

Implementing Sustainable Development under Deep Uncertainty

Ambiguity Aversion, Modern Bayesianism and Small Worlds

Prof. Phoebe Koundouri
pkoundouri@aueb.gr

Professor and Director ReSEES Research Laboratory School of Economics, ATHENS UNIVERSITY OF ECONOMIC AND BUSINESS

President-Elect, European Association of Environmental and Resource Economist

- Director, Cluster on Sustainability Transition
- Co-Chair, UN Sustainable Development Solutions Network (SDSN) - Greece
- Director, EIT Climate KIC Hub - Greece, ATHENA RC
- Chair SAB, European Forest Institute
- Member of Greek Prime-Ministerial Committee on Recovery and Development Plan
- Member of the Greek Ministerial Climate Change Committee, Ministry of Environment and Energy
https://www.aueb.gr/en/faculty page/koundouri-phoebe

Sustainability Policy Framework

Top-Down Mobilization Green New Deals around the World

Systems Innovation co-designed with Problem Owners

Integrated \& Coordinated Interventions in economic, financial, political and social systems and along whole value chains. In systems, by means of the relations, elements are arranged in such a fashion that gives rise to a new structure functioning.

Reductionist Thinking

Systems Thinking

Working through gradual, incremental changes is not enough!

What is needed now is a fundamental transformation of economic, social and financial systems that will trigger exponential change in decarbonisation rates and strengthen climate resilience - IPCC report: "rapid, far- reaching and unprecedented changes in all aspects of society".

Climate-KIC

Cluster for Sustainability Transition

Transforming Research and Innovation into Climate Action

Director: Professor Phoebe Koundouri

The Cluster on Sustainability Transition (CST)

UN SDSN GREECE http://www.unsdsn.gr/

(eit
Climate-KIC cimate samand

EIT Climate-KIC HUB GR https://www.athena-innovation.gr/en/eit-climate-kic-greece-hub

CLUSTER ON SUSTAINABILITY TRANSITION

Research - Innovation Acceleration Deep Demonstration - Education \& Training

Research and Innovation Projects Global Initiatives

 Interreg
Balkan-Mediteranean RECONNECT

GENES5
punhtour and dponsent roweme

H2 Cean
DAFNE
n/a Eurolimpacs

> Innovation Acceleration Deep Demonstration

Education \& Training

MSc in
Law and Economics
in Energy Markets

KENTPO ЕПIMOPФ $\Omega \Sigma H \Sigma$ KAI $\triangle I A$ BIOY MA

Projects Green-Digital-Just Recovery / Circular Economy / Climate Change Mitigation and Adaptation

TASK FORCE JOB
BASEDGREEN
RECOVERY

Co-chairs:

- Prof. Phoebe Koundouri President Elect of European Association of Environmental and Resource ficononics

Dr. Ismail Serageldin Founding Director Bibliotheca Alexandria, ex Vice President World Bank

- Dr. Min Zhu, Deputy Managing Director IMF

Task Force: lob-Based Greery Recovery

Economic recovery plans should support the transition towards ustainable and inclusive socleties based on the SDGs and the Paris Climate Agreement.
unlicinvestment should be oriented towards sustainable ndustries and the digital economy and should spu

A major goal of the recovery should be an unprecedented commitment to reskilling and upskilling people, including the skills to prepare workers for the digital economy.

The FU Green Deal long-term budget (2021-27), and new recovery fund marks an exemplary framework for long-term ecovery, including mid-century goals on climate safety, energy ransition, and circular economy with a comprehensive 61.8 rillion budget

EGD can serve as an exemplar for other regions, In general, recoveries should be smart (based on digital technologies). recoveries should be smait (based on digital technologies), featuring investments in clean energy and reduced pollution).

4-Seas Initiative

An initiative led by the regional networks SDSN Black Sea and SDSN Mediterranean and the national networks SDSN Greece, SDSN Italy, SDSN Spain, SDSN France, SDSN Turkey and SDSN Russia

GLOBAL ROUNDTABLEFOR SUSTAINABLESHIPPING AND PORTS

- Aims at bringing together researchers and technology developers, shipbuilders, shipowners, ports, policy makers and politicians, from across the globe, to work on technological and policy innovations, related to zero emissions shipping, to target net-zero emissions by 2050 .
- Find more at: http://www.unsdsn.gr/global-roundtable-for-sustainable-shipping-2

COASTAL H2020 European Commission Project

a unique research and innovation project
a multi-actor collaboration between entrepreneurs, administrations, stakeholders and experts in coastal and rural natural and social sciences and sciences
aims to formulate and evaluate business solutions and policy recommendations to improve coastal-rural synergy to promote rural and coastal development while preserving the environment.

Find more at:
Implementation period: 2018-2022
Budget: € 5 million

Projects Water-Food-Energy Nexus Smart Agriculture \& Smart Urban Water Systems

Uncertainty affects Preferences and Decisions used to Estimate Total Economic Value Total Economic Value Shapes Policy Recommendations

Global climate change illustrates particularly well the importance of considering uncertainty when making a decision.

- Do we face RISK (uncertainty but known probabilities)?
- Do we face DEEP UNCERTAINTY (unknown probabilities)?
- Decision making under deep uncertainty?
- IPCC (2007) wrote:
"In most instances, objective probabilities are difficult to estimate. Furthermore, a number of climate change impacts involve health, biodiversity, and future generations, and the value of changes in these assets is difficult to capture fully in estimates of economic costs and benefits.o... The literature on how to account for ambiguity in the total economic value is growing, even if there is no agreed standard."

How do agents make decisions under "deep uncertainty"?

- Our Literature Review pointed to alternative decision-making rules away from Expected Utility Maximization Rule...
- ...Instead of finding ideas to refine the theoretical underpinnings of our models and valuation methods, we ended up criticizing this literature!

AMBIGUITY AVERSION, MODERN BAYESIANISM AND SMALL WORLDS

Phoebe Koundouri, Nikitas Pittis, Panagiotis Samartzis, Nikos Englezos

Outline

Ambiguity Aversion (AA): Aversion to Unknown Probabilities Mathematical Economics - Decision Theory under Subjective Uncertainty

Modern Bayesianism (MB)
Bayesian Epistemology - Bayesian Confirmation Theory (BCT)

Small Worlds

Worlds where Small Number of Propositions are required to cover all cases of Interest (Logic -BCT)

Main Result of the Paper:
AA under MB Collapses to Dynamic Inconsistency of Beliefs

Also,

In Small Worlds, MB (apart from Normatively appealing)
is Descriptively plausible

Ambiguity Aversion: History

Origins of AA: Ellsberg Paradox (1961)

Interpretation of Ellsberg Paradox:
 One (or more) of SEU axioms Fail

New Axiomatization Replacing SEU Axioms

Background Material for AA

Ellsberg-type Behavior (1961)

Normative vs.
Descriptive Status of SEU Axioms

$$
\Downarrow 1
$$

Daniel Bernoulli St. Petersburg Paradox (1738)

Unknown Probabilities

Question: What is Probability?

Unknown Probabilities

Subjective Probabilities: Problems

Assuming that such a thing exists:

In order to be able to test whether it is consistent with Kolmogorov's axioms, it has to be measurable (in the sense of observable)

Subjective Probability Betting
Behavior

Subjective probabilities can be inferred by observing actions that reflect individuals' personal beliefs.

The degree of probability that an individual attaches to a particular outcome can be measured by finding what odds the individual would accept when betting on that outcome

To be precise, given a subjective probability p for the proposition, you will accept odds of up to $p:(1-p)$ on its truth

Unknown Probabilities

Ramsey's Insights were ignored until the mid of 1950s

$$
\begin{gathered}
\text { 1954: Leonard Savage’s } \\
\text { "The Foundations of Statistics" } \\
\text { More Appropriate Title: } \\
\text { "The Foundations of Economics" }
\end{gathered}
$$

Kreps (1988): "The Crowning Glory of Choice Theory"
Why is it so Important?

Simultaneous Axiomatization of Subjective Probability and Expected Utility Maximization

An Economic Agent does not Need Exogenous Objective Probabilities: All that is Needed is in his Own Mind

Axiomatization of Subjective Expected Utility: Savage 1954

Savage's Framework

Objects of Choice: Acts

Acts are functions from the Sample Space (source of uncertainty) to Outcome Space

Savage defines a preference relation on the set of (all) Acts

Axiomatization of Subjective Expected Utility: Savage 1954

Savage Representation Theorem

(Finite Outcomes Case)
A binary relation \succeq defined on the set of Acts satisfies Savage's seven axioms, iff there exist (i) A (subjective) probability function (defined on the sample space) and (ii) a Utility function (defined on the outcome space) such that for any two acts, f and g :

$$
f \succeq g \text { iff } S E U(f) \geq S E U(g)
$$

Axiomatization of Subjective Expected Utility: Savage 1954

Does Savage's Representation Theorem Address the Issue of Measurability of Subjective Probability?

Ask him questions of the type: Do you prefer this to that?

No Numerical
Questions
are Asked

You will be able to get Numerical Degrees of Belief which are Coherent

You will be able to get Numerical Utilities which contain Cardinal Information

Axiomatization of Subjective Expected Utility: Savage 1954

Profound Implications for:

Economic Theory

Expected Utility Maximization Works even if Probabilities are not Known

Bayesian Epistemology

The Founding Stone of BE, namely
Prior Probability, Exists

Question: Where do the priors come from?

Answer: The same place Utility Function comes from!

Axiomatization of Subjective Expected Utility: Savage 1954

Savage's Representation Theorem provides a Separation of Tastes from Beliefs

It also delivers three properties in one Package:

Subjective Tastes are represented by Utilities
Subjective Beliefs are represented by Probabilities
Subjective Probabilities and Utilities are used in conjunction with the maximization rule: You cannot have subjective probabilities and use them to maximize something else (other than expected utility)

Deviations from Savage's Axioms: Ellsberg Paradox

Do Economic Agents Behave according to Savage's Axioms?

Descriptive

Evidence Against SEU Behavior
Ellsberg Paradox (1961)
People are Not Probabilistically Sophisticated

Should Economic Agents Behave according to Savage's Axioms?

Normative

Deviations from Savage's Axioms: Ellsberg Paradox

An Urn with 90 Balls

\square	30 Balls	60 Balls			
\square	Red	Black	Yellow		
$f_{1}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 0$		
$f_{2}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 0$		
$f_{3}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 100$		
$f_{4}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 100$	\quad	In Savage's Framework:
:---:					
No of Black: ??? No of Yellow: ???					
Inree States of Nature: R B Y Four Acts Monetary Outcomes					

Two Pairs of Choice:
(i) Do you prefer $f_{1}(\cdot)$ or $f_{2}(\cdot)$?
(ii) Do you prefer $f_{3}(\cdot)$ or $f_{4}(\cdot)$?

Deviations from Savage's Axioms: Ellsberg Paradox

Deviations from Savage's Axioms: Ellsberg Paradox

The Paradox:

\square	30 Balls	Balls	
\square	Red	Black	Yellow
$f_{1}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 0$
$f_{2}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 0$
$f_{3}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 100$
$f_{4}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 100$

The Preferences $\quad f_{1}(\cdot)$ over $f_{2}(\cdot)$ and $f_{4}(\cdot)$ over $f_{3}(\cdot)$
cannot be represented by an SEU Preference Function

Assume that such a representation exists:

```
f
SEU(f}\mp@subsup{f}{1}{})=P(\mathrm{ red })\times100+P(\mathrm{ black ) }\times0+P(\mathrm{ yellow })\times0=P(\mathrm{ red })\times10
SEU(f2)}=P(\mathrm{ red })\times0+P(\mathrm{ black ) }\times100+P(yellow ) \times 0=P(black ) \times 100
Hence, SEU(f
```

Similarly for the second pair:

```
\(f_{4}(\cdot) \succ f_{3}(\cdot) \Leftrightarrow \operatorname{SEU}\left(f_{4}\right) \succ \operatorname{SEU}\left(f_{3}\right)\)
\(\operatorname{SEU}\left(f_{3}\right)=P(\) red \() \times 100+P(\) black \() \times 0+P(\) yellow \() \times 100=P(\) red \() \times 100+P(\) yellow \() \times 100\)
\(\operatorname{SEU}\left(f_{4}\right)=P(\) red \() \times 0+P(\) black \() \times 100+P(\) yellow \() \times 100=P(\) black \() \times 100+P(\) yellow \() \times 100\)
Hence, \(\operatorname{SEU}\left(f_{4}\right)>\operatorname{SEU}\left(f_{3}\right) \Leftrightarrow \mathbf{P}(\) black \()>\mathbf{P}(\) red \()\)
```

CONTRADICTION: No (Proper) Subjective Probability Exists.
Ellsberg-type Choices cannot be represented by a Coherent-Probability based SEU Rule

Response of the Literature to Ellsberg-type Behavior

Interpretations of Ellsberg

Behavior

Irrationality

Lack of Probabilistic Sophistication is simply a Probabilistic Fallacy

If someone claims $1+1=3$, we do not have to doubt Axioms of Arithmetic

Savage's Axioms too Demanding for Rationality

Which of S1-
S7 is Violated by Ellsberg Behavior?

How Should we Represent Ellsberg Beliefs?

Prob. Sophistication:
(i) Unique and (ii) Additive

Response of the Literature to Ellsberg-type Behavior

Which of S1-S7 is Violated by Ellsberg Behavior?

STP: If two subjective acts offer the same prize over some event,...
...then replacing it with any other prize will not change the ranking of the acts

S2: The Sure-thing
Principle
S3: Strong Comparative
Probability

\square	30 Balls	60 Balls	
\square	Red	Black	Yellow
$f_{1}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 0$
$f_{2}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 0$
$f_{3}(\cdot)$	$\$ 100$	$\$ 0$	$\$ 100$
$f_{4}(\cdot)$	$\$ 0$	$\$ 100$	$\$ 100$

$$
f_{1}(\cdot) \text { over } f_{2}(\cdot) \text { and } f_{4}(\cdot) \text { over } f_{3}(\cdot)
$$

Violation of STP

A stronger version of Savage's weak
Comparative
Probability Axiom (Machina and Schmeidler 1992) allows qualitative probabilistic comparisons between events.

Response of the Literature to Ellsberg-type Behavior

Schmeidler (1989): Non-additive probabilities (Capacities) - Choquet Integration

Gilboa and Schmeidler (1989): Multiple Probabilities - Maxmin Expected Utility

(i) For each act f compute all of its expected utilities for all $\mu_{\theta}(\cdot)$.
(ii) Find the minimum expected utility for act f
(iii) Compare all acts in terms of their minima. Choose the one with the maximum minimum

The Maxmin Expected Utility decision rule suggests that the decision maker can be characterized by a utility function and a set of prior probabilities, such that the chosen act maximizes the minimal expected utility, where the minimum is taken over the priors in the set

Criticism: Too Pessimistic

Source of Ambiguity - Ambiguity Aversion

\square	30 Balls	60 Bals		
\square	Red	Black	Yellow	
$f_{1}(\cdot)$	\$100	\$0	\$0	Key Point of Ellsberg Paradox:
$f_{2}(\cdot)$	\$0	\$100	\$0	
$f_{3}(\cdot)$	\$100	\$0	\$100	There are Two Kinds of Events for the Agent
$f_{4}(\cdot)$	\$0	\$100	\$100	

$$
\mathcal{F}=\{\{R, B, Y\}, \emptyset,\{R, B\},\{R, Y\},\{B, Y\},\{R\},\{B\},\{Y\}\}
$$

Unambiguous

$$
\mathcal{F}^{U}=\{\{R, B, Y\}, \emptyset,\{R\},\{B, Y\}\}
$$

$$
\mathcal{F}^{A}=\{\{R, B\},\{R, Y\},\{B\},\{Y\}\}
$$

Preferring to bet on U rather than A events is inconsistent with Probabilistic Sophistication

Source of Ambiguity - Ambiguity Aversion

Source of Ambiguity:

At the moment of Formation of his Beliefs (Prior Beliefs), DM is faced with Asymmetric Information about Objective

Probabilities (Chances)

$$
\begin{gathered}
\mathcal{F}=\{\{R, B, Y\}, \emptyset,\{R, B\},\{R, Y\},\{B, Y\},\{R\},\{B\},\{Y\}\} \\
\downarrow \downarrow \downarrow
\end{gathered}
$$

He has Specific Information (Chances) about Some events

Should we allow Specific Information to Affect the Formation of Prior Beliefs?

Should we allow only Background Information to Affect the Formation of Prior Beliefs?

Background vs. Specific Information as Direct Determinants of Prior Beliefs

DM wants to form his new (posterior) probability of event A in the light of Evidence E observed at $\mathrm{t}+1$

Background vs. Specific Information as Direct Determinants of Prior Beliefs

DM wants to form his new (posterior) probability of event A in the light of Evidence E observed at $\mathrm{t}+1$
This prior will be used as a vehicle to update his beliefs by conditionalization on new evidence including the Specific Information

$$
P_{t+1, I_{B}, I_{S}, E}(A)=P_{0}^{I_{B}}\left(A \mid I_{S}, E\right)
$$

Modern vs. Classical: Comparisons

Modern Bayesianism is adopted (almost without exception) from Philosophers of Science

It is a standard practice for Philosophy-of-Probability papers to start with a "reasonable initial Credence function" (before receiving any evidence)

Rudolph Carnap argues strongly in favor of MB His monumental work on inductive logic (Carnap 1950) is based on the concept of hypothetical or counterfactual initial credence function that can be ascribed to the agent, before the collection of any evidence.

X's momentary inclination (to believe) at time t

X's permanent disposition
to believe

Modern vs. Classical: Comparisons

There are Good Normative Reasons for Being Modern rather than Classical Bayesian

... and finally...

Main Result of the Paper:

In the context of MB, Ambiguity Aversion collapses to Dynamic Inconsistency of Beliefs

An MB Agent who exhibits AA is bluntly Irrational

One month later... with 8% return being a fact

Schmeidler's Two-Coin Example

Schmeidler (1989) uses the following coin example, which aims at conveying the same message with Ellsberg's paradox

Assume that the agent X considers two coins A and B

He knows the objective probability features of A

Asymmetric Information about the

Chances of the Events in the Domain of his Beliefs

He knows NOTHING about the physical probabilities of B

The two coins are about to be tossed and X has the option to bet either on A-related events or B-related events

Schmeidler's Two-Coin Example

$D_{H}^{A}=\{$ coin_A comes_up_heads $\}=\left\{H_{A} H_{B}, . H_{A} T_{B}\right\}$

X may choose bet A

$$
D_{T}^{A}=\{\text { coin A comes up tails }\}=\left\{T_{A} H_{B},-T_{A} T_{B}\right\} .
$$

X may choose bet B

$$
D_{H}^{B}=\{\text { coin B comes up heads }\}=\left\{H_{A} H_{B}, T_{A} H_{B}\right\} .
$$

X wins 1\$
$D_{T}^{B}=\{$ coin B comes up tails $\}=\left\{H_{A} T_{B}, . T_{A} T_{B}\right\}$

$$
D_{H}^{A},-D_{T}^{A} \in \mathcal{F}_{X}
$$

$$
D_{H}^{B}, . D_{T}^{B} \in \mathcal{F}_{X}^{\prime}
$$

Schmeidler's Two-Coin Example

X is forming his prior...

Although X does not know the exact values of $P\left(D_{H}^{B}\right)$ and $P\left(D_{T}^{B}\right)$ he feels more willing to bet on D_{H}^{A} than D_{H}^{B} and on D_{T}^{A} than D_{T}^{B}

Schmeidler's Two-Coin Example

It is easy to show that such a P is non-additive. Indeed,

$$
D_{H}^{B} \cap D_{T}^{B}=\emptyset
$$

and

$$
D_{H}^{B} \cup D_{T}^{B}=\Omega
$$

where Ω is the relevant sample space, namely

$$
\Omega=\left\{H_{A} H_{B}, H_{A} T_{B}, T_{A} H_{B}, T_{A} T_{B}\right\}
$$

Assuming that P is additive,

$$
1=P\left(D_{H}^{B} \cup D_{T}^{B}\right)=P\left(D_{H}^{B}\right)+P\left(D_{T}^{B}\right)<1
$$

which is a contradiction.

What causes the violation of the additivity property in P ?

It is the fact that the agent allowed Specific Information
(Information about the Chances of A) to affect directly her probabilistic beliefs, instead of utilizing (as she should) the specific information indirectly by conditionalization

Schmeidler's Two-Coin Example

...but in order to be able to conditionalize on the specific information : "the objective probability of Heads in A is 0.5 "...

Schmeidler's Two-Coin Example

What was Agent's Background Information at $\mathrm{t}=0$, that is at the beginning of his epistemic life, when no specific information was available?

For simplicity, we assume that concerning coin A, the agent knows with certainty that only one of the following three hypotheses is true:
$\mathcal{H}_{1}^{A}=\{$ Coin A is fair $\}$
$\mathcal{H}_{2}^{A}=\{$ Coin A favors $H(0.6-0.4)\}$
$\mathcal{H}_{3}^{A}=\{$ Coin A favors $T(0.6-0.4)\}$

Let $\mathbf{H}_{A}=\left\{\mathcal{H}_{1}^{A}, \mathcal{H}_{2}^{A}, \mathcal{H}_{3}^{A}\right\}$ and $\mathbf{H}_{B}=\left\{\mathcal{H}_{1}^{B}, \mathcal{H}_{2}^{B}, \mathcal{H}_{3}^{B}\right\}$

Similarly, for Coin B:

$$
\mathcal{H}_{1}^{B}=\{\text { Coin B is fair }\}
$$

$$
\mathcal{H}_{2}^{B}=\{\text { Coin } B \text { favors } H(0.6-0.4)\}
$$

$$
\mathcal{H}_{3}^{B}=\{\text { Coin B favors } T(0.6-0.4)\}
$$

Partition of Event Space

Schmeidler's Two-Coin Example

At $t=0$, the agent was not informed about the physical probabilities of Coin A. Hence, he treats both A and B symmetrically.

Principle of Insufficient Reason

Principle of Indifference

Maximum Entropy Principle

Schmeidler's Two-Coin Example

Back to Schmeidler's events:

$$
\begin{gathered}
D_{H}^{A}=\{\text { coin A comes up heads }\}=\left\{H_{A} H_{B}, H_{A} T_{B}\right\} \\
D_{T}^{A}=\{\text { coin A comes up tails }\}=\left\{T_{A} H_{B}, T_{A} T_{B}\right\} \\
D_{H}^{B}=\{\text { coin B comes up heads }\}=\left\{H_{A} H_{B}, T_{A} H_{B}\right\} \\
D_{T}^{B}=\{\text { coin B comes up tails }\}=\left\{H_{A} T_{B}, T_{A} T_{B}\right\} \\
\hline
\end{gathered}
$$

Using the Law of Total Probability, the Agent's Prior Probabilities are:

$$
\begin{aligned}
& P_{0}\left(D_{H}^{A}\right)=\sum_{i=1}^{3} P_{0}\left(D_{H}^{A} \mid \mathcal{H}_{i}^{A}\right) P_{0}\left(\mathcal{H}_{i}^{A}\right)= \\
&= 0.5 \times \frac{1}{3}+0.6 \times \frac{1}{3}+0.4 \times \frac{1}{3}=0.5 \\
& \text { In a similar fashion, } \\
& P_{0}\left(D_{T}^{A}\right)=P_{0}\left(D_{H}^{B}\right)=P_{0}\left(D_{T}^{B}\right)=0.5
\end{aligned}
$$

...takes place at $t=0$

Schmeidler's Two-Coin Example

Now we move in time

At $t=1$, the agent is informed (specific information) that the coin A is fair. He still has no information about Coin B

$\mathcal{H}_{1}^{A}=\{\operatorname{Coin} A$ is fair $\}$
$\mathcal{H}_{2}^{A}=\{$ Coin A favors $H(0.6-0.4)\}$
$\mathcal{H}_{3}^{A}=\{$ Coin A favors $T(0.6-0.4)\}$

$$
\mathcal{H}_{1}^{B}=\{\text { Coin B is fair }\}
$$

$$
\mathcal{H}_{2}^{B}=\{\text { Coin B favors } H(0.6-0.4)\}
$$

$$
\mathcal{H}_{3}^{B}=\{\text { Coin B favors } T(0.6-0.4)\}
$$

Specific Information: $<\mathcal{H}_{1}^{4}$ is true $>$

The agent will Update his Old probabilities (prior \rightarrow posterior) based on the Specific Information he has just received

By consulting his PPF.
Whatever
commitments he had made at $t=0$, he is obliged to respect them at $t=1$

Schmeidler's Two-Coin Example

Bayesian Conditionalization

$P_{\text {new }}\left(\mathcal{H}_{1}^{A}\right)=P_{0}\left(\mathcal{H}_{1}^{A} \mid<\mathcal{H}_{1}^{A}\right.$ is true $\left.>\right)=1$
$P_{\text {new }}\left(\mathcal{H}_{2}^{A}\right)=P_{0}\left(\mathcal{H}_{2}^{A} \mid<\mathcal{H}_{1}^{A}\right.$ is true $\left.>\right)=0$
$P_{\text {new }}\left(\mathcal{H}_{3}^{A}\right)=P_{0}\left(\mathcal{H}_{3}^{A} \mid<\mathcal{H}_{1}^{A}\right.$ is true $\left.>\right)=0$

IMPORTANT:

All these are prior probabilities already formed at $\mathrm{t}=0$

The New Probabilities for Coin-B Hypotheses:

$$
\begin{aligned}
& P_{\text {new }}\left(\mathcal{H}_{1}^{B}\right)=P_{0}\left(\mathcal{H}_{1}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)=P_{0}\left(\mathcal{H}_{1}^{B}\right)=\frac{1}{3} \\
& P_{\text {new }}\left(\mathcal{H}_{2}^{B}\right)=P_{0}\left(\mathcal{H}_{2}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)=P_{0}\left(\mathcal{H}_{2}^{B}\right)=\frac{1}{3} \\
& P_{\text {new }}\left(\mathcal{H}_{3}^{B}\right)=P_{0}\left(\mathcal{H}_{3}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)=P_{0}\left(\mathcal{H}_{3}^{B}\right)=\frac{1}{3}
\end{aligned}
$$

Schmeidler's Two-Coin Example

The Posterior Probabilities of Schmeidler's Events are: (once the specific information about Coin A has been allowed to play its role)

$$
\begin{aligned}
& P_{\text {new }}\left(D_{H}^{A}\right)=P_{0}\left(D_{H}^{A} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)= \\
& \sum_{i=1}^{3} P_{0}\left(D_{H}^{A} \mid \mathcal{H}_{i}^{A},<\mathcal{H}_{1}^{A} \text { is true }>\right) \times P_{0}\left(\mathcal{H}_{i}^{A} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)
\end{aligned}
$$

$$
\begin{array}{|c|}
\hline P_{\text {new }}\left(D_{H}^{A}\right)=P_{0}\left(D_{H}^{A} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right) \times 1= \\
\hline P_{0}\left(D_{H}^{A} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)=0.5 \\
\hline
\end{array}
$$

Schmeidler's Two-Coin Example

For the event D_{H}^{B} :

$$
\begin{array}{|l|}
\hline P_{\text {new }}\left(D_{H}^{B}\right)=P_{0}\left(D_{H}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)= \\
\hline \sum_{i=1}^{3} P_{0}\left(D_{H}^{B} \mid \mathcal{H}_{i}^{B},<\mathcal{H}_{1}^{A} \text { is true }>\right) \times P_{0}\left(\mathcal{H}_{i}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right) \\
\hline
\end{array}
$$

Since \mathcal{H}_{i}^{B} and $<\mathcal{H}_{1}^{A}$ is true $>$ are Independent Propositions

$$
\begin{array}{|l|}
\hline P_{\text {new }}\left(D_{H}^{B}\right)=P_{0}\left(D_{H}^{B} \mid<\mathcal{H}_{1}^{A} \text { is true }>\right)= \\
\hline \sum_{i=1}^{3} P_{0}\left(D_{H}^{B} \mid \mathcal{H}_{i}^{B}\right) \times P_{0}\left(\mathcal{H}_{i}^{B}\right)=0.5
\end{array}
$$

Similarly, $P_{\text {new }}\left(D_{T}^{B}\right)=0.5$

Schmeidler's Two-Coin Example

X has formed his posterior

Let us check whether it violates additivity (a-la Schmeidler)

AA under MB is Equivalent to Dynamic Inconsistency of Beliefs

This is a commitment made at $t=0$ to be respected in future times

$$
\mathrm{t}=0
$$

$$
P_{0}\left(D_{H}^{B} \mid \mathcal{H}_{1}^{A}\right)=P_{0}\left(D_{H}^{B}\right)=0.5
$$

It reads as follows:

If, in the future, I get to know that the coin A is fair, I shall set (maintain) my subjective probability of H event B equal to 0.5

Specific Information:
Coin A is Fair

$$
t=1
$$

Bayesian Conditionalization dictates:

$$
P_{\text {new }}\left(D_{H}^{B}\right)=P_{0}\left(D_{H}^{B} \mid \mathcal{H}_{1}^{A}\right)
$$

Hence,

$$
P_{\text {new }}\left(D_{H}^{B}\right)=0.5
$$

If I set, instead

$$
P_{\text {new }}\left(D_{H}^{B}\right)=0.4
$$

Not Dynamically Consistent

Modern vs. Classical Bayesianism

MB Benefits

MB Avoids Cognitive Dissonance

MB fits better within Bayesian Confirmation Theory

MB handles the problem of "old evidence"

MB ensures faster convergence of opinions than CB

QUESTION: Is MB Plausible (as a mode of probabilistic thinking)?

Modern Bayesianism and Small Worlds

ANSWER: In Small Worlds, YES

Small vs. Large Worlds
A Small World is a set of propositions whose number of elements is small

In a small world a Bayesian (modern or classical) can assign probabilities to all propositions of interest

Apart from Small, the World must be Non-Evolving

Modern Bayesianism and Small Worlds

Small and Non-Evolving Worlds

Moreover, apart from small, worlds must be Non-Evolving

Assume that at some point in time $t>0$, you come up with a new hypothesis H -new

Motivated by H-new you acquire Evidence E-new

You attempt to Update your Beliefs based on E-new

As a good Bayesian (Modern or Classical) you consult your Prior
SURPRISE: Your Prior has not assigned probabilities to H-new, Enew Propositions (because back then they were unconceived)

Small vs. Large Worlds

- Binmore (2009): "Only in a small world, in which you can always look before you leap, it is possible to consider everything that might be relevant to the decisions you take."
- Indeed the "look before you leap" proverb is attributed to Savage who used it as antithetical to "cross that bridge when you come to it" that referred to the so called "large worlds".
- It is worth mentioning that Savage himself made quite clear that his own conception of subjective probability together with its axiomatization is relevant only for small worlds.
- This is because Savage's framework is essentially static in the sense that it does not allow for the so-called "concept formation", that is the formation of a new hypothesis or a new idea sometime in the future.
- Savage himself acknowledged the fact that the static nature of his theory makes it inapplicable in the case of large evolving worlds by referring to such an extension as "ridiculous" and "preposterous"

Conclusions

Modern Bayesianism Dissolves the Problem of Ambiguity Aversion
Under MB, AA collapses to Dynamic Inconsistency (Non-negotiable Irrationality)

MB assumes that in forming his subjective priors, the agent makes use of Background Information only

Specific Information (e.g. information about chances) is allowed to affect beliefs only through conditionalization (by means of the pre-existing prior)

Bayesianism in general (Modern or Classical) is Plausible only in Small Worlds

A third Option that relaxes BC: The Evolving Probability Model: Change your probability (in the light of new evidence) anyway you want as long as you respect coherence

