13 1.04 0.88 0.82 0.87 0.89
pca-ht(10%)(1) 1.29 1 1.01 1.01 0.95 1 0.89 0.93 0.91 0.92

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.97 1.12⋄⋄ 0.97 1.13 0.98 1.09 1 0.91 1.14 1.19
tv-3pr f (ic) 1.06⋄ 0.98⋄⋄ 0.98 1 0.93 1 0.98 0.98⋄ 1.09 1.12

tv-3pr fHi(1) 1.03 1.18⋄⋄ 1 1.13⋄⋄ 0.97 1.1 0.95 0.95 1.13 1.2

UNRATE GDP M2REAL EXR-USUK FPI

pca(ic) 1.1 1.09 1.21 1.05 0.93 1.05 0.93 1.05 1.12 1.14
pca(1) 1.3 1.12 1.19 0.98 1 0.93 0.86 0.95 1.14 0.98

pca-lars(1) 1.19 0.99 1.01 1.08 0.99 1 0.91 1.01 0.85 1.04
pca-ht(10%)(1) 1.07 1.09 1.13 1.07 1 0.94 0.93 0.97 1.12 1.02

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1.3 1.06 1.05 1.17⋄ 1.1 1.07⋄⋄ 1.1⋄⋄ 1.08 0.97 1.29
tv-3pr f (ic) 1.02 0.99 0.98 0.99 1.12 0.97⋄⋄ 1.03 1.02 0.96∗∗ 0.99

tv-3pr fHi(1) 1.36 1.13 1.01 1.19 1.12 1.1⋄⋄ 1.16 1.09 0.97 1.24

Table 6: MSFE results for h=1,4 periods ahead forecasts. The results are relative to the MSFE of the 3PRF, one
autoproxy factor model (3pr f (1)). In red you can see the best performing method, in blue the second best
and in pink the third best. The * (**) denotes statistically different forecasts from the 3pr f (1) model at the 10%
(5%) significance level, according to the Diebold and Mariano test. The ⋄ (⋄⋄) denotes statistically different
forecasts from the 3pr f (1) model at the 10% (5%) significance level according to the forecast fluctuation
test. The forecasting period starts at Q4-1984 and ends at Q1-2022, meaning that we forecast 151 quarterly
observations. The estimation period starts at Q1-1960. Table 5 presents details about the reference names of
the series.
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Out of Sample Macroeconomic Forecasting (NBER crises periods)

h 1 4 1 4 1 4 1 4 1 4

TBILL IP-DCG AE-WT FEDFUNDS PCE-FSI

pca(ic) 2.52 1.27 0.65 0.98 1.01 0.85 2.21 1.4 0.67 1.16
pca(1) 1.04 1.22 0.99 1.08 1.16 1.35 1.09 1.21 0.72 0.73

pca-lars(1) 1.34 1.43 0.57 1.13 0.64 1.08 1.89 1.15 0.63 1.14
pca-ht(10%)(1) 0.97 1.18 1.2 1.08 1.04 1.26 1 1.06 0.55 0.77

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.48 1.29 0.43 0.98 0.62 0.95 0.52 1.3 0.64 0.8
tv-3pr f (ic) 0.77 0.99 0.88 0.93 0.87 0.82 0.84 0.95 1.02 0.92

tv-3pr fHi(1) 0.46 1.38 0.39 0.93 0.63 0.98 0.56 1.09 0.63 0.77

PFI CPI-LFE IP-M UNRATE AHEP

pca(ic) 0.94 1.1 1.03 0.96 0.69 1.01 0.78 1.02 0.93 1.1
pca(1) 0.82 1.18 0.7 0.81 1.48 1.16 1.5 1.34 0.84 0.96

pca-lars(1) 0.86 1.11 0.8 1.01 0.79 1.07 0.59 1.16 0.89 0.94
pca-ht(10%)(1) 0.91 1.02 0.72 0.83 1.07 1.12 1.75 1.09 1.04 0.94

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1.06 1.19 0.39 0.83 0.73 1.12 0.77 1.19 0.92 0.63
tv-3pr f (ic) 0.92 0.97 0.41 0.95 0.96 1.01 0.98 1 0.9 0.9

tv-3pr fHi(1) 1.01 1.14 0.38 0.81 0.72 1.12 0.7 1.19 1.22 0.68

CP CLAIMS HOUST CUMFNS GCE

pca(ic) 2.29 1.49 0.74 0.98 0.86 0.99 0.75 0.95 0.41 0.84
pca(1) 0.86 1.48 1.18 1.06 0.79 0.9 2.03 1.09 0.45 0.91

pca-lars(1) 1.07 1.04 0.93 1.02 0.94 0.86 0.68 1.16 0.44 0.73
pca-ht(10%)(1) 0.82 1.17 1.34 1.07 0.81 0.92 0.77 1.04 0.62 0.95

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.74 1.57 0.53 1.08 0.18 0.86 0.86 1.06 0.67 0.63
tv-3pr f (ic) 0.68 0.96 0.88 1.01 0.87 0.96 1.07 1.02 0.29 0.49

tv-3pr fHi(1) 0.78 1.11 0.54 1.02 0.24 0.82 0.86 1.07 0.31 0.62

PAYEMS EXPORTS PCE-FE GS10 EXR-SUS

pca(ic) 0.8 0.91 0.95 1.16 0.88 0.98 1.24 0.98 0.89 0.95
pca(1) 1.22 1.33 1.08 1.11 0.8 1 0.38 0.9 0.68 0.94

pca-lars(1) 0.72 1.09 1.09 1.06 1.2 1.05 0.38 0.87 0.69 0.92
pca-ht(10%)(1) 0.82 1.17 1.11 1.09 0.81 1.01 0.47 1 0.91 0.91

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.93 0.98 1.27 1.24 1.14 1.05 0.81 0.77 1.44 0.76
tv-3pr f (ic) 0.78 0.92 1.07 1.02 0.97 1 0.67 0.86 1.41 0.79

tv-3pr fHi(1) 0.9 1.04 1.25 1.26 1.19 1.05 0.82 0.78 1.32 1.22

UNRATE GDP M2REAL EXR-USUK FPI

pca(ic) 0.4 1.06 0.83 1.07 1.1 1.04 1.07 1.04 0.63 1.15
pca(1) 2.01 1.33 1.08 1.31 0.98 1.03 0.92 1.02 1.27 1.15

pca-lars(1) 0.89 0.97 0.82 1.35 1.09 1.15 1.03 1 0.63 1.13
pca-ht(10%)(1) 0.96 1.05 0.66 1.25 0.98 1.03 1.07 1.01 1.34 1.14

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.86 1.2 1.16 1.08 1.88 0.86 1.04 0.93 0.53 0.95
tv-3pr f (ic) 0.94 0.99 0.61 0.98 1.32 1.04 0.89 1.07 0.89 0.97

tv-3pr fHi(1) 0.9 1.23 0.72 1.06 1.95 0.89 1.11 1.01 0.51 0.92

Table 7: MSFE results for the NBER crises periods for h=1, 4 periods ahead forecasts.
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Finally, to illustrate the empirical applicability of our method, we have conducted an

out of sample forecasting exercise, using a large panel of US macroeconomic series to pre-

dict key variables of interest. This exercise confirmed the gains from the use of TV-3PRF,

making it not only a relevant theoretical contribution but also a useful additional tool for

applied econometric and statistical analyses.
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7 Appendix

In this appendix we include the proofs of the Theorems presented in the main text of the

paper, together with a set of additional results needed for the proofs. Furthermore, we

include additional Monte Carlo evidence on the usefullness of our TV-3PRF.

7.1 Kernel weights

Our estimation strategy for the time varying coefficients is based on the use of kernels

K (x) ≥ 0 with weights

kH,ts = K
(

t − s
H

)
, and KH,t =

T

∑
s=1

kH,ts, (46)

where H is the bandwidth such that H → ∞, with rate H = o (T). In what follows, when-

ever possible, we drop the subscript H in kH,t,s and KH,t, (i.e. write kt,s, and Kt respectively)

for notational convenience.

We consider kernels that satisfy the following conditions

kts ≤ C
(

1 +
(
|t − s|

H

)ν)−1

(47)

|kt,s − kt,s+1| ≤ CH−1
(

1 +
(
|t − s|

H

)ν)−1

for ν > 3.

7.2 Notation

To facilitate exposition, we define the following kernel weighted versions of data, fac-

tors, and idiosyncratic components. That is, let ỹ(t) =
[
k1/2

t,1 ỹt,2, .., k1/2
t,T ỹt,T+1

]′
, ỹt,s =

ys − yt, yt = K−1
t ∑T

l=1 kt,lyl+1, and η̃(t) =
[
k1/2

t,1 η̃t,2, .., k1/2
t,T η̃t,T+1

]′
, η̃t,s = ηs − ηt, with

ηt = K−1
t ∑T

s=1 kt,lηl+1. Also, Z̃(s) =
[
k1/2

s,1 z̃s,1, .., k1/2
s,T z̃s,T

]′
, for z̃s,t = zt − zs, with zt =

K−1
t ∑T

s=1 kt,lzl and z(s)t = k1/2
s,t zt. We can define analogous weighted matrices for Ft, xt, ωt,

εt. In practice, all these matrices depend on a bandwidth parameter H (or L), through the

kernel weigting (46). Then, the matrix Z̃(s) is a function of the bandwidth H, that is Z̃(s)
H .

When this does not introduce any confusion, we drop the bandwidth subscript.
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When possible, we will use the summations Szx,t = K−1
t ∑T

j=1 ktj
(
zj − zt

) (
xj − xt

)′, and

Sxy,t = K−1
t ∑T

j=1 ktj
(
xj − xt

) (
yj+1 − yt

)′, which also depend on bandwidths H or L (i.e.

Szx,H,t, Sxy,L,t).

7.3 Main Results

Here we present the main theoretical results of the paper. The proofs are derived using the

auxiliary results given afterward in section 7.4. As before, the notation used here follows

the descriptions in section 7.2.

7.3.1 Proof of Theorem 1

Proof of (i): By Lemma A4 and Lemma A5 we have

F̂′
t β̂t

p→
N,T→∞

(Λt∆FP1 + Λt∆F∆ΦFt)
′ (Λt∆F∆Φ∆FΛ′

t
)−1 (Λt∆FΛ′

t + ∆ω

)
(48)

×
(
Λt∆FΛ′

t + ∆ω

)−1 Λt∆F∆Φ∆FΛ′
t
(
Λt∆F∆Φ∆F∆Φ∆FΛ′

t
)−1 Λt∆F∆Φ∆Fβt (49)

= (Λt∆FP1 + Λt∆F∆ΦFt)
′ (Λt∆F∆Φ∆F∆Φ∆FΛ′

t
)−1 Λt∆F∆Φ∆Fβt. (50)

By Assumptions 3, 4, we have P1 = 0, ∆F is diagonal and positive definite, Λt = [Λ ft , 0]

with Λ ft non singular, and ∆Φ = I. Then

F̂′
t β̂t

p→
N,T→∞

F′
t ∆Φ∆FΛ′

t
(
Λt∆F∆Φ∆F∆Φ∆FΛ′

t
)−1 Λt∆F∆Φ∆Fβt (51)

= F′
t ∆Φ∆FΛ′

t
(
∆Φ∆FΛ′

t
)−1

(Λt∆F∆Φ∆F)
−1 Λt∆F∆Φ∆Fβt

= F′
t βt.

Noticing that

ŷt+1 = β̂0t + F̂′
t β̂t (52)

and

β̂0t = K−1
L,t

T

∑
s=1

kL,tsys+1 − K−1
L,t

T

∑
s=1

kL,ts F̂′
s β̂L,t, (53)
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it follows that

ŷt+1 = K−1
L,t

T

∑
s=1

kL,tsys+1 − K−1
L,t

T

∑
s=1

kL,ts F̂′
s β̂t + F̂t β̂t

= K−1
L,t

T

∑
s=1

kL,tsβ0s + K−1
L,t

T

∑
s=1

kL,tsF′
s βs + K−1

L,t

T

∑
s=1

kL,tsηs+1 − K−1
L,t

T

∑
s=1

kL,ts F̂′
s β̂t + F̂′

t β̂t

= K−1
L,t

T

∑
s=1

kL,ts (β0s − β0t) + β0t + K−1
L,t

T

∑
s=1

kL,tsηs+1 + K−1
L,t

T

∑
s=1

kL,tsF′
s βs

+ K−1
L,t

T

∑
s=1

kL,ts F̂′
s

(
β̂s − β̂t

)
− K−1

L,t

T

∑
s=1

kL,ts F̂′
s β̂s + F̂′

t β̂t

p→
N,T→∞

β0t + F′
t βt (54)

since F̂′
t β̂t

p→
N,T→∞

F′
t βt, ∀t, K−1

L,t ∑T
s=1 kL,tsηs+1 = o (1) by Lemma A1, the K−1

L,t ∑T
s=1 kL,ts (β0s − β0t) =

Op

(√
L
T

)
by Assumption 1 and Corollary 9b in Dendramis et al. (2021). For the term

K−1
t ∑T

s=1 kt,s F̂′
s

(
β̂s − β̂t

)
, notice that by Lemma A5 it is

β̂t →
(
Λt∆FΛ′

t + ∆ω

)−1 Λt∆Fβt = G−1
t Λt∆Fβt,

with Gt = (Λt∆FΛ′
t + ∆ω). Moreover, it is

β̂s − β̂t = G−1
s Λs∆Fβs − G−1

t Λt∆Fβt = G−1
s Λs∆Fβs − G−1

s Λs∆Fβt + G−1
s Λs∆Fβt − G−1

t Λt∆Fβt

= G−1
s Λs∆F (βs − βt) +

(
G−1

s Λs∆F − G−1
t Λt∆F

)
βt

= G−1
s Λs∆F (βs − βt) +

(
G−1

s Λs∆F − G−1
s Λt∆F + G−1

s Λt∆F − G−1
t Λt∆F

)
βt

= G−1
s Λs∆F (βs − βt) + G−1

s (Λs − Λt)∆Fβt +
(

G−1
s − G−1

t

)
Λt∆Fβt.

Furthermore, since∥∥∥G−1
s − G−1

t

∥∥∥ =
∥∥∥G−1

t (Gt − Gs) G−1
s

∥∥∥ ≤
∥∥∥G−1

t

∥∥∥ ∥Gt − Gs∥
∥∥∥G−1

s

∥∥∥ (55)

and

∥Gt − Gs∥ ≤
∥∥Λt∆FΛ′

t − Λs∆FΛ′
s
∥∥ =

∥∥Λt∆FΛ′
t − Λt∆FΛ′

s + Λt∆FΛ′
s − Λs∆FΛ′

s
∥∥

≤ ∥Λt∥ ∥∆F∥
∥∥Λ′

t − Λ′
s
∥∥+ ∥Λt − Λs∥ ∥∆F∥

∥∥Λ′
s
∥∥ , (56)
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we have that∥∥∥∥∥K−1
t

T

∑
s=1

kt,s F̂′
s

(
β̂s − β̂t

)∥∥∥∥∥ ≤

≤ max
s

E
∥∥∥F̂s

∥∥∥ ∥∥∥∥∥K−1
t

T

∑
s=1

kt,s

(
G−1

s Λs∆F (βs − βt) + G−1
s (Λs − Λt)∆Fβt +

(
G−1

s − G−1
t

)
Λt∆Fβt

)∥∥∥∥∥
≤ C1 max

s
E
∥∥∥G−1

s

∥∥∥max
s

∥Λs∥ ∥∆F∥K−1
t

T

∑
s=1

kt,s ∥(βs − βt)∥

+ C1 max
s

E
∥∥∥G−1

s

∥∥∥max
t

E ∥βt∥ ∥∆F∥K−1
t

T

∑
s=1

kt,s ∥(Λs − Λt)∥

+ C1 max
t

E ∥Λt∥max
t

∥∆F∥max
t

E ∥βt∥max
t

∥∥∥G−1
t

∥∥∥2
K−1

t

T

∑
s=1

kt,s ∥Gt − Gs∥

= Op

(√
L
T

)

since maxs E
∥∥∥F̂s

∥∥∥ < ∞, as all elements in (102) have bounded norm, maxs E
∥∥G−1

s
∥∥ <

∞, for the same reason, maxs ∥Λs∥ < ∞, ∥∆F∥ < ∞, maxt E ∥βt∥ < ∞, by Assump-

tion 1, K−1
t ∑T

s=1 kt,s ∥βs − βt∥ = Op

(√
H
T

)
, K−1

t ∑T
s=1 kt,s ∥(Λs − Λt)∥ = Op

(√
H
T

)
, and

K−1
t ∑T

s=1 kt,s ∥Gt − Gs∥ = Op

(√
H
T

)
by (56), Assumption 1 and Corollary 9b in Den-

dramis et al. (2021), and this proves the result.

Proof of (ii): Notice that from equation (128) we have that

β̂t = S−1
zz,H,tSzx,H,t JNS′

zx,H,t
(
Szx,H,t JNSxx,L,t JNS′

zx,H,t
)−1 Szx,H,t JNSxy,L,t + op (1) . (57)

As in (104), we set

F̂t = F̂(1),txt (58)

= Szz,H,t
(
Szx,H,t JNS′

zx,H,t
)−1 Szx,H,t JNxt. (59)

Then,

F̂t − F̂t = K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xt − xs)

)′
+ K−1

L,t

T

∑
s=1

kL,ts

((
F̂(1),t − F̂(1),s

)
xs

)′
= (xt − xt)

′ F̂′
(1),t + op (1) (60)
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due to equation (127). Hence, we can write

ŷt+1 = yt +
(

F̂t − F̂t

)′
β̂t, (61)

which, together with (57), (60) and (104), implies

ŷt+1 = yt + (xt − xt)
′ ât + op (1) , (62)

where ât = JNS′
zx,H,t

(
Szx,H,t JNSxx,L,t JNS′

zx,H,t

)−1
Szx,H,t JNSxy,L,t.

Proof of (iii): Let Si be a 1× N selector vector such that Si ât = âit, then by algebra analogous

to that presented in Lemma A5 we have

Si ât
p→

N,T→∞
N−1Si JNΦt∆FΛ′

t
(
Λt∆F∆Φt ∆F∆Φt ∆FΛ′

t
)−1 Λt∆F∆Φt ∆Fβt‘.

This, by Assumption 3, Assumption 4 and Lemma A5, reduces to

Nâit
p→

N,T→∞

(
Φit − Φt

)′
βt,

since Si JNΦt
p→

N,T→∞

(
Φit − Φt

)′, N−1 ∑N
j=1 Φjt

p→
T→∞

Φt.

7.3.2 Proof of Corollary 1

When K f = 1, the result follows directly from Theorem 1 by noting that the loading of yt+1

on Ft is βt = (β′
f t, 0′)′. Therefore, the target-proxy satisfies the condition of Assumption

4 and the consistency result follows. When K f > 1, let ŷ(1) denote the 1 automatic proxy

TV-3PRF forecast. Then, because of derivations in (54) and Lemma A3, we have

r(1)t = yt − ŷ(1)t (63)

= β0t + F′
t βt + ηt − β̂0t − F̂′

t β̂t (64)

= F′
t (βt − Φ′(1)

t t F̃(t)βt) + ηt − εtΩ
(1)
t ηt (65)

with

Ω(1)
t = S′

zx,H,t JN(Szx,H,t JNSxx,L,t JNS′−1
zx,H,tSzx,H,t JNX̃(t)′ , (66)

where zt = yt in the autoproxy case that we consider here. Since βt = (β′
f t, 0′)′, the target

yt has zero covariance with the irrelevant factors, and also ŷ(1)t , r(1)t have zero covariance

with the irrelevant factors. This means that r(1)t has zero loadings on the irrelevant factors.
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Suppose we have k < K f automatically selected proxies, with factor loadings [Λk f t, 0], and

Λk f t is of dimension k × K f with full row rank. Using the same arguments as in the k = 1

case, we can show that the residual r(k)t has zero loading on the irrelevant factors. We

further need to show that the r(k)t factor loading on relevant factors is linearly independent

of the rows of Λk f t. From equation (63), we observe that these loadings take the form

βt − Φ′(1)
t t F̃(t)βt. Next, project the relevant factor loading of r(k)t onto the column space

of Λk f t. For linear independence this projection must result a non zero residual. To this

end, the residual is given by (I − Λ′
k f t(Λk f tΛ′−1

k f t Λk f t)(βt − Φ′(1)
t t F̃(t)βt), which equals zero

when Λ′
k f t(Λk f tΛ′−1

k f t Λk f t) = I. The last statement is true when k = K f . Therefore, the

proxies satisfy Assumption 4.

To verify assumptions that correspond to the error of the proxy equation (ωt), notice

that each automatic proxy is a forecast error yt+1 − ŷt+1, where ŷt+1 is expressed as

ŷt+1 = N−1α′txt, (67)

meaning that we can write the automatic proxy as zt = bt f + ωt with ωt = ηt+1 + N−1a′tεt.

The ηt component directly satisfies 1.4, 2.3 and 2.4 by Assumption 1.5. Also the N−1a′tεt

component satisfy 1.4, 2.3 and 2.4, due to Assumptions 1.3, 2.2 and Theorem 3(ii). Then, all

conditions of Theorem 1 and 5 are satisfied.

7.3.3 Proof of Theorem 2

Inspection of equation (19), allows us to derive the autoproxy TV-3PRF estimator in one

step as

ŷt+1 = yL,t + (xt − xL,t)
′ ât + op (1) , (68)

where

ât = W(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t (69)

and W(t) =
[

JNSxy,H,t, JNSxx,H,t JNSxy,H,t, .., (JNSxx,H,t)
K−1 JNSxy,H,t

]
is the Krylov

subspaces sequence, for K factors extracted.

To this end, we use the generalized definition of degrees of freedom, proposed by Efron

(2004), in which

DoF = E
[

trace
(

∂ŷ
∂y

)]
. (70)
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Then, total differential of the estimator ât is given by

dât = dW(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t

− W(t)
(

W(t)′Sxx,L,tW(t)
)−1

dW(t)′Sxx,L,tW(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t

− W(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxx,L,tdW(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t

+ W(t)
(

W(t)′Sxx,L,tW(t)
)−1

dW(t)′Sxy,L,t + H(t)dSxy,L,t, (71)

where

H(t) = W(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′. (72)

Then, we have

dât = dW(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t

− W(t)
(

W(t)′Sxx,L,tW(t)
)−1

dW(t)′Sxx,L,tH(t)Sxy,L,t

− H(t)Sxx,L,tdW(t)
(

W(t)′Sxx,L,tW(t)
)−1

W(t)′Sxy,L,t

+ W(t)
(

W(t)′Sxx,L,tW(t)
)−1

dW(t)′Sxy,L,t + K−1
L,t H(t)X̃(t)′

L dỹ(t)L . (73)

Next, since vec (ABC) = (C′ ⊗ A) vecB, we have

dât =

{
S′

xy,L,tW
(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗ IN

}
vec
(

dW(t)
)

−
{

S′
xy,L,tH

(t)Sxx,L,t ⊗ W(t)
(

W(t)′Sxx,L,tW(t)
)−1

}
vec
(

dW(t)′
)

−
{

S′
xy,L,tW

(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗ H(t)Sxx,L,t

}
vec
(

dW(t)
)

+ S′
xy,L,t ⊗ W(t)

(
W(t)′Sxx,L,tW(t)

)−1
vec
(

dW(t)′
)

+ K−1
L,t H(t)X̃(t)′

L dỹ(t)L (74)

and

dât =

{
S′

xy,L,tW
(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗
(

IN − H(t)Sxx,L,t

)}
vec
(

dW(t)
)

+

{
S′

xy,L,t

(
IN − H(t)Sxx,L,t

)
⊗ W(t)

(
W(t)′Sxx,L,tW(t)

)−1
}

vec
(

dW(t)′
)

+ K−1
L,t H(t)X̃(t)′

L dỹ(t)L . (75)
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Notice that C is p × 1, B is p × m, A is p × m then (C′ ⊗ B) vec (A′) = (B ⊗ C′) vec (A) =

BA′C and

dât =

{
S′

xy,L,tW
(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗
(

IN − H(t)Sxx,L,t

)}
vec
(

dW(t)
)

+

{
W(t)

(
W(t)′Sxx,L,tW(t)

)−1
⊗ S′

xy,L,t

(
IN − H(t)S(t)

)}
vec
(

dW(t)
)

+ K−1
L,t H(t)X̃(t)′

L dỹ(t)L , (76)

or, equivalently,

dât =

 S′
xy,L,tW

(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗
(

IN − H(t)Sxx,L,t

)
+

+W(t)
(

W(t)′Sxx,L,tW(t)
)−1

⊗ S′
xy,L,t

(
IN − H(t)S(t)

)
 vec

(
dW(t)

)
+ K−1

L,t H(t)X̃(t)′
L dỹ(t)L

=
(

S′
xy,L,t ⊗ IN + IN ⊗ S′

xy,L,t

) [
W(t)

(
W(t)′Sxx,L,tW(t)

)−1
⊗
(

IN − H(t)Sxx,L,t

)]
vec
(

dW(t)
)

+ K−1
L,t H(t)X̃(t)′

L dỹ(t)L . (77)

From the definition of W(t) we have

vec
(

W(t)
)
= K−1

H,tU
′
K ỹ(t)H , (78)

where UK =
{

X̃(t)
H JN, X̃(t)

H JNSxx,H,t JN, .., X̃(t)
H JN (Sxx,H,t JN)

K−1
}

and vec
(

dW(t)
)

=

dvec
(

W(t)
)
= K−1

H,tU
′
Kdỹ(t)

Also, since ỹ(t)H = Λ(t)
H

(
y − yH,t1T

)
, with Λ(t)

H = diag
(√

kH,1t,
√

kH,2t, ..,
√

kHTt
)
, we

have that ỹ(t)H = Λ(t)
H

(
IT − 1

Kt
1T1′TΛ(t)

H Λ(t)
H

)
y and also

dỹ(t)H = Λ(t)
H

(
IT − 1

Kt
1T1′TΛ(t)

H Λ(t)
H

)
dy. (79)

Combining this information with the previous derivations, we obtain:

dât =
(

S′
xy,L,t ⊗ IN + IN ⊗ S′

xy,L,t

) [
H(t)
(1) ⊗

(
IN − H(t)Sxx,L,t

)]
K−1

H,tU
′
KΛ(t)

H

(
IT − 1

KH,t
1TTΛ(2,t)

L

)
dy

(80)

+ K−1
L,t H(t)X̃(t)′

L Λ(t)
L

(
IT − 1

Kt
1TTΛ(2,t)

L

)
dy,

where H(t)
(1) = W(t)

(
W(t)′S(t)

xx W(t)
)−1

, 1TT = 1T1′T, Λ(2,t)
L =

(
Λ(t)

L

)2
. Writing equation (68)

in T × 1 vector form as

ŷ = yL + diag
(
(x1 − xL1)

′ , (x2 − xL2)
′ , ..., (xT − xLT)

′) vec
(

Â
)

(81)
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where xt is a N × 1 vector of the N regressors at time t, Â is the N × T matrix Â =

[â1, â2, .., âT], and the diag
(
(x1 − xL1)

′ , (x2 − xL2)
′ , ..., (xT − xLT)

′) is of dimension T × TN,

we finally obtain:

DoF (K) =
T

∑
s=1

ks,s

Ks
+ trace

diag((x1 − x1)
′ , (x2 − x2)

′ , ..., (xT − xT)
′)

∂vec
(

Â
)

∂y


=

T

∑
s=1

kL,ss

KL,s
+

T

∑
s=1

(xs − xL,s)
′ ∂as

∂ys+1
,

where ∂at
∂yt+1

is the t-th row of the T × N matrix given in (80).

7.3.4 Proof of Theorem 3

Proof of (i): In view of the Cramer-Wold device, it suffices to verify that for any vector ν

with ν′ν = 1 the scalar random variable pT,t := Kt
K1/2

2,t
ν′Γ−1/2

Fη,t SFη,t, has the property

pT,t
d→ N (0, 1) . (82)

Notice that for ξts := K−1/2
2,t ν′Γ−1/2

Fη,t Fsηs+1 we have that

pT,t =
T

∑
s=1

kt,sξts .

Also, ν′Γ−1/2
Fη,t Fsηs+1 is a strong mixing sequence since Fs, ηs+1 are both strong mixing se-

quences. Further, E
(

ν′Γ−1/2
Fη,t Fsηs+1

)
= 0, as E (Fsηs+1) = 0 and E

∣∣∣ν′Γ−1/2
Fη,t Fsηs+1

∣∣∣r < M <

∞ for all s and E |Fsηs+1|r < M < ∞ for r > 2. Also notice that

var

(
K−1/2

2,t

T

∑
s=1

kt,sv′Γ−1/2
Fη,t Fsηs+1

)
= ν′Γ−1/2

Fη,t var

(
K−1/2

2,t

T

∑
s=1

kt,sFsηs+1

)
Γ−1/2

Fη,t ν

= ν′Γ−1/2
Fη,t K−1

2,t

T

∑
s=1

k2
t,sE

(
FsF′

sη2
s+1

)
Γ−1/2

Fη,t ν → 1.

The result then follows by White (2014), Theorem 5.20.

Proof of (ii): As in element (i), the scalar random variable pT,t := Kt
K1/2

2,t
ν′Γ−1/2

Fε,it CFε,it has the

property

pT,t
d→ N (0, 1) . (83)
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Notice that, for ξts := K−1/2
2,t ν′Γ−1/2

Fε,it Fsεis, we have that

pT,t =
T

∑
s=1

kt,sξts . (84)

Also, ν′Γ−1/2
Fε,it Fsεis is a strong mixing sequence since Fs, εis are both strong mixing sequences.

Further, E
(

ν′Γ−1/2
Fε,it Fsεis

)
= 0, as E (Fsεis) = 0 and E

∣∣∣ν′Γ−1/2
Fε,it Fsεis

∣∣∣r < M < ∞ for all s since

E |Fsεis|r < M < ∞, for r > 2. Moreover,

σ̃2 := var

(
K−1/2

2,t ν′Γ−1/2
Fε,it

T

∑
s=1

kt,sFsεis

)

= ν′Γ−1/2
Fε,it var

(
K−1/2

2,t

T

∑
s=1

kt,sFsεis

)
Γ−1/2

Fε,it ν

= ν′Γ−1/2
Fε,it

(
K−1

2,t

T

∑
s=1

T

∑
r=1

kt,skt,rE
(

FsF′
rεisεir

))
Γ−1/2

Fε,it ν → 1.

The result follows from White (2014), Theorem 5.20

Proof of (iii): It suffices to verify that for any vector ν with ν′ν = 1, the scalar random

variable pN,st := N1/2ν′Γ−1/2
Φε,st Cϕε,ist, has the property

pN,st
d→ N (0, 1) . (85)

Defining ξist := N−1/2ν′Γ−1/2
Φε,st Φisεit, then

pN,st =
N

∑
i=1

ξist = N−1/2
N

∑
i=1

ν′Γ−1/2
Φε,st Φisεit. (86)

Also, ν′Γ−1/2
Φε,t Φitεit is a strong mixing sequence since Φis is a triangular array of vectors and

εit is a strong mixing sequence. Further E
(

ν′Γ−1/2
Φε,st Φisεit

)
= 0 since E (Φisεit) = 0 and

E
(∣∣∣ν′Γ−1/2

Φε,st Φisεit

∣∣∣r) < M < ∞ for all i since E
(
|Φisεit|r

)
< M < ∞, r > 2. Finally,

˜̃σ2
:= var

(
N−1/2

N

∑
i=1

ν′Γ−1/2
Φε,st Φisεit

)

= ν′Γ−1/2
Φε,st var

(
N−1/2

N

∑
i=1

Φisεit

)
Γ−1/2

Φε,st ν

= ν′Γ−1/2
Φε,st

(
N

N

∑
i=1

N

∑
j=1

E
(
ΦisΦjsεitε jt

))
Γ−1/2

Φε,st ν → 1.

The result follows from White (2014), Theorem 5.20.
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Proof of (iv):Notice that

Nâit − Nãit = NSi JNS′
zx,H,t

(
Szx,H,t JNSxx,L,t JNS′

zx,H,t
)−1 Szx,H,t JNSxy,L,t

− NSi JNS′
zx,H,t

(
1

N2 Szx,H,t JNSxx,L,t JNS′
zx,H,t

)−1

× 1
N

Szx,H,t JN
1

KL,t
X̃(t)′

L F̃(t)
L βt

= NSi JNS′
zx,H,t

(
Szx,H,t JNSxx,L,t JNS′

zx,H,t
)−1 Szx,H,t JN

1
KL,t

X̃(t)′
L F̃(t)

L βt

+ NSi JNS′
zx,H,t

(
Szx,H,t JNSxx,L,t JNS′

zx,H,t
)−1 Szx,H,t JN

1
KL,t

X̃(t)′
L η̃L,t

− NSi JNS′
zx,H,t

(
1

N2 Szx,H,t JNSxx,L,t JNS′
zx,H,t

)−1

× 1
N

Szx,H,t JN
1

KL,t
X̃(t)′

L F̃(t)
L βt

= Si JNS′
zx,H,t

(
N−2Szx,H,t JNSxx,L,t JNS′

zx,H,t

)−1
N−1Szx,H,t JN

1
KL,t

X̃(t)′
L η̃L,t.

The result follows from Lemma A8 since η̂t = ηt + op (1).

Proof of (v): See proof of Corollary 1

7.3.5 Proof of Theorem 4

Proof of (i): First, set ỹt+1 = yL,t + (xt − xL,t)
′ Ga,tβt and since ŷt+1 = yL,t + (xt − xL,t)

′ ât +

op (1), we have that√
KL,t (ŷt+1 − ỹt+1) =

√
KL,t

(
(xt − xL,t)

′ ât − (xt − xL,t)
′ Ga,tβt

)
= N−1 (xt − xL,t)

′√KL,tN (ât − ãt) ,

for ãit = SiGa,tβt, which implies that√
KL,t (ŷt+1 − ỹt+1)

Qt

d→ N (0, 1) ,

where Q2
t = N−2 (xt − xL,t)

′ Âvar (ât) (xt − xL,t). Also, by Theorem 1 we have

ỹt+1 =
(
yt + (xt − xt)

′ Ga,tβt
) p→

N,T→∞
Etyt+1,

and by Slutsky’s Theorem convergence in distribution follows.
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Proof of (ii): Notice that

(
β̂t − Gβ,tβt

)
= β̂−1

1,t β̂2,t β̂
−1
3,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L ỹ(t)L

− β̂−1
1,t β̂2,t β̂

−1
3,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L F̃(t)
L βt

+ op (1)

= β̂−1
1,t β̂2,t β̂

−1
3,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L η̃
(t)
L .

Then,

K1/2
L,t

(
β̂t − Gβ,tβt

)
= β̂−1

1,t β̂2,t β̂
−1
3,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1/2
L,t X̃(t)′

L η̃
(t)
L

d→ N
(
0, Σβ,t

)
by Lemma A8, and following the results in Lemma A4 and Lemma A5, we have that

Σβ,t = Ψβ,tΓFη,tΨ′
β,t,

where

Ψβ,t = Σ−1
z,t
(
Λt∆F∆Φt ∆FΛ′

t
) (

Λt∆F∆Φt ∆F∆Φt ∆FΛ′
t
)−1 Λt∆F∆Φ

with Σz,t = Λt∆FΛ′
t + ∆ω and

β̂1,t = K−1
H,tZ̃

(t)′
H Z̃(t)

H
p→

N,T→∞
Λt∆FΛ′

t + ∆ω

β̂2,t = N−1K−2
H,tZ̃

(t)′
H X̃(t)

H JNX̃(t)′
H Z̃(t)

H
p→

N,T→∞
Λt∆F∆Φt ∆FΛ′

t

β̂3,t = N−2K−2
H,tZ̃

(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L X̃(t)
L JNX̃(t)′

H Z̃(t)
H

p→
N,T→∞

Λt∆F∆Φ∆F∆Φ∆FΛ′
t.

By Assumptions 1-4, we have that

Σβ,t = Σ−1
z,t ΓFη,tΣ−1

z,t .

To show that Âvar
(

β̂t

)
is a consistent estimator of Σβ,t, notice that

K1/2
L,t

(
β̂t − Gβ,tβt

)
= β̂−1

1,t β̂2,t β̂
−1
3,t N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1/2
L,t X̃(t)′

L η̃
(t)
L + op (1)

=

(
K−1

L,t
˜̂F(t)′

L
˜̂F(t)

L

)−1

K−1/2
L,t

˜̂F(t)′
L η̃

(t)
L + op (1) ,

which implies that the asymptotic variance of β̂t equals to the probability limit of(
K−1

L,t
˜̂F(t)′

L
˜̂F(t)

L

)−1

K−1
L,t
˜̂F(t)′

L η̃
(t)
L η̃

(t)
L
˜̂F(t)′

L

(
K−1

L,t
˜̂F(t)′

L
˜̂F(t)

L

)−1

. (87)
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Assumpion 1 and Lemma A7 imply that (87) equals to

K−1
L,t
˜̂F(t)′

L η̃
(t)
L η̃

(t)
L
˜̂F(t)′

L
p→

N,T→∞
K−1

L,t

T

∑
s=1

kL,ts (ηs+1 − ηt)
2 kL,ts

(
F̂s − FL,t

) (
F̂s − FL,t

)′
p→

N,T→∞
K−1

L,t

T

∑
s=1

kL,tsη
2
s+1kL,ts

(
F̂s − FL,t

) (
F̂s − FL,t

)′
.

By Theorem 1, we have that ηt = η̂t + op (1), ηt = op (1) which implies that (87) and

Âvar
(

β̂t

)
share the same probability limit and therefore Âvar

(
β̂t

)
is a consistent estima-

tor for Σβ,t.

7.3.6 Proof of Theorem 5

First, note that (
F̂t − (H0,t + HtFt)

)
= F̂A,t F̂−1

B,t N−1K−1
t Z̃(t)′X̃(t) JNεt.

Using Lemma A9, we have that
√

N
(

F̂t − (H0,t + HtFt)
)

d→ N (0, ΣF,t) ,

with ΣF,t derived from results in Lemma A9, Lemma A4 and assumption 3,4.

7.3.7 Proof of Theorem 6

An equivalent expression is

arg min
at

T

∑
s=1

kL,s,t

(
ys+1 − yL,t − (xs − xL,t)

′ at

)2
(88)

= arg min
at

(
ỹ(t)L − X̃(t)

L at

)′ (
ỹ(t)L − X̃(t)

L at

)
.

Then, at can be estimated by the minimization of the weighted sum of squared errors.

Notice that since the constraint is of the form Q′
tat = 0 , by Amemiya (1985) (Section 1.4),

the solution is given as

ât = Rt
(

R′
tSxx,L,tRt

)−1 R′
tSxy,L,t

Sxx,L,t = K−1
L,t X̃(t)′

L X̃(t)
L

Sxy,L,t = K−1
L,t X̃(t)′

L ỹ(t)L ,

where Rt is such that R′
tQt = 0 and [R′

t, Qt] is non singular. The result follows when

Rt = Wxz,H,t, for which we have

ât = Wxz,H,t
(
W ′

xz,H,tSxx,L,tWxz,H,t
)−1 W ′

xz,H,tSxy,L,t.
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7.4 Auxiliary Lemmas

The results presented in this part of the Appendix are necessary for the proofs of the main

theoretical results given in section 7.3. The notation used here follows that introduced in

section 7.2.

Lemma A1 Let Assumptions 1,2 and 5 hold then for δNKs = min
(√

N,
√

Ks

)
and all r = 1, .., T.

1. E
∣∣∣N−1/2K−1/2

s ∑i,u ksuFmu [εiuεit − σii,ut]
∣∣∣2 ≤ M

2. E
∣∣∣N−1/2K−1/2

s ∑N
i=1 ∑T

u=1 ksuωmu [εiuεit − σii,ut]
∣∣∣2 ≤ M

3. (a) N−1/2K−1/2
s ∑T

t=1 ∑N
j=1 kstε jt = Op (1)

(b) N−1/2 ∑N
j=1 ε jt = Op (1)

(c) K−1/2
s ∑T

t=1 kstε jt = Op (1)

4. K−1/2
s ∑T

t=1 kstηt+1 = Op (1)

5. K−1/2
s ∑T

t=1 kstεitηt+1 = Op (1)

6. N−1/2K−1/2
s ∑T

t=1 ∑N
i=1 kstεitηt+1 = Op (1)

7. N−1K−1/2
s ∑T

t=1 ∑N
i=1 ϕmirkstεitFvt = Op (1)

8. N−1K−1/2
s ∑T

t=1 ∑N
i=1 ϕmirkstεitωvt = Op (1)

9. N−1/2K−1/2
s ∑T

t=1 ∑N
i=1 ϕmirktsεitηt+1 = Op (1)

10. N−1K−1/2
s ∑i,u ktsεiuεit = O

(
δ−1

NKS

)
11. N−1K−3/2

s ∑T
t=1 ∑T

u ∑N
i=1 ksuεiuηu+1ks,tεit = O

(
δ−1

NKS

)
12. K−1/2

s N−1 ∑T
u=1 ∑N

i=1 ksuFmuεiuεit = Op

(
δ−1

N,Ks

)
13. K−1/2

s N−1 ∑T
u=1 ∑N

i=1 ksuωmuεiuεit = Op

(
δ−1

N,Ks

)
14. N−1K−1

s ∑T
t=1 ∑T

u ∑N
i=1 ksuεiuηu+1kstεitFmt = Op (1)

7.4.1 Proof of Lemma A1

In the following we use the result

K−1
s

T

∑
t=1

k2
s,t = O (1) (89)

from 6.1 of Giraitis et al. (2014).

1. E
∣∣∣N−1/2K−1/2

s ∑i,u ks,uFmu [εiuεit − σii,ut]
∣∣∣2

= E
∣∣∣N−1K−1

s ∑i,u,j,v ks,uFmu

[
ε
(s)
iu ε

(s)
it − σii,ut

]
ks,vFmv

[
ε jvε jt − σjj,vt

]∣∣∣
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≤ maxuv E |FmuFmv| E
∣∣∣N−1K−1

s ∑i,u,j,v ks,uks,v [εiuεit − σii,ut]
[
ε jvε jt − σjj,vt

]∣∣∣
≤ maxuv E |FmuFmv| E

∣∣∣N−1/2K−1/2
s ∑i,u ks,u [εiuεit − σii,ut]

∣∣∣2
because of Assumptions 1 and 2.

2. As in item 1.

3. (a) E
∣∣∣N−1/2K−1/2

s ∑T
t=1 ∑N

j=1 ks,tε jt

∣∣∣2 =

= E
(

N−1K−1
s ∑N

j=1 ∑T
t=1 ∑N

i=1 ∑T
l=1 ks,tε jtks,lεil

)
=

=N−1K−1
s ∑N

j=1 ∑T
t=1 ∑N

i=1 ∑T
l=1 ks,tks,lσijtl

≤ N−1K−1
s ∑N

j=1 ∑T
t=1 ∑N

i=1 ∑T
l=1 ks,tks,l

∣∣σijtl
∣∣

= Op (1)

by Assumption 2.1 (d).

(b) E
∣∣∣N−1/2 ∑N

j=1 ε jt

∣∣∣2=E
(

N−1 ∑N
j=1 ∑N

i=1 ε jtεit

)
= N−1 ∑N

j=1 ∑N
i=1 σij,tt ≤ N−1 ∑N

j=1 ∑N
i=1
∣∣σij,tt

∣∣ = Op (1)

by Assumption 2.1 (a).

(c) E
∣∣∣K−1/2

s ∑T
t=1 ks,tε jt

∣∣∣2 = K−1
s E

(
∑T

t=1 ∑T
u=1 ks,tε jtks,uε ju

)
= K−1

s ∑T
t=1 ∑T

u=1 ks,tks,uσjj,tu ≤ K−1
s ∑T

t=1 ∑T
u=1 ks,tks,u

∣∣σjj,tu
∣∣ = Op (1)

by Assumption 2.1 (c).

4. E
∣∣∣K−1/2

s ∑T
t=1 ks,tηt+1

∣∣∣2 = E
(

K−1
s ∑T

t=1 ∑T
l=1 ks,tηt+1ηl+1ks,l

)
= K−1

s ∑T
t=1 k2

s,tE
(
η2

t+1
)
= Op (1)

by Assumptions 1.5 and (89).

5. E
∣∣∣K−1/2

s ∑T
t=1 ktsεitηt+1

∣∣∣2 = E
(

K−1
s ∑T

l=1 ∑T
t=1 ktsktlεitηt+1εilηl+1

)
= K−1

s ∑T
t=1 ktsktsE

(
ε2

it
)

E
(
η2

t+1
)
= K−1

s ∑T
t=1 ktsktsσii,ttE

(
η2

t+1
)

≤ K−1
s ∑T

t=1 k2
tsσiiE

(
η2

t+1
)

by Assumptions 1.5, 2.1 and (89).

6. E
∣∣∣N−1/2K−1/2

s ∑T
t=1 ∑N

i=1 ktsεitηt+1

∣∣∣2
= E

(
N−1K−1

s ∑T
t=1 ∑N

i=1 ∑T
l=1 ∑N

j=1 ktsktlεitηt+1ε jlηl+1

)
= N−1 ∑N

i=1 ∑N
j=1 K−1

s ∑T
t=1 k2

s,tσij,ttE
(
η2

t+1
)

≤ N−1 ∑N
i=1 ∑N

j=1 σijK−1
s ∑T

t=1 k2
s,tE

(
η2

t+1
)
= Op (1),

by Assumptions 1.5, 2.1 and (89).

7. By the Cauchy inequality N−1K−1/2
s ∑T

t=1 ∑N
i=1 ϕmirkstεitFvt
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= N−1 ∑N
i=1 ϕmir

(
K−1/2

s ∑T
t=1 kstεitFvt

)
≤
(

N−1 ∑N
i=1 ϕ2

mir

)1/2
(

N−1 ∑N
i=1

(
K−1/2

s ∑T
t=1 kstεitFvt

)2
)1/2

= Op (1)

by Assumption 1.2 and Theorem 3.

8. N−1K−1/2
s ∑T

t=1 ∑N
i=1 ϕmirkstεitωvt = N−1 ∑N

i=1 ϕmir

(
K−1/2

s ∑T
t=1 ε

(s)
it ω

(s)
vt

)
≤
(

N−1 ∑N
i=1 ϕ2

mir

)1/2
(

N−1 ∑N
i=1

(
K−1/2

s ∑T
t=1 kstεitωvt

)2
)1/2

= Op (1)

by Assumptions 1.2 and 2.4.

9. E
∣∣∣N−1/2K−1/2

s ∑T
t=1 ∑N

i=1 ϕmirε
(s)
it η

(s)
t+1

∣∣∣2
= E

(
N−1K−1

s ∑T
t=1 ∑N

i=1 ∑T
l=1 ∑N

j=1 ϕmirε
(s)
it η

(s)
t+1ϕmjrε

(s)
jl η

(s)
l+1

)
= N−1K−1

s ∑T
t=1 ∑N

i=1 ∑N
j=1 E

∣∣∣∣ϕmirϕmjrktsεitε jtkts

(
η
(s)
t+1

)2
∣∣∣∣

= K−1
s ∑T

t=1 ktsE
(
η2

t
)

ktsE
(

N−1 ∑N
i=1 ∑N

j=1 ϕmirϕmjrεitε jt

)
= K−1

s ∑T
t=1 k2

tsE
(
η2

t
)

E
(

N−1/2 ∑N
i=1 ϕmirεit

)2
= Op (1)

by Assumption 1.5, Theorem 3 and (89).

10. N−1K−1/2
s ∑i,u ksuεiuεit =

= N−1K−1/2
s ∑N

i=1 ∑T
u=1 ksu (εiuεit − σii,ut)

+N−1K−1/2
s ∑N

i=1 ∑T
u=1 ksuσii,ut

≤ N−1K−1/2
s ∑N

i=1 ∑T
u=1 ksu (εiuεit − σii,ut)

+maxu (ksu) N−1K−1/2
s ∑N

i=1 ∑T
u=1 σii,ut

= Op
(

N−1/2)+ Op

(
K−1/2

s

)
= O

(
δ−1

NKs

)
by Assumptions 2.1 (b) and 2.2.

11. N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 kusεiuηu+1kstεit

≤ K−1
s ∑T

u k1/2
su ηu+1

(
k1/2

su N−1K−1/2
s ∑T

t=1 ∑N
i=1 kstεiuεit

)
≤
(

K−1
s ∑T

u ksuη2
u+1

)1/2
(

K−1
s ∑T

u ksu

(
N−1K−1/2

s ∑T
t=1 ∑N

i=1 kstεiuεit

)2
)1/2

= O
(

δ−1
NKS

)
by Assumption 1.5 and item 10.

12. K−1/2
s N−1 ∑T

u=1 ∑N
i=1 ksuFmuεiuεit

=N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuFmu (εiuεit − σii,ut)

+N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuFmuσii,ut

≤ N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuFmu (εiuεit − σii,ut)

+maxt (kst)K−1/2
s maxu (|Fmu|) N−1 ∑T

u=1 ∑N
i=1 σii,ut
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=Op
(

N−1/2)+ Op

(
K−1/2

s

)
by Assumption 2.1(b) and item 1.

13. K−1/2
s N−1 ∑T

u=1 ∑N
i=1 ksuωmuεiuεit

=N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuωmu (εiuεit − σii,ut)

+N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuωmuσii,ut

≤ N−1K−1/2
s ∑T

u=1 ∑N
i=1 ksuωmu (εiuεit − σii,ut)

+maxt (kst)K−1/2
s maxu (|ωmu|) N−1 ∑T

u=1 ∑N
i=1 σii,ut

=Op
(

N−1/2)+ Op

(
K−1/2

s

)
by Assumption 2.1 (b) and item 2.

14. N−1K−1
s ∑T

t=1 ∑T
u ∑N

i=1 ksuεiuηu+1kstεitFmt

= N−1 ∑N
i=1

(
K−1/2

s ∑T
t=1 kstεitFmt

) (
K−1/2

s ∑T
u kusεiuηu+1

)
≤
(

N−1 ∑N
i=1

(
K−1/2

s ∑T
t=1 kstεitFmt

)2
)1/2 (

N−1 ∑N
i=1

(
K−1/2

s ∑T
u kusεiuηu+1

)2
)1/2

= Op (1),

by Theorem 3 and item 5.

Lemma A2 Let Assumptions 1,2 and 5 hold. Then, for r = 1, .., T and δNKs = min
(

N1/2, K1/2
s

)
,

we have

1. K−1/2
s F̃(s)′ω̃(s) = Op (1)

2. K−1/2
s F̃(s)′η̃(s) = Op (1)

3. K−1/2
s ε̃(s)′η̃(s) = Op (1) (a single element)

4. N−1/2ε′r JNΦt = Op (1)

5. N−1K−1
s Φ′

r JN ε̃(s)′ F̃(s) = Op

(
δ−1

NKs

)
6. N−1K−1/2

s Φ′
r JN ε̃(s)′ω̃(s) = Op (1)

7. N−1/2K−1/2
s Φr JN ε̃(s)′η̃(s) = Op

(
K−1/2

s

)
= Op (1)

8. N−1K−3/2
s F̃(s)′ ε̃(s) JN ε̃(s)′ F̃(s) = Op

(
δ−1

N,Ks

)
9. N−1K−3/2

s ω̃(s)′ ε̃(s) JN ε̃(s)′ F̃(s) = Op

(
δ−1

N,Ks

)
10. N−1K−3/2

s ω̃(s)′ ε̃(s) JN ε̃(s)′ω̃(s) = Op

(
δ−1

N,Ks

)
11. N−1K−1/2

s F̃(s)′ ε̃(s) JNεt = Op

(
δ−1

NKs

)
12. N−1K−1/2

s ω̃(s)′ ε̃(s) JNεt = Op

(
δ−1

NKs

)
13. N−1K−3/2

s η̃(s)′ ε̃(s) JN ε̃(s)′ F̃(s) = Op

(
δ−1

NKs

)
14. N−1K−3/2

s η̃(s)′ ε̃(s) JN ε̃(s)′ω̃(s) = Op

(
δ−1

NKs

)
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7.4.2 Proof of Lemma A2

1. It is K−1/2
s F(s)′ω(s) = K−1/2

s ∑T
t=1 F(s)

t ω
(s)′
t = K−1/2

s ∑T
t=1 ktsFtω

′
t.

Then, K−1/2
s F̃(s)′ω̃(s) = K−1/2

s ∑T
t=1 F(s)

t ω
(s)′
t −

(
K−1

s ∑T
t=1 kt,sFt

) (
K−1/2

s ∑T
t=1 kt,sω

′
t

)
= Op (1), by Assumptions 1.1 and 1.4 and 2.3.

2. K−1/2
s F̃(s)′η̃(s) = K−1/2

s ∑T
s=1 F(s)

t η
(s)′
t −

(
K−1

s ∑T
s=1 kt,sFs

) (
K−1/2

s ∑T
s=1 kt,sηs+1

)
=Op (1), by Assumption 2.1, Theorem 3 and Lemma A1.4.

3. K−1/2
s ε̃(s)′η̃(s) = K−1/2

s ∑T
t=1 kt,sεtηt+1 −

(
K−1

s ∑T
t=1 kt,sεt

) (
K−1/2

s ∑T
t=1 kt,sηt+1

)
= Op (1), by Lemmas A1.4, A1.5 and Assumption 1.3.

4. The m-th element of N−1/2ε′r JNΦt is N−1/2 ∑N
i=1 εirϕmi,t −

(
N−1/2 ∑N

i=1 εit

) (
N−1 ∑N

i=1 ϕmi,t

)
= Op (1) by Assumption 1.2, Lemma A1.3 and Theorem 3.

5. We have N−1K−1
s Φ′

r JN ε̃(s)′ F̃(s) = N−1K−1
s ∑T

t=1 ∑N
i=1 ϕirε

(s)
it F(s)′

t

−N−1K−2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)
it k1/2

s,l F(s)′
l

−N−2K−1
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕirε
(s)
jt F(s)′

t

+N−2K−2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)
jt k1/2

s,l F(s)′
l .

The m1,m2 element of the above is

–N−1K−1
s ∑T

t=1 ∑N
i=1 ϕm1irε

(s)
it F(s)

m2t = Op

(
K−1/2

s

)
by Lemma A1.7.

–N−2K−1
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕm1irε
(s)
jt F(s)

m2t =

=
(

N−1 ∑N
i=1 ϕm1ir

) (
N−1 ∑N

j=1 K−1
s ∑T

t=1 ε
(s)
jt F(s)

m2t

)
= Op (1)× Op

(
K−1/2

s

)
= Op

(
K−1/2

s

)
, by Assumption 1.2 and Theorem 3.

–N−1K−2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕm1irk1/2
s,t ε

(s)
it k1/2

s,l F(s)′
m2l =

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)′

m2l

) (
N−1K−1

s ∑T
t=1 ∑N

i=1 ϕm1irk1/2
s,t ε

(s)
it

)
but K−1

s ∑T
l=1 k1/2

s,l F(s)′
m2l = Op (1) by Assumption 1.1

and N−1/2K−1
s ∑T

t=1

(
N−1/2 ∑N

i=1 ϕm1irk1/2
s,t ε

(s)
it

)
=

= N−1/2K−1
s ∑T

t=1 ks,t

(
N−1/2 ∑N

i=1 ϕm1irεit

)
= Op

(
N−1/2) by Theorem 3.

So, overall, N−1K−2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)
it k1/2

s,l F(s)′
l = Op

(
N−1/2) .

–N−2K−2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)
jt k1/2

s,l F(s)′
l

= N−1K−1
s ∑T

t=1 ∑N
j=1 k1/2

s,t ε
(s)
jt

(
K−1

s ∑T
l=1 k1/2

s,l F(s)′
l

) (
N−1 ∑N

i=1 ϕir

)
= Op

(
N−1/2K−1/2

s

)
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by Assumptions 1.1, 1.2 and Lemma A1.3.

Summing up the various terms, we have that A2.5 is Op

(
δ−1

N,Ks

)
.

6.
(

N−1K−1/2
s Φ′

r JN ε̃(s)′ω̃(s)
)
= N−1K−1/2

s ∑T
t=1 ∑N

i=1 ϕirε
(s)
it ω

(s)′
t

−N−1K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)
it k1/2

s,l ω
(s)′
l

−N−2K−1/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕirε
(s)
jt ω

(s)′
t

+N−2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)′
l .

Notice that

-N−1K−1/2
s ∑T

t=1 ∑N
i=1 ϕirε

(s)
it ω

(s)′
t = Op (1), by Lemma A1.8.

-N−2K−1/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕirε
(s)
jt ω

(s)′
t =

(
N−1 ∑N

i=1 ϕir

) (
N−1K−1/2

s ∑T
t=1 ∑N

j=1 ε
(s)
jt ω

(s)′
t

)
= Op (1) by Assumptions 1.2 and 2.4.

-N−1K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)
it k1/2

s,l ω
(s)′
l

=
(

K−1/2
s ∑T

l=1 k1/2
s,l ω

(s)
l

) (
N−1K−1

s ∑T
t=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)
it

)
= Op

(
N−1/2) = Op (1) by Assumptions 1.4 and Theorem 3.

-N−2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)′
l

=
(

N−1 ∑N
i=1 ϕir

) (
K−1/2

s ∑T
l=1 k1/2

s,l ω
(s)′
m1l

) (
N−1K−1

s ∑T
t=1 ∑N

j=1 k1/2
s,t ε

(s)
jt

)
= Op (1)× Op (1)× Op

(
N−1/2K−1/2

s

)
= Op

(
N−1/2K−1/2

s

)
by Assumptions 1.4, 1.2 and Lemma A1.3.

Then, overall, N−1K−1/2
t Φ′

t JN ε̃(s)ω̃(s) = Op (1) .

7.
(

N−1/2K−1/2
s Φr JN ε̃(s)′η̃(s)

)
= N−1/2K−1/2

s ∑T
t=1 ∑N

i=1 ϕirε
(s)′
it η

(s)
t+1

−N−1/2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)′
it k1/2

s,l η
(s)
l+1

−N−3/2K−1/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕirε
(s)′
jt η

(s)
t+1

+N−3/2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)′
jt k1/2

s,l η
(s)
l+1.

Notice that

-N−1/2K−1/2
s ∑T

t=1 ∑N
i=1 ϕirε

(s)′
it η

(s)
t+1 = Op (1), by Lemma A1.9.

-N−1/2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)′
it k1/2

s,l η
(s)
l+1 =

=
(

K−1/2
s ∑T

l=1 k1/2
s,l η

(s)
l+1

)
N−1/2K−1

s ∑T
t=1 ∑N

i=1 ϕirk1/2
s,t ε

(s)′
it = Op (1)

by Theorem 3 and Lemma A1.4.

-N−3/2K−1/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ϕirε
(s)′
jt η

(s)
t+1
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= N−1 ∑N
i=1 ϕir

(
N−1/2K−1/2

s ∑T
t=1 ∑N

j=1 ε
(s)′
jt η

(s)
t+1

)
= Op (1)

by Assumptions 1.2 and Lemma A1.6.

-N−3/2K−3/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ϕirk1/2

s,t ε
(s)′
jt k1/2

s,l η
(s)
l+1 =(

N−1 ∑N
i=1 ϕir

) (
K−1/2

s ∑T
l=1 k1/2

s,l η
(s)
l+1

)
K−1/2

s

(
N−1/2K−1/2

s ∑T
t=1 ∑N

j=1 k1/2
s,t ε

(s)′
jt

)
= Op

(
K−1/2

s

)
by Assumptions 1.2, Lemma A1.3 and A1.4.

So, overall, N−1/2K−1/2
s Φr JN ε̃(s)′η̃(s) is Op (1) .

8. For the m1, m2 generic element N−1K−3/2
s F̃(s) ε̃(s) JN ε̃(s)′ F̃(s) we have

= N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu F(s)

m1,uε
(s)
it F(s)

m2,t

−N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
it k1/2

s,l F(s)
m2,l

−N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu F(s)

m1,uε
(s)
jt F(s)

m2,t

+N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
jt k1/2

s,l F(s)
m2,l

−N−1K−5/2
s ∑T

t=1 ∑N
i=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v F(s)
m1,vε

(s)
it F(s)

m2,t

+N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v F(s)
m1,vk1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2,l

+N−2K−5/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v F(s)
m1,vε

(s)
jt F(s)

m2,t

−N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v F(s)
m1,vk1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2,l

Then, 8.(i),

N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu F(s)

m1,uε
(s)
it F(s)

m2,t =

= K−1/2
s N−1 ∑N

i=1

(
K−1/2

s ∑T
u ε

(s)
iu F(s)

m1,u

) (
K−1/2

s ∑T
t=1 ε

(s)
it F(s)

m2,t

)
= Op

(
K−1/2

s

)
by Theo-

rem 3.

8.(ii)

N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
it k1/2

s,l F(s)
m2,l=

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

)
N−1K−3/2

s ∑T
t=1 ∑T

u ∑N
i=1 ε

(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
it

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

)
K−1

s ∑T
t=1

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
it

)
≤
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

)
K−1

s ∑T
t=1 kst

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu F(s)

m1,uεit

)
=Op

(
δ−1

N,T

)
by Assumption 1.1, Theorem 3 and Lemma A1.12.

8.(iii)

N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu F(s)

m1,uε
(s)
jt F(s)

m2,t

=K−1/2
s

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu F(s)

m1,u

) (
N−1K−1/2

s ∑T
t=1 ∑N

j=1 ε
(s)
jt F(s)

m2,t

)
=Op

(
K−1/2

s

)
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by Theorem 3.

8.(iv)

N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu F(s)

m1,uk1/2
s,t ε

(s)
jt k1/2

s,l F(s)
m2,l

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

) (
N−1K−1/2

s ∑N
i=1 ∑T

u ε
(s)
iu F(s)

m1,u

) (
N−1K−1

s ∑N
j=1 ∑T

t=1 k1/2
s,t ε

(s)
jt

)
= Op (1)Op (1)Op

(
K−1/2

s N−1/2
)
= Op

(
K−1/2

s N−1/2
)

by Assumption 1.1, Theorem 3 and Lemma A1.3.

8.(v)

N−1K−5/2
s ∑T

t=1 ∑N
i=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v F(s)
m1,vε

(s)
it F(s)

m2,t

=
(

K−1
s ∑T

v=1 k1/2
s,v F(s)

m1,v

) (
K−1

s ∑T
u=1 k1/2

s,u ε
(s)
iu

) (
N−1K−1/2

s ∑N
i=1 ∑T

t=1 ε
(s)
it F(s)

m2,t

)
= Op

(
K−1/2

s

)
by Assumption 1.1, Theorem 3 and Lemma A1.3.

8.(vi)

N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v F(s)
m1,vk1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2,l =

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

) (
K−1

s ∑T
v=1 k1/2

s,v F(s)
m1,v

)
K−1

s ∑T
t=1 K−1/2

s N−1 ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)
iu k1/2

s,t ε
(s)
it

≤
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2,l

) (
K−1

s ∑T
v=1 k1/2

s,v F(s)
m1,v

)
K−1

s ∑T
t=1 kst

(
K−1/2

s N−1 ∑N
i=1 ∑T

u=1 ksuεiuεit

)
= Op

(
δ−1

N,KS

)
by Assumption 1.1 and Lemma A1.10.

8.(vii)

N−2K−5/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v F(s)
m1,vε

(s)
jt F(s)

m2,t

= Op

(
N−1/2K−1/2

s

)
see 8(iv).

8.(viii)

N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v F(s)
m1,vk1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2,l

=
(

K−1
s ∑T

v=1 k1/2
s,v F(s)

m1,v

) (
K−1

s ∑T
l=1 k1/2

s,l F(s)
m2,l

)
K−1/2

s N−1
(

N−1/2K−1/2
s ∑N

i=1 ∑T
u=1 k1/2

s,u ε
(s)
iu

) (
N−1/2K−1/2

s ∑N
j=1 ∑T

t=1 k1/2
s,t ε

(s)
jt

)
= Op

(
K−1/2

s N−1
)

by Assumption 1.1 and Lemma A1.3.

So, overall, summing up these terms we have that the item in 8 is Op

(
δ−1

N,Ks

)
.
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9. The proof is as in 8, replacing ω(s) for F(s), Assumption 1.1 for Theorem 3, and Lemma

A1.12 for A1.13.

10. For the m1, m2 generic element of N−1K−3/2
s ω̃(s)′ ε̃(s) JN ε̃(s)′ω̃(s) we have

N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu ω

(s)
m1uε

(s)
it ω

(s)
m2t

−N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
it k1/2

s,l ω
(s)
m2l

−N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu ω

(s)
m1uε

(s)
jt ω

(s)
m2t

+N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)
m2l

−N−1K−5/2
s ∑T

t=1 ∑N
i=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v ω
(s)
m1vε

(s)
it ω

(s)
m2t

+N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v ω
(s)
m1vk1/2

s,t ε
(s)
it k1/2

s,l ω
(s)
m2l

+N−2K−5/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v ω
(s)
m1vε

(s)
jt ω

(s)
m2t

−N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v ω
(s)
m1vk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)
m2l

Focusing on each element of the summation we have

10.(i),

N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu ω

(s)
m1uε

(s)
it ω

(s)
m2t =

= K−1/2
s N−1 ∑N

i=1

(
K−1/2

s ∑T
u ε

(s)
iu ω

(s)
m1u

) (
K−1/2

s ∑T
t=1 ε

(s)
it ω

(s)
m2t

)
= Op

(
K−1/2

s

)
by Assumption 2.4.

10.(ii)

N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
it k1/2

s,l ω
(s)
m2l=

=
(

K−1
s ∑T

l=1 k1/2
s,l ω

(s)
m2l

)
N−1K−3/2

s ∑T
t=1 ∑T

u ∑N
i=1 ε

(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
it

=
(

K−1
s ∑T

l=1 k1/2
s,l ω

(s)
m2l

)
K−1

s ∑T
t=1

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
it

)
≤ K−1/2

s

(
K−1/2

s ∑T
l=1 k1/2

s,l ω
(s)
m2l

)
K−1

s ∑T
t=1 kst

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu ω

(s)
m1uεit

)
=Op

(
K−1/2

s

)
Op

(
δ−1

N,T

)
=Op

(
δ−1

N,T

)
by Assumption 1.4, and Lemma A1.13.

10.(iii)

N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu ω

(s)
m1uε

(s)
jt ω

(s)
m2t

=K−1/2
s

(
N−1K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu ω

(s)
m1u

) (
N−1K−1/2

s ∑T
t=1 ∑N

j=1 ε
(s)
jt ω

(s)
m2t

)
=Op

(
K−1/2

s

)
by Assumption 2.4.

10.(iv)

N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu ω

(s)
m1uk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)
m2l
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= K−1/2
s

(
K−1/2

s
T
∑

l=1
k1/2

s,l ω
(s)
m2l

)(
N−1K−1/2

s
N
∑

i=1

T
∑
u

ε
(s)
iu ω

(s)
m1u

)(
N−1K−1

s
N
∑

j=1

T
∑

t=1
k1/2

s,t ε
(s)
jt

)
= Op

(
K−1/2

s

)
Op (1)Op

(
K−1/2

s N−1/2
)
= Op

(
K−1/2

s N−1/2
)

by Assumption 1.4, 2.4 and Lemma A1.3.

10.(v)

is Op

(
δ−1

N,T

)
as in 10(ii).

10.(vi)

N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v ω
(s)
m1vk1/2

s,t ε
(s)
it k1/2

s,l ω
(s)
m2l =

=
(

K−1
s ∑T

l=1 k1/2
s,l ω

(s)
m2l

) (
K−1

s ∑T
v=1 k1/2

s,v ω
(s)
m1v

)
K−1

s ∑T
t=1 K−1/2

s N−1 ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)
iu k1/2

s,t ε
(s)
it

≤
(

K−1
s ∑T

l=1 k1/2
s,l ω

(s)
m2l

) (
K−1

s ∑T
v=1 k1/2

s,v ω
(s)
m1v

)
K−1

s ∑T
t=1 kst

(
K−1/2

s N−1 ∑N
i=1 ∑T

u=1 ε
(s)
iu ε

(s)
it

)
= Op

(
K−1

s
)

Op

(
δ−1

N,KS

)
= Op

(
δ−1

N,KS

)
by Assumption 1.4 and Lemma A1.10.

10.(vii)

is Op

(
N−1/2K−1/2

s

)
as in item (iv).

10.(viii)

N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v ω
(s)
m1vk1/2

s,t ε
(s)
jt k1/2

s,l ω
(s)
m2l

= K−1/2
s

(
K−1/2

s ∑T
v=1 k1/2

s,v ω
(s)
m1v

)
K−1/2

s

(
K−1/2

s ∑T
l=1 k1/2

s,l ω
(s)
m2l

)
K−1/2

s N−1
(

N−1/2K−1/2
s ∑N

i=1 ∑T
u=1 k1/2

s,u ε
(s)
iu

) (
N−1/2K−1/2

s ∑N
j=1 ∑T

t=1 k1/2
s,t ε

(s)
jt

)
= Op

(
K−1

s
)

Op

(
K−1/2

s N−1
)
= Op

(
K−1/2

s N−1
)

by Assumption 1.4 and Lemma A1.3.

So, overall, summing up these terms we have that the item in 10 is Op

(
δ−1

N,Ks

)
.

11. For the m-th element we have the following expression

K−1/2
s N−1 ∑T

u=1 ∑N
i=1 F(s)

muε
(s)
iu εit

−K−1/2
s N−2 ∑T

u=1 ∑N
i=1 ∑N

j=1 F(s)
muε

(s)
iu ε jt

−K−3/2
s N−1 ∑N

i=1 ∑T
u=1 ∑T

l=1 k1/2
s,u ε

(s)′
iu k1/2

s,l F(s)
ml εit

+K−3/2
s N−2 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
l=1 k1/2

s,u ε
(s)
iu k1/2

s,l F(s)
ml ε jt

We then have

–K−1/2
s N−1 ∑T

u=1 ∑N
i=1 F(s)

muε
(s)
iu εit = Op

(
δ−1

N,Ks

)
by Lemma A1.12.
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–K−1/2
s N−2 ∑T

u=1 ∑N
i=1 ∑N

j=1 F(s)
muε

(s)
iu ε jt

= N−1/2
(

N−1/2 ∑N
j=1 ε jt

) (
N−1K−1/2

s ∑T
u=1 ∑N

i=1 F(s)
muε

(s)
iu

)
=Op

(
N−1/2)

by Theorem 3 and Lemma A1.3.

–K−3/2
s N−1 ∑N

i=1 ∑T
u=1 ∑T

l=1 k1/2
s,u ε

(s)′
iu k1/2

s,l F(s)
ml εit

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

ml

)
K−1/2

s N−1 ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)′
iu εit

≤
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

ml

) (
K−1/2

s N−1 ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)′
iu εit

)
= Op (1)Op

(
δ−1

N,Ks

)
= Op

(
δ−1

N,Ks

)
by Assumption 1.1 and Lemma A1.10.

-K−3/2
s N−2 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
l=1 k1/2

s,u ε
(s)
iu k1/2

s,l F(s)
ml ε jt

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

ml

) (
N−1/2K−1/2

s ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)
iu

) (
N−1/2 ∑N

j=1 ε jt

)
N−1/2

= Op
(

N−1/2)
by Assumption 1.1 and Lemma A1.3.

So, overall, item 11 is Op

(
δ−1

N,Ks

)
12. The proof is as in 11, replacing ω(s) for F(s) and Assumption 2.4 for Theorem 3.

13. For the m2 generic element of N−1K−3/2
s η̃(s) ε̃(s) JN ε̃(s)′ F̃(s) we have

N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu η

(s)
u+1ε

(s)
it F(s)

m2t

−N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu η

(s)
u+1k1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2l

−N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu η

(s)
u+1ε

(s)
jt F(s)

m2t

+N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu η

(s)
u+1k1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2l

−N−1K−5/2
s ∑T

t=1 ∑N
i=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v η
(s)
v+1ε

(s)
it F(s)

m2t

+N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v η
(s)
v+1k1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2l

+N−2K−5/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v η
(s)
v+1ε

(s)
jt F(s)

m2t

−N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v η
(s)
v+1k1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2l

Then, 13.(i),

N−1K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ε
(s)
iu η

(s)
u+1ε

(s)
it F(s)

m2t =

= Op

(
K−1/2

s

)
by Lemma A1.14.

13.(ii)

N−1K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ε

(s)
iu η

(s)
u+1k1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2l=
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=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2l

)
N−1K−3/2

s ∑T
t=1 ∑T

u ∑N
i=1 ε

(s)
iu η

(s)
u+1k1/2

s,t ε
(s)
it

=Op

(
δ−1

N,Ks

)
by Assumption 1.1, and Lemma A1.11.

13.(iii)

N−2K−3/2
s ∑T

t=1 ∑T
u ∑N

i=1 ∑N
j=1 ε

(s)
iu η

(s)
u+1ε

(s)
jt F(s)

m2t

=K−1/2
s N−1/2

(
N−1/2K−1/2

s ∑T
u ∑N

i=1 ε
(s)
iu η

(s)
u+1

) (
N−1K−1/2

s ∑T
t=1 ∑N

j=1 ε
(s)
jt F(s)

m2t

)
=Op

(
K−1/2

s N−1/2
)

by Theorem 3 and Lemma A1.6.

13.(iv)

N−2K−5/2
s ∑T

t=1 ∑T
l=1 ∑T

u ∑N
i=1 ∑N

j=1 ε
(s)
iu η

(s)
u+1k1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2l

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2l

) (
N−1/2K−1/2

s ∑N
i=1 ∑T

u ε
(s)
iu η

(s)
u+1

)
N−1/2

(
N−1K−1

s ∑N
j=1 ∑T

t=1 k1/2
s,t ε

(s)
jt

)
= Op (1)Op (1)Op

(
K−1/2

s N−1/2
)
= Op

(
K−1/2

s N−1
)

by Assumption 1.1, and Lemma A1.3, A1.6.

13.(v)

N−1K−5/2
s ∑T

t=1 ∑N
i=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v η
(s)
v+1ε

(s)
it F(s)

m2t

=
(

K−1
s ∑T

v=1 k1/2
s,v η

(s)
v+1 (m1)

) (
K−1

s ∑T
u=1 k1/2

s,u ε
(s)
iu

) (
N−1K−1/2

s ∑N
i=1 ∑T

t=1 ε
(s)
it F(s)

m2t

)
=K−1/2

s

(
K−1/2

s ∑T
v=1 k1/2

s,v η
(s)
v+1 (m1)

) (
maxs (ks,u)K−1

s ∑T
u=1 N−1K−1/2

s ∑N
i=1 ∑T

t=1 ε
(s)
it F(s)

m2tεiu

)
= Op

(
K−1/2

s

)
Op

(
δ−1

N,Ks

)
= Op

(
δ−1

N,Ks

)
by Theorem 3 and Lemma A1.12 and A1.4.

13.(vi)

N−1K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v η
(s)
v k1/2

s,t ε
(s)
it k1/2

s,l F(s)
m2l =

=
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2l

) (
K−1

s ∑T
v=1 k1/2

s,v η
(s)
v

)
K−1

s ∑T
t=1 K−1/2

s N−1 ∑N
i=1 ∑T

u=1 k1/2
s,u ε

(s)
iu k1/2

s,t ε
(s)
it

≤
(

K−1
s ∑T

l=1 k1/2
s,l F(s)

m2l

)
K−1/2

s

(
K−1/2

s ∑T
v=1 k1/2

s,v η
(s)
v

)
K−1

s kst ∑T
t=1

(
K−1/2

s N−1 ∑N
i=1 ∑T

u=1 ε
(s)
iu ε

(s)
it

)
= Op

(
K−1/2

s

)
Op

(
δ−1

N,KS

)
= Op

(
δ−1

N,KS

)
by Assumption 1.1 and Lemma A1.10 and A1.4.

13.(vii)

N−2K−5/2
s ∑T

t=1 ∑N
i=1 ∑N

j=1 ∑T
u=1 ∑T

v=1 k1/2
s,u ε

(s)
iu k1/2

s,v η
(s)
v ε

(s)
jt F(s)

m2t

=

(
N−1/2K−1/2

s
N
∑

i=1

T
∑

u=1
k1/2

s,u ε
(s)
iu

)(
K−1/2

s
T
∑

v=1
k1/2

s,v η
(s)
v

)
K−1

s N−1/2

(
N−1K−1/2

s
N
∑

j=1

T
∑

t=1
ε
(s)
jt F(s)

m2t

)
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= Op
(

N−1/2K−1
s
)

by Theorem 3 and Lemma A1.3 and A1.4.

13.(viii)

N−2K−7/2
s ∑T

t=1 ∑T
l=1 ∑N

i=1 ∑N
j=1 ∑T

u=1 ∑T
v=1 k1/2

s,u ε
(s)
iu k1/2

s,v η
(s)
v+1k1/2

s,t ε
(s)
jt k1/2

s,l F(s)
m2l

= K−1/2
s

(
K−1/2

s ∑T
v=1 k1/2

s,v η
(s)
v+1

) (
K−1

s ∑T
l=1 k1/2

s,l F(s)
m2l

)
K−1/2

s N−1
(

N−1/2K−1/2
s ∑N

i=1 ∑T
u=1 k1/2

s,u ε
(s)
iu

) (
N−1/2K−1/2

s ∑N
j=1 ∑T

t=1 k1/2
s,t ε

(s)
jt

)
= Op

(
K−1

s N−1) ≤ Op

(
K−1/2

s N−1
)

.

So, overall, the item in 13 is Op

(
δ−1

N,Ks

)
.

14. As in item 13, replace Lemma A1.14 with A1.15, A1.12 with A1.13 and Assumption

2.4 for Theorem 3.

Lemma A3 Let Assumptions 1,2 and 5 hold. Then,∥∥∥K−1
s X̃(s)′Z̃(s) − K−1

s Φs F̃(s)′ F̃(s)Λ′
s − K−1

s ε̃(s)′ω̃(s)
∥∥∥ = Op (λ)∥∥∥K−1

s X̃(s)′X̃(s) − K−1
s Φs F̃(s)′ F̃(s)Φs − K−1

s ε̃(s)′ ε̃(s)
∥∥∥ = Op (λ)∥∥∥K−1

s X̃(s)′ỹ(s) − K−1
s Φs F̃(s)′ F̃(s)βs − K−1

s η̃(s)′ ε̃(s)
∥∥∥ = Op (λ)∥∥∥K−1

s Z̃(s)′Z̃(s) − K−1
s Λs F̃(s)′ F̃(s)Λ′

s − K−1
s ω̃(s)′ω̃(s)

∥∥∥ = Op (λ)

where λ = κ (log N)ν max
(

H−1/2,
(H

T
)1/2

)
= op (1), ν = ρ+2

2ρ , ρ, κ > 0.

Proof of Lemma A3 Let Ks = KH,s, ks,t = kH,st and notice that

K−1
s X̃(s)′X̃(s) = K−1

s ∑T
t=1 ks,t (xt − xs) (xt − xs)

′, with

xt = ϕ0t + ΦtFt + εt, and

xs = K−1
s

T

∑
l=1

kslxl = K−1
s

T

∑
l=1

kslϕ0l + K−1
s

T

∑
l=1

kslΦl Fl + K−1
s

T

∑
s=1

ks,lε l, (90)

which implies that for all t = 1, .., T and any s it holds

xt − xs = ϕ0t − K−1
s

T

∑
l=1

ks,lϕ0l + ΦtFt − ΦsFt + ΦsFt − ΦsFs + ΦsFs − K−1
s

T

∑
l=1

ks,lΦl Fl + εt − εs

(91)

=
(
ϕ0t − ϕ0s

)
+ (Φt − Φs) Ft + Φs

(
Ft − Fs

)
+ K−1

s

T

∑
l=1

ks,l (Φs − Φl) Fl + (εt − εs)

= j1 + j2 + j3 + j4 + j5.
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Without loss of generality we assume that the number of factors K = 1. When K > 1

the i-th element of Φl Fl is comprised of terms ∑K
l=1 Φil Fl, whose bound equals the K = 1

bound when the number of factors K is finite.

Then, K−1
s ∑T

t=1 ks,t (xt − xs) (xt − xs)
′ can be decomposed as

K−1
s ∑T

t=1 ks,t (j1 + j2 + j3 + j4 + j5) (j1 + j2 + j3 + j4 + j5)
′

=Ωs+K−1
s ∑T

t=1 ks,t (j3 + j5) (j3 + j5)
′

with Ωs = K−1
s ∑T

t=1 ks,t j1 j′1 + K−1
s ∑T

t=1 ks,t j1 j′2 + K−1
s ∑T

t=1 ks,t j1 j′4
+K−1

s ∑T
t=1 ks,t j2 j′1 + K−1

s ∑T
t=1 ks,t j2 j′2 + K−1

s ∑T
t=1 ks,t j2 j′4

+K−1
s ∑T

t=1 ks,t (j1 + j2 + j4) j′3 + K−1
s ∑T

t=1 ks,t j3 (j1 + j2 + j4)
′

+K−1
s ∑T

t=1 ks,t j4 j′1 + K−1
s ∑T

t=1 ks,t j4 j′2 + K−1
s ∑T

t=1 ks,t j4 j′4
+K−1

s ∑T
t=1 ks,t j5 (j1 + j2 + j4)

′ + K−1
s ∑T

t=1 ks,t (j1 + j2 + j4) j′5

We have that λ = op (1) and we will show that∥∥∥∥∥K−1
s

T

∑
t=1

ks,t (xt − xs) (xt − xs)
′ − K−1

s

T

∑
t=1

ks,t (j3 + j5) (j3 + j5)
′
∥∥∥∥∥ = Op (λ) . (92)

Notice that from the property of spectral norm of a symmetric matrix∥∥∥∥∥K−1
s

T

∑
t=1

ks,t (xt − xs) (xt − xs)
′ − K−1

s

T

∑
t=1

ks,t (j3 + j5) (j3 + j5)
′
∥∥∥∥∥ = ∥Ωs∥ ≤ max

i

N

∑
k=1

∣∣∣Ωi,k
s

∣∣∣ ,

(93)

where Ωi,k
s is the i, k-element of Ωs. When the following probability limit (94) holds,

max
i,k

Pr
(∣∣∣Ωi,k

s

∣∣∣ > λ
)
= op

(
N−2

)
, (94)

we have that

Pr

(
max

i=1,..,N

N

∑
k=1

∣∣∣Ωi,k
s

∣∣∣ > λ

)
≤ Pr

(
N

∑
i,k=1

∣∣∣Ωi,k
s

∣∣∣ > λ

)
≤

N

∑
i,k=1

Pr
(∣∣∣Ωi,k

s

∣∣∣ > λ
)

≤ N2 max
i,k=1,..,N

Pr
(∣∣∣Ωi,k

s

∣∣∣ > λ
)
= o (1) ,

which proves (92), when (94) holds.

To prove (94), first notice that Ωi,k
s is comprised of terms Ji,k

{i1,i2,..},{j1,j2,..} with Ji,k
{i1,i2,..},{j1,j2,..}

being the i, k-th element of J{i1,i2,..},{j1,j2,..} = K−1
s ∑T

t=1 kst
(

ji1 + ji2 + ...
) (

jj1 + jj2 + ...
)′ .

Then, Pr
(∣∣∣Ωi,k

s

∣∣∣ > λ
)
=

Pr
(∣∣∣Ji,k

1,1 + Ji,k
1,2 + Ji,k

1,4 + Ji,k
2,1 + Ji,k

2,2 + Ji,k
2,4 + Ji,k

4,1 + Ji,k
4,2 + Ji,k

4,4 + Ji,k
{1,2,4},3 + Ji,k

3,{1,2,4} + Ji,k
{1,2,4},5 + Ji,k

5,{1,2,4}

∣∣∣ > λ
)
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≤ Pr
(∣∣∣J j,k

124 + Ji,k
{1,2,4},3

∣∣∣ > 1
4 λ
)
+ Pr

(∣∣∣Ji,k
3,{1,2,4}

∣∣∣ > 1
4 λ
)

+Pr
(∣∣∣Ji,k

{1,2,4},5

∣∣∣ > 1
4 λ
)
+ Pr

(∣∣∣Ji,k
5,{1,2,4}

∣∣∣ > 1
4 λ
)

, where J j,k
124 = Ji,k

1,1 + Ji,k
1,2 + Ji,k

1,4 + Ji,k
2,1 +

Ji,k
2,2 + Ji,k

2,4 + Ji,k
4,1 + Ji,k

4,2 + Ji,k
4,4

For the term Pr
(∣∣∣Ji,k

{1,2,4},3

∣∣∣ > 1
4 λ
)

we have that by Lemma C1 in Dendramis et al. (2021),

maxt E |ΦitFt| < ∞, maxt E |Ft| < ∞, |Φks| < ∞ maxt |ϕ0it| < ∞, and

K−1
s ∑T

t=1 ks,t

∣∣∣((ϕ0it − ϕ0is
)
+ (Φit − Φis) Ft + K−1

s ∑T
l=1 ks,l (Φis − Φil) Fl

) (
Ft − Fs

)
Φks

∣∣∣
≤ 2 |Φks|maxt |Ft|K−1

s ∑T
t=1 ks,t

∣∣ϕ0it − ϕ0is
∣∣

+2 |Φks|maxt |Ft|K−1
s ∑T

t=1 ks,t |ΦitFt − ΦitEF|
+2 |Φks|maxt |Ft|K−1

s ∑T
t=1 ks,t |Φit − Φis| EF

+2 |Φks|maxt |Ft|K−1
s ∑T

t=1 ks,t |Φis| |EF − Ft|
+2 |Φks|maxt |Ft|K−1

s ∑T
l=1 ks,l (Φis − Φil) Fl

= u1 + u2 + u3 + u4 + u5

When it is true that

K−1
s

T

∑
t=1

ks,t
∣∣ϕ0it − ϕ0is

∣∣ = Op

(√
H
T

)
, (95)

K−1
s

T

∑
t=1

ks,t |Φit − Φis| |EF| = Op

(√
H
T

)
, (96)

K−1
s

T

∑
l=1

ks,l |(Φis − Φil) Fl| = Op

(√
H
T

)
, (97)

we have that

Pr
(∣∣∣Ji,k

{1,2,4},3

∣∣∣ > 1
4

λ

)
≤ Pr

(
|u1 + u2 + u3 + u4 + u5| >

1
4

λ

)
≤ Pr

(
|u135 + u2| >

1
8

λ

)
+ Pr

(
|u4| >

1
8

λ

)
,

with u135 = u1 + u3 + u5. Then,

Pr
(
|u4| >

1
8

λ

)
≤ Pr

(
H1/2

Ks

∣∣∣∣∣H−1/2
T

∑
t=1

ks,t (Ft − EF)

∣∣∣∣∣ > 1
8C1

λ

)

≤ Pr

(∣∣∣∣∣H−1/2
T

∑
t=1

ks,t (Ft − EF)

∣∣∣∣∣ > η

)
,

with η := 1
8C1

λH1/2 and there exists a1, a2 > 0, such that a1H ≤ Ks ≤ a2H, for all s, that is
Ks

H1/2 ≥ α1H1/2. Then, using (45) of Lemma 2 of Dendramis et al. (2021), we obtain

Pr

(∣∣∣∣∣H−1/2
T

∑
t=1

ks,t (Ft − EF)

∣∣∣∣∣ > η

)
≤ gH

(
2, θ′, c, η

)
, 2 < θ′ < θ/2 (98)
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with

gH
(
γ1, θ′, c, η

)
= c0

{
exp (−c1ηγ1) + η−θ′ H−

(
θ′
2 −1

)}
. (99)

Notice that for λ = κ (log N)ν max
(

H−1/2,
(H

T
)1/2

)
, for a κ > 0, we have that η ≥

a1κ (log N)ν, a1 > 0, and for γ1 = 2,
(
(log N)ν)2

> log N, when ν = ρ+2
2ρ . Also, it is true

that under the specified condition on λ, we have N2 = o
(

H
θ′
2 −1
)

, and when c1 (a1κ)2 > 2

we have that gH (2, θ′, c, η) = o
(

N−2). We conclude that Pr
(
|u4| > 1

8 λ
)
= o

(
N−2).

For the term Pr
(
|u135 + u2| > 1

8 λ
)

, let

q135 = CH−1/2 ∑T
t=1 ks,t

∣∣ϕ0it − ϕ0is
∣∣+CH−1/2 ∑T

t=1 ks,t |Φit − Φis|+CH−1/2 ∑T
l=1 ks,l |(Φis − Φil) Fl|

q2 = C H−1/2 ∑T
t=1 ks,t |ΦitFt − ΦitEF|

Pr
(
|u135 + u2| >

1
8

λ

)
≤ Pr

(
H1/2

Ks
|q135 + q2| >

1
8

λ

)

≤ Pr
(
|q135 + q2| >

1
8

η1

)
,

with η1 := 1
8 λH1/2. Notice that when (95), (96), (97) are true, we have that q135 = Op

(
H√

T

)
,

since

|q135| ≤ CH−1/2
T

∑
t=1

ks,t
∣∣ϕ0it − ϕ0is

∣∣+ CH−1/2
T

∑
t=1

ks,t |Φit − Φis|+ CH−1/2
T

∑
t=1

ks,t |(Φis − Φil) Fl|

= C
Ks

H1/2

(
1

Ks

T

∑
t=1

ks,t
∣∣ϕ0it − ϕ0is

∣∣+ 1
Ks

T

∑
t=1

ks,t |Φit − Φis|+
1

Ks

T

∑
t=1

ks,t |(Φis − Φil) Fl|
)

= Op

(
H√

T

)
.

Since there exist a1, a2 > 0, such that a1H ≤ Ks ≤ a2H, for all s, that is Ks
H1/2 ≤ α2H1/2. Also,

notice that
η1

|q135|
≥

1
8κ (log N)ν H

T1/2

C H
T1/2

≥ 16, ν =
ρ + 2

2ρ
,

for any s > 0 and suitable κ. Then, since |q135| < η1/16

Pr
(
|q135 + q2| >

1
8

η1

)
≤ Pr

(
|q2| >

1
8

η1 − |q135|
)

≤ Pr
(
|q2| >

1
16

η1

)
.
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Thus, by claim (59) of Lemma 4 in Dendramis et al. (2021), we have that

Pr
(
|q2| >

1
16

η1

)
≤ gH

(
γ1, θ′, c, η1 (1 ∧ dH)

)
,

2 < θ′ < θ/2, dH =
T1/2

H
, γ1 =

2ρ

2 + ρ
,

with a ∧ b = min (a, b). For H > T1/2, we have 1 ∧ dH = dH, and

η1 (1 ∧ dH) ≥
1
8

κ (log N)ν H
T1/2

T1/2

H
≥ Cκ (log N)ν .

Also, noticing that νγ1 = 1, it is

gH
(
γ1, θ′, c, η1 (1 ∧ dH)

)
≤ c0

{
exp

(
−c1

(
Cκ (log N)ν)γ1

)
+
(
Cκ (log N)ν)−θ′ H−

(
θ′
2 −1

)}
≤ c0

{
exp

(
−c1 (Cκ)γ1 log N

)
+

1(
Cκ (log N)ν)θ′

1

H
(

θ′
2 −1

)
}

= o
(

N−2
)

,

when κ is selected such that (Cκ)γ1 > 2, θ′ is selected close enough to θ/2, we have N2 =

o
(

H
θ′
2 −1
)

.

To prove (95), (96), (97) notice that ϕ0it − ϕ0is = (ϕ0it − ϕ0is) +
(
ϕ0is − ϕ0is

)
where ϕ0is −

ϕ0is = K−1
s ∑T

l=1 ks,l (ϕ0is − ϕ0il) = Op

(√
H
T

)
, by Lemma C3 in Dendramis et al. (2021),

implying that

ϕ0it − ϕ0is = (ϕ0it − ϕ0is) + Op

(√
H
T

)
. (100)

Then,

K−1
s

T

∑
t=1

ks,t
∣∣ϕ0it − ϕ0is

∣∣ = K−1
s

T

∑
t=1

ks,t (ϕ0it − ϕ0is) + Op

(√
H
T

)

= Op

(√
H
T

)
,

by Lemma C3 in Dendramis et al. (2021). The same limit holds for (96) since |EF| < ∞.

Also, for (97) it holds that

K−1
s

T

∑
l=1

ks,l (Φis − Φil) Fl = Op

(√
H
T

)
, (101)

by Corollary 9(b) in Dendramis et al. (2021).

For the term Pr
(∣∣∣Ji,k

{1,2,4},5

∣∣∣ > 1
4 λ
)

notice that since maxt |εt| < ∞,
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K−1
s ∑T

t=1 ks,t

∣∣∣((ϕ0it − ϕ0is
)
+ (Φit − Φis) Ft + K−1

s ∑T
l=1 ks,l (Φis − Φil) Fl

)
(εkt − εks)

∣∣∣
≤ 2 maxt |εt|K−1

s ∑T
t=1 ks,t

∣∣ϕ0it − ϕ0is
∣∣

+2 maxt |εt|K−1
s ∑T

t=1 ks,t |ΦitFt − ΦitEF|
+2 maxt |εt|K−1

s ∑T
t=1 ks,t |Φit − Φis| EF

+2 maxt |εt|K−1
s ∑T

t=1 ks,t |Φis| |EF − Ft|
+2 maxt |εt|K−1

s ∑T
l=1 ks,l (Φis − Φil) Fl

Following the same arguments as in the term Ji,k
{1,2,4},3, we can prove that

∣∣∣Ji,k
{1,2,4},5

∣∣∣ =
op
(

N−2). The same bound holds for the terms Ji,k
3,{1,2,4}, Ji,k

5,{1,2,4}.

For the term Pr
(∣∣∣J j,k

124 + Ji,k
{1,2,4},3

∣∣∣ > 1
4 λ
)

, notice that

Pr
(∣∣∣J j,k

124 + Ji,k
{1,2,4},3

∣∣∣ > 1
4

λ

)
≤ Pr

(∣∣∣J j,k
124

∣∣∣+ ∣∣∣Ji,k
{1,2,4},3

∣∣∣ > 1
4

λ

)
≤ Pr

(∣∣∣Ji,k
{1,2,4},3

∣∣∣ > 1
4

λ −
∣∣∣J j,k

124

∣∣∣)

if we show that
∣∣∣J j,k

124

∣∣∣ = Op

(√
H
T

)
. Then, notice that

1
4 λ∣∣∣J j,k
124

∣∣∣ ≥
1
4κ (log N)ν (H

T
)1/2(H

T
)1/2 ≥ 2

for suitable κ. Then,
∣∣∣J j,k

124

∣∣∣ ≤ 1
8 λ and

Pr
(∣∣∣J j,k

124 + Ji,k
{1,2,4},3

∣∣∣ > 1
4

λ

)
≤ Pr

(∣∣∣Ji,k
{1,2,4},3

∣∣∣ > 1
8

λ

)
= op (1) .

To show that
∣∣∣J j,k

124

∣∣∣ = Op

(√
H
T

)
, first notice that for the Ji,k

1,1 we have∣∣∣K−1
s ∑T

t=1 ks,t
(
ϕ0it − ϕ0is

) (
ϕ0kt − ϕ0ks

)∣∣∣
≤
∣∣∣K−1

s ∑T
t=1 ks,t (ϕ0it − ϕ0is) (ϕ0kt − ϕ0ks)

∣∣∣+ ∣∣∣2K−1
s ∑T

t=1 ks,t (ϕ0it − ϕ0is)
(
ϕ0ks − ϕ0ks

)∣∣∣
+
∣∣∣K−1

s ∑T
t=1 ks,t

(
ϕ0is − ϕ0is

) (
ϕ0ks − ϕ0ks

)∣∣∣
≤ maxt |ϕ0it|K−1

s ∑T
t=1 ks,t |ϕ0kt − ϕ0ks|+ |ϕ0is|K−1

s ∑T
t=1 ks,t |ϕ0kt − ϕ0ks|

+maxt |ϕ0it| 2K−1
s ∑T

t=1 ks,t
∣∣(ϕ0ks − ϕ0ks

)∣∣+ |ϕ0is| 2K−1
s ∑T

t=1 ks,t
∣∣(ϕ0ks − ϕ0ks

)∣∣
+|ϕ0is|K−1

s ∑T
t=1 ks,t

∣∣ϕ0ks − ϕ0ks
∣∣+ maxs |ϕ0is|K−1

s ∑T
t=1 ks,t

∣∣ϕ0ks − ϕ0ks
∣∣

= Op

(√
H
T

)
, by (100), Lemma C3 in DGK21, and maxt |ϕ0it| = O (1) .

For Ji,k
1,2 we have
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∣∣∣K−1
s ∑T

t=1 ks,t
(
ϕ0it − ϕ0is

)
Ft (Φkt − Φks)

∣∣∣
≤ maxt |ϕ0it|K−1

s ∑T
t=1 ks,t |Ft (Φkt − Φks)|+

∣∣ϕ0is
∣∣ ∣∣∣K−1

s ∑T
t=1 ks,tFt (Φkt − Φks)

∣∣∣ = Op

(√
H
T

)
by (101).

For the term K−1
s ∑T

t=1 ks,t j1 j′4 we have∣∣∣K−1
s ∑T

t=1 ks,t
(
ϕ0it − ϕ0is

) (
K−1

s ∑T
l=1 ks,l (Φs − Φl) Fl

)∣∣∣
≤
∣∣∣K−1

s ∑T
t=1 ks,t

(
ϕ0it − ϕ0is

)∣∣∣Op (1) ≤ Op

(√
H
T

)
, by (101) and the steps of the proof

for the element K−1
s ∑T

t=1 ks,t j1 j′1.

For the term K−1
s ∑T

t=1 ks,t j2 j′4 we have∣∣∣K−1
s ∑T

t=1 ks,t ((Φit − Φis) Ft)
(

K−1
s ∑T

l=1 ks,l (Φks − Φkl) Fl

)∣∣∣
≤
∣∣∣K−1

s ∑T
t=1 ks,t ((Φit − Φis) Ft)

∣∣∣ ∣∣∣(K−1
s ∑T

l=1 ks,l Fl (Φks − Φkl)
)∣∣∣

≤ Op

(√
H
T

)
, by (101)

For the term K−1
s ∑T

t=1 ks,t j4 j′4 we have∣∣∣(K−1
s ∑T

l=1 ks,l (Φks − Φkl) Fl

) (
K−1

s ∑T
l=1 ks,l (Φks − Φkl) Fl

)∣∣∣ ≤ Op

(√
H
T

)
, by (101), and

this suffices to derive the reported bound of the Lemma.

With analogous arguments we can derive the other results of Lemma A3.

Lemma A4 Let Assumptions 1, 2 and 5 hold. The probability limits of F̂t =
(

Φ̂′
t JNΦ̂t

)−1
Φ̂′

t JNxt,

and Φ̂′
t =

(
Z̃(t)′

H Z̃(t)
H

)−1
Z̃(t)′

H X̃(t)
H are

F̂t
p→

N,T→∞

(
Λt∆FΛ′

t + ∆ω

) (
Λt∆F∆Φ∆FΛ′

t
)−1

(Λt∆FP1 + Λt∆F∆ΦFt) , (102)

Φ̂′
t

p→
N,T→∞

(
Λt∆FΛ′

t + ∆ω

)−1 Λt∆FΦ′
t. (103)

Proof of Lemma A4 Let F̂(1),t =
(

Φ̂′
t JNΦ̂t

)−1
Φ̂′

t JN, then we can writte

F̂t = F̂(1),txt (104)

= K−1
t Z̃(t)′Z̃(t)

(
N−1K−2

t Z̃(t)′X̃(t) JNX̃(t)′Z̃(t)
)−1

N−1K−1
t Z̃(t)′X̃(t) JNxt

= F̂A,t F̂−1
B,t F̂C(1),txt. (105)
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By Lemma A3, for the term F̂A,t we have

K−1
t Z̃(t)′Z̃(t) = K−1

t Λt F̃(t)′ F̃(t)Λ′
t + K−1

t ω̃(t)′ω̃(t)

p→
N,T→∞

Λt∆FΛ′
t + ∆ω, (106)

with E
(

K−1
t ω̃(t)′ω̃(t)

)
→ ∆ω. For the term F̂B,t we have

N−1K−2
t Z̃(t)′X̃(t) JNX̃(t)′Z̃(t) = N−1

(
K−1

t Φt F̃(t)′ F̃(t)Λ′
t

)′
JNK−1

t Φt F̃(t)′ F̃(t)Λ′
t

+ N−1
(

K−1
t ε̃(t)′ω̃(t)

)′
JNK−1

t Φt F̃(t)′ F̃(t)Λ′
t (107)

+ N−1
(

K−1
t Φt F̃(t)′ F̃(t)Λ′

t

)′
JNK−1

t ε̃(t)′ω̃(t) (108)

+ N−1
(

K−1
t ε̃(t)′ω̃(t)

)′
JNK−1

t ε̃(t)′ω̃(t) (109)
p→

N,T→∞
Λt∆F∆Φ∆FΛ′

t, (110)

due to results in Lemma A2.6 and Lemma A3 . For the term F̂C(1),txt we have that

N−1K−1
t Z̃(t)′X̃(t) JNxt = N−1

(
K−1

t Φt F̃(t)′ F̃(t)Λ′
t

)′
JNϕ0t (111)

N−1
(

K−1
t Φt F̃(t)′ F̃(t)Λ′

t

)′
JNΦtFt (112)

N−1
(

K−1
t Φt F̃(t)′ F̃(t)Λ′

t

)′
JNεt (113)

N−1
(

K−1
t ε̃(t)′ω̃(t)

)′
JNϕ0t (114)

N−1
(

K−1
t ε̃(t)′ω̃(t)

)′
JNΦtFt (115)

+ N−1
(

K−1
t ε̃(t)′ω̃(t)

)′
JNεt (116)

p→
N,T→∞

Λt∆FP1 + Λt∆F∆ΦFt. (117)

The final result is obtained via the continuous mapping Theorem.

For the term Φ̂t, we have that Φ̂′
t =

(
K−1

t Z̃(t)′Z̃(t)
)−1

K−1
t Z̃(t)′X̃(t) with K−1

t Z̃(t)′Z̃(t) p→
N,T→∞

Λt∆FΛ′
t + ∆ω. Also,

K−1
t Z̃(t)′X̃(t) =

(
K−1

s Φs F̃(s)′ F̃(s)Λ′
s + K−1

s ε̃(s)′ω̃(s)
)′

(118)
p→

N,T→∞
Λt∆FΦ′

t,

by Theorem 3 , Lemma A2.1, and Assumption 2. Then, the final result is obtained via the

continuous mapping Theorem.
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Lemma A5 Let Assumptions 1, 2 and 5 hold. For the third stage predictive coefficient β̂t we have

β̂t
p→

N,T→∞

(
Λt∆FΛ′

t + ∆ω

)−1 Λt∆F∆Φ∆FΛ′
t
(
Λt∆F∆Φ∆F∆Φ∆FΛ′

t
)−1 Λt∆F∆Φ∆Fβt. (119)

Proof of Lemma A5 The third stage estimator of the target equation is given by

β̂t =

(
K−1

L,t

T

∑
s=1

kL,ts

(
F̂s − F̂t

) (
F̂s − F̂t

)′)−1

(120)

×
(

K−1
L,t

T

∑
s=1

kL,ts

(
F̂s − F̂t

)
(ys+1 − yt)

)
(121)

= ∆−1
(1),t∆(2),t,

Then, using the decomposition (104) of F̂t, we have

∆(1),t = K−1
L,t

T

∑
s=1

kL,ts


(

F̂(1),t (xs − xt) +
(

F̂(1),s − F̂(1),t
)

xs +
(

F̂(1),txt − F̂t

))
×
(

F̂(1),t (xs − xt) +
(

F̂(1),s − F̂(1),t
)

xs +
(

F̂(1),txt − F̂t

))′


= K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt) (xs − xt)

′ F̂′
(1),t

)
+K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt) x′s

(
F̂(1),s − F̂(1),t

)′)
+K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt)

(
F̂(1),txt − F̂t

)′)
+K−1

L,t

T

∑
s=1

kL,ts

((
F̂(1),s − F̂(1),t

)
xs (xs − xt)

′ F̂′
(1),t

)
+K−1

L,t

T

∑
s=1

kL,ts

((
F̂(1),s − F̂(1),t

)
xs

(
F̂(1),txt − F̂t

)′)
+K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),txt − F̂t

)
(xs − xt)

′ F̂′
(1),t

+K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txt − F̂t

)
x′s
(

F̂(1),s − F̂(1),t
)′
+K−1

L,t

T

∑
s=1

kL,ts

((
F̂(1),s − F̂(1),t

)
xsx′s

(
F̂(1),s − F̂(1),t

)′)
+ K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),txt − F̂t

) (
F̂(1),txt − F̂t

)′

= K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt) (xs − xt)

′ F̂(1),t
)
+ S(1)

t + S(2)
t + S(3)

t + S(4)
t

+ S(5)
t + S(6)

t + S(7)
t + S(8)

t .

Analogously, for ∆(2),t we have

∆(2),t = K−1
L,t

T

∑
s=1

kL,ts

(
F̂s − F̂t

)
(ys+1 − yt)

= K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt) +

(
F̂(1),s − F̂(1),t

)
xs +

(
F̂(1),txt − F̂t

))
(ys+1 − yt)
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= K−1
L,t

T

∑
s=1

kL,ts F̂(1),t (xs − xt) (ys+1 − yt)
′ + K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),s − F̂(1),t

)
xs (ys+1 − yt)

′

+ K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txt − F̂t

)
(ys+1 − yt)

′

= K−1
L,t

T

∑
s=1

kL,ts F̂(1),t (xs − xt) (ys+1 − yt)
′ + W(1)

t + W(2)
t .

We will prove that S(1)
t + S(2)

t + S(3)
t + S(4)

t + S(5)
t + S(6)

t + S(7)
t + S(8)

t = o (1) and W(1)
t +

W(2)
t = o (1).

Focusing on the terms S(i)
t , i = 1, .., 8 we have that

S(1)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),t (xs − xt) x′s

(
F̂(1),s − F̂(1),t

)′)
= K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txsx′s F̂′

(1),s − F̂(1),txtx′s F̂′
(1),s − F̂(1),txsx′s F̂′

(1),t + F̂(1),txtx′s F̂′
(1),t

)
= F̂(1),txtx′t F̂

′
(1),t − F̂(1),txtx′t F̂

′
(1),t − F̂(1),txtx′t F̂

′
(1),t + F̂(1),txtx′t F̂′

(1),t

S(2)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),t (xs − xt)

(
F̂(1),txt − F̂t

)′)
= K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txsx′t F̂′

(1),t − F̂(1),txs F̂
′
t − F̂(1),txtx′t F̂′

(1),t + F̂(1),txt F̂
′
t

)
= F̂(1),txtx′t F̂′

(1),t − F̂(1),txt F̂
′
t − F̂(1),txtx′t F̂′

(1),t + F̂(1),txt F̂
′
t = 0

S(3)
t = S(1)′

t

S(4)
t = K−1

L,t ∑T
s=1 kL,ts

((
F̂(1),s − F̂(1),t

)
xs

(
F̂(1),txt − F̂t

)′)
= K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),sxsx′t F̂′

(1),t − F̂(1),sxs F̂t − F̂(1),txsx′t F̂′
(1),t + F̂(1),txs F̂

′
t

)
= F̂(1),txtx′t F̂′

(1),t − F̂(1),txt F̂
′
t − F̂(1),txtx′t F̂′

(1),t + F̂(1),txt F̂
′
t

S(5)
t = S(2)′

t = 0

S(6)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txt − F̂t

)
x′s
(

F̂(1),s − F̂(1),t
)′

= S(4)′
t

S(7)
t = K−1

L,t ∑T
s=1 kL,ts

((
F̂(1),s − F̂(1),t

)
xsx′s

(
F̂(1),s − F̂(1),t

)′)
= K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),sxsx′s F̂′

(1),s − F̂(1),sxsx′s F̂′
(1),t − F̂(1),txsx′s F̂′

(1),s + F̂(1),txsx′s F̂′
(1),t

)
=F̂(1),txtx′t F̂

′
(1),t − F̂(1),txtx′t F̂

′
(1),t − F̂(1),txtx′t F̂

′
(1),t + F̂(1),txtx′t F̂

′
(1),t
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S(8)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txt − F̂t

) (
F̂(1),txt − F̂t

)′
= K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txtx′t F̂′

(1),t − F̂(1),txt F̂
′
t − F̂tx′t F̂′

(1),t + F̂t F̂
′
t

)
= F̂(1),txtx′t F̂′

(1),t − F̂(1),txt F̂
′
t − F̂tx′t F̂′

(1),t + F̂t F̂
′
t

Then, we have

∑8
i=1 S(i)

t = F̂(1),txtx′t F̂
′
(1),t − F̂t F̂

′
t + F̂(1),txtx′t F̂′

(1),t − F̂(1),txtx′t F̂
′
(1),t

= −K−1
L,t ∑T

s=1 kL,ts F̂(1),sxsx′s F̂′
(1),s + K−1

L,t ∑T
s=1 kL,ts F̂(1),sxsx′s F̂′

(1),t

+K−1
L,t ∑T

s=1 kL,ts F̂(1),sxsx′s F̂′
(1),t − K−1

L,t ∑T
s=1 kL,ts F̂(1),txsx′s F̂′

(1),t

−K−1
L,t ∑T

s=1 kL,ts F̂(1),sxs F̂
′
t + K−1

L,t ∑T
s=1 kL,ts F̂(1),txs F̂

′
t

+K−1
L,t ∑T

s=1 kL,ts F̂(1),txtx′s F̂′
(1),t − K−1

L,t ∑T
s=1 kL,ts F̂(1),txs F̂

′
t

= K−1
L,t

T

∑
s=1

kL,ts F̂(1),sxs

(
x′s F̂′

(1),s − x′s F̂′
(1),t

)
+ K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),sxs − F̂(1),txs

)
x′s F̂′

(1),t

+ K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txs − F̂(1),sxs

)
F̂
′
t + K−1

L,t

T

∑
s=1

kL,ts F̂(1),txt

(
x′s F̂′

(1),t − x′s F̂′
(1),s

)
(122)

We will show that all the above terms are op (1). First notice that by the decomposition

(104) we have that F̂(1),txs = F̂A,t F̂−1
B,t F̂C(1),txs and the term F̂C(1),txs is

N−1K−1
t Z̃(t)′X̃(t) JNxs = Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JN (ϕ0s − ϕ0t) + Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JNϕ0t

+ Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JN (Φs − Φt) Fs + Λt

(
K−1

t F̃(t)′ F̃(t)
) (

N−1Φ′
t JNΦt

)
Fs

+ Λt

(
K−1

t F̃(t)′ F̃(t)
) (

N−1Φ′
t JNεs

)
+ Λt

(
N−1K−1

t F̃(t)′ ε̃(t) JNϕ0s

)
+ Λt

(
N−1K−1

t F̃(t)′ ε̃(t) JNΦs

)
Fs

+ Λt

(
N−1K−1

t F̃(t)′ ε̃(t) JNεs

)
+
(

K−1
t ω̃(t)′ F̃(t)′

)
N−1Φ′

t JN (ϕ0s − ϕ0t) +
(

K−1
t ω̃(t)′ F̃(t)′

)
N−1Φ′

t JNϕ0t

+ Λt

(
K−1

t ω̃(t)′ F̃(t)′
)

N−1Φ′
t JN (Φs − Φt) Fs (123)

+ Λt

(
K−1

t ω̃(t)′ F̃(t)′
) (

N−1Φ′
t JNΦt

)
Fs

+
(

K−1
t ω̃(t)′ F̃(t)′

) (
N−1Φ′

t JNεs

)
+
(

N−1K−1
t ω̃(t)′ ε̃(t) JNΦs

)
Fs

+ N−1K−1
t ω̃(t)′ ε̃(t) JNεs + op (1)
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= Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JN (ϕ0s − ϕ0t) + Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JNϕ0t

+ Λt

(
K−1

t F̃(t)′ F̃(t)
)

N−1Φ′
t JN (Φs − Φt) Fs + Λt

(
K−1

t F̃(t)′ F̃(t)
) (

N−1Φ′
t JNΦt

)
Fs

+ op (1) = Op (1) , (124)

by Lemma A2 (items 4, 5, 6, 12), Theorem 3, and Assumption 1. Now, since

N−1Φ′
t JN (ϕ0s − ϕ0t) = N−1

N

∑
i=1

Φit (ϕ0is − ϕ0it)−
(

N−1
N

∑
i=1

Φit

)(
N−1

N

∑
i=1

(ϕ0is − ϕ0it)

)
,

we have that

K−1
t

T

∑
s=1

ktsN−1Φ′
t JN (ϕ0s − ϕ0t) = N−1

N

∑
i=1

Φit

(
K−1

t

T

∑
s=1

kts (ϕ0is − ϕ0it)

)

−
(

N−1
N

∑
i=1

Φit

)(
N−1

N

∑
i=1

(
K−1

t

T

∑
s=1

kts (ϕ0is − ϕ0it)

))

= Op

(√
H
T

)
,

since N−1 ∑N
i=1 Φit = Op (1) and K−1

t ∑T
s=1 kts (ϕ0is − ϕ0it) = Op

(√
H
T

)
. Also, with analo-

gous steps we can prove that

K−1
t

T

∑
s=1

ktsN−1Φ′
t JN (Φs − Φt) = Op

(√
H
T

)
.

The expression in (124), the results in Lemma A2, and Assumption 1, imply that

K−1
L,t

T

∑
s=1

kL,ts

(
N−1K−1

t Z̃(t)′X̃(t) JNxs

) p→
N,T→∞

Λt∆FP1 + Λt∆F∆ΦFL,t (125)

with FL,t = K−1
L,t ∑T

s=1 kL,tsFs. Then, we have

K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txs − F̂(1),sxs

)
= K−1

L,t

T

∑
s=1

kL,ts

(
Szz,t

(
N−1Szx,t JNS′

zx,t
)−1 N−1Szx,t JNxs

−Szz,s
(

N−1Szx,s JNS′
zx,s
)−1 N−1Szx,s JNxs

)

= K−1
L,t

T

∑
s=1

kL,ts


(Szz,t − Szz,s)

(
N−1Szx,t JNS′

zx,t
)−1 N−1Szx,t JNxs

+Szz,s

((
N−1Szx,t JNS′

zx,t
)−1 −

(
N−1Szx,s JNS′

zx,s
)−1
)

N−1Szx,t JNxs

+Szz,s
(

N−1Szx,s JNS′
zx,s
)−1 (N−1Szx,t JNxs − N−1Szx,s JNxs

)

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where,∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txs − F̂(1),sxs

)∥∥∥∥∥
≤
∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts (Szz,t − Szz,s)

∥∥∥∥∥
∥∥∥∥(N−1Szx,t JNS′

zx,t

)−1
∥∥∥∥max

s

∥∥∥N−1Szx,t JNxs

∥∥∥
+ max

s

∥∥Szz,h1,s
∥∥ ∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts

(
N−1Szx,t JNS′

zx,t

)−1
−
(

N−1Szx,s JNS′
zx,s

)−1
∥∥∥∥∥max

s

∥∥∥N−1Szx,t JNxs

∥∥∥
+ max

s
∥Szz,s∥max

s

∥∥∥∥(N−1Szx,s JNS′
zx,s

)−1
∥∥∥∥
∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts

(
N−1Szx,t JNxs − N−1Szx,s JNxs

)∥∥∥∥∥
= op (1)

since, for all t we have
∥∥∥(N−1Szx,t JNS′

zx,t
)−1
∥∥∥ = Op (1), (see equation (110)), by (124)

maxs
∥∥N−1Szx,t JNxs

∥∥ = Op (1), and because of (106) maxs ∥Szz,s∥ = Op (1).

Also,∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts (Szz,t − Szz,s)

∥∥∥∥∥ (126)

=

∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts
(
Λt∆FΛ′

t − Λs∆FΛ′
s
)∥∥∥∥∥+ op (1)

≤
∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts
(
Λt∆FΛ′

t − Λt∆FΛ′
s + Λt∆FΛ′

s − Λs∆FΛ′
s
)∥∥∥∥∥+ op (1)

≤ ∥Λt∥ ∥∆F∥
∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts
(
Λ′

t − Λ′
s
)∥∥∥∥∥+

∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts (Λt − Λs)

∥∥∥∥∥ ∥∆F∥
∥∥Λ′

s
∥∥

= Op

(√
L
T

)
+ Op

(√
L
T

)
= op (1)

Analogously, we can prove that K−1
L,t ∑T

s=1 kL,ts
(

N−1Szx,t JNS′
zx,t
)−1 −

(
N−1Szx,s JNS′

zx,s
)−1

=

op (1).
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Also,∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts

(
N−1Szx,t JNxs − N−1Szx,s JNxs

)∥∥∥∥∥
=

∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts (Λt∆FP1 + Λt∆F∆ΦFs − (Λs∆FP1 + Λs∆F∆ΦFs))

∥∥∥∥∥+ op (1)

=

∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts (Λt (∆FP1 + ∆F∆ΦFs)− Λs (∆FP1 + ∆F∆ΦFs))

∥∥∥∥∥+ op (1)

≤
∥∥∥∥∥K−1

L,t

T

∑
s=1

kL,ts (Λt − Λs)

∥∥∥∥∥ ∥∆FP1 + ∆F∆ΦFs∥ = op (1) ,

and we conclude that

K−1
L,t

T

∑
s=1

kL,ts

(
F̂(1),txs − F̂(1),sxs

)
= op (1) . (127)

Moreover, since maxs

∥∥∥F̂s

∥∥∥ = maxs

∥∥∥x′s F̂′
(1),t

∥∥∥ = Op (1), maxs

∥∥∥F̂(1),txt

∥∥∥ =
∥∥∥K−1

L,t ∑T
s=1 kL,ts F̂(1),txs

∥∥∥ =

Op (1) which, together with (127), imply
∥∥∥∑8

i=1 S(i)
t

∥∥∥ ≤ ∑8
i=1

∥∥∥S(i)
t

∥∥∥ = op (1).

For the term ∆(2),t we will prove that W(1)
t + W(2)

t = op (1).

We have, W(1)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),s − F̂(1),t

)
xs (ys+1 − yt)

′

=K−1
L,t ∑T

s=1 kL,ts

(
F̂(1),sxsys+1 − F̂(1),sxsyt − F̂(1),txsys+1 + F̂(1),txsy′t

)
and

W(2)
t = K−1

L,t ∑T
s=1 kL,ts

(
F̂(1),txt − F̂t

)
(ys+1 − yt)

′

=K−1
L,t ∑T

s=1 kL,ts

(
F̂(1),txtys+1 − F̂(1),txtyt − F̂tys+1 + F̂tyt

)
.

Then, W(1)
t + W(2)

t = F̂(1),txtyt − F̂(1),txtyt + F̂(1),txtyt − F̂tyt

=K−1
L,t ∑T

s=1 kL,ts F̂(1),t (xsyt − xsys+1)− K−1
L,t ∑T

s=1 kL,ts F̂(1),s (xsyt − xsys+1) .

For the term (yt − yt) we have

K−1
L,s ∑T

l=1 kL,sl (yl+1 − ys+1) = K−1
L,s ∑T

l=1 kL,sl
(

β0l + β′
l Fl + ηl+1 − β0s − β′

sFs − ηs+1
)

=K−1
L,s ∑T

l=1 kL,sl (β0l − β0s) + K−1
L,s ∑T

l=1 kL,sl
(

β′
l Fl − β′

sFl + β′
sFl − β′

sFs
)

+K−1
L,s ∑T

l=1 kL,sl (ηl+1 − ηs+1)

=K−1
L,s ∑T

l=1 kL,sl (β0l − β0s) + K−1
L,s ∑T

l=1 kL,sl
(

β′
l − β′

s
)

Fl

+K−1
L,s ∑T

l=1 kL,sl β
′
s (Fl − Fs)+K−1

L,s ∑T
l=1 kL,sl (ηl+1 − ηs+1)

=Op (1) .

72



Moreover, it is K−1
L,s ∑T

l=1 kL,sl (β0l − β0s) = op (1) and K−1
L,s ∑T

l=1 kL,sl
(

β′
l − β′

s
)

Fl = op (1)

by Corollary 9b in Dendramis et al. (2021), and K−1
L,s ∑T

l=1 kL,sl β
′
s (Fl − Fs) = Op (1) since Ft −

EFt is a strong a-mixing process and K−1
L,s ∑T

l=1 kL,sl Fl − Fs = K−1
L,s ∑T

l=1 kL,sl (Fl − EFs + EFs − Fs)

= K−1
L,s ∑T

l=1 kL,sl (Fl − EFs) + K−1
L,s ∑T

l=1 kL,sl (EFs − Fs) = Op (1) by Lemma 3 in Den-

dramis et al. (2021).

So, overall, by (127) we have that K−1
L,t ∑T

s=1 kL,ts

(
F̂(1),t − F̂(1),s

)
xs (ys+1 − ys+1) = op (1),

implying that W(1)
t + W(2)

t = op (1).

Since both W(1)
t + W(2)

t = op (1) and ∑8
i=1 S(i)

t = o (1) we have that

β̂t =

(
K−1

L,t

T

∑
s=1

kL,ts

(
F̂(1),t (xs − xt) (xs − xt)

′ F̂(1),t
))−1

(128)

×
(

K−1
L,t

T

∑
s=1

kL,ts F̂(1),t (xs − xt) (ys+1 − yt)
′
)
+ op (1) .

In matrix form we can define˜̂F(t)′
= F̂(1),t

(
k1/2

L,t1 (x1 − xt) , .., k1/2
L,tT−1 (xT−1 − xt)

)
.

Then,

β̂t =

(˜̂F(t)′˜̂F(t)
)−1 ˜̂F(t)′

ỹ(t) + op (1)

=
(

K−1
H,tZ̃

(t)′
H Z̃(t)

H

)−1
N−1K−2

H,tZ̃
(t)′
H X̃(t)

H JNX̃(t)′
H Z̃(t)

H

(
N−2K−2

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L X̃(t)
L JNX̃(t)′

H Z̃(t)
H

)−1

× N−1K−2
H,tZ̃

(t)′
H X̃(t)

H JNX̃(t)′
H Z̃(t)

H

(
K−1

H,tZ̃
(t)′
H Z̃(t)

H

)−1

× K−1
H,tZ̃

(t)′
H Z̃(t)

H

(
N−1K−2

H,tZ̃
(t)′
H X̃(t)

H JNX̃(t)′
H Z̃(t)

H

)−1
N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L ỹ(t)L

=
(

K−1
H,tZ̃

(t)′
H Z̃(t)

H

)−1
N−1K−2

H,tZ̃
(t)′
H X̃(t)

H JNX̃(t)′
H Z̃(t)

H

(
N−2K−2

H,tZ̃
(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L X̃(t)
L JNX̃(t)′

H Z̃(t)
H

)−1

× N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JNK−1
L,t X̃(t)′

L ỹ(t)L

= β̂−1
1,t β̂2,t β̂

−1
3,t β̂4,t.

For β̂−1
1 and β̂2 we have

β̂1,t
p→

N,T→∞
Λt∆FΛ′

t + ∆ω, (129)

β̂2,t
p→

N,T→∞
Λt∆F∆Φ∆FΛ′

t. (130)

For β̂−1
3 and β̂4 we have 6

6The exact steps followed for β̂−1
3 and β̂4 are the same as in Kelly and Pruitt (2015).
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β̂3,t
p→

N,T→∞
Λt∆F∆Φ∆F∆Φ∆FΛ′

t,β̂4,t
p→

N,T→∞
Λt∆F∆Φ∆Fβt. (131)

From the continuous mapping theorem, we have the desired result.

Lemma A6 Let Assumptions 1-5 hold, and ε̂t = xt − ϕ̂0t − Φ̂t F̂t, with ϕ̂0t = K−1
H,t ∑T

s=1 kH,tsxs −
Φ̂t

(
K−1

H,t ∑T
s=1 kH,ts F̂s

)
. Then, it holds that Φ̂t F̂H,t

p→
N,T→∞

ΦtSkFt and ε̂t
p→

N,T→∞
εt + Φgtgt −

K−1
H,t ∑T

s=1 kH,tsΦgsgs, for Sk a K × K selector matrix that has ones in the first K f main diagonal

positions and zeros elsewhere.

Proof of Lemma A6 By Lemma A4, Assumption 3 and 4, we have that

Φ̂t F̂t
p→

N,T→∞
ΦtSkFt = Φ f t ft, (132)

and this implies the stated probability limit for ε̂t, since

ε̂t = xt − K−1
H,t

T

∑
s=1

kH,tsxs + Φ̂tK−1
H,t

T

∑
s=1

kH,ts F̂s − Φ̂t F̂t

= ϕ0t + ΦtFt + εt − K−1
H,t

T

∑
s=1

kH,tsϕ0s − K−1
H,t

T

∑
s=1

kH,tsΦsFs − K−1
H,t

T

∑
s=1

kH,tsεs

+ Φ̂tK−1
H,t

T

∑
s=1

kH,ts F̂s − Φ̂t F̂t + K−1
H,t

T

∑
s=1

kH,tsΦ̂s F̂s − K−1
H,t

T

∑
s=1

kH,tsΦ̂s F̂s

= εt + K−1
H,t

T

∑
s=1

kH,ts (ϕ0t − ϕ0s) + ΦtFt − Φ̂t F̂t − K−1
H,t

T

∑
s=1

kH,tsεs

+ K−1
H,t

T

∑
s=1

kH,ts

(
Φ̂t − Φ̂s

)
F̂s + K−1

H,t

T

∑
s=1

kH,ts

(
Φ̂s F̂s − ΦsFs

)
p→

N,T→∞
εt + Φgtgt − K−1

H,t

T

∑
s=1

kH,tsΦgsgs, (133)

since K−1
H,t ∑T

s=1 kH,ts (ϕ0t − ϕ0s) = Op

(√
H
T

)
by Corollary 9b in Dendramis et al. (2021),

K−1
H,t ∑T

s=1 kH,tsεs = o (1) by Lemma A1, ΦtFt − Φ̂t F̂t
p→

N,T→∞
Φgtgt, while for Gt = (Λt∆FΛ′

t + ∆ω)

we have
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Φ̂t − Φ̂s = Φt∆FΛ′
tG

−1
t − Φs∆FΛ′

sG−1
s

= Φt∆FΛ′
tG

−1
t − Φt∆FΛ′

sG−1
s + Φt∆FΛ′

sG−1
s − Φs∆FΛ′

sG−1
s

= Φt∆F

(
Λ′

tG
−1
t − Λ′

sG−1
s

)
+ (Φt − Φs)∆FΛ′

sG−1
s

= Φt∆F

(
Λ′

tG
−1
t − Λ′

tG
−1
s + Λ′

tG
−1
s − Λ′

sG−1
s

)
+ (Φt − Φs)∆FΛ′

sG−1
s

= Φt∆FΛ′
t

(
G−1

t − G−1
s

)
+ Φt∆F

(
Λ′

t − Λ′
s
)

G−1
s + (Φt − Φs)∆FΛ′

sG−1
s .

Then,

K−1
H,t ∑T

s=1 kH,ts

(
Φ̂t − Φ̂s

)
F̂s

=K−1
H,t ∑T

s=1 kH,ts

(
Φt∆FΛ′

t

(
G−1

t − G−1
s

))
F̂s + K−1

H,t ∑T
s=1 kH,ts

(
Φt∆F (Λ′

t − Λ′
s) G−1

s
)

F̂s

+K−1
H,t ∑T

s=1 kH,ts
(
(Φt − Φs)∆FΛ′

sG−1
s
)

F̂s

The above matrix is of N ×K dimension and we will prove that each element i = 1, .., N

is op (1). Notice that since ∥ϕmit∥, ∥Λt∥,∥∆F∥,
∥∥∥F̂t

∥∥∥,
∥∥∥G−1

t

∥∥∥ = Op (1) for all t, the conver-

gence to zero of the above sum is governed by the terms d(1) = K−1
H,t ∑T

s=1 kH,ts

(
G−1

t − G−1
s

)
,

d(2) = K−1
H,t ∑T

s=1 kH,ts (Λ′
t − Λ′

s), and d(3) = K−1
H,t ∑T

s=1 kH,ts (Φmi,t − Φmi,s). Then, d(1) =

op (1) by (56) , d(2) and d(3) are op (1) by Corollary 9b in Dendramis et al. (2021).

Lemma A7 Let Assumptions 1, 2 and 5 hold. Then

K−1
L,t

T

∑
s=1

kL,ts F̂sηs+1 = op (1) . (134)

Proof of Lemma A7 By (105) notice that∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts F̂sηs+1

∥∥∥∥∥ ≤ K−1
L,t

T

∑
s=1

kL,ts

∥∥∥F̂A,s F̂−1
B,s F̂C,sηs+1

∥∥∥ ≤

≤ max
t

∥∥∥F̂A,t

∥∥∥max
t

∥∥∥F̂−1
B,t

∥∥∥ ∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,ts F̂C,sηs+1

∥∥∥∥∥
≤ C

∥∥∥∥∥K−1
L,t

T

∑
s=1

kL,tsFsηs+1

∥∥∥∥∥+ o (1) .

= op (1) , as N, T → ∞
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Lemma A8 Let Assumptions 1, 2 and 5 hold. Then

K−1
H,tK

−1/2
L,t N−1Z̃(t)′

H X̃(t)
H JNX̃(t)′

L η̃
(t)
L

d→ N
(
0, Λt∆F∆ΦΓFη,t∆Φ∆FΛ′

t
)

, (135)

where ΓFη,t is defined in Theorem 3.

Proof of Lemma A8

K−1
H,tK

−1
L,t N−1Z̃(t)′

H X̃(t)
H JNX̃(t)′

L η̃
(t)
L = Λt

(
K−1

H,t F̃
(t)′
H F̃(t)

H

) (
N−1Φ′

t JNΦt

) (
K−1

L,t F̃(t)′
L η̃

(t)
L

)
+ Λt

(
K−1

H,t F̃
(t)′
H F̃(t)

H

) (
N−1K−1

L,t Φ′
t JN ε̃

(t)
L η̃

(t)
L

)
+ Λt

(
N−1K−1

H,t F̃
(t)′
H ε̃

(t)
H JNΦ′

t

) (
K−1

L,t F̃(t)′
L η̃

(t)
L

)
+ ΛtN−1K−1

H,t F̃
(t)′
H ε̃

(t)
H JNK−1

L,t ε̃
(t)
L η̃

(t)
L

+
(

K−1
H,tω̃

(t)′
H F̃(t)

H

) (
N−1Φ′

t JNΦt

) (
K−1

L,t F̃(t)′
L η̃

(t)
L

)
+
(

K−1
H,tω̃

(t)′
H F̃(t)

H

) (
N−1K−1

L,t Φ′
t JN ε̃

(t)
L η̃

(t)
L

)
+
(

N−1K−1
H,tω̃

(t)′
H ε̃

(t)
H JNΦ′

t

) (
K−1

L,t F̃(t)′
L η̃

(t)
L

)
+
(

N−1K−1
H,tω̃

(t)′
H ε̃

(t)
H JNK−1

L,t ε̃
(t)
L η̃

(t)
L

)
.

For Kt = min (KL,t, KH,t), we have that the above equals to

Op

(
K−1/2

L,t

)
+ Op

(
K−1/2

t N−1/2
)
+ Op

(
K−1/2

t δ−1
N,Kt

)
+ Op

(
K−1/2

t δ−1
N,Kt

)
+ Op

(
K−1

t

)
+ Op

(
N−1/2K−1

t

)
+ Op

(
K−1

t

)
+ Op

(
K−1/2

t δ−1
N,Kt

)
,

where the first term dominates and the stated asymptotic distribution is obtained by The-

orem 3.

Lemma A9 Let Assumptions 1, 2 and 5 hold. As N, T → ∞, for Szx,H,t = K−1
H,tZ̃

(t)′
H X̃(t)

H we have

(i) if
√

N/Kt → 0, then for every t

N−1/2Szx,H,t JNεt
d→ N

(
0, Λt∆FΓFε,t∆FΛ′

t
)

;

(ii) if lim inf
√

N/Kt ≥ τ ≥ 0 then

N−1Z̃(t)′X̃(t) JNεt = Op (1) .
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Proof of Lemma A9 We have

N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JNεt = N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JNxt − N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JN (ϕ0t + ΦtFt) (136)

= F̂C(1),txt − N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JN (ϕ0t + ΦtFt) ,

where F̂C(1),txt has been defined in Lemma A4. Also,

N−1K−1
H,tZ̃

(t)′
H X̃(t)

H JNεt = Λt

(
K−1

H,t F̃
(t)′
H F̃(t)

H

) (
N−1Φ′

t JNεt

)
+

+ Λt

(
N−1K−1

H,t F̃
(t)′
H ε̃

(t)
H JNεt

)
+
(

K−1
H,tω̃

(t)′
H F̃(t)′

H

) (
N−1Φ′

t JNεt

)
+ N−1K−1

H,tω̃
(t)′
H ε̃

(t)
H JNεt

= Op

(
N−1/2

)
+ Op

(
δ−1

N,Kt
K−1/2

H,t

)
+ Op

(
K−1/2

H,t

)
Op

(
N−1/2

)
+ Op

(
δ−1

N,Kt
K−1/2

t

)
,

by results in Lemma A2 and Theorem 3.

When
√

N
KH,t

→ 0, the first term determines the limiting distribution, in which case the

result (i) is obtained by Theorem 3.

Then, if
√

N
KH,t

≥ τ ≥ 0, we have KH,t

(
N−1K−1

H,tZ̃
(t)′
H X̃(t)

H JNεt

)
= Op (1), since lim inf KH,t√

N
≤

1
τ ≤ ∞.

7.5 Auxiliary Monte Carlo and Empirical Results

7.5.1 Further visualization of our Monte Carlo design

In Figure 4, we use a sample generated by equations ( 37)-(38) and analyse the contribution

of the common factor component for the generated large dataset xt. This is measured

by the R2 on the time (t) and cross sectional (i) dimension. As it becomes visible, our

design generates samples with balanced factor contribution across time and cross section,

while the κ parameter of (37) can efficiently control the overall contribution of the common

component.
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Figure 4: One realization of the data generated by equations ( 37)-(38). We report the histogram of R2
i for all

generated series of the large dataset, i = 1, .., N, when the loadings process generated by model (42) and the
parameter κ of (37) is adjusted to have an R2

i = .3. The time t R2
t , is computed using cross sectional data of

size N for all t = 1, .., T. More specifically, the R2
t is measured as R2

t =
̂Vart(ϕ f ,t ft+ϕg,tgt)

̂Vart(xit)

7.5.2 Further Monte Carlo Results

In this section we present additional evidence on the performance of the Information Cri-

terion for selecting the number of factors.
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Number of factors Selected by IC, DGP given by (43)

ρ f 0 0.3 0.3 0.3 0.3 0.9 0.9 0.9 0.9
ρg 0 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.3
β 0 0 1 0 1 0 1 0 1
a 0 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9

R2 =0.1

N = 100, T = 100 1.2 1.08 1.06 1.09 1.13 1.03 1.05 1.06 1.08
N = 200, T = 200 1.03 1.02 1.01 1.04 1.05 1.03 1.01 1.02 1.02
N = 200, T = 100 2.47 1.44 1.11 1.1 1.11 1.19 1.05 1.04 1.05
N = 100, T = 200 1.03 1.02 1.03 1.06 1.06 1.08 1.01 1.02 1.04

R2 =0.3, tv loadings

N = 100, T = 100 1.17 1.1 1.1 1.14 1.13 1.05 1.04 1.03 1.05
N = 200, T = 200 1.05 1.05 1.03 1.05 1.05 1.02 1.03 1.01 1.02
N = 200, T = 100 1.34 1.14 1.1 1.09 1.1 1.12 1.06 1.02 1.03
N = 100, T = 200 1.06 1.04 1.04 1.07 1.08 1.03 1.03 1.03 1.03

Table 8: Average number of factors selected for the tv loadings process (43)

7.5.3 Additional Visualizations and Tables for the Empirical Section
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Figure 5: Loadings implied by the PCA method. The vertical stripes indicate periods of NBER recession.
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Figure 6: Loadings with the highest variability across time. The vertical stripes indicate periods of NBER
recession.

Series with high variability loadings

MANEMP All Employees: Manufacturing (Thousands of Persons)
CONSUMERx Real Consumer Loans at All Commercial Banks (Billions of 2009 U.S. Dollars), deflated by Core PCE
USFIRE All Employees: Financial Activities (Thousands of Persons)
TOTRESNS Total Reserves of Depository Institutions (Billions of Dollars)
USCONS All Employees: Construction (Thousands of Persons)
USGOOD All Employees: Goods-Producing Industries (Thousands of Persons)
IPMANSICS Industrial Production: Manufacturing (SIC) (Index 2012=100)
NDMANEMP All Employees: Nondurable goods (Thousands of Persons)
IPBUSEQ Industrial Production: Business Equipment (Index 2012=100)
USWTRADE All Employees: Wholesale Trade (Thousands of Persons)

Table 9: Series associated with loadings of high variability
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Out of Sample Macroeconomic Forecasting:up to 2019Q4

h 1 4 1 4 1 4 1 4 1 4

TBILL IP-DCG AE-WT FEDFUNDS PCE-FSI

pca(ic) 1.58 0.9 0.79 1.2 0.99 0.93 1.61 1.08 0.93 1.06
pca(1) 0.94 0.65 1.07 0.95 1.04 1.07 1 0.72 0.95 0.81

pca-lars(1) 1.07 0.81 0.86 1.06 0.99 1.02 1.34 0.76 0.93 0.92
pca-ht(10%)(1) 0.93 0.75 1.11 0.97 1 1.03 0.98 0.81 0.89 0.84

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1⋄⋄ 0.74 0.8 1.24 0.92 1.09⋄ 0.88 0.83 0.88 1.07
tv-3pr f (ic) 0.99⋄⋄ 1.19⋄⋄ 0.92⋄⋄ 0.99 0.98 0.97⋄⋄ 0.92⋄⋄ 1.05⋄⋄ 1.01 0.97⋄⋄

tv-3pr fHi(1) 0.84⋄⋄ 0.79 0.78 1.28 0.92 1.07 0.85 0.88 0.89 1.08

PFI CPI-LFE IP-M UNRATE AHEP

pca(ic) 1.05 1.1 1.3 0.89 0.95 0.98 0.99 1.12 0.95 0.92
pca(1) 0.9 1.01 0.78 0.7 1.12 0.99 1.26 0.99 0.8 0.87

pca-lars(1) 1.01 1.06 0.97 0.81 1 1.19 1.01 1.23 0.83 0.9
pca-ht(10%)(1) 0.92 0.95 0.81 0.77 1.04 1.03 1.34 0.98 0.89 0.93

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.96 1.25 0.83⋄⋄ 0.86 0.85 0.98 0.98 1.16 0.9 0.91
tv-3pr f (ic) 0.95⋄ 1 0.67∗⋄⋄ 0.96⋄⋄ 0.92∗∗⋄⋄ 0.93⋄⋄ 1.01 0.99 0.9∗∗⋄⋄ 0.91⋄⋄

tv-3pr fHi(1) 0.96 1.19 0.84⋄⋄ 0.88⋄ 0.85 0.97⋄ 1 1.21 0.95 0.91

CP CLAIMS HOUST CUMFNS GCE

pca(ic) 1.56 1.06 0.94 1.1 1.04 1.2 0.98 0.94 0.88 0.98
pca(1) 0.94 0.78 1.06 0.98 0.93 0.87 1.38 1.26 0.83 0.97

pca-lars(1) 1.12 0.96 1.04 1.05 1.04 0.8 0.92 1.09 0.85 0.98
pca-ht(10%)(1) 0.95 0.85 1.11 1 0.94 0.9 0.94 1 0.87 0.98

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.99⋄⋄ 0.94 0.88 1.14 0.8 1.06 0.87 0.93⋄ 0.91 1.16
tv-3pr f (ic) 0.96⋄⋄ 1.06⋄⋄ 0.98 0.99 0.96 0.99 0.96⋄ 0.97⋄⋄ 0.85∗∗ 1.04

tv-3pr fHi(1) 0.93⋄⋄ 0.9 0.87 1.18 0.82 1.04 0.88 0.96⋄⋄ 0.93 1.13

PAYEMS EXPORTS PCE-FE GS10 EXR-SUS

pca(ic) 1.01 0.94 1.1 1.04 1.09 1.11 1.02 0.89 0.94 0.97
pca(1) 1.12 1.07 0.99 0.93 0.91 0.97 0.85 0.83 0.88 0.9

pca-lars(1) 0.92 1.05 1.02 0.95 1.13 1.04 0.87 0.81 0.88 0.9
pca-ht(10%)(1) 0.99 1.02 1.01 0.95 0.93 0.97 0.88 0.91 0.93 0.92

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 0.93 1.01⋄⋄ 0.94 1.12 0.98 1.15 1 0.9 1.18 1.19
tv-3pr f (ic) 0.85∗∗⋄ 0.95⋄⋄ 0.97 1.01 0.98 1.01 0.98 0.98⋄ 1.13 1.12

tv-3pr fHi(1) 0.96 1.04⋄⋄ 0.94 1.12⋄⋄ 0.99 1.16 0.94 0.94 1.17 1.21

UNRATE GDP M2REAL EXR-USUK FPI

pca(ic) 0.89 1.16 0.9 1.01 0.98 1.1 0.95 1 0.96 1.18
pca(1) 1.27 1.12 1.32 0.95 0.97 0.87 0.87 0.96 1.08 0.97

pca-lars(1) 1.14 0.98 0.94 1.09 0.97 1.01 0.91 1 0.85 1.05
pca-ht(10%)(1) 1.01 0.99 1.2 1.1 0.97 0.9 0.93 0.98 1.11 1.01

3pr f (1) 1 1 1 1 1 1 1 1 1 1
tv-3pr f (1) 1.01 1.17 1.23 1.08⋄ 1.27 0.91⋄⋄ 1.12⋄⋄ 1.1 0.88 1.26
tv-3pr f (ic) 1.01 0.99 0.99 0.99 1.06 0.95⋄⋄ 1.05 1.04 0.94 0.99

tv-3pr fHi(1) 1.06 1.24 1.13 1.1 1.29 0.95⋄⋄ 1.19 1.11 0.89 1.2

Table 10: See notes in Table 6. Forecasting stops at 2019Q4
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