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Block Empirical Likelihood Inference for
Stochastic Bounding: Large Deviations
Asymptotics Under m-Dependence

Stelios Arvanitis,∗Nikolas Topaloglou†

Abstract

The present note is occupied with the issue of generalized Neyman-Pearson optimality, for
a testing procedure for the determination of stochastic bounding, that is based on data
blocking and the minimization of the Kullback-Liebler divergence, in a time series context of
m-dependence. Optimality is established via an extension of Sanov’s Theorem on empirical
measures for blocks of data of temporal dependence that becomes asymptotically negligible
at sufficiently fast rates. A large deviation property for the-subsequent to the derivation of
the test statistic-BEL estimator, and a corresponding confidence region are also obtained.
Key words: Generalized Neyman-Pearson Optimality; Large Deviations Property; Sanov’s
Theorem; Contraction Principle; Block Empirical Likelihood Ratio; Maximum BELE;
Confidence Region; Conservativeness; Stochastic Dominance; Stochastic Bound; Portfolio
analysis.

1 Introduction

The present note is occupied with a notion of fixed critical value optimality for
statistical tests about order properties of stochastic dominance relations based on the
Empirical Likelihood principle. Specifically, the issue of generalized Neyman-Pearson
optimality is investigated, for a testing procedure for the determination of stochastic
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1 Introduction 2

bounding, that is based on data blocking and the minimization of the Kullback-Liebler
divergence, in a time series context of a finite horizon temporal dependence.

Stochastic dominance relations are preorders on spaces of Borel probability mea-
sures on the real line (see Fishburn (1976) (18)). They are widely used in the fields of
economics, finance and statistics/econometrics (see inter alia Kroll and Levy (1980)
(23), McFadden (1989) (27), Levy (1992) (24), Levy (2015) (25), Mosler and Scarsini
(1993) (29), Gayant and Le Pape (2017) (19)), since they among others enable robust
inference on issues regarding optimal choice under uncertainty, uniformly for large
classes of preferences inside the expected utility paradigm.

This is due to that many widely used stochastic dominance relations have char-
acterizations in terms of classes of utility functions (see Fishburn (1976) (18), Levy
(1992) (24), Levy (2015) (25), Levy and Levy (2002) (26)). Thereby dominance w.r.t.
such a relation implies preference by any utility in the class and vice versa. Hence,
order properties of such stochastic dominance relations are directly connected to
robust properties of optimal choices w.r.t. sets of preferences.

This note is specifically occupied with the notion of stochastic bounding introduced
in Arvanitis, Post and Topaloglou (2021) (5); two sets-not necessarily disjoint-of
the order are considered with a view towards the determination of whether the first
contains a distribution that dominates every element of the second set. Latency of the
underlying distributions, and-given a sample-approximability by the corresponding
empirical distributions, enable the construction of statistical test for the determination
of the existence of a stochastic bound for the given preorder. Due to the expected
utility characterization of the bound, the underlying statistical/econometric model
lies in the scope of set identification, as it is comprised by a-potentially infinite-set of
moment inequalities.

Canay (2010) (12) introduced the Empirical Likelihood principle and the sub-
sequent empirical likelihood test for set identified models of moment inequalities,
based on previous work of Kitamura (2001) (21) on identified models of moment
equalities. Both papers work in iid frameworks. Canay (2010) (12)-again extending
Kitamura (2001) (21)-also shows the generalized Neyman-Pearson optimality of the
empirical likelihood ratio test based on fixed critical values. The derivations rely on
Sanov’s Theorem concerning the large deviations properties of empirical measures in
iid settings.

Thus in order to extend the optimality results in time series settings of temporal
dependence, the extension of Sanov’s Theorem in frameworks of stationarity and
mixing is required; this is already known, see the results of Bryc and Dembo (1996)
(11) and the references therein on appropriately mixing processes that involve super-
geometric strong mixing coefficients. In order for those results to be connected to
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the ELR principle, the good rate function that appears in those extensions has to
be identified as the Kullback-Liebler evaluated at the limiting distribution of the
empirical measure and defined over a set of appropriate measures. In this note a first
step towards such an identification is provided; in the context of m-dependence (see
for example Bradley (1986) (10)) under blocking schemes such that the blocks exhibit
temporal dependence that becomes asymptotically negligible at sufficiently fast rates,
relative entropies are obtained as good rate functions.

Section 2 establishes some notation and discusses the probabilistic framework.
Section 3 establishes the extension of Sanov’s Theorem under m-dependence and
a class of appropriate blocking scheme. Section 4 discusses a general stochastic
dominance relation, the subsequent notion of stochastic bounding, designs a relevant-
asymptotically conservative- Block Empirical Likelihood Test with data dependent
rejection regions, and establishes its limit theory. Section 5 derives the generalized
Neyman-Pearson optimality for versions of the aforementioned test based on fixed
critical values. Section 6 presents the results of a Monte Carlo simulation. Section 7
utilizes the contraction principle in order to obtain a large deviation property for the
subsequent to the derivation of the test statistic BEL estimator, and a corresponding
confidence region. Section 8 discusses issues of further research.

2 Notation and framework

U is a closed and convex subset of a Polish vector space and BU its Borel algebra. If
A ⊆ U , Ao denotes its interior, and Ā its closure w.r.t. the underlying topology. M1(U)
denotes the space of Borel probability measures on BU , equipped with the τ -topology;
this is generated by

{
µ ∈ M1(U) : |

∫
fdµ− x| < δ

}
, x ∈ R, δ > 0, f ∈ B(U,R),

with B(U,R) the set of bounded, Borel measurable real valued functions on U . By
Theorem 1.7.2 of van der Vaart and Wellner (35) the τ -topology concides with the
weak topology in M1(U).

X := (Xt)t∈N is a stationary process with values in U . b denotes a blocking scheme
on the process; b = ((kt)t∈N, b) where (kt)t∈N is a strictly increasing N-valued se-

quence, and b : N → N⋆. Then b(X) := ( 1
b(kt)

∑b(kt)
j=1 Xk(t)+j)t∈N. If n ∈ N⋆, and Xn :=

(Xt)t≤n is an n-sample from X, then bn(X) := ( 1
b(kt)

∑b(kt)
j=1 Xk(t)+j)t∈N:k(t)+b(kt)≤n.

Given the sample and the blocking scheme consider the empirical cdf Fb,n :=
1

|bn(X)|
∑|bn(X)|

i=1 δbn(X)i , with |bn(X)| denoting the cardinality of bn(X), and δu, u ∈ U

denoting the degenerate probability measure at u. The strict monotonicity of (kt)t∈N
implies that as n → ∞, |bn| := |bn(X)| → ∞.

The question that is addressed in the following section concerns the establishment
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of sufficient conditions under which: (a.) the M1(U), τ -valued sequence (Fb,n)n∈N⋆

satisfies the Large Deviation Principle (LDP-see for example Dembo and Zeitouni
(2009) (15)); this means that there exists a good rate function, i.e. an I : M1(U) → R
that is lower semi-continuous and inf-compact (see Ch. 1 of Rockafellar and Wetts
(2009) (32)) such that for any measurable A ⊆ M1(U),

− inf
µ∈Ao

I(µ) ≤ lim inf
n→∞

1

|bn|
lnP(Fb,n ∈ A) ≤ lim sup

n→∞

1

|bn|
lnP(Fb,n ∈ A) ≤ − inf

µ∈Ā
I(µ),

(1)
and (b.) whether I can be obtained as the Kullback-Liebler divergence (also known as
relative entropy-see for example Cover and Thomas (2006) (14)) partially evaluated
at appropriate measures inside M1(U). Such a characterization is relatable to possible
optimality properties of statistical tests constructed via statistics that resemble the
relative entropy.

3 A Sanov-type theorem with blocking

Whenever (kt) is the identity, b is constant at 1 and the stationary process is comprised
by independent random elements the LDP principle, with rate equal to the Kullback-
Liebler divergence evaluated at the stationary measure of the process is provided by
the classical Sanov’s Theorem (see Paragraph 3.2 of Dembo and Zeitouni (2009) (15)).
A slight extension is provided by the main result of the present section by considering
processes that are m-dependent and blocking schemes that mix random elements of
X producing asymptotically independent blocks at a sufficient rate; the following
assumptions are considered-for the notion of m-dependence see Bradley (1986) (10),
and for the notion of a slowly varying sequence see Paragraph 1.9 in Bingham, Goldie
and Teugels (1989) (9):

Assumption 1. For some m ∈ N⋆, the process X is stationary m-dependent.

m-dependence is a restrictive assumption on the dynamics of the process. It can
however accommodate time series models that exhibit finite order moving average
structures at their conditional moments; e.g. (Vector) MA processes, or the stochastic
volatility processes of the form:

yt = zt
√

ht, h(t) = exp(ω +
m̄∑
i=1

αiut−i);

where, m̄ ≤ m, ω, αi ∈ R, i = 1, . . . ,m, zt are iid with zero mean and unit variance,
and the ut are stationary and s-dependent, with m = sm̄ and well defined moment
generating functions.
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Assumption 2. The function b is bounded. For a real sequence (ℓn)n∈N and some
N⋆ ∋ m⋆ ≤ m, supt≤n | {Xkt+j, j = 1, . . . , b(kt)}△{Xtm−1+j, j = 1, . . . ,m⋆} | ≤ ℓn,
for large enough n, with ℓn = o(|bn|), and |bn(X)| ∼ ⌊n/m⋆⌋.

The assumption restricts the blocking scheme in such a way so that the dependence
between the blocks vanishes at a rate that is dominated by the rate that appears
in the LDP that is sought. The blocks’ sequence can thus be approximated by a
sequence of independent random elements-with stationary distribution that resides in
M1(U), enabling the identification of the rate function at work via the classical form
of the Sanov’s Theorem.

The following result is thus obtained:

Theorem 1. Under Assumptions 1, and 2, the LDP in (9) holds for the empirical
measures (Fb,n)n∈N⋆, with I(µ) := KL(Qm⋆∥µ), with Qm⋆ the stationary distribution

of the random element 1
m⋆

∑m⋆

i=1 Xi−1, with m⋆ as in Assumption 2.

Proof. Notice first that the boundedness of b along with Assumption 1 imply that
the blocking process b(X) is also 2l-dependent for l ≤ max(m,maxt b(t)). Hence
it is also α-mixing (see Bradley (1986) (10)), that conforms to Proposition 2 of
Bryc and Dembo (1996) (11). Thereby, by Theorem 1 of Bryc and Dembo (1996)
(11), and Theorem 1.12.4 of van der Vaart and Wellner (1996) (36), the LDP holds
with good rate function given by I(µ) := supf∈B(U,R)(

∫
U
fdµ− Ξ(f)), with Ξ(f) :=

limn→∞
1

|bn| lnE(exp(
∑|bn|

j=1 f(bn(X)j))). Then, due to Assumptions 1 and 2,

E(exp(
|bn|∑
j=1

f(bn(X)j))) = E⌊n/m⋆⌋(exp(f(
1

m⋆

m⋆∑
i=1

Xi−1))) exp(An),

where An ≤ 2ℓn maxu∈U f(u). Due to Assumption 2, exp(An) = 1 + o(1). The result
then follows as in the proof of the classical Sanov’s Theorem (see Theorem 6.2.10 of
Dembo and Zeitouni (1992) (15)). Specifically, via the Donsker-Varadhan variational
representation of the Kullback-Liebler divergence.

Remark 1. When m⋆ = m = 1 the original Sanov’s Theorem is retrieved even with
blocking that becomes asymptotically negligible sufficiently fast.

Remark 2. The result supports blocking schemes that eventually recover m and adapt
accordingly.

Remark 3. Using conditional arguments, it is be possible to prove an analogous result
for m stochastic, yet independent of X, that converges a.s. to some positive integer as
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n → ∞. The LDP rate and the good rate function would be identical to the current
result. This could be relevant to the recovery of m via out of sample statistical
inference.

Remark 4. A similar to the previous remark extension, can be established by allowing
for the blocking scheme to be stochastic. The results would remain intact if the
blocking scheme is independent of the sample, and it obeys the rate restrictions that
appear in Assumption 2 in probability.

4 A test for stochastic bounding

U is henceforth considered a subset of Rd. The random vector Xt represents some
uncertain economic phenomenon occurring at time t; e.g. the one period stationary
returns of d financial assets, and U is the support of its’ joint distribution, say P.

A prospect on X is any real linear function on Rd. Hence it is represented by a
unique element of the latter due to the Riesz representation theorem-see for example
Aliprantis and Border (2006) (1). In the context of financial returns any prospect
can be perceived as a financial portfolio constructed by the assets that participate in
X; the elements of its representing vector are the respective portfolio weights.

Alternative prospects are evaluated via expected utility, using utility functions
u : R → R that are increasing, continuous, and concave. Instead of specifying
a particular functional form, a uniformly bounded and convex set of continuous
functions, say U , is considered for the analysis.

The analysis involves two sets of prospects Λ, K ⊆ Rd. They need not be disjoint,
and they are both considered convex and compact. In what follows λ, κ denote
typical elements of Λ and K respectively.

The above enable the definition of a stochastic dominance relation on the sets
of prospects, via U : in the stationary framework considered, λ is said to dominate
κ w.r.t. the utility class U iff E(u(λ′X0)) ≥ E(u(κ′X0)), ∀u ∈ U ; i.e. λ is preferred
over κ-in the expected utility paradigm-by every utility in the considered class. The
generality of the particular framework implies that it incorporates several of the
widely known stochastic dominance relations; e.g. when U is the set of the Russell-Seo
utilities-see Russell and Seo (1989) (33), and U is compact, the second order stochastic
dominance relation is retrieved.

In this context, a stochastic bound of K, is any prospect-not necessarily inside
K, that dominates every prospect in K-see Arvanitis, Post and Topaloglou (2021)
(5). It may be of interest to inquire whether Λ contains a stochastic bound of K; the
analysis in the aforementioned paper and the present framework imply that this is
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the case iff
ξ(P) := sup

λ∈Λ
inf

κ∈K,u∈U
D(u,λ,κ,P) ≥ 0,

withD(u,λ,κ,P) denoting the ”moment differential”-or the expected utility difference
E(u(λ′X0))−E(u(κ′X0)); whenever U is the set of the Russell-Seo utilities-see Russell
and Seo (1989) (33), and U is compact, the differentials can be represented via
differences of appropriate integrals of the underlying cdfs.

In order to avoid (manageable-see Arvanitis and Post (2023) (8)) complications
with potential infinities for the number of moment differentials that are zero at bounds
when bounds exist, we hereafter assume that Λ is finite, and that K and U are
polyhedral, so that the analysis can be restricted due to convexity on the finite set
of their extreme points. In order for notational clutter to be avoided, the K and U
symbols are also hereafter used for the respective finite sets of extreme points.

The latency of P, along with the availability of the sample Xn, imply that the
above question on the existence of a bound, can be expressed via the hypothesis
structure, H0 : ξ(P) ≥ 0 vs H1 : ξ(P) < 0, which can be tested statistically.

Given the blocking scheme b, a potential test statistic is the Block Empirical
Likelihood Ratio (BELR) which is defined as follows: for Qb,n denoting the solution
to the optimization problem

min
λ∈Λ

min
Q∈M1(U)

KL(Fb,n∥Q), s.t. inf
u∈U ,κ∈K

D(u,λ,κ,Q) ≥ 0. (2)

the statistic is ELRb,n := 2KL(Fb,n∥Qb,n).
The finiteness of Λ implies that the numerical aspects of the above optimization

problem are not particularly complicated; for each λ the optimization of a profile
likelihood-see for example Section 3.1 of Canay (2010) (12)-in order to obtain the
optimal Lagrange multipliers vector is a problem of convex programming. Given its’
solution for each λ, the determination of Qb,n is straightforward. In particular, the
variational representation of the ELRb,n statistic is:

2min
λ∈Λ

max
µ∈R#(U×K)+

⌊n/m⋆⌋∑
j=1

log(1+µ′(u(
1

m⋆
λ′

m⋆∑
i=1

Xj,i−1)−u(
1

m⋆
κ′

m⋆∑
i=1

Xj,i−1))(u,κ)∈U×K),

(3)
where Xj,i denotes the ith element of the jth block.

A decision procedure could be then constructed as follows: given a significance
level α ∈ (0, 1), let cn be a random variable that converges in probability to a non-
stochastic limit that is greater than or equal to the 1− α quantile of the null limiting
distribution of ELRb,n.
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The rejection regions designated by cn is indicatively constructed by a modification
of the conservative approach of Arvanitis and Post (2023) (7). Other procedures
based on subsampling or block bootstrap resampling are also possible-see for example
Canay (2010) (12) for an analogy in the iid setting.

Specifically, cn is connected to the 1 − α quantile of a χ2 distribution with
degrees of freedom equal to the latent number N(P,λ) of non-trivial contacts
of elements of the set of maximizers-see the following theorem-under the null
of infu∈U ,κ∈K D(u,λ,κ,P); there N(P,λ) is the cardinality of the ”contact” set
CS(P,λ) := {(u,λ,κ) : D(u,λ,κ) = 0,VarP(u(λ

′X0) − u(κ′X0)) > 0}. This la-
tent number of degrees of freedom can be asymptotically approximated from below
via the number of empirical moment conditions that are approximately binding
regarding the empirical bounds, i.e. via N(Qb,n,λ,mn), which is the cardinality
of

{
(u,λ,κ) : |D(u,λ,κ,Qb,n)| ≤ mn, VarQb,n

(u(λ′X0)− u(κ′X0)) > 0
}
, where λ ∈

argmaxΛ infu∈U ,κ∈K D(u,λ,κ,Qb,n); mn > 0 is a-potentially data dependent-slack
variable that converges to zero at an appropriate rate. The relevant analysis in the
proof of Theorem 4.2.2 of Arvanitis et al. (2021) (6) shows that (a) D(u,λ,κ,Qb,n) =

1
⌊n/m⋆

∑⌊n/m⋆⌋
j=1

(u( 1
m⋆λ

′ ∑m⋆

i=1 Xj,i−1)−u( 1
m⋆κ

′ ∑m⋆

i=1 Xj,i−1))(u,κ)∈U×K)

1+µ′
n(u(

1
m⋆λ′ ∑m⋆

i=1 Xj,i−1)−u( 1
m⋆κ′ ∑m⋆

i=1 Xj,i−1))(u,κ)∈U×K)
, where µn is the opti-

mal Lagrange multiplier that solves (3) and, (b) due to the lower semi-continuity of
the argmin operator-see Rockafellar and Wetts (2009) (32)-the distributional cluster
points of the 1 − α quantile of χ2

N(Qb,n,λ,mn)
are greater than or equal to the 1− α

quantile of the null limiting distribution of the test statistic. Given the present
assumption framework it can be also seen that N(P,λ) can be also consistently esti-
mated by {(u,λ,κ) : |D(u,λ,κ,Pn)| ≤ mn, VarPn(u(λ

′X0)− u(κ′X0)) > 0}. Then
the decision rule is that H0 is rejected iff ELRb,n > cn, where cn is finally the 1− α
quantile of the χ2

N(Qb,n,mn)
distribution, and the construction of the rejection region

signals limiting conservatism.
The following result derives the limit theory of the testing procedure described

above. There, for an arbitrary non-empty B ⊂ U×K, LV((P, λ,B) denotes the matrix

CovP

[
(u (λ′X0)− u (κ′X0))(u,κ)∈B ,

(
u⋆

(
λ⋆′X0

)
− u⋆

(
κ⋆′X0

))
(u⋆,κ⋆)∈B

]
. The test is-

as expected-asymptotically conservative as well as consistent:

Theorem 2. Suppose that Assumptions 1 and 2 hold with m⋆ = m. Furthermore,
(a) U is compact, (b) there exists some ϵ > 0 such that,

inf
λ is a bound

λmin (LV(P, λ,CS(P, λ))) > ϵ,

where λmin (LV((P, λ))) denotes the matrix’s minimum eigenvalue, and, (c) the slacks
satisfy mn → 0, while,

√
nmn → +∞ almost surely.
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Then, the following hold: (i)

ELRb,n ⇝


infλ is a bound infv∈RN(P,λ)

+
(C(λ)− v)′ V−1

C (C(λ)− v) , H0 ∧
∑

λ is a boundN(P, λ) ̸= 0

0, H0 ∧
∑

λ is a boundN(P, λ) = 0

+∞, H1

,

(4)
where C(λ) is a zero-mean Gaussian vector with covariance matrix

VC := LV+2
m∑
t=1

E
[
(u (λ′X0)− u (κ′X0))(u,κ)∈CS(P,λ)

(
u⋆

(
λ⋆′Xt

)
− u⋆

(
κ⋆′Xt

))
(u⋆,κ⋆)∈CS(P,λ)

]
;

(ii) Under H0 ∧
∑

λ is a boundN(P, λ) ̸= 0,

lim sup
n→∞

P (ELRb,n ≥ cn) ≤ α, (5)

while under H0 ∧
∑

λ is a boundN(P, λ) = 0,

lim
n→∞

P (ELRb,n ≥ cn) = 0; (6)

(iii) Finally, under H1,
lim
n→∞

P (ELRb,n ≥ cn) = 1. (7)

Proof. (4) follows as in the proof of Theorem 4.2.1 of Arvanitis, Post, Poti and
Karabati (2021) (6) combined-regarding the contact set calculus-with the proof of
Proposition 4.1.2 of Arvanitis, Post and Topaloglou (2021) (5). Consider the case
H0 ∧

∑
λ is a boundN(P, λ) ̸= 0; uniformly w.r.t. the (u,κ) /∈ CS(P,λ) and the set of

stochastic bounds, it is found that, due to the definition of slacks and the Birkhoff’s
ULLN, EQb,n

[u (λ′X0)− u (κ′X0)] > mn, eventually, almost surely. Using Skorokhod
representations, we also have that, since

√
nmn diverges to infinity almost surely,

uniformly w.r.t. the elements of the contact sets,
∣∣√nEQb,n

[u (λ′X0)− u (κ′X0)]
∣∣ ≤√

nmn, eventually, almost surely. The previous imply that N(Qb,n,λ,mn)⇝ N(P,λ,
uniformly w.r.t. the set of bounds, jointly with ELRb,n, and thereby we obtain that

ELRb,n ⇝ infλ is a bound infv∈RN(P,λ)
+

(C− v)′ V−1
C (C− v)

= infλ is a bound infv∈RN(P,λ)
+

[
C′V−1

C C
− infv∈Co (C− v)′ V−1

C (C− v)

]
≤ infλ is a boundC′V−1

C C,

due to Proposition 3.4.1 of Silvapulle and Sen (2005) (34), where Co denotes the

polar cone of RN(P,λ)
+ . Then the Portmanteau Theorem establishes (5). For the case
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H0∧
∑

λ is a bound N(P, λ) = 0, (4) implies that ELRb,n is eventually zero w.h.p., hence
(6) follows. Finally, when the null hypothesis does not hold, then the implication of
the previous is that ELRb,n diverges to +∞, while the 1− α quantile of χ2

N(Qb,n,λ,mn)

is almost surely bounded; (7) then follows.

The minimum eigenvalue condition holds whenever the random vector
(u (λ′X)− u (κ′X))CS(P,λ) consists of linearly independent random variables. The
restriction of the asymptotic behavior of slacks is standard in the literature; see
Andrews and Soares (2010) (2) and the relevant references therein.

The test is asymptotically conservative, even in cases where the associated contact
sets of the bounds are empty. This is due to the way that the rejection region is
constructed. Conservativeness implies potential poor power properties on the bound-
ary of the null hypothesis. Whenever no-non trivial contacts exist conservativenss is
maximal. The test is also consistent; the probability of type II error converges to
zero for fixed alternatives.

The aforementioned conservativeness and consistency would also hold whenever
the test was performed utilizing blocking schemes for which m⋆ < m. The difference in
the limit theory would lie in the form of the Gaussian process involved; its covariance
kernel would not equal VC and conservativeness would then be more severe.

5 Fixed critical value Neyman-Pearson optimality

The considerations below follow closely Paragraph 3 of Canay (2010) (12). The notion
of the generalized Neyman-Pearson optimality is now considered for the BELR test
based on the statistic established in the previous section, yet performed via a decision
procedure based on a fixed critical value. Specifically, for some η > 0, the testing proce-
dure rn = 1(ELRb,n > η), where the null hypothesis is rejected iff rn = 1 is considered.
The procedure can then be represented by a measurable (w.r.t. the weak topology) par-
tition of M1(U), (P0,n, P

c
0,n), where P0,n :=

{
Q ∈ M1(U) : infG∈P0(Q KL(Q∥G) ≤ η

}
,

and G ∈ P0(Q) := {G ∈ M1(U) : ξ(G) ≥ 0,G ≫ Q,Q ≫ G}; the null hypothesis is
rejected iff Fb,n ∈ P c

0,n.
The following definition of the null parameter space, in the spirit of Definition 3.1

of Canay (2010) (12) is considered:

Definition 1. For arbitrary δ > 0, the null distributions space P0,δ, is the subset of
M1(u) for which for any element Q:

1. ξ(Q) ≥ 0,

2. infλ | (LV((Q, λ,U ×K)))u∈U ,κ∈K | ≥ δ,
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P0,δ is then a set of null distributions for which-due to the second part of the
definition-every bound has non empty sets of non-trivial contacts. This is analogous
to Assumption 3.5 of Kitamura et al. (2012) (22). As in Canay (2010) (12) such
degeneracies are avoided by conditions on the associated covariance matrices; those
here assume the form of restrictions on the set of utilities employed.

The analysis is also complemented by the following compactness assumption:

Assumption 3. U is compact.

This directly implies that M1(U) is also compact-see Paragraph 15.3 of Alipratnis
and Border (2006) (1). The assumption can be avoided if it is assumed that the
maintained hypothesis is a compact-w.r.t. the weak topology-subset of M1(U).

The following generalized Neyman-Pearson optimality result is then obtained-for
the Levy metric dL employed there, that metrizes the weak topology on M1(U), see
for example Appendix D of Dembo and Zeitouni (2009) (15):

Theorem 3. Suppose that Assumptions 1, 2 and 3 hold. Then for the BELR statistic
defined above we have that there exists some η(δ) > 0 such that for any 0 < η ≤ η(δ):

1. supQ∈P0,δ
lim supn→∞

1
⌊n/m⋆⌋Q(Fb,n ∈ P c

0,n) ≤ η,

2. for any other test based on Fb,n that induces some measurable partition (G0,n, G
c
0,n)

on M1(U), that satisfies supQ∈P0,δ
lim supn→∞

1
⌊n/m⋆⌋Q(Fb,n ∈ Gc,ϵ

0,n) ≤ η, with

Gc,ϵ
0,n := {µ ∈ M1(U), infv∈Gc dL(µ, v) ≤ ϵ}, and dL denotes the Levy metric,

then

lim sup
n→∞

1

⌊n/m⋆⌋
Q1(Fb,n ∈ G0,n) ≥ lim sup

n→∞

1

⌊n/m⋆⌋
Q1(Fb,n ∈ P0,n),

for any Q1 ∈ {Q ∈ M1(U) : infP0 dL(Q,P) ≥ η/2}, with P0 := {P ∈ M1(U) : ξ(P) ≥ 0}.

Proof. The result follows as in the proof of Theorem 3.2 of Canay (2000) (12), due to
the finiteness of Λ. Specifically the only modifications needed require that (in the
notation there) relation (A.10) is modified so that it is considered w.r.t. the supremum
of the associated parameter θ-which is in our case λ, relations (A.11)-(A.12) are
similarly modified so that they are considered w.r.t. the infimum of θ, and Theorem
1 is invoked in place of the original Sanov’s Theorem.

The results establish that the BELR test considered in this section, controls
uniformly over the occasional null distribution space, the rate at which the probability
of type I error vanishes. Furthermore, the rate at which the probability of type II
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error vanishes is maximal w.r.t. to any test of similar type I error rate, with a test
statistic that depends on Xn only via Fb,n), w.r.t. to any alternative distribution that
is sufficiently far-in the Levy metric sense-from the boundary of the null hypothesis.

The above holds true for the-generally infeasible-tests based on the fixed critical val-
ues obtained from the 1 − α quantile of the latent distribution of
infλ is a bound infv∈RN(P,λ)

+
(C− v)′ V−1

C (C− v) or of infλ is a boundC′V−1
C C, for C the Gaus-

sian process that is present in Theorem 2. The first would also be asymptotically
exact.

6 Monte Carlo Experiment

In this section Monte Carlo experiments are designed and performed to evaluate
actual finite sample size and power of the proposed Block Empirical Likelihood Ratio
(BELR) Bounding test in finite samples. The size and power of the proposed tests is
also compared, with the Bounding testing procedure of Arvanitis, Post and Topaloglou
(2021) (5). Three financial assets are considered in a time series context. It is assumed
assume that their vector returns’ process behaves like a stationary vector MA(1)
process of order one Xt = A+Bνt−1 + νt, where νt ∼ N(0,Σ) and B is set equal
to the relevant identity matrix. The process is 2-dependent, hence conformable to
the general framework discussed above. The marginal distribution of X is zero mean
Gaussian, hence the A vector is set equal to zero, and the covariance matrix Σ is set
equal to the empirical variance covariance matrix of the actual data of three financial
assets, namely the S&P500 Index, the Russel 2000 stock index, and the Barcklays
bond Index; it is noted that the latter has the minimal empirical variance. The actual
data set used for Σ spans the period from January 1990 to December 2020.

6.1 Design

The aforementioned VMA DGP is used to draw realizations of the three asset returns.
We generate R = 500 original samples with size n = 200, 500 and 1000. These samples
are then used to evaluate the actual size and power of the Bounding tests. For the
BEL Bounding tests, for each original sample we generate blocks (non-overlapping
and independent) of two return observations and calculate the average return for
each block. These average returns are then used to estimate the size and power of
the BEL Bounding test.

Two sets of prospects are considered, namely Λ, K, and λ, κ are portfolios of Λ
and K respectively.
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Moreover, it is assumed that U is a finitely discretized set of the Russell-Seo utilities-
see Russell and Seo (1989) (33), and thus U is compact as required by Assumption
3. Thus, the utility functions can be expressed as positive linear combinations of
elementary utility functions with different kink points, for a finite number of kink
points (or thresholds). It is noted that the set of thresholds used does not contain
the smallest sample minimum of the portfolios’ returns since that would invalidate
Theorem 2.(b). The design thus fully supports the the aforementioned theoretical
assumption framework.

For the Arvanitis, Post and Topaloglou (2021) (5) Bounding test, the decision
to reject the null of the existence of a stochastic bound, is obtained by via a com-
putationally intense sub-sampling procedure as described in section 4.2 of their
paper.

For the BELR Bounding test, for the rejection region the 1 − α quantile of
a χ2 distribution is used, with degrees of freedom equal to the the cardinality
of {(u,λ,κ) : |D(u,λ,κ,Pn)| ≤ mn, VarPn(u(λ

′X0)− u(κ′X0)) > 0} which as noted
before is a consistent estimator of N(P,λ). There the slacks used are set equal
to mn = 0,1

ln(n)
, which is also conformable to their theoretically required asymptotic

behavior.

6.1.1 Size

To evaluate the actual size, we test whether Λ contains a stochastic bound of K,
when both sets Λ and K are equal and comprised by all the three assets. In this
case a stochastic bound exists, due to the existence of a minimal variance and the
assumption of zero means.

6.1.2 Power

To evaluate the actual power, we test whether Λ contains a stochastic bound of
K, when the set Λ contains the two stock indices which have higher variance than
the third bond index, while the set K contains all the three assets. In this case a
stochastic bound does not exist, since the set Λ contains the two assets with the
higher variance.

6.2 Computational Issues

The optimization problems of the Arvanitis, Post and Topaloglou (2021) (5) Bounding
test, as well as the convex optimization of the BELR test statistic, are solved using
the General Algebraic Modeling System (GAMS), which is a high-level modeling
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system for mathematical programming and optimization. This language calls special
solvers (Gurobi and Conopt) that are specialized in linear and convex programs. The
Matlab code (where the simulations run) calls the specific GAMS program, which calls
the appropriate solver to solve each optimization. The optimizations are performed
on a number of computers (with i7 processors, 16 core, 3.2 GHz Power, 128Gb of
RAM). The almost exponential increase in solution time with the increasing number
of sample size is noted.

6.3 Results

The Monte Carlo results are presented in Table 1. It is observed that both tests
perform well with respect to both size and power, a finding conformable to Theorem
2. It is also observe a minor improvement in the power of BEL Bounding test over the
Arvanitis, Post and Topaloglou (2021) Bounding test. This is also reminiscent of the
spirit of the power properties results in Theorem 3, even though the test performed
does not use a fixed and data independent rejection region.

Tab. 1: Monte Carlo Experiment. The experiment is based on a problem with N=3 assets
that follow an MA(1) process, and n=300, 500, 1000 time series observations.
Actual size and power of the Bounding test statistic of Arvanitis, Post and
Topaloglou (2021), and the Block Empirical Likelihood (BEL) test statistic.

Sample size n 200 500 1000
Size
Bounding

R̂P1(5%) 7.63% 6.54% 4.88%
BELR Bounding

R̂P1(5%) 7.46% 6.62% 4.92%

Power
Bounding

R̂P2(5%) 88.22% 90.76% 93.19%
BELR Bounding

R̂P2(5%) 89.33% 91.75% 94.16%
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7 Large deviations confidence regions for bounds

The LDP asymptotics-in the spirit of Arcones (2006) (3)-of the empirical bound
maximum BEL estimator is now considered-the latter is naturally:

λn ∈ argmin
λ∈Λ

min
Q∈M1(U)

KL(Fb,n∥Q), s.t. inf
u∈U ,κ∈K

D(u,λ,κ,Q) ≥ 0. (8)

Suppose that the null hypothesis is true, and the following identification condition
holds:

Assumption 4. λ0 := argmaxλ∈Λ infu∈U ,κ∈K D(u,λ,κ,P) is a singleton.

The identification condition is quite strong, yet in enables the invocation of the
contraction principle in the Large Deviations Theory. When U and/or K are large,
whence the existence of bounds becomes less plausible, it may not be very restrictive.

Then, Assumptions 1, 2, 3, 4, the Sanov’s-type Theorem 9, the contraction
principle (see for example Lemma 2.1.4 in Deuschel and Stroock (1989) (16)), the
lower semi-continuity property of the Kullback-Liebler divergence, the finiteness of Λ
and U ×K, Corollary 4.7 of Rio (2017) (31), and Theorem 7.11 of Rockafellar and
Wetts (2009) (32) and Theorem 3.4 of Molchanov (2006) (28) imply the following
LDP:

Theorem 4. Under Assumptions 1, 2, 3, 4, and for any A ⊆ Λ− λ0,

lim
n→∞

1

⌊n/m⋆⌋
lnP(λn − λ0 ∈ A) = − inf

x∈A
I⋆(x), (9)

where I⋆ : Λ− λ0 → R is a well defined convex good rate function, defined by:

I⋆(x) := inf
µ

{
KL(Qm⋆∥µ) : argλ inf

u∈U ,κ∈K
D(u,λ,κ, µ)− λ0 = x

}
.

Then using the analysis in Section 4 of Arcones (2006) (3), it is easy to see that,
for β ∈ (0,+∞), the region Cλn(β) := {λ ∈ Λ : I⋆(λn) < β}, where I⋆ : Λ → R is a
well defined convex good rate function, defined by:

I⋆(x) := inf
µ

{
KL(Qm⋆∥µ) : inf

u∈U ,κ∈K
D(u,λ,κ, µ) = inf

u∈U ,κ∈K
D(u, x,κ, µ)

}
,

is a β-confidence region for the estimator, in the sense that lim supn→∞ P(λn /∈
Cλn(β)) ≤ −β. A consistent estimator for the latent region w.r.t. the upper topology
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on the space of non-empty subsets of Λ-see for example Proposition 19.1 and the
Appendix A.1 of Arvanitis (2013) (4) is

C̄λn(β) :=

{
λ ∈ Λ : inf

µ

{
KL(Fb,n∥µ) : inf

u∈U ,κ∈K
D(u,λ,κ, µ) = inf

u∈U ,κ∈K
D(u,λn,κ,Qb,n)

}
< β

}
.

Upper consistency follows from Corollary 4.7 of Rio (2017) (31), Theorem 7.11 of
Rockafellar and Wetts (2009) (32), and Theorem 3.4 of Molchanov (2006) (28), as
well as from the semi-continuity properties of the Kullback-Liebler divergence-see for
example Lemma 1.4.3 of Dupuis and Ellis (1997) (17).

8 Discussion

Several extensions of the results above could be the subject of further research. A
very important one is the extension of Theorem 9 to strong mixing processes with
appropriate mixing rates. Given the results appearing in Bryc and Dembo (1996) (11),
where a faster than geometric strong mixing rate suffices for an LDP property to hold,
this extension faces a twofold inquiry: (a.) whether the former rate is sufficient, and
(b.) whether standard blocking schemes-like the maximally overlapping one-would
imply the identification of the good rate function as an appropriate relative entropy.

The extension of the optimality results presented in Theorem 3 in several in-
stances missed by the present framework could be also of interest. For example the
extension of the result regarding the fixed critical value BELR test in cases where the
underlying contact sets are potentially infinite-this could be true for tests employing
the alternative hypothesis (see Arvanitis and Post (2023) (8)) could be useful.

The extension of the results to notions of optimality that are more relevant to tests
that utilize data-dependent rejection regions-see for example the Hodges-Lehmann
optimality of Canay and Otsu (2012) (13) is also interest given the complexity of the
tests employed in Stochastic Dominance. Specifically, any testing procedure involving
a critical value qn, that may be data dependent, is termed Hodges-Lehmann optimal
at a distribution, say P1 in the alternative hypothesis, iff (a) the test has asymptotic
size α bounded above by α for any distribution in the null hypothesis, and (b) the
test has a limiting power at P1 greater than or equal to any other test of asymptotic
size α.

It is pointed out that a version of the general Theorem 2.1 of Canay and Otsu
(2012) (13), that identifies sufficient conditions for Hodges-Lehman optimality in iid
frameworks, is readily extended in our framework of m-dependence and blocking.
Specifically:
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Theorem 5. Suppose that Assumptions 1, 2 and 3 hold. If the (a). the null hypothesis
is comprised of distributions at which the limiting statistic equals zero, and (b). the test
statistic is lower semi-continuous at every distribution in the maintained hypothesis,
then the test is Hodges-Lehman optimal at any distribution in the alternative hypothesis
that is mutually absolutely continuous with at least one distribution inside the null
hypothesis.

Proof. The result follows exactly as in the proof of Theorem 2.1 of Canay and Otsu
(2012) (13), with a minor modification; Theorem 1 is invoked in place of the original
Sanov’s Theorem.

Under the aforementioned assumptions, and if moreover Theorem 2.b holds and∑
λ is a bound N(P, λ) ̸= 0, then the BELR test has asymptotic level α due to the result

in 2.2. Given the lower-semicontinuity properties of the Kullback-Liebler divergence
(see again Lemma 2.1.4 in Deuschel and Stroock (1989) (16)), if the null hypothesis is
a singleton, then a modification of the proof of Theorem 3.1.(ii) of Canay and Otsu
(2012) (13) would imply that the BELR test satisfies Theorem 5, and therefore the
particular testing procedure is Hodges-Lehman optimal.

Finally, the consideration of LDP properties for the associated estimators of
bounds without strong identification conditions, and/or Fell consistent estimators
(see again Proposition 19.1 and the Appendix A.1 of Arvanitis (2013) (4)) for the
associated confidence region estimator could be also useful.
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