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Abstract

A limit theorem for partial sums of martingale transforms with multiplicative noise and
ergodic transform processes is established, resulting to regularly varying rates and stable
limits. Its’ establishment is facilitated by the derivation of an extension to empirical
distributions of Breiman’s Theorem along with the Principle of Conditioning. The theorem
is applied for the derivation of the limit theory OLSE in regressions with heavy tailed noise,
as well as of the limit theory of the Gaussian QMLE in GARCH-type models. Depending
on the index of stability, regularly varying rates and asymptotic stable distributions or
inconsistency, are obtained.
MSC2020: 60, 62, 91.

Keywords: Martingale Limit Theorem; Principle of Conditioning; Domain of At-
traction; α-Stable Distribution; Regular Variation; Breiman’s Theorem; Heavy-
tailed noise regression; OLSE; GARCH-type model; Gaussian QMLE; Inconsistency.

1 Introduction

Weak convergence theorems for partial sums of stationary weakly dependent pro-
cesses with limiting stable laws exist in the literature; for two quite general formu-
lations, see Davis and Hsing (1995) or the monograph of Kulik and Soulier (2020),
for a point processes approach, and Bartkiewicz et al. (2011) for an approach based
on characteristic functions. When the underlying process is a martingale transform,
those results depend on conditions that may be either tedious to verify and/or more
restrictive than necessary. In this paper weaker sufficient conditions are discussed for
weak convergence to stable laws of partial sums of martingale transforms structured
by multiplicative iid noise and ergodic transform processes. The Principle of Condi-
tioning (see Jakubowski (1986)) is utilized, which allows for deriving limit theorems
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for sums of dependent random variables from existing limit theory for independent
processes combined with ergodic laws of large numbers.

Our motivation stems from the GARCH models literature (see for example the
references in Ch. 3-7 of Straumann (2004)) that focuses on the determination of the
asymptotic properties of the computationally convenient Gaussian Quasi Maximum
Likelihood Estimator (QMLE). Under mild conditions, the relevant score process
takes the form of a multiplicative martingale transform where the squared innova-
tions act as noise. When the iid innovations possess fourth moments, the estimator
is known to be

√
n-consistent and asymptotically normal (see Ch. 5 of Straumann

(2004)). However, the empirically relevant possibility of the non-existence of the
fourth moment (see e.g. Rachev and Mittnik (1988) and Mittnik et al. (1998))
raised the issue of its implications on the limit theory of the QMLE. Hall and Yao
(2003) and Mikosch and Straumann (2006) derived martingale limit theorems that
facilitated the derivation of the asymptotic properties of the estimator in this con-
text.

We extend the results of Hall and Yao (2003), and Mikosch and Straumann
(2006)) to a limit theorem for martingale transforms with regularly varying rates and
stable limits under weaker conditions regarding temporal dependence and existence
of moments. Our derivations exploit the multiplicative structure of the transform
and the local representations of the characteristic function of the noise (see Ibrag-
imov and Linnik (1971) and Aaronson and Denker (1998)). In the non-Gaussian
domains of attraction, the derivations are facilitated by our asymptotic extension of
the Denisov and Zwart (2007) version of Breiman’s Theorem (see Breiman (1965)) to
empirical distributions. Our approach does not require the verification of extremal
index conditions (see Davis and Hsing (1995)) in order to establish asymptotic non-
degeneracy. It also avoids the use of restrictions regarding mixing and/or the exis-
tence of higher order moments for the transform process, at the cost of restrictions
on the regular variation properties of the martingale difference process.

The limiting distributions are stable with parameters that depend on the anal-
ogous parameters of the noise as well as on appropriate moments of the transform
process. The results are readily extendable to multivariate transform processes via
Cramer’s Theorem. The case where the index of stability equals 2 yields Gaussian
limits. The results thus incorporate asymptotic normality, with rates of convergence
potentially slower than

√
n. This occurs when the truncated second moment of the

noise slowly diverges to infinity, yet the second moments for the transform process
exist. This is a restriction weaker than the condition implied in Hall and Yao (2003),
while the conditional Lindberg condition (see Jeganathan (1982)) is also avoided;
the latter would fail in this framework. Finally, our results constitute an essentially
unified limit theory since they also incorporate the classical case involving stationary
and ergodic square integrable transforms.

The remaining paper is organized as follows: in the following section, the needed
notation and assumption framework are established, and the main result is derived
and discussed. Section 3 discusses the assumptions, and derives auxiliary results. It
contains the aforementioned extension of the Denisov and Zwart (2007) Breiman’s
Theorem to empirical distributions. In Section 4 we apply the theorem in order to
derive the limiting properties of the OLSE in regressions with heavy-tailed errors. In
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Section 5 we apply it to the Gaussian QMLE for GARCH-type models and discuss
several examples. The final section contains the proofs.

2 Main result

We work in the context of a complete probability space (Ω,G,P). The abbreviation
P a.s. signifies almost sure events with respect to P. We denote convergence in
distribution of sequences of random elements with ⇝ and equality in distribution
with d

=. All limits are considered as n → +∞ unless otherwise specified. The
stochastic processes under consideration are defined on Z or N. The results are
presented for the first case, yet they also hold for the second with appropriate
modifications that involve initial values. F will denote some filtration on G, i.e. an
increasing double sequence (Gi)i∈Z of G sub-σ-algebras. Given a non empty set A,
ℓ∞ (A) denotes the set of bounded real functions on A equipped with the uniform
metric. ∥·∥ denotes the Euclidean norm, and i denotes

√
−1.

We are interested in the asymptotic behavior of the partial sums of the process
((ξi − γ)Vi)i∈Z where (ξi)i∈Z is an iid process, γ is a location real parameter, and
(Vi)i∈Z is a stationary ergodic process. We employ measurability properties of the
constituent processes w.r.t. F , that enable characterization of the pointwise product
((ξi − γ)Vi)i∈Z as a martingale transform of (ξi)i∈Z by (Vi)i∈Z. The term is inaccurate
whenever E [|ξ0V0|] = +∞, yet we universally adopt it in the spirit of Mikosch and
Straumann (2006).

The assumption framework that is introduced below deals with probabilistic and
dynamical properties of the constituent processes. Its’ formulation additionally uses
the following notation:

Sα(β, c, γ) denotes the (univariate) stable distribution with parameters α, β, c, γ
denoting stability, skewness, scale and location respectively (see Ibragimov and Lin-
nik (1971)). When α = 2, then the restriction β = 0 also holds, and S2(0, c, γ) =
N(γ, c). For any α ∈ (0, 2] the distribution of ξ0 belongs to the Domain of Attrac-
tion (hereafter DoA) of Sα (β, c, γ) if and only if its log-characteristic function has
the following representation as t → 0:{

γit− c|t|αL(|t|−1)
(
1− iβsgn(t) tan

(
1
2
πα
))

+ o (|t|L (|t|−1)) , α ̸= 1

(γ +H(|t|−1)) it− c|t|L(|t|−1)
(
1− 2Ciβ

π
sgn(t)

)
+ o (|t|L (|t|−1)) , α = 1

, (1)

where L(x) is a slowly varying function in the sense of Karamata (see for example
Bingham et al. (1989)), H(λ) =

∫ λ

0
x

1+x2L(x)(2βcπ
−1 + k(x))dx and k(x) → 0 as

x → ∞, and −C is the Euler-Mascheroni constant. This is due to Theorem 2.6.5 in
Ibragimov and Linnik (1971), with the case α = 1 clarified in Aaronson and Denker
(1998) (see Theorems 1 and 2 there).

Also, c(x) is a function converging to a strictly positive constant, while U and
U⋆ are independent long-tailed random variables with hazard rates converging to
0. A random variable U is long tailed iff P [U > x] ∼ P [U > x+ y] as x tends to
∞ for any y, which then implies that P [U > log x] is slowly varying. Long tailed
random variables appear in a convenient characterization of slowly varying functions
at infinity in Lemma 2.1 of Denisov and Zwart (2007).



2 Main result 4

Assumption 1. For some α ∈ (0, 2], β ∈ [−1, 1], c > 0 and γ ∈ R, (ξi)i∈Z is iid
and the distribution of ξ0 lies in the domain of attraction (DoA) of Sα (β, c, γ).

Assumption 2. For some filtration F ≡ (Gi)i∈Z, (ξiVi)i∈Z is F-adapted, ξi is inde-
pendent of Gi−1 and Vi is Gi−1-measurable for all i ∈ Z.

Assumption 3. (Vi)i∈Z is stationary and ergodic with E [|V0|α] < ∞ and P[|V0| >
x] = o (P[|ξ0| > x]) as x → +∞.

Assumption 4. α < 2 and either one of the following conditions hold:

1. lim sup
x→+∞

sup 1≤y≤xL(y)/L(x) < ∞, or

2. for some δ > 0, E
[
|V0|α+δ

]
< ∞.

Assumption 5. α < 2, (Vi)i∈Z is strongly mixing and either one of the following
conditions hold:

1. L is of the form L(x) = c(x)P(U > log x), or of the form L(x) = c(x)P[U >
log x]/P[U⋆ > log x]. Moreover,

lim
x→+∞

∫ x

0

P [U > x− y]

P [U > x]
P [U > y] dy = 2

∫ ∞

0

P [U > y] dy < +∞,

and, xαP[|V0|>x]
P[U>log x]

→ 0 as x → +∞, or,

2. lim supx→+∞ sup√
x≤y≤x

L(y)
L(x)

< +∞ and,

P [|V0| > x]

P [|ξ0| > x]

∫ x

0

tαdP [|ξ0| ≤ t] → 0,

as x → +∞.

A discussion on the plausibility of the assumption framework is provided in

the following section. We define rn by the asymptotic relation L(n
1
α r

1
α
n )

rn
→ 1; this

constitutes a well defined slowly varying sequence-see the proof of Theorems 2.6.1-
2, result (2.2.18) of Ibragimov and Linnik (1971), and Remark 2 of Aaronson and
Denker (1998).

Our main result about the asymptotic behavior of
∑n

i=1 (ξi − γ)Vi follows:

Theorem 1. Suppose that Assumptions 1-3 hold. Furthermore, if α < 2 suppose
that either Assumption 4 or Assumption 5 also hold. Then, if α ̸= 1,

1

n1/αr
1/α
n

n∑
i=1

(ξi − γ)Vi ⇝ Sα

(
β
E [|V0|α sgn (V0)]

E [|V0|α]
, cE [|V0|α] , 0

)
. (2)

If α = 1 and
E [|V0|| log(|V0|)|] < ∞, when β ̸= 0
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then,

1

nrn

n∑
i=1

(ξi − γ −H (nrn))Vi − 2βcπ−1 (CE (V0)− E [V0| log(|V0|)|])

⇝ S1

(
β
E [V0]

E [|V0|]
, cE [|V0|] , 0

)
. (3)

If α < 1 and either for any M > 0,

P
(
max
1≤i≤n

|Vi| > Mq
1
α
n n

1
α

)
→ 0, (4)

where qn = O(r
1/(1−α)
n ) , or for some δ > 0,

E
[
|V0|α+δ

]
< ∞, (5)

then,
1

n1/αr
1/α
n

n∑
i=1

ξiVi ⇝ Sα

(
β
E [|V0|α sgn (V0)]

E [|V0|α]
, cE [|V0|α] , 0

)
. (6)

The convergence rate n1/αr
1/α
n of the sum reflects tail variation patterns of the

distribution of ξ0 and is not affected by properties of the (Vi)i∈Z process. The limiting
distribution is stable with stability parameter strictly determined by Assumption 1.
The distribution of V0 affects only the scale and symmetry parameters of the limit
when α ̸= 1. It also affects the form of the translating constants in the case where
α = 1; the result is obtained without imposing conditions that nullify the translating
sequence-compare with Theorem 1, Condition 5 of Bartkiewicz et al. (2011). When
the attractor is symmetric, V0 affects only the limiting scale, in which case (Vi)i∈Z can
be characterized as a stochastic scaling process for the transform. In this case and for
α = 1, the term 2βcπ−1 (CE (V0)− E [V0| log(|V0|)|]) disappears from the centering
sequence, thus (3) coincides with (2) and the limit becomes a Cauchy distribution.
When α < 1, and due to the zero location, when c2 = 0 (resp. c1 = 0), the limiting
distribution is supported on [0,+∞) (resp. (−∞, 0]). Furthermore, when α < 1
and either (4)-that strengthens (8), or the stricter (5) hold, then the translating
sequence γ

n1/αr
1/α
n

∑n
i=1 Vi becomes asymptotically negligible. Finally, when Vi = 1,

P a.s. for all i, then the classical iid results are recovered for all α (see Remark 2 of
Aaronson and Denker (1998)).

When α = 2 and rn converges (necessarily to E [ξ20 ]), a version of the classical
CLT for stationary and ergodic martingale difference sequences is obtained with
distributional limit the N (0,E [V 2

0 ]) distribution. When rn diverges a CLT is still
obtained, albeit with slower rates of the form

√
n
rn

and the same limiting distribu-
tion. The rate reflects the divergence properties of the truncated second moment
of ξ0. Due to the monotonicity of the mapping x → E

[
ξ201|ξ0|≤x

]
, this case is

derivable even if E
[
|V0|α+δ

]
= +∞ for every δ > 0, and/or without any mixing

conditions for (Vi)i∈Z. Furthermore, then, the conditional Lindberg condition re-
quiring that

∑n
i=1 E

[
1

nrn
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|>M
√
nrn/Gi−1

]
→ 0 in probability for



2 Main result 6

any M > 0, fails. Jeganathan (1982) considers it as in some sense necessary condi-
tion for the martingale convergence, hence such cases constitute counter-examples.
For a simple example suppose that ξ0 ∼ t2. Then the result assumes the form

1√
n logn

∑n
i=1 ξiVi ⇝ N (0,E [V 2

0 ]) by a simple calculation. This essentially general-
izes the results of Abadir and Magnus (2004) to dependent processes.

Theorem 1 can be readily extended when Vi is an Rd-valued random vector via
the use of the Cramer’s Theorem. Suppose that for any λ ∈ Rd different than
zero, when α ̸= 1, we have that 1

n1/αr
1/α
n

∑n
i=1 (ξi − γ)λTVi converges in distribu-

tion to Sα

(
β

E[|λTV0|αsgn(λTV0)]
E[|λTV0|α]

, cE
[∣∣λTV0

∣∣α] , 0), while when α = 1 we obtain the

same result by re-centering with 2βcπ−1(CE
[
λTV0

]
−E

[
λTV0| log(|λTV0|)|

]
). Then,

when α ≥ 1, Example 3.3.4 of Samorodnitsky and Taqqu (1994) implies that the
multivariate limits are identified as multivariate α-stable distributions with spectral
measures Γ determined by

β
E[|λTV0|αsgn(λTV0)]

E[|λTV0|α]
=

∫
Sd−1|sTλ|αsgn(sTλ)Γ(ds)∫

Sd−1 |sTλ|αΓ(ds) , cE
[∣∣λTV0

∣∣α] (λ) = ∫Sd−1

∣∣sTλ∣∣α Γ (ds) ,

(7)
where Sd−1 denotes the d−1 dimensional sphere. Theorem 2.3 of Gupta et al. (1994)
and the zero location in (2) implies that the same is true for α < 1. However, our
methodology cannot accommodate the case where ξ0 is an Rd-valued random vector
since this would require a non trivial extension of results similar to Proposition 1
(see the following section) to spectral measures. Such a consideration is delegated
to future research.

The multivariate analogue of Theorem 1 extends the results of Mikosch and
Straumann (2006), and partly the ones in the GARCH-type, model specific frame-
work of Hall and Yao (2003). This is due to that: i) it avoids simultaneously requiring
the existence of E

[
|V0|α+δ

]
for some δ > 0 and mixing conditions for the (Vi)i∈Z

process. A fortiori, in the case corresponding to Assumption 4.1, neither mixing
nor the existence of E

[
|V0|α+δ

]
is required. ii) It avoids conditions requiring strict

positivity for the extremal index of the process ((ξi − γ)Vi)i∈Z. This index reflects
information on the clustering of the process above large thresholds-see for example
Davis and Hsing (1995), and its evaluation need not be trivial in applications (see
the monograph of Kulik and Soulier (2020) for issues of statistical inference about
the index). Its’ positivity ensures that the limiting distribution is not degenerate at
zero. In the present framework this follows simply when E [|V0|α] is strictly positive
(or more generally, in the multivariate case when E

[∣∣λTV0

∣∣α] is strictly positive for
some allowable λ). iii) It is more informative on the characterization of the limiting
distributions. iv) It generally allows for α ≤ 1. Theorem 1 extends the results in
Surgailis (2008) since it allows for E [|V0|]α+δ = +∞ for any δ > 0, α ≤ 1 and does
not require normal DoAs-consider for example Assumption 4.1 for L monotonically
diverging. Due to that, it analogously extends the results of Jakubowski (2012).

Theorem 1 can also be useful for processes that admit decompositions involv-
ing multiplicative martingale transforms. Suppose for example that (Xi,Gi)i∈Z
is a stationary L1-mixingale of size −1 (see Ch. 16 of Davidson (1994)). By
the proof of Theorem 5.4 of Hall and Heyde (2014), it admits the decomposi-
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tion Xi = Yi + Zi − Zi−1, where (Yi,Gi)i∈Z is a martingale difference sequence and
(Zi)i∈Z is stationary with E [|Z0|] < +∞. Suppose that for all i ∈ Z, Yi can be
factored as (ξi − γ)Vi, for which Assumptions 4 or 5 are valid for some α > 1.
Then, maxi≤n P

[
|Zi|

n1/αr
1/α
n

> M
]
→ 0 for all M > 0, and thereby due to Theorem 1,

1

n1/αr
1/α
n

∑n
i=1 Xi ⇝ Sα

(
β E[|V0|αsgn(V0)]

E[|V0|α] , cE [|V0|α] , 0
)
.

In the case where Vi is P a.s. positive for all i and the transform process is inde-
pendent of the noise, (ξiVi)i∈Z can be characterized as a stochastic volatility process
(see Andersen et al. (2009)). Then Theorem 1 extends the results of Proposition 2
of Bartkiewicz et al. (2011) without assuming that (lnVi)i∈Z is a Gaussian ARMA
process, or that, when α = 1, ξ0 is symmetric, while it allows for Gaussian limits
even if the martingale difference process has infinite variance.

Theorem 1 is inapplicable in cases where
∏n

i=1 E
[
exp

(
itn− 1

α r
− 1

α
n (ξi − γVi)

)
/Gi

]
can only converge weakly to some non-degenerate limit. Such a result would general-
ize the results in Wang (2014), and this could in turn be useful in several applications
including non linear co-integration (see for example Wang (2014)), or the limit the-
ory of the OLSE in frameworks of moderate deviations from a unit root (see for
example Phillips and Magdalinos (2007)). We delegate this investigation to further
research.

Finally, suppose that (Θ, d) is a totally bounded metric space, (Vi (θ))i∈Z is
stationary ergodic and E

[
|V0|α+δ (θ)

]
< +∞ for all θ ∈ Θ and some δ > 0,

|Vi (θ)− Vi (θ
⋆)| ≤ vid (θ, θ

⋆), for all i ∈ Z and θ, θ⋆ ∈ Θ, where (vi)i∈Z is sta-
tionary ergodic, and E

[
vα+δ
0

]
exists. Suppose also that γ = 0 if α ≥ 1, and β = 0 if

α = 1. Then, for any ε, η > 0 there exists δ > 0 small enough, such that

P

[
sup

θ,θ⋆∈Θ,d(θ,θ⋆)<δ

1

n1/αr
1/α
n

n∑
i=1

ξi |Vi (θ)− Vi (θ
⋆)| > ε

]

≤ P

[
sup

θ,θ⋆∈Θ,d(θ,θ⋆)<δ

d (θ, θ⋆)

n1/αr
1/α
n

n∑
i=1

ξivi > ε

]
≤ P

[
Op (1) >

ε

δ

]
≤ η,

where the Op (1) term in the previous display is obtained by the application of
Theorem 1 (in the case where α < 1 then (6) holds) to 1

n1/αr
1/α
n

∑n
i=1 ξivi. (2)

then implies stochastic equicontinuity and therefore along with the application of
Theorem 1 to the fidis of 1

n1/αr
1/α
n

∑n
i=1 ξiVi (θ), the weak convergence of the lat-

ter to a stochastic process with α-stable marginals in ℓ∞ [Θ]. In the special case
where α < 1 and min {ξ0, V0} ≥ 0 P a.s., the limiting process is equal in dis-
tribution to ZE [V α

0 (θ)] , where Z ∼ Sα(1, c, 0) for some c > 0. In that case,
finally suppose that argmaxθ∈Θ E [V α

0 (θ)] = {θ0} ⊂ Θ. Then the CMT implies that
argmaxΘ

1

n1/αr
1/α
n

∑n
i=1 ξiVi (θ) ⇝ {θ0} since Z has positive support. This could be

useful for establishing consistency of M-estimators in very heavy tailed frameworks
even when the appropriately scaled objective functions have stochastic limits, as
long as appropriate conditions for parameter identification hold.
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3 Discussion and auxiliary results

A discussion on the assumptions that appeared in the previous section is presented
here. Some auxiliary results to the proof of Theorem 1 are also derived.

The motivation behind Assumption 1 is the issue of the fourth moment existence
for the innovations of GARCH-type models in the framework of empirical finance.
In this respect (ξi)i∈Z represents the squared innovations-potentially translated by
−γ = −1-as those appear in parts of the Gaussian quasi log-likelihood function and
its derivatives. It encompasses the usual case where α = 2 and E [ξ20 ] < +∞. It
also allows for cases where E [ξ20 ] = +∞ and E

[
ξ201|ξ0|≤x

]
is either regularly varying

at infinity with index 1− α
2

or it is slowly varying. Then, the usual ergodic square
integrable martingale difference CLT is inapplicable to

∑n
i=1 (ξi − γ)Vi.

In some applications the filtration F appearing in Assumption 2, represents the
history of the (ξi)i∈Z process, i.e. it is defined by Gi = σ (ξi−j, j ≥ 0). Then, indepen-
dence of ξi from Gi−1 follows readily from Assumption 1. The Gi−1-measurability of Vi

could follow when the random element is defined as some measurable transformation
of causal solutions to stochastic recurrence equations (SRE) measurable w.r.t. Gi−1.
In any case Assumption 2 along with the Principle of Conditioning (see Jakubowski
(1986)) implies that the limiting distribution of σ−1

n (
∑n

i=1 (ξi − γ)Vi − τn) for the
appropriate choice of (τn, σn), if any, will be determined by the limiting behavior of
exp

(
τn
σn

)∏n
i=1 E [exp (itσ−1

n (ξi − γ)Vi) /Gi], t ̸= 0.
In Assumption 3, stationarity and ergodicity for the (Vi)i∈Z process, whenever

this is defined as some measurable transformation of solutions of stationary and
ergodic SREs, can be established via conditions on the Liapunov exponents of the
relevant dynamical systems; see for example Bougerol and Picard (1992). The ex-
istence of the α moment for the stationary distribution can in a similar set up be
derivable via results like the ones in Goldie (1991). The final part of the assumption
employs a comparison between the tails of the stationary distributions of ξ0 and V0.
In view of Assumption 1, it certainly holds whenever E

[
|V0|α+δ

]
< +∞, but this is

not necessary. Regular variation of the tails of V0 with index α would suffice as long
as the slowly varying part is asymptotically dominated by L. This allows for cases
where E

[
|V0|α+δ

]
= +∞ for any δ > 0 even when E [|ξ0|α] < +∞. The particular

assumption controls the behavior of the maximum order statistic for the (|Vi|)i∈Z
process; the first auxiliary result below shows that the latter cannot diverge at a
rate faster than n

1
α r

1
α
n with probability converging to one:

Lemma 1. Suppose that Assumptions 1-3 hold. Then for any M > 0,

P
[
n− 1

α r
− 1

α
n max

1≤i≤n
|Vi| > M

]
→ 0. (8)

Assumption 1 also implies that for any M > 0,

P
[
n− 1

α r
− 1

α
n max

1≤i≤n
|ξi| > M

]
→ Φα (M) ,

where Φα denotes the Frechet distribution; see Embrechts et al. (2013). This and
Lemma 1 partially imply that the index of the tail variation properties for the limit-
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ing distribution of the scaled partial sum of the transform is essentially determined
by the distribution of ξ0.

Lemma 1 also implies that E
[
exp

(
itn− 1

α r
− 1

α
n (ξi − γ)Vi

)
/Gi

]
can be approxi-

mated with high probability by the local representation

− c|t|α
nrn

|Vi|α L
(
n1/αr

1/α
n |tVi|−1

)
+ 1 {α = 1}H(n1/αr

1/α
n |tVi|−1)it Vi

n1/αr
1/α
n

|t|α
nrn

iβcsgn(t) tan
(
1
2
πα
)
sgn(Vi) |Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
.

This is due to Assumption 1 and the fact that tn− 1
α r

− 1
α

n max1≤i≤n |Vi| lies in decreas-
ing neighborhoods of validity of the representation in 1 with probability converging
to one, for any t by Lemma 1. A simple calculation (see the proof of Theorem 1) then
shows that the derivation of the main result would be greatly facilitated by the deter-

mination of the asymptotic behavior of terms similar to 1
nrn

∑n
i=1 |Vi|α L

(
n

1
α r

1
α
n

(|t||Vi|)

)
.

Given Assumption 3, and Birkhoff’s LLN, if some Tauberian-type result would al-
low for the asymptotic factoring out from the sum of the slowly varying component,
then the required limits would be easily derivable from ergodicity.

To this end, when α < 2, due to Assumptions 1-3, 1
nrn

∑n
i=1 |Vi|α L

(
n

1
α r

1
α
n

(|t||Vi|)

)
is P

a.s. asymptotically equivalent to
P⋆
n

[
vn|ξ0|> 1

|t|n
1
α r

1
α
n

]
P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

] , where P⋆
n denotes the stochastic

product measure between the empirical distribution of (|Vi|)1≤i≤n and P, and vn is
a random variable that follows this empirical distribution and is independent of ξ0.
This ratio is partially an empirical analogue of the random variables’ product that
appears Breiman’s Theorem (see Breiman (1965)). This in our setting states that if,
in addition to Assumption 3, E

[
|V0|α+δ

]
< +∞ for some δ > 0, then as x → +∞,

P⋆
n

[
vn|ξ0|> 1

|t|n
1
α r

1
α
n

]
P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

] → E [|V0|α]. Denisov and Zwart (2007) extend Breiman’s Theo-

rem by essentially assuming the moment existence part of Assumption (3), while
imposing further conditions on the properties of L and/or the comparison between
the tails of the implicated distributions. The question that arises is whether the
extension of Denisov and Zwart (2007), can be modified so as to hold for the empir-

ical ratio
P⋆
n

[
vn|ξ0|> 1

|t|n
1
α r

1
α
n

]
P
[
|ξ0|> 1

|t|n
1
α r

1
α
n

] . Sufficient conditions for this modification are essentially

provided by the final pair of assumptions.
The first part of Assumption 4, covers normal DoAs or eventually monotonically

diverging slow variation for ξ0 (for sufficient conditions on the existence of monotone
versions of L see Buldygin et al. (2013)). The second part requires the existence of
α+ δ moment for |V0|. It corresponds to the empirical distribution extension of the
original result of Breiman (1965).

In Assumption 5.1, the integrability requirement for P [U > x] is equivalent to
that the tail distribution function is a sub-exponential density, or equivalently that
the random variable U belongs to the class S∗ (see Klüppelberg (1988)). In the
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case where L(x) = c(x)P[U > log x], this is equivalent to
∫ x

0

L(ex−y)
L(ex)

L (ey) dy =

2
∫∞
0

L (ey) dy < +∞ (see Denisov and Zwart (2007)).
Assumption 5.2 essentially handles cases where

∫∞
0

P [U > y] dy diverges. A suffi-
cient condition for the required asymptotic boundedness, is that L◦exp is of bounded
variation; the functionality of the assumption is retained if

√
x is replaced with xβ

for any β ∈ (0, 1) (see again Denisov and Zwart (2007)). The remaining asymptotic
negligibility requirements in Assumption 5 are exactly the ones in Propositions 2.2-
3 of Denisov and Zwart (2007). They constitute refined comparisons between the
tails of the stationary distributions of ξ0 and V0. They, along with strong mixing
for (Vi)i∈Z, allow for the asymptotic control of a scaled approximation error of the
empirical distribution of (|Vi|)1≤i≤n to the stationary distribution of |V0|, uniformly
over appropriate classes of events. Strong mixing can be substituted by a more gen-
eral mixingale restriction (see Theorem 1 of Hill (2010) and the derivation of (16)
in the proof of the proposition) without affecting the validity of the results.

Assumptions 1-5 enable our second auxiliary result when α < 2. It is to the
best of our knowledge new, and it provides the useful extension of the Theorem of
Breiman (see Breiman (1965)) and of the corresponding extension of Denisov and
Zwart (2007), to the aforementioned ratio that involves the empirical P⋆

n:

Proposition 1. Suppose that Assumptions 1-3 hold for α < 2. If Assumption 4
holds, then, for any real sequence mn → +∞, as n → +∞,

P⋆
n [vn |ξ0| > mn]

P [|ξ0| > mn]
→ E [|V0|α] ,P a.s. (9)

where P⋆
n denotes the product measure between the empirical distribution of (|Vi|)1≤i≤n

and P, and vn is a random variable that follows this empirical distribution and is
independent of ξ0.

If Assumption 5 holds, then for any real sequence mn → +∞, as n → +∞,

P⋆
n [vn |ξ0| > mn]

P [|ξ0| > mn]
→ E [|V0|α] , in probability. (10)

The result (9) implies the strong array LLN; 1
nrn

∑n
i=1 |Vi|α L

(
n

1
α r

1
α
n

(|t||Vi|)

)
→ E [|V0|α]

P a.s. without any further dependence restrictions for (Vi)i∈Z. Analogously, the re-

sult (10) obtains a weak array LLN; 1
nrn

∑n
i=1 |Vi|α L

(
n

1
α r

1
α
n

(|t||Vi|)

)
→ E [|V0|α] in prob-

ability.

The asymptotic representation of 1
nrn

∑n
i=1 |Vi|α L

(
n

1
α r

1
α
n

(|t||Vi|)

)
by the aforemen-

tioned probability ratio breaks down when α = 2. In this case a simple calcula-
tion shows that the sum equals

∑n
i=1 E

[
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|> 1
|t|
/Gi−1

]
. Our final

auxiliary result handles the asymptotic properties of this representation:

Proposition 2. Suppose that Assumptions 1-3 hold for α = 2. Then for any M > 0,
n∑

i=1

E
[

1

nrn
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|≤M
√
nrn/Gi−1

]
→ E [|V0|α] ,P a.s. (11)
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The proof closely parallels the proof of the first part of Proposition 1 due to the
fact that when α = 2 then L is necessarily monotonic. When rn converges, then
(11) implies the conditional Lindberg condition typically encountered in several
martingale limit theorems (see for example Hall and Heyde (2014); Jeganathan
(1982)).

4 Application: regressions with heavy-tailed errors

The application of Theorem 1 to the derivation of the limiting behavior of the OLSE
in a regression with heavy-tailed errors is investigated. Specifically, the regression
model at hand is of the form:

yi = xiβ + εi, i ∈ Z, (12)

where (yi,xi)i∈Z is an 1× (d+ 1) dimensional observable stochastic process, (εi)i∈Z
is an one-dimensional latent heavy tailed error process, and the parameter β ∈ Rd

is unknown. Given a sample (y,x) := (yi,xi)i=1,...,n, and if the stochastic matrix x
has rank equal to p, the OLSE for β is βn = (xTx)−1xTy, which, given (12), obtains
also the latent form β + (xTx)−1xT ε, where ε := (εi)i=1,...,n. We are interested in
the limiting behavior of βn, under the following conditions:

B.1 The error process (εi)i∈Z has the form εi := ξiui, ∀i ∈ Z, where (ξi)i∈Z is iid,
and ((ui,xi)i∈Z is adapted to some filtration F := (Gi)i∈Z. ξi is independent
of Gi for all i ∈ Z.

B.2 For some α ∈ (0, 2), c > 0, ξ0 ∼ Sα (0, c, 0).

B.3 P[u0 > 0] = 1, and (i) there exists some η > 2, for which as x → +∞,
P[u0] = O(x−α ln−η(x)), or (ii) for some 0 < δ⋆ < 2 − α, and some slowly
varying function at infinity ℓ⋆, P[u0] = O(x−α−δ⋆ℓ⋆(x)) as x → +∞.

B.4 (ui)i∈Z is stationary and strongly mixing.

B.5 For all i ∈ Z, xi admits the causal representation xi = c+
∑∞

k=0Ψkϵi−k, where
c ∈ Rd, and (ϵi)i∈Z is a stationary and strong mixing vector white noise process
with E[ϵ0ϵT0 ] = Idp. Furthermore, the matrix

∑∞
k=0 ΨkΨ

T
k is well defined and

has rank equal to d. ui is independent of ϵj, for all i, j ∈ Z.

B.6 Either (i) maxi,j=1,...,d |Ψk(i, j)|+mini,j=1,...,d |Ψk(i, j)| = O(k−1), or (ii), there
exists a θ ∈ (0, 1), and a C > 0 such that for large enough k,
maxi,j=1,...,d |Ψk(i, j)| ≤ Cθk, and the distribution of ϵ0 has a differentiable
density.

B.1 posits the multiplicative martingale transform structure for the error process.
ui can be perceived as a scale, that-given the independence of the noise-produces
temporal dependence. The information structure considered via the employed fil-
tration enables the use of the principle of conditioning. Gi−1 may be formed by the
noise up to i− 1, as well as by the regressors and the stochastic constituents of the
scale up to i.
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B.2 states that the noise follows a symmetric, zero location stable distribution.
It can be easily extended to asymmetric distributions inside the respective domain
of attraction. B.3 and B.4 take care of the marginal and temporal characteristics
of the scale process. The scale is strictly positive with a marginal distribution with
regularly varying tail of index α in case (i), or α+δ in case (ii). The power logarithmic
part of the tail in case (i) implies that E[uα

0 ] < +∞, and E[uα+δ
0 ] = +∞ for all δ > 0.

In case (ii) E[uα+δ
0 ] < +∞ for all 0 < δ < δ⋆. In both cases P[u0 > x] = o(P[ξ0 > x]),

as x → +∞. B.4 implies ergodicity of the scale process. It allows for example for
linear processes of the form ui = cu +

∑∞
k=0 β

k
uζi−k with cu > 0, 0 ≤ βu < 1, (ζi)i∈Z

is an iid sequence of positive random variables, and such that the distribution of ζ0
has a differentiable density-see Theorem 2.1 of Chanda (1974).

B.5 states that the regressors’ process is linear over a stationary and strong
mixing unit variance vector white noise. Under either B.6.(i) or B.6.(ii), Propo-
sition 2.1.1 of Straumann (2004) implies that (xi)i∈Z is stationary and ergodic.
The rank condition ensures asymptotic identification and it is ensured if Ψ0 has
full rank. Then, B.5 along with B.6, the ergodic LLN and the CMT imply that
n(xT

i xi)
−1 ⇝ (

∑∞
k=0ΨkΨ

T
k )

−1. The independence between the scale and the white
noise directly imply then the independence between the regressors’ process and the
scale. If ui is structured as the aforementioned linear process, this part of B.5 would
follow from independence between the associated white noise processes. B.4 and B.5
then imply that for any λ ∈ Rd, (λxiui)i∈Z is stationary and ergodic. B.3 and B.5
then imply via Breiman’s Theorem, that P[|λx0|u0 > x] = O(x−α ln−η(x)), which
then implies that E[(|λx0|u0)

α] < +∞, and E[(|λx0|u0)
α+δ] = +∞ for all δ > 0, and

that P[|λx0|u0 > x] = o(P[ξ0 > x]), as x → +∞. B.6.(i) says that the regressors’
process has long range dependence as the decay of the temporal covariances is har-
monic. It can be readily extended so as to include non trivial slowly varying parts
attached to the harmonic coefficients. B.6.(i) is compatible with the regressors’ pro-
cess satisfying some stationary and ergodic version of the VARFIMA model (see for
example Kechagias and Pipiras (2015)). This implies that for any λ ∈ Rd, (λxiui)i∈Z
is not strong mixing. B.6.(ii) is a condition of weak dependence for the regressors’
process-see again Theorem 2.1 of Chanda (1974). It along with B.4 and B.5 implies
the strong mixing property for the multiplicative scalar process (λxiui)i∈Z. B.6 is in
both cases compatible with the existence of the matrix series in B.5.

The discussion above shows that regarding the transform Viξi, where Vi := λxiui,
Assumptions 1-3 follow from B.1-B.5. Additionally, B.3.(ii) and B.6.(i) verify As-
sumption 4.(1), while B.3.(i) and B.6.(ii) verify Assumption 5.(2), since η > 1, and
sup√

x≤y≤x(
ln(x)
ln(y)

)η = 2η. Furthermore, when α < 1, B.2 implies (4) via Lemma 1,
and thereby the totality of Theorem 1 is applicable to the partial sums of (Viξi)i∈𭟋,
which along with the aforementioned limiting properties of n(xT

i xi)
−1 and the latent

representation of the estimator establish the following result:

Theorem 2. Suppose that B.1, B.2, B.4 and B.5, and either B.3.(ii) and B.6.(i),
or B.3.(i) and B.6.(ii), hold. Then, as n → +∞, if α ̸= 1,

n
α−1
α (βn − β)⇝ (

∞∑
k=0

ΨkΨ
T
k )

−1zβ,
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where zβ follows a p-dimensional stable distribution characterized via the projections
λT zβ ∼ Sα (0, c(λ), 0), with c(λ) := cE

[
(|λTx0|u0)

α
]
, for any non-zero λ ∈ Rd. If

α = 1, then,

βn − β −H(n)(xTx)−1

n∑
i=1

xT
i ui ⇝ (

∞∑
k=0

ΨkΨ
T
k )

−1zβ,

where zβ follows now a p-dimensional stable distribution characterized via the projec-
tions λT zβ ∼ S1 (0, c(λ), 0), with c(λ) := cE

[
(|λTx0|u0)

]
, for any non-zero λ ∈ Rd.

When α > 1, the result shows weak consistency, regularly varying rates and
asymptotic symmetric and zero location stable distributions for the OLSE. In the
very heavy-tailed case where α < 1, the result implies inconsistency and asymp-
totic non-tightness. When α = 1, and due to the implications of the ergodic
theorem and the CMT on the limiting behavior of (xTx)−1

∑n
i=1 x

T
i ui, the results

also imply inconsistency. Whenever either n(xTx)−1 and/or
∑n

i=1 x
T
i ui have regu-

larly varying rates of convergence, then the result can be re-expressed as βn − β −
(
∑∞

k=0ΨkΨ
T
k )

−1H(n)E[xT
0 u0] ⇝ (

∑∞
k=0 ΨkΨ

T
k )

−1zβ, given that H is slowly varying
at infinity. For example, whenever B.3.(i) and B.6.(ii) hold, then

√
n rates exist for

n(xTx)−1 − (
∑∞

k=0ΨkΨ
T
k )

−1 as long as E[∥x0∥2+η⋆ ] < +∞ holds for some η⋆ > 0.
The results above are derivable without utilizing any point process theory associ-

ated with the random elements involved, and without any calculus for the derivation
of properties of the relevant extremal index.

5 Application: The Gaussian QMLE in GARCH-type models

The consideration of heavy-tailed distributions for the squared innovation process in
GARCH-type models became of interest in financial applications (see e.g. Rachev
and Mittnik (1988) and Mittnik et al. (1998)). Focusing on the issue of its im-
plications on the limit theory of the Gaussian QMLE for the GARCH(p, q) model,
Mikosch and Straumann (2006) employ their martingale limit theorem which among
others depends on a mixing condition for the volatility process and strict positiv-
ity for the extremal index of the associated martingale transform appearing in the
score vector. They indicate that such conditions seem indispensable and thereby
have to be in each case confirmed, in order for their results to be extended to other
GARCH-type models. Our martingale limit theory avoids mixing in cases that ad-
here to Assumption 4 and satisfy (9) of Proposition 1. It also avoids the explicit
consideration of the relevant extremal index. Case 2 of Assumption 4 is relevant in
many such models, hence one obvious application of our main result concerns the
subsequent extension of the Mikosch and Straumann (2006) limit theory in such
examples. Hence in this section we derive the limit theory of the Gaussian QMLE
for the parameters of the volatility process, in the context of a general stationary
and ergodic conditionally heteroskedastic formulation via among others the use of
Theorem 1.
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5.1 Framework and results

The following general model is considered:{
yi = σizi

σ2
i = gθ

(
yi−1, yi−2, . . . , yi−p, σ

2
i−1, . . . , σ

2
i−q

) , i ∈ Z (13)

where for each θ lying in some compact parameter space Θ ⊂ Rd, gθ is a non-
negative measurable function on Rp × [0,∞)q, and the sequence (zt)t∈Z consists
of i.i.d. random variables with E [z0] = 0, while σ2

i+1 is measurable w.r.t. Fi =
σ (zi, zi−1, . . .). Examples of models that adhere to the formulation in (13) are (see
among others Paragraph 3.3 in Straumann (2004)):

• GARCH(p, q), Bollerslev (1986), where σ2
i = ω +

∑p
j=1 ajy

2
i−j +

∑q
k=1 βkσ

2
i−k,

• GQARCH(p, q), Sentana (1995), where σ2
i = ω+

∑p
j=1 (ajyi−j − γj)

2+
∑q

k=1 βkσ
2
i−k,

• AGARCH(p, q), Ding et al. (1993), where σ2
i = ω+

∑p
j=1 (aj |yi−j| − γyi−j)

2+∑q
k=1 βkσ

2
i−k,

• EGARCH(p, q), Nelson (1991), where lnσ2
i = ω +

∑p
j=1

(
aj

|yi−j |
σi−j

+ γj
yi−j

σi−j

)
+∑q

k=1 βk lnσ
2
i−k.

Using a stochastic recurrence equation (SRE) approach, Straumann and Mikosch
(2006) give sufficient conditions for the existence of a stationary and ergodic solution
to (13) by imposing conditions on the Lipschitz coefficient of the random map that
generates σ2

i . Suppose that ((yi, σ2
i ))i∈Z is such a solution for some θ = θ0 . In order

to infer the unknown parameter θ0, since in practice only (yi)i=1,...,n is observable, the
volatility process (σ2

i ) is reconstructed under the parameter hypothesis θ using the
following volatility filter for some random vector of initial values (ς0, ς1, . . . , ςq−1)

′ ∈
Rq,

ĥi(θ) =

{
ςi, q − 1 ≤ i ≤ 0,

gθ

(
yi−1, yi−2, . . . , yi−p; ĥi−1(θ), . . . , ĥi−q(θ)

)
, i > 0.

which is non-stationary in general. Thus, in order to use established results, it is
useful to be able to uniformly approximate the latter using a stationary and ergodic
filter. This is ensured when the model (13) is uniformly invertible, which in turn
implies that there exists a stationary ergodic sequence (hi(θ))i∈Z for all θ ∈ Θ such
that hi(θ0) = σ2

i , P a.s. and supθ∈Θ

∣∣∣hi(θ)− ĥi(θ)
∣∣∣ → 0 , P a.s. at an exponential

rate, as i → ∞. Sufficient conditions for uniform invertibility can be found in
Proposition 3.12 of Straumann and Mikosch (2006). Next, given (yi)i=1,...,n, the
Gaussian quasi likelihood function is proportional to

ĉn (θ) =
1

n

n∑
i=1

ℓ̂i (θ) ,
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where ℓ̂i (θ) = log ĥi (θ) +
y2i

ĥi(θ)
, and then the Gaussian QMLE θn of θ0 is defined by

ĉn (θn) = inf
θ∈Θ

ĉn (θ) .

Standard lower semi-continuity and measurability conditions imply existence of
the estimator (see for example Definition 3.5 and Proposition 3.6 in Chapter 5
of Molchanov (2011)), while the definition-and the subsequent results-can be easily
extended so that approximate/numerical optimization is allowed. Then strong con-
sistency of the QMLE is implied by the following conditions that are usually met in
the literature (see e.g. Straumann and Mikosch (2006)):

C.1 For θ = θ0, (13) admits a unique stationary ergodic solution ((yi, σ
2
i ))i∈Z with

E
[
log+ σ2

0

]
< +∞.

C.2 The model (13) is uniformly invertible in Θ.

C.3 infθ∈Θ infx∈Rp×[0,∞)q gθ(x) > 0

C.4 For any θ ∈ Θ, h0 (θ) = σ2
0 ⇔ θ = θ0, P a.s.

C.5 E[z20 ] = 1.

Conditions C.1-C.3 enable us to work with a stationary and ergodic version of ĉn,
say cn, where

(
ĥi(θ)

)
i=1,...,n

is replaced by the stationary (hi(θ))i=1,...,n since we have

that for some η > 0, supΘ∩B̄(θ,η) |cn − ĉn| → 0 P a.s. as in Straumann and Mikosch
(2006). They also allow for the P a.s. epi-convergence of cn to a non stochastic
lower semi-continuous limit that is a proper extended real-valued function on Θ.
Conditions C.4-C.5 ensure asymptotic identification, i.e. that the limit function is
uniquely minimized at θ0. C.5 fails when z20 adheres to Assumption 1 and α = 1,
with rn ↛ 0, or α < 1. From C.1-5 strong consistency follows by results like
Theorem 7.33 of Rockafellar (1997):

Theorem 3. (See Theorem 5.3.1 of Straumann (2004)) Suppose that Conditions
C.1-C.5 hold. Then, the QMLE is strongly consistent.

The condition of uniform invertibility may be quite strong in some cases. It can
be relaxed to continuous invertibility, a notion introduced by Wintenberger (2013);
Wintenberger and Cai (2011) who use it in the context of the EGARCH(1, 1) model.
Since our main focus lies in the establishment of the rate of convergence and the
limiting distribution, as those are essentially established by the asymptotic behavior
of the ergodic approximation to the score, we do not insist on the fine details of such
framework extensions for brevity. Our results in Theorem 4 below can be readily
extended in such cases. Given consistency, we provide with sufficient conditions
for the derivation of the rate and the asymptotic distribution of the QMLE under
heavy-tailedness for the marginals of the squared innovation process. Except for the
possibility of the non-existence of E [z40 ], those are identical to the ones in Straumann
and Mikosch (2006).

D.1 Conditions C.1-C.5 hold and the true parameter vector θ0 lies in the interior
of Θ.
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D.2 Assumption 1 holds with ξi := z2i − 1, i ∈ Z.

D.3 hi has continuous partial derivatives of order 2 on some open neighborhood of
θ0 inside Θ. Those satisfy conditions D.2-D.3 of Proposition 5.5.2 in Strau-
mann (2004).

D.4 E [supθ∈K ∥ℓ′′0∥] < +∞ where K denotes the aforementioned neighborhood.

D.5 The components of the vector ∂gθ
∂θ

(y0, σ
2
0)
∣∣
θ=θ0

are linearly independent random
variables.

Conditions D.1 and D.2 imply together that α > 1 while they allow for cases where
α = 1 and

∫ +∞ L(x)
x

dx converges. Condition D.2 is essentially a generalization of
the usual framework in that it enables the possibility that E [z40 ] = +∞, while it
encompasses the standard case. Condition D.3 ensures the existence of unique sta-
tionary and ergodic approximations of the first and second order partial derivatives
of ĥt, say h′

t and h′′
t , and that the error of approximation decays exponentially fast

P a.s. This in turn ensures that we may replace the derivatives of the likelihood
function by their ergodic counterparts, in our derivations. As noted above such
conditions are establishable by conditions that ensure either uniform invertibility or
the weaker continuous invertibility for the solutions of the relevant recursions satis-
fied by the filter derivatives. Condition D.4 implies E

[
∥h′

0(θ0)∥
2 σ−4

0

]
< ∞, which

is standard for the classical limit theory, and is stronger when α ∈ [1, 2) to the
E
[∥∥h′

0(θ0)σ
−2
0

∥∥α+δ
]
< +∞ which can be sufficient for Theorem 1 to be applicable.

However D.4 could be relaxed considering the results of Wintenberger (2013) for the
EGARCH(1,1) and this generates interesting refinements as we will discuss later.
D.2-D.4 imply that the score vector evaluated at θ0, as approximated by a station-
ary ergodic process adheres to Theorem 1 via case 1 of Proposition 4. Condition
D.5 ensures that Jθ0 := E [ℓ′′0 (θ0)] = E

[
h′
0 (θ0) [h

′
0 (θ0)]

T σ−4
0

]
is positive definite (see

Lemma 5.6.3. in Straumann (2004)) and thereby in conjunction with the previous
that the Hessian is asymptotically invertible when K is small enough. Then the main
result of this section is easily derivable by standard Taylor type approximations of
the first order conditions that the estimator satisfies with probability converging to
1. As in Theorem 1 the formulation of the result depends on the value of α since
the case of α = 1 involves the relevant translating sequence.

Theorem 4. Suppose that Conditions D.1-D.5 hold. Then, for α ∈ (1, 2]

n
α−1
α r

− 1
α

n (θn − θ0)⇝ J−1
θ0
zθ0 , (14)

where zθ0 follows a multivariate α-stable distribution characterized by the projections

λT zθ0 ∼ Sα (β(λ), c(λ), 0), with β(λ) :=
E
[∣∣∣λT h

′
0(θ0)

∣∣∣αsgn(λT h′
0(θ0))

]
E[|λT h

′
0(θ0)|α]

and with c(λ) :=

cE
[

1
σ2α
0

∣∣λTh′
0(θ0)

∣∣α], for any non-zero λ ∈ Rd.
For α = 1 and for some θ̄n lying between θn and θ0,

1

rn
(θn − θ0)−

γ +H(nrn)

rn

[
c′′n(θ̄n)

]−1 1

n

n∑
i=1

h′
i (θ0)

σ2
i

⇝ J−1
θ0
z′θ0 , (15)
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where z′θ0 follows a multivariate 1-stable distribution characterized by
λT z′θ0 ∼ Sα (β(λ), c(λ), γ(λ)), with β(λ) and c(λ) as above, and also with γ(λ) :=

2βcπ−1
{
CE

[
σ−2
0 λTh

′
0(θ0)

]
+ E

[
σ−2
0 λTh

′
0(θ0) log

∣∣σ−2
0 λTh

′
0(θ0)

∣∣]}, for any λ ∈ Rd.

The result above avoids any invocation of any mixing condition, in contrast to
the approach of Mikosch and Straumann (2006) (see their page 6 for a mixing condi-
tion implied by strong mixing) as well as the need to explicitly verify anti-clustering
type conditions like the ones in Bartkiewicz et al. (2011) or Davis and Hsing (1995).
Moreover, whenever suchlike mixing conditions are known, they typically involve
restrictions on the support of the distribution of z0 and the existence of densities.
Such restrictions are avoided here. The result also avoids explicit considerations on
the positivity of the extremal index of the score vector process. Hence, it implies
direct applicability for a wide class of models for which the validity of the combina-
tion of such properties is to the best of our knowledge, currently unknown. The rate
is identified as n

α−1
α r

− 1
α

n and the distribution of the limiting random vector zθ0 is
multivariate α stable. Given the limiting behavior of the Hessian, the limiting distri-
bution is multivariate α stable as in the results of the relevant literature. As noted
earlier, the result clearly provides more information on the rate and the limiting
distribution compared to the analogous literature.

When α = 2 we have that zθ0 ∼ N (0,Jθ0) and thereby that
√

n
rn
(θn − θ0) ⇝

N
(
0,J−1

θ0

)
, a result not obtainable by the approach of Mikosch and Straumann

(2006). When furthermore E [z40 ] < ∞ we obtain the classical result since then
rn ⇝ E [z40 ] − 1. However, we still obtain asymptotic normality with a slower than
the usual rate, when the truncated fourth moment is slowly varying and diverging at
infinity. For example when

√
2z0 ∼ t4 then simple calculations show that

√
n

logn
(θn−

θ0)⇝ N
(
0, 3

2
J−1
θ0

)
.

When α = 1 and Condition C.5 holds the result involves the non tight stochas-
tic translating sequence γ+H(nrn)

rn

[
c′′n(θ̄n)

]−1 1
n

∑n
i=1

h′
i(θ0)

σ2
i

. Given Conditions D.3-4, if
1
rn

∥∥∥[c′′n(θ̄n)]−1 1
n

∑n
i=1

(
h′
i(θ0)

σ2
i

− E
[
h′
0(θ0)

σ2
0

])∥∥∥ = op (1), the sequence can be replaced

by γ+H(nrn)
rn

J−1
θ0
E
[
h′
0(θ0)

σ2
0

]
. This would hold for example whenever a mixing-type CLT

holds for the partial sum process
∑n

i=1

(
h′
i(θ0)

σ2
i

− E
[
h′
0(θ0)

σ2
0

])
. If the translating se-

quence can be chosen as γ+H(nrn)
rn

J−1
θ0
E
[
h′
0(θ0)

σ2
0

]
, then the proof of this part of the

theorem implies the inconsistency of the estimator in case where rn → +∞: as-
suming consistency we would arrive at the contradictory result that the translating
sequence is tight.

When α > 1 the results can be easily extended to the case where θ0 lies on the
boundary of Θ, via the generalization of Condition D.3 to one-sided derivatives in
the spirit of Andrews (1999), the consideration of the Painleve-Kuratowski limit of
the set n

α−1
α r

− 1
α

n (Θ− θ0) and a generalization of Theorem 7.12 of van der Vaart
(2000). The rates would remain the same but the limiting distribution would be
characterized via an appropriate projection of J−1

θ0
zθ0 on the limiting parameter

space. Such a formulation would not work for the case where α = 1 due to the
presence of the translating sequences. This consideration is delegated to future
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research.
The information present in the results on the properties of the limiting distribu-

tions could be useful for the construction and the determination of properties of in-
ferential procedures about θ0 based on the QMLE. For example, in the GARCH(p, q)
case, it is not difficult to see that when α = 2 yet E [z40 ] = +∞, the usual Wald-
type inferential procedures remain asymptotically robust (see for example Section
3 of Hall and Yao (2003)). Furthermore, the classical Wald-type statistic remains
self-normalized in the more general case where α > 1, but then, the limiting null
distribution is not the usual and asymptotic inference based on the classical limiting
rejection regions may be asymptotically conservative; see among others Loretan and
Phillips (1994) for an analogous discussion in related frameworks. One way to avoid
such shortcomings is via the use of the m out of n parametric bootstrap in the spirit
of Hall and Yao (2003). It may thus be possible to use the information present in
the results above in order to further normalize the statistic so as to obtain a lim-
iting distribution where several nuisance parameters are eliminated. Furthermore,
it is possible that the bootstrap resampling can be performed via the use of the
information present in condition D.2 in the spirit of Cornea-Madeira and Davidson
(2015) so as to avoid subsampling rates. Such considerations also involving further
extensions to other models are delegated to further research.

5.2 Examples

The previous imply that the existing results for the Gaussian QMLE in the GARCH(p, q)
case can be extended for a variety of conditionally heteroskedastic models without
necessarily imposing conditions that are either difficult to verify or unnecessarily
restrict the parameters of interest. Simultaneously we can identify in more detail
both the rate of convergence and the properties of the limiting distributions.

As illustrative examples consider the GQARCH(1, 1), the AGARCH(p, q) and
the EGARCH(1, 1) models. The first one has been treated in Arvanitis and Louka
(2015) assuming normal domains of attraction for α ∈ (1, 2] and those results can be
clearly extended to general domains of attraction as well as including the case where
α = 1. Analogous is the case for the AGARCH(p, q) model as the required conditions
for the asymptotic normality of the QMLE which have been shown in Straumann and
Mikosch (2006) are also sufficient for obtaining stable limits when the assumption
on the innovation process is relaxed to condition D.2. Hence our main theorem
enables the straightforward establishment of the examined limit theory in those
classes of models by avoiding non trivial derivations of mixing and extremal index
properties as in Mikosch and Straumann (2006). The EGARCH(1, 1) model can be
also easily examined, via the results in Wintenberger (2013), and by imposing the
condition E

[
(β0 − 1

2
(a0|z0|+ γ0z0))

2
]
< 1 which ensures that E

[∥∥h′
0(θ0)σ

−2
0

∥∥2] <

+∞ via Lemma 1 in the Appendix of the aforementioned paper. Thereby, for the
aforementioned models the results of Theorem 4 follow easily.

Theorem 1 could also be used in order to obtain the results on the limit theory of
the QMLE in non-stationary versions of suchlike models. Consider for example the
results in Arvanitis and Louka (2017) for the non-stationary GARCH(1,1) case, or
in Arvanitis (2019) for the non-stationary version of the Asymmetric GARCH(1,1)
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model of Francq and Zakoïan (2013). There, results analogous to Theorem 4 hold,
with differences in the expressions for the β(λ) and c(λ) parameters as well as the
limiting form of the Hessian, that reflect properties of the stationary approximations
to the score process.

6 Proofs

6.1 Proofs of auxiliary results

Proof of Lemma 1. We have that P
[
max1≤i≤n |Vi| > Mr

1
α
n n

1
α

]
equals

P[∪n
i=1

{
|Vi| > Mr

1
α
n n

1
α

}
] ≤

n∑
i=1

P
[
|Vi| > Mr

1
α
n n

1
α

]
= nP

[
|V0| > Mr

1
α
n n

1
α

]
,

due to the stationarity of (Vi)i∈Z. Then the result follows by Assumptions 1 and
3.

Proof of Proposition 1. As in Denisov and Zwart (2007) (see the proofs of Proposi-
tions 2.1, 2.2 and 2.3) we can work by replacing |V0|, |ξ0| and mn with |V0|α, |ξ0|α

and m
1
α
n respectively, and thereby we can assume that α = 1, and without loss of

generality we can assume that P [|V0| = 0] = 0. Notice first that

lim inf
n→∞

P⋆
n [vn |ξ0| > mn]

P [|ξ0| > mn]
= lim inf

n→∞

∫ ∞

0

P [t |ξ0| > mn]

P [|ξ0| > mn]
dPn [vn ≤ t] ≥

∫ ∞

0

tdP [|V0| ≤ t] ,

where the last inequality in the previous display follows from Fatou’s lemma, the
Glivenko-Cantelli Theorem (see Theorem 1 of Adams and Nobel (2010)), Birkhoff’s
LLN, and the regular variation of index −1 of the tail of |ξ0|. For an upper bound
consider

P⋆
n [vn |ξ0| > mn] =

3∑
j=1

P⋆
n [vn |ξ0| > mn, vn ∈ Ai,n] ,

with A1,n = (0, ε), A2,n = [ε, gnmn), and A3,n = [gnmn,∞) for some ε > 0, and,
gn ↓ 0 with gnmn → +∞, such that P [|V0| > gnmn] = o (P [|ξ0| > mn]). Denote the
respective terms as I1,n, I2,n, I3,n. Due to the UCT for regularly varying functions
with negative index (see Theorem 1.5.2 of Bingham et al. (1989)) and Birkhoff’s
LLN we obtain

lim sup
n→+∞

I1,n

P [|ξ0| > mn]
= E [|V0| 1 (0 < |V0| < ε)] , a.s.

Furthermore by the construction of gn and the Glivenko-Cantelli Theorem (see The-
orem 1 of Adams and Nobel (2010))

lim sup
n→+∞

I3,n

P [|ξ0| > mn]
≤ lim sup

n→+∞

Pn [vn > gnmn]

P [|ξ0| > mn]
= lim sup

n→+∞

Pn [|V0| > gnmn]

P [|ξ0| > mn]
= 0, a.s.,
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since P [|V0| > gnmn] = o (P [|ξ0| > mn]). Using the above we have that

lim sup
n→∞

P⋆
n [vn |ξ0| > mn]

P [|ξ0| > mn]
≤ E [|V0| 1 (0 < |V0| < ε)] + lim sup

n→+∞

I2,n

P [|ξ0| > mn]
.

Thus, it suffices for (9) that the last term in the rhs of the previous display converges
a.s. to zero as n → +∞ and then ε → +∞. Notice that for this term we have that

I2,n

P [|ξ0| > mn]
=

∫ gnmn

ε

L(mn

t
)

L(mn)
tdPn [vn ≤ t] .

Suppose that Assumption 4.1 holds. Then for Cn := sup
y∈[1,mn]

L (y)

L (mn)
= sup

t∈[1,mn]

L(mn

t
)

L (mn)
,

and due to Birkhoff’s LLN we obtain that

lim sup
n→+∞

I2,n

P [|ξ0| > mn]
≤ lim sup

n→+∞
CnEn [un1 (un > ε)] ≤ E [|V0| 1 (|V0| > ε)] lim sup

n→+∞
Cn,Pa.s.

Since lim sup
n→+∞

Cn < ∞ and E [|V0|] < ∞ the result follows.

Suppose now that Assumption 4.2 holds. Given δ, we can choose ε large enough
so that Potter’s Theorem (see Theorem 1.5.6 (i)-(ii) of Bingham et al. (1989)) is
applicable and via Birkhoff’s LLN we obtain that

lim sup
n→+∞

I2,n

P [|ξ0| > mn]
≤
∫ ∞

ε

t1+
δ
αdP [|V0| ≤ t] = E

[
|V0|1+

δ
α 1 (|V0| > ε)

]
,

and the result follows since E
[
|V0|1+

δ
α

]
< ∞.

For establishing (10) notice first that due to the previous, it suffices that I2,n
P[|ξ0|>mn]

converges in probability to zero. Secondly, notice that due to Markov’s, the gener-
alized von Bahr-Esseen (see Theorem 1 of Hill (2010)) and the Cr inequalities, for
any δ > 0, and for η > 0 such that (1 + η) ϵ < 1, we have that for some C > 0 and
r = 1 + η

P
[
|Pn [vn > t−]− P [|V0| > t]|

(P [|V0| > t])ϵ
> δ

]
≤ C

δ1+ηnη

(
(P [|V0| > t])1−(1+η)ϵ + (P [|V0| > t])1−ϵ

)
,

(16)

and the rhs of the previous display converges to zero uniformly in t. Hence
Pn[vn>t−]−P[|V0|>t]

(P[|V0|>t])ϵ

is bounded with probability converging to one uniformly in t.
Suppose now that Assumption 5.1 holds. Define c⋆n := supt∈[ε,gnmn] c

(
mn

t

)
/c (mn)

and notice that (c⋆n) is bounded since by construction c (x) converges to a positive
real number as x → +∞. Then

I2,n

P [|ξ0| > mn]
≤ c⋆n

∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
tdPn [vn ≤ t] .

Hence it suffices to show that integral in the rhs of the previous display a.s. converges
to zero as n → +∞ and then ε → +∞. Let s (x) := xP[|V0|>x]

P[U>lnx]
which converges to

zero as x → +∞ due to the final part of Assumption 5.1. Using the integration



6 Proofs 21

by parts formula for the Lebesgue-Stieljes integral-see Theorem 21.67 in Hewitt and
Stromberg (2013)-we have that

1

P [U > lnmn]

∫ gnmn

ε

P [U > lnmn − ln t] tdPn [vn ≤ t]

= −Pn [vn > gnmn]
P [U > − ln gn]

P [U > lnmn]
gnmn + Pn

[
vn > ε−

] P [U > lnmn − ln ε]

P [U > lnmn]
ε

+

∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
Pn

[
vn > t−

]
dt+

∫ gnmn

ε

Pn

[
vn > t−

]
tdt

P [U > lnmn − ln t]

P [U > lnmn]
.

The first term is the rhs of the previous display is less than or equal to zero and
thereby can be ignored for the construction of an upper bound. For the second
term since U ∈ S∗ (i.e. U has a sub-exponential tail distribution function; see
Klüppelberg (1988)) and due to the Glivenko-Cantelli theorem we have that

lim sup
n→+∞

Pn

[
vn > ε−

] P [U > lnmn − ln ε]

P [U > lnmn]
ε ≤ εP [|V0| > ε] , a.s.

For the third term we have that for large enough ε,∫ gnmn

ε

P [U > lnmn − ln t]

P [U > lnmn]
Pn

[
vn > t−

]
dt

≤ sup
t≥ε

s (t)

∫ gnmn

ε

P [U > lnmn − ln t]P [U > ln t]

P [U > lnmn]

Pn [vn > t−]

P [|V0| > t]
d ln t, (17)

and thereby the rhs of (17) is bounded from above with probability converging to
one by

(1 + op (1)) sup
t≥ε

s (t)

∫ gnmn

ε

P [U > lnmn − ln t]P [U > ln t]

P [U > lnmn]
d ln t ≤ 2E [U ] sup

t≥ε
s (t) ,

since U ∈ S∗. For the fourth term we analogously have that for large enough ε, and
with probability converging to one∫ gnmn

ε

Pn

[
vn > t−

]
tdt

P [U > lnmn − ln t]

P [U > lnmn]

≤ sup
t≥ε

s (t)

∫ gnmn

ε

Pn [vn > t−]

P [|V0| > t]
dtP [U > lnmn − ln t]

= (1 +Op (1)) sup
t≥ε

s (t)

∫ gnmn

ε

dtP [U > lnmn − ln t] ≤ 2 sup
t≥ε

s (t) .

The previous imply that with probability converging to one, for large enough ε,

1

P [U > lnmn]

∫ gnmn

ε

P [U > lnmn − ln t] tdPn [vn ≤ t]
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≤ εP [|V0| ≥ ε] + 2 (E [U ] + 1) (1 +Op (1)) sup
t≥ε

s (t) ,

and the latter converges to zero as ε → +∞.
Suppose finally that Assumption 5.2 holds. As in the proof of Proposition 2.3

of Denisov and Zwart (2007) we can assume that eventually gn > 1√
mn

. Using this

we have that I2,n
P[|ξ0|>mn]

=
∫ √

mn

ε

L(mn
t

)

L(mn)
tdPn [vn ≤ t]+

∫ gnmn√
mn

L(mn
t

)

L(mn)
tdPn [vn ≤ t]. Then,

due to Birkhoff’s LLN

lim sup
n→+∞

∫ √
mn

ε

L(mn

t
)

L(mn)
tdPn [vn ≤ t] ≤ E [|V0| 1 (|V0| > ε)] lim sup

n→+∞
sup√

mn≤t≤mn

L(mn

t
)

L(mn)
, a.s.,

and as ε → +∞, the term in the rhs of the previous display converges to zero.
Furthermore, for the second integral above, using the integration by parts formula
for the Lebesgue-Stieljes integral we obtain∫ gnmn

√
mn

L(mn

t
)

L(mn)
tdPn [vn ≤ t] = −

L( 1
gn
)

L(mn)
Pn [vn > gnmn] gnmn

+
L(

√
mn)

L(mn)
Pn

[
vn >

√
mn

−]√
mn +

1

L(mn)

∫ gnmn

√
mn

Pn

[
vn > t−

]
dt

(
tL
(mn

t

))
.

As previously the first term in the rhs of the previously display is less than or equal
to zero and therefore can be ignored. For the second term we have that it is less
than or equal to

1

n

n∑
i=1

|V0| 1 (|V0| >
√
mn) sup√

mn≤t≤mn

L(mn

t
)

L(mn)
,

and the latter converges a.s. to zero as n → +∞ since E [|V0|] < ∞. For the final
term let Q (x) :=

∫ x

0
tαdP [|ξ0| ≤ x]. Due to the previous we have that as n → +∞

with probability tending to 1

1

L(mn)

∫ gnmn

√
mn

Pn

[
vn > t−

]
dt

(
tL
(mn

t

))
≤

o(1) (1 +Op (1))

∫ gnmn

√
mn

mn
P [|ξ0| > t]

L (mn)Q (t)
dP
[
|ξ0| ≤

mn

t

]
,

and the integral in the rhs of the previous display is bounded from above exactly as
in the proof of Proposition 2.3 of Denisov and Zwart (2007).

Proof of Proposition 2. Notice first that since as x → +∞, L (x) ∼ E
[
(ξi − γ)2 1|ξi−γ|>x

]
,

L has an equivalent monotone version. Assumption 3 and Birkhoff’s LLN implies
that∑n

i=1 E
[

1
nrn

(ξi − γ)2 V 2
i 1|(ξi−γ)Vi|>M

√
nrn/Gi−1

]
is asymptotically equivalent to

L(M
√
nrn)

nrn

∑n
i=1 V

2
i

L

(
M

√
nrn

|Vi|

)
L(M

√
nrn)

. The same argument implies that we can replace L by
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its monotone equivalent version. Denote the latter with L for brevity. Let ε > 0
and consider

L
(
M

√
nrn
)

nrn

n∑
i=1

V 2
i 1|Vi|>ε

L
(

M
√
nrn

|Vi|

)
L
(
M

√
nrn
) ≤

L
(

M
√
nrn
ε

)
L
(
M

√
nrn
) L (M√

nrn
)

nrn

n∑
i=1

V 2
i 1|Vi|>ε.

Due to Assumption 3, Birkhoff’s LLN, the slow variation of L and the defining
property of rn, the rhs of the previous display converges P a.s. to E

[
V 2
0 1|V0|>ε

]
.

Furthermore, let g(x) = x−2L(x) and notice that

1

n

n∑
i=1

∣∣∣∣g(M√
nrn|Vi|−1)

g(M
√
nrn)

− |Vi|−2

∣∣∣∣ 1|Vi|≤ε ≤ sup
λ∈[ε−1,∞)

∣∣∣∣g(λM√
nrn)

g(M
√
nrn)

− λ−2

∣∣∣∣ 1n
n∑

i=1

1|Vi|≤ε.

Due to Assumption 3 and Birkhoff’s LLN 1
n

∑n
i=1 1|Vi|>ε = O (1) P a.s. Due to

the UCT for regularly varying functions with negative index (see Theorem 1.5.2 of
Bingham et al. (1989)) supλ∈[ε−1,∞)

∣∣∣g(λn1/αr
1/α
n |t|−1)

g(n1/αr
1/α
n |t|−1)

− λ−α
∣∣∣ = o (1). Hence

L
(
M

√
nrn
)

nrn

n∑
i=1

V 2
i 1|Vi|≤ε

L
(

M
√
nrn

|Vi|

)
L
(
M

√
nrn
) =

L
(
M

√
nrn
)

rn

(
1

n

n∑
i=1

V 2
i 1|Vi|≤ε + oP a.s. (1)

)
.

Again, due to Assumption 3, Birkhoff’s LLN, the slow variation of L and the defining
property of rn, the rhs of the previous display converges P a.s. to E

[
V 2
0 1|V0|>ε

]
. The

result then follows from Assumption 3 by letting ε → +∞, since E [V 2
0 ] < +∞.

6.2 Proofs of main results

Proof of Theorem 1. By the Main Lemma for Sequences in Jakubowski (2012) (see,
equivalently, Theorem 1.1 along with Paragraph 3 of Jakubowski (1986)) the result
would follow if we would prove that for all t ∈ R,

n∏
i=1

E

[
exp

(
it

1

n
1
α r

1
α
n

ρi,α

)
/Gi−1

]
(18)

pointwise converges P a.s. to the characteristic function of Sα

(
β
(

E[|V0|αsgn(V0)]
E(|V0|α)

)
, cE (|V0|α) , 0

)
,

where

ρi,α =

{
(ξi − γ)Vi, α ̸= 1

(ξi − γ −H(nrn))Vi − rn2βcπ
−1 (CE (V0)− E [V0| log(|V0|)|]) , α = 1.

}
For any t ̸= 0, by defining the event

Cn,K ≡
{
ω ∈ Ω : |Vi| ≤ Kt (nrn)

1
α ,∀i = 1, . . . , n

}
where Kt <

Mt

|t| , for some sequence 0 < Mt → 0 which exists due to Lemma 1, we
have that P(Cc

n,K) → 0 again by Lemma 1. When α ̸= 1, due to Assumption 1 if
ω ∈ Cn,K then the logarithm of (18) equals

− c|t|α
nrn

∑n
i=1 |Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
+

|t|α
nrn

iβcsgn(t) tan
(
1
2
πα
)∑n

i=1 sgn(Vi) |Vi|α L
(
n1/αr

1/α
n |tVi|−1

)
.

(19)
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When α < 2, due to Lemma 1, Assumption 1, the asymptotic representation of the
tail of the distribution of |ξ0| (see Appendix 1 in Ibragimov and Linnik (1971)), and
the definition of rn, we have that

P⋆
n[vn|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

=
E⋆
n

[
P
[
|ξ0|>n1/αr

1/α
n

un

]]
P
[
|ξ0|>n1/αr

1/α
n

] = nrn
(1+o(1))

E⋆
n

[
(1+o(1))uα

n

nrn

L
(
n1/αr

1/α
n |Vi|−1

)
L
(
n1/αr

1/α
n

)
]

= (1+o(1))

(1+o(1))2rn

1
n

∑n
i=1 |Vi|α L

(
n1/αr

1/α
n |Vi|−1

)
,

and the latter is asymptotically equivalent to 1
nrn

∑n
i=1 |Vi|α L

(
n1/αr

1/α
n |Vi|−1

)
, which,

due to Lemma 1, the fact that t is fixed and non-zero, and that L is slowly varying
to infinity, is asymptotically equivalent to 1

nrn

∑n
i=1 |Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
. In an

analogous manner it is easy to show that P⋆
n[vn1{vn≥0}|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

−P⋆
n[|vn|1{vn<0}|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

is asymptotically equivalent to 1
nrn

∑n
i=1 sgn(Vi) |Vi|α L

(
n1/αr

1/α
n |tVi|−1

)
. Hence,

(19) is asymptotically equivalent to

−c|t|α P⋆
n[vn|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

+

|t|αiβcsgn(t) tan
(
1
2
πα
) [P⋆

n[vn1{vn≥0}|ξ0|>n1/αr
1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

− P⋆
n[|vn|1{vn<0}|ξ0|>n1/αr

1/α
n ]

P[|ξ0|>n1/αr
1/α
n ]

]
.

When α = 2, (19) is asymptotically equivalent to

−c|t|2
n∑

i=1

E
[

1

nrn
(ξi − γ)2 V 2

i 1|(ξi−γ)Vi|>M
√
nrn/Gi−1

]
.

The result then follows from Propositions 1 and 2 respectively.
When α = 1, by Assumption 1, if ω ∈ Cn,K then the logarithm of (18) equals

− c|t| 1

nrn

∑
|Vi|L

(
nrn |tVi|−1)+ i2βcπ−1Ct

1

nrn

∑
ViL

(
nrn|tVi|−1

)
+ it

1

nrn

∑
Vi

[
H
(
nrn |tVi|−1)−H(nrn)

]
,

where the first two terms of the above expression can be treated analogously to the
above in order to obtain their P a.s. limit as

−c|t|E [|V0|] + i2βcπ−1CtE [V0] = −cE [|V0|] |t|
[
1− i2βπ−1Csgn(t)

E [V0]

E [|V0|]

]
.

For the third term, first notice that

H(kλ)−H(λ) =

∫ k

1

λ2x

1 + λ2x2
(c1 − c2 + k(λx))L(λx)dx.

Then we have that
1

nrn

∑
Vi

[
H
(
nrn |tVi|−1)−H(nrn)

]
=

L(nrn)

rn

(
2βcπ−1 + o(1)

) 1
n

∑
Vi

∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx,



6 Proofs 25

since for any constant A, supx∈[(max |Vi|)−1,A] k(nrn|t|−1x) = k(nrn|t|−1x∗
n) for some x∗

n.
Lemma 1 implies that (max |Vt|)−1n1/αr

1/α
n → ∞ in P probability, hence we obtain

that k(nrn|t|−1x∗
n) = o(1). Furthermore using a similar to the above truncation

argument we have that

1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx

=
1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

dx

+
1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx.

Then notice that for some A2 = [a1, a2] with 0 < a1 ≤ a2 and possibly dependent
on the choice of ε,

1

n

n∑
i=1

Vi1{|Vi| ≤ ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx

≤
∫
x∈A2

x
1

n2r2n
+ x2

∣∣∣∣L(xnrn)L(nrn)
− 1

∣∣∣∣ dx 1n
n∑

i=1

|Vi| 1{|Vi| ≤ ε},

and the dominant part of the previous display converges to zero P a.s. via the use of
the Dominated Convergence Theorem and Assumption 2. Regarding the first term,
first notice that∫ |tVi|−1

1

x
1

n2r2n
+ x2

dx1{|Vi| ≤ ε} =
1

2

[
log
(
1 + n2r2nx

2
)]|tVi|−1

1
1{|Vi| ≤ ε}

=
1

2
log

(
1 + n2r2n|tVi|−2

1 + n2r2n

)
1{|Vi| ≤ ε} = log |tVi|−11{|Vi| ≤ ε}+ o(1),

where the o(1) term is independent of Vi using the fact that

sup
x∈[(tε)−1,∞)

∣∣∣∣log(1 + λ2x

1 + λ2

)
− log x

∣∣∣∣→ 0 as λ → +∞.

Therefore

1

n
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i=1

Vi1{|Vi| ≤ ε}
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1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

= log
1

|t|
1

n

n∑
i=1

Vi1{|Vi| ≤ ε} − 1

n

n∑
i=1

Vi log |Vi|1{|Vi| ≤ ε}+ o(1).

Next, we treat the analogous term obtained by truncating Vi1{|Vi| > ε}, i.e.

1

n

n∑
i=1

Vi1{|Vi| >}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx
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by noticing that |tVi|−1 < 1, since ε can be chosen large enough. Suppose first that
Assumption 4.1 holds. Notice that,

∣∣∣∣∣
∫ 1

|tVi|−1

x
1

n2r2n
+ x2

(
L(xnrn)

L(nrn)
− 1

)
dx

∣∣∣∣∣ ≤
∫ 1

|tVi|−1

x1−δ

1
n2r2n

+ x2
xδ

∣∣∣∣L(xnrn)L(nrn)
− 1

∣∣∣∣ dx
= o (1)

∫ 1

|tVi|−1

x1−δ

1
n2r2n

+ x2
dx ≤ o (1)

∫ 1

|tVi|−1
x−(1+δ)dx = o (1)

(
1 + |Vi|δ

)
,

where the second inequality follows from the UCT for regularly varying functions
with positive index (see Theorem 1.5.2 of Bingham et al. (1989)). Hence, and due
to that x

1

n2r2n
+x2 ≤ 1

x
for all x, we obtain that

∣∣∣∣∣ 1n
n∑
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Vi1{|Vi| > ε}
∫ |tVi|−1

1
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1

n2r2n
+ x2

h(xnrn)

h(nrn)
dx

∣∣∣∣∣
≤ o (1)

1

n

n∑
i=1

|Vi|
(
1 + |Vi|δ

)
1{|Vi| > ε}+ |ln |t||

n

n∑
i=1

|Vi| ln |tV | 1{|Vi| > ε},

and the result follows by letting n → +∞ and then ε → +∞.
Suppose now that Assumption 4.2 holds. Notice that,∫ 1

|tVi|−1

x
1

n2r2n
+ x2

L(xnrn)

L(nrn)
dx =

1

L(nrn)
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x2

1
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nrn
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nrn
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1
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P [|ξ0| > xnrn] dx
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1
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u2

1 + u2
P [|ξ0| > u] du =
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u

1 + u2

L(u)

L(nrn)
du. (20)

Then, since with probability converging to one nrn |tVi|−1 ≥ 1, u
1+u2 ≤ 1

u
for all u,

the rhs integral in (20) is for ε large enough with the same probability less than or
equal to

lim sup
n→+∞

sup 1≤y≤nrn

L(y)

L(nrn)

∫ nrn

nrn|tVi|−1

1

u
du ≤ C ln |tVi| .

Hence, as before we obtain that with probability converging to one∣∣∣∣∣ 1n
n∑

i=1

Vi1{|Vi| > ε}
∫ |tVi|−1

1

x
1

n2r2n
+ x2

h(xnrn)

h(nrn)
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∣∣∣∣∣ ≤ C
ln |t|
n

n∑
i=1

|Vi| |ln |Vi|| 1{|Vi| > ε},

and the result follows again by letting n → +∞ and then ε → +∞.
For the cases where either Assumption 5.1 or Assumption 5.2 hold, we have that

H
(
nrn |tVi|−1)−H (nrn) = −

(
2βcπ−1 + o(1)

) ∫ |tVi|
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x
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and that due to that x2

|tVi|2
n2r2n

+x2
≤ 1 uniformly in n, x and i,

∫ |tVi|

1

x
|tVi|2
n2r2n

+ x2
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L(nrn)
dx ≤ |Vi|−1

∫ |tVi|

1

P
[
|Vi| |ξ0| > x

|t|nrn

]
P
[
|ξ0| > x

|t|nrn

] dx.

Notice that the results in the proofs of Propositions 2.2-3 of Denisov and Zwart
(2007), concerning upper bounds for P[|Vi||ξ0|>δnrn]

P[|ξ0|>δnrn]
hold uniformly in δ as long as this

is bounded away from zero. Hence the rhs of the previous display is less than or equal
to
E [|V0|]

(
1 + |Vi|−1), and thereby,∣∣∣∣∣ 1n

n∑
i=1

Vi1{|Vi| > ε}
∫ |tVi|−1

1
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1
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1

n
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|Vi|
(
1 + |Vi|−1) 1{|Vi| > ε}.

The result follows by letting first n → +∞, and then ε → +∞. Combining the
above results we obtain (3).

Finally, when α < 1 and under (4), observe that

1

n1/αr
1/α
n

n∑
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n1/α−1r
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q

1−α
α

n

r
1/α
n

M,

with P probability approaching 1 as n → ∞. The result follows as we can choose
M arbitrarily small. Under (5), note that for δ small enough (so that α + δ < 1),(

1

n1/αr
1/α
n

∑n
i=1 |Vi|

)α+δ

≤ 1

n
δ
α r

1+ δ
α

n

1
n

∑n
i=1 |Vi|α+δ and the result in (6) follows since

nkrn → ∞ for any k > 0 due to that rn is slowly varying.

Proof of Theorem 4. Given Theorem 3, and since θ0 is an interior point, we have
that the arguments that lead to equations (5.62-63) in Straumann (2004) are also
valid here. Then for α ∈ (1, 2] we have that with probability converging to one

c′′n(θ̄n)(θn − θ0) =
1

n

n∑
i=1

(z2i − 1)
h′
i (θ0)

σ2
i
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− 1
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]−1 1
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1/α
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i

.

Condition D.4 implies that c′′n(θ̄n)⇝ Jθ0 due to the uniform Birkhoff’s LLN. Also, as
mentioned earlier, condition D.4 implies that E

[
∥h′

0(θ0)∥
2 σ−4

0

]
< ∞, thus Condition

2 of Proposition 4 holds. Thus, the result follows by an application of Theorem 1.
Analogously for the case where α = 1 the result follows by noting that

1

nrn
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σ2
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=
1
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Then, condition D.4 implies that

E
[∣∣∣σ−2

0 λTh
′

0(θ0) log
∣∣∣σ−2

0 λTh
′

0(θ0)
∣∣∣∣∣∣] < +∞ ∀λ ∈ Rd,

hence the α = 1 case of Theorem 1 is directly applicable.
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