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Abstract

In this paper, in order to cope with the problem of endogenous regressors in cases
that the linear regression model is non-identifiable, we suggest estimators handling
the problem of multicollinearity to improve the performance of the Gaussian copula
approach. This problem occurs when the endogenous regressor is nearly normally
distributed and, thus, is highly correlated with its copula transformation term of the
augmented regression controlling for the endogeneity problem. Based on a Monte
Carlo study, we show that maximum entropy estimators can offer a solution to the
problem. These estimators are found to outperform the ridge estimator, often used
in practice to tackle the multicollinearity problem, and to conduct correct inference
for the slope coefficients of the augmented regression.
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1 Introduction

There is recently growing interest to develop econometric techniques to deal with the

problem of endogenous regressors, namely the contemporaneous correlation between

the regressors and the regression error term, based on methods free of instruments.

The instrumental variables methods may suffer, significantly, in cases where there is no

availability of valid (uncorrelated to the error term) instruments and/or the available

instruments are weak, i.e., uncorrelated to the regressors (see, e.g., Hahn and Hausman

(2005) and Andrews et al. (2019)). Instrument-free methods to deal with the endogeneity

problem include the latent instrumental variables (LIV) approach proposed by Ebbes

et al. (2005), identification through heteroscedasticity methods (e.g. Rigobon (2003),

Klein and Vella (2010) and Lewbel (2012)), higher moments approaches (e.g. Cragg

(1997), Dagenais and Dagenais (1997), Lewbel (1997) and Erickson and Whited (2002)),

wavelet analysis (see, e.g., Gençay and Gradojevic (2011)) and granular IV (see Gabaix

and Koijen (2022)). All of these methods rely heavily on distributional assumptions of

the underlying variables and/or rely on a decomposition of the endogenous regressor into

an exogenous part and an endogenous part, which may be hardly justified.1

Recently, Park and Gupta (2012) - henceforth referred to as PG - in a seminal paper

suggested a Gaussian copula approach to cope with the endogenous regressor problem.

This method relies on copula theory to capture the contemporaneous correlation between

the potentially endogenous regressor and the error term. The method is easy to apply and

has the merit that it does not rely on a decomposition of the endogenous regressor into an

endogeneous and an exogenous part, compared to other instrument-free methods. Two

variants of the method have been suggested for its implementation, in practice.2 The

first, originally suggested by PG, is based on the maximum likelihood (ML) approach

1See Rutz and Watson (2019) and Eckert and Hohberger (2022) for a comparison of these methods.
2Christopoulos et al. (2021, 2023a) extend the method to non-linear (threshold and smooth transition)

models. Yet, panel data applications of the method can be found in Haschka (2022) and Christopoulos
et al. (2022).
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and employs the Gaussian copula to capture the correlation between the endogenous

regressor and the error term. The second method augments the original regression

model with a new regression term to control for endogeneity and employs a least squares

(LS) method for estimation. The added term (referred to as copula control function

CCF) is a copula transformation of the endogenous regressor, obtained by the inverse of

normal cumulative distribution function of the empirical distribution of the regressor. It

corrects the conditional mean of the model for the endogeneity bias. A key advantage

of the second method is that it can be easily extended to the case of multiple regression,

allowing for more than one endogenous regressors (see, e.g., Christopoulos et al. (2023b)).

Yang et al. (2022) extends the method to the case that the regression model consists of

an exogenous and an endogenous regressors which are correlated.

The PG copula approach is, however, not without limitations, as its ability to iden-

tify the true model parameters critically depends on the distinctiveness between the

distributions of the endogenous regressor and the error term. This means that the en-

dogenous regressor is required to have a non-normal distribution, assumed for the error

term under the PG approach. If both the endogenous regressor and the error term are

both normal (or approximately normal in distribution), then we will not be able to sep-

arate the variation of the endogenous regression from that of the CCF, and thus both

the ML and LS estimates of the PG approach will suffer from identification problems.

For the augmented with the CCF term regression model, this is the well known problem

of multicollinearity implying biased LS estimates of parameters and large standard er-

rors. This problem is examined thoroughly in the recent studies of Becker et al. (2022)

and Eckert and Hohberger (2022), aiming to provide guidelines for the Gaussian cop-

ula approach’s appropriate use. These studies show that, in order to work efficiently,

the method requires sufficient (and not only significant) deviation from normality for

the endogenous regressor. Popular non-normality tests, such as the Shapiro-Wilk test

statistic, may not be able to identify the sufficient degree of non-normality required for

2



the method to work efficiently.

Given the unidentified concerns of the PG copula approach, in this paper we exam-

ine if we can improve the performance of the approach in cases that the endogenous

regressor is nearly normally distributed by applying econometric methods to deal with

the problem of near-multicollinearity that can potentially arise. We further show that

ignoring this problem will lead to biased estimates of the slope coefficients of the model.

More precisely, we investigate the performance of two well known estimators to cope

with the problem of near multicollinearity of the augmented with the CCF endogenous

regression; the ridge and maximum entropy estimators. The ridge estimator is obtained

by minimizing a loss function (which is the traditional sum-of-squares) augmented with

a penalty which warrants the identification of the regression coefficients (see, e.g., Hoerl

and Kennard (1970b)). This penalty is known as the ridge penalty and it constraints

the parameters space. However, the constraint imposed comes at the cost of introducing

bias in the parameter estimates.

On the other hand, in the case of the entropy method the estimators are obtained

by minimizing a loss function augmented by quantities which prevent the overflow of

parameter estimates magnitude and their sample probabilities (see, e.g., Golan et al.

(1996)). To define the magnitude of the parameter estimates and their probabilities,

the two alternative estimators suggested by Paris (2004) do not rely on any a-priori

information, but they use sample information. We will henceforth denote the first variant

as MEE1. The alternative is extended to also consider the probabilities of the error term

estimates. This variant of the estimator will be denoted as MEE2. Both of these variants

of the entropy estimator are not sensitive to multicollinearity, as they are based on an

estimation procedure for nonlinear programming problems with Karush-Kuhn Tucker

(KKT) conditions. Compared to the ridge estimator, they have the nice properties that

they are consistent and their performance does not depend on the choice of a constraint

parameter value, like the ridge penalty value.
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To evaluate the performance of the above estimators, we carry out a comprehensive

simulation study which is focused on distributions of the endogenous regressor which

are close to the normal distribution. In particular, we consider distributions, such as

the Student’s-t and Logistic, which are symmetric and close to the normal distribution.

Our analysis can be obviously extended to other distributions. Our study provides a

number of results which have useful implications for applied work. Firstly, we show

that all the above estimators handling multicollinearity can considerably improve the

performance of the PG method in cases that the distribution of the endogenous regressor

is close to the normal. We find that they can reduce considerably the bias of the least

square estimates and their root mean square error. These results hold not only for

the single regression, but for a multiple extension of it also considering an exogenous

regressor correlated to the endogenous one. Secondly, we find that the two variants of the

maximum entropy estimator (MEE1 and MEE2) clearly outperform the ridge estimator.

These entropy estimators are also found to perform well in conducting inference for the

slope coefficients in the augmented linear regression with the copula transformed term

based on a bootstrap procedure.

The paper is organized as follows. Section 2 presents the method, while Section 3

presents the results of the Monte Carlo study. Section 4 concludes the paper.

2 A brief overview of the Gaussian Copula method in han-

dling endogenous regressors

For simplicity, consider the following simple linear regression model:

yi = β1 + β2xi + ui, i = 1, 2, ..., N (1)
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where {yi, xi}Ni=1 constitute an observable sample of real valued continuous random vari-

ables, and ui is the error term. For model (1), we initially make the following assump-

tions:

(a) ui ∼ IID(0, σ2
u),

(b) xi is continuous and has a strictly monotonically increasing probability distribution

with mean µx and V ar(xi) = σ2
x, and

(c) E(ui|xi) ̸= 0.

Assumptions (a)-(c) are standard in econometric textbooks concerning estimation and

inference procedures for model (1) (see, e.g., Greene (2018)), meaning that the regressor

xi is endogenous. The sigma-field upon which the conditional expectation is defined is

generated by xi.

From Sklar’s theorem (Sklar (1959)) it follows that there exists a unique copula

function C, such that:

F (ui, xi) = C (Fu(ui), Fx(xi)) , (2)

where C : [0, 1]2 → [0, 1], is a 2-dimension copula, Fx(xi) is the cumulative distribu-

tion function of xi and Fu(ui) is the cumulative distribution function of ui. Park and

Gupta (2012) show that model (1) can be consistently estimated by maximizing the

log-Likelihood of the probability density function corresponding to the joint cumulative

distribution function of xi and ui, i.e. F (ui, xi). When ui ∼ N(0, σ2
u) and C is the

Gaussian copula, this likelihood takes the form

lnL(β, σu, ρ) =−
N∑
i=1

ρ2
[
Φ−1 (Fx(xi))

2 +Φ−1 (Fu(ui))
2
]

2 (1− ρ2)
− ρΦ−1 (Fx(xi)) Φ

−1 (Fu(ui))

1− ρ2


− N

2
ln(1− ρ2)− N

2
ln(2π)− N

2
ln(σ2

u)−
1

2σ2
u

N∑
i=1

u2i −
N∑
i=1

ln (fx(xi))

(3)
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where β = (β1, β2)
′ and ρ = ρ(xi, ui). Note that the probability density function of xi,

denoted fx(xi), is non-parametrically estimated and does not include any of the unknown

parameters (β, σu, ρ), thus the term −
∑N

i=1 ln (fx(xi)) can be excluded. The same holds

true for the term −N
2 ln(2π).3

Given assumptions (a)-(c) the conditional distribution of ui on xi can be derived

based on the copula function C as follows:

Fu|x(ui|xi) =
∂

∂Fx
C (Fu(ui), Fx(xi)) (4)

Based on relationship (4), it can be shown (see Appendix A) that ui has the following

single-factor correlation structure:

ui = λx∗i + V ar(ui|x∗i )1/2εi, with λ = ρuxσu. (5)

The expectation of ui conditional on xi is given as

E(ui|xi) = λx∗i , (6)

where x∗i constitutes a transformation of the random variable xi based on the quantile

function (QF) of the distribution of ui. When ui ∼ N(0, σ2
u), x

∗
i = Φ−1 (Fx(xi)) is the

quantile function of the standard normal distribution, where Φ−1 = inf{xi ∈ R : p ≤

Fx(xi)}, p ∈ (0, 1). Expression (6) gives a linear relationship between ui and copula

based transformation of xi, for the case that the error term ui is Normally distributed,

and C is the Gaussian copula, denoted as G-copula.

This result is due to the central result of the copula theory (i.e. Sklar’s Theorem)

decomposing the joint distribution of ui and xi into a part that captures the dependence

structure between them through a copula and that describing the marginal distribution

3Alternatively, model (1) can be estimated using the conditional likelihood based on the conditional
distribution of ui on xi.
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of xi, itself. For the Gaussian copula, this structure is linear, independently of the

marginal distribution of xi. The assumption that ui follows the normal distribution is

often used in econometrics. It is often consistent with the data after dummying out

outliers and/or accounting for structural break shifts in the conditional mean of yi on

xi, implied by regression model (1) (see Spanos (2018), for a recent survey).

Based on equation (6), we can employ the following extension of regression model (1)

to control for the effects of the regressor endogeneity on the estimates of the vector of

coefficients β:

yi = β1 + β2xi + λx∗i + ei, i = 1, 2, ..., N (7)

where ei = ui − λx∗i is a zero mean error term which is independent of x∗i . In addition,

it can be seen that ei = ui−E(ui|xi), with E(ei|xi) = 0 and, hence, E(eixi|xi) = 0, i.e.,

ei has the properties of the error of the conditional expectation decomposition of ui on

xi. This follows from the fact that x∗i constitutes a transformation of xi, based on the

quantile function Φ−1 of the normal distribution, which is independent of the error term

ei.

Model (7) adjusts the conditional mean of yi on xi, implied by the regression model

(1), for the regressor endogeneity bias problem caused by the correlation between xi and

ui. This is done by including in its right hand side (RHS) the copula transformed vari-

able x∗i , referred to as CCF (Copula Control Function). The model can be consistently

estimated based on a two-step least squares procedure, provided values of the trans-

formed variables x∗i (see Joe (2014)). These values can be obtained, in a first step, using

the transformation x∗i = Φ−1(Fx(xi)) based on a non-parametric estimation method of

distribution Fx(xi) (see Silverman (1986)), or the Empirical Cumulative Distribution

Function method, denoted ECDF (e.g., Rice (2007)). As N increases the distribution

estimation error implied by the above methods becomes negligible, by the Glivenko -

Cantelli theorem (see Cantelli (1933) and Glivenko (1933)).
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Compared to the method of instrumental variables, the copula method suggested

above has the interesting feature that it does not suffer from the problems of valid

and/or weak instruments. Yet, with respect to the maximum likelihood full information

approach, it does not require the specification of a simultaneous system of equations for

yi and xi, and knowledge of the joint distribution of ui and xi to remove the bias of β’s.

Instead, the method constitutes a limited information approach which only requires a

copula-based transformation of xi.

The success of the above method to deal with the problem of regressor endogeneity,

efficiently, depends on how well the linear correlation structure implied by (5) captures

the underlying structure of the data and the distribution features of regressors xi. For

the identification of the true values of the slope coefficients of model (7), the method

requires the distribution of xi to distinctively differ from the normal (see discussion in

the introduction). If, for instance, xi is also normally distributed, then it can be easily

seen that the variable x∗i , given as x∗i = Φ−1
(
Φ(µx,σx)(xi)

)
, reduces to x∗i =

xi−µx

σx
, which

constitutes a linear (location-scale) transformation of xi. Using matrix notation we can

write x∗ = 1
σx
x+ µx

σx
1, which shows that vector x∗ is a linear combination of vectors x and

1 which raises the problem of multicollinearity and identification of the slope coefficients

of model (7). The fact that x∗i is obtained with an estimation and approximation error

of the true distribution Fx(xi) may mitigate this problem, but it does not eliminate it.

The problem of multicollinearity can also exist in cases where the endogenous re-

gressor xi is closely normally distributed.4 Then, it is known as near multicollinearity

problem and to cope with it we need to employ appropriate estimators. Two such well

known estimators are the ridge LS and Maximum Entropy estimators.

The ridge LS estimator (Hoerl and Kennard (1970a,b)), denoted as RLS, minimizes

4In applied work, to appraise how important is the problem of near multicollinearity we can use
a diagnostic, like the correlation coefficient between xi and x∗

i and the determinant of the variance-
covariance matrix of the dependent and independent variables of the model, including the transformed
regressors, (see, e.g., Spanos and McGuirk (2002)), or Variance Inflation Factors and other more advanced
diagnostics as suggested by Belsley et al. (1980) and Belsley (1991).
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the ridge loss function, which is defined as

L (β;κ) = ∥y −Xb∥22 + κ∥b∥22 =
N∑
i=1

(yi − β1 − β2xi − λx∗i )
2 + κ

(
β2
1 + β2

2 + λ2
)

(8)

where b = (β1, β2, λ)
′ and κ denotes the penalty parameter. For κ = 0, the estimator

reduces to the OLS estimator. Given a penalty parameter κ, the ridge estimator takes

the form

b(κ) =
(
X ′X + κI

)−1
X ′y (9)

where X is the matrix of the regressors’ observations and y is the vector of the obser-

vations of the dependent variable. Singh et al. (1986) suggested that κ is calculated

as

κ =
Pσ̂2

P∑
j=1

α̂2
j

1 +

√
1 + κj

(
α̂2
j/σ̂

2
)

(10)

where α̂j and σ̂2 denote first stage OLS estimates of the standardized version of regression

model (13), and P = K − 1 (K = 3 in the case of augmented model (7)).5

The alternative, Maximum Entropy estimators, are non-linear in nature and thus are

unlikely to suffer from the problem of near multicollinearity (see Golan et al. (1996) for

a discussion). Such estimators are the Maximum Entropy Leuven estimators (see Paris

(2004)), denoted as MEE1 and MEE2. These estimators, contrary to other Entropy

estimators, require no subjective or prior information to implement. MEE1 is defined

such that it maximizes the following entropy measure

H1(pb, Lb, e) = −p′b ln(pb)− Lb ln(Lb)− e′e, (11)

5The penalty parameter proposed by Singh et al. (1986) showed consistent performance throughout
our Monte Carlo simulation study. Other ridge estimators considered include Hoerl and Kennard (1970a),
Hoerl et al. (1975), Thisted (1976), Lawless and Wang (1976), Dwivedi and Srivastava (1978), Khalaf
and Shukur (2005), Khalaf (2012, 2013) and the Generalized Cross Validation approach by Golub et al.
(1979), yet they performed poorly compared to the Singh et al. (1986) method.
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where Lb = b′b, pb = b⊙ b/Lb, b = (β1, β2, λ)
′, X∗ = (1, x, x∗), ⊙ denotes the Hadamard

element by element product, and pbj ≥ 0 ∀j = 1, 2, ...,K. The quantities p′b ln(pb)

and Lb ln(Lb) added in the RHS of (11) prevent the overflow of parameter estimates

magnitude and their sample probabilities based on sample information.

MEE2 extends MEE1 to include also terms which prevent overflow of the estimates

of the error term and their probabilities. That is

H2(pb, Lb, pe, Le) = −p′b ln(pb)− Lb ln(Lb)− p′e ln(pe)− Le ln(Le), (12)

where Lb = b′b, Le = e′e, pb = b ⊙ b/Lb, pe = e ⊙ e/Le, pbj ≥ 0 ∀j = 1, 2, ...,K, and

pei ≥ 0 ∀i = 1, 2, ..., N .

3 Monte Carlo simulation

In this section, we conduct a Monte Carlo (MC) study aiming to evaluate the perfor-

mance of the PG method to deal with the endogenous regressor problem in cases that

the regressor has a distribution which is close to normal and thus, model identification

problems arise. More specifically, our analysis has two tasks: Firstly, to investigate how

severe the identification problem is by examining the biases of the slope coefficient esti-

mates and, secondly, to examine if the ridge and maximum entropy estimators suggested

in the previous section can alleviate the problem. In our analysis, we consider elliptical

distributions, like the Student’s-t distribution with six and nine degrees of freedom and

the logistic distribution, which are close to the normal distribution. These distributions

exhibit zero skewness for which the PG approach is expected to perform poorly in identi-

fying the parameters of model (7). As shown by Becker et al. (2022), prerequisite of the

PG method for the model identification is a non normal distribution of the endogenous

regressor, with high levels of kurtosis and skewness.

We also consider the case of the normal distribution itself, also considered by Park
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and Gupta (2012). In this case, the LS estimator of (7) will exhibit the strongest degree

of multicollinearity. The identification of the model can be only achieved due to the

sample estimation error of the copula regression term x∗ in retrieving the ECDF of the

endogenous regressor. Asymptotically, the identification of the model is infeasible, since

this estimation error goes to zero. Since this case has only theoretical interest, we will

present its main results in Appendix B.

We present results for the single regression case and the multiple regression case, with

two regressors. For the last case, we consider the extension of the PG method suggested

by Yang et al. (2022) who consider one endogenous regressor and one exogenous which

is correlated with the endogenous. The presence of the exogenous regressor helps the

identification of the model, if this regressor is not normally distributed. However, as

aptly shown by Yang et al. (2022), its correlation with the endogenous regressor requires

augmentation of the regression model not only with the copula transformation of the

endogenous variable, but also with the copula transformation of the exogenous to capture

the correlation across the two regressors on the slope coefficient estimates of the multiple

regression. As in the single regression case, if both the endogenous and exogenous

regressors are nearly normally distributed this will lead to identification problems of the

model, too.

3.1 Single regression MC results

For the single linear regression case, we assume the following data generating mechanism:

yi = β1 + β2xi + ui (13)
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and assume that β1 = 1.0 and β2 = 1.0.6 We also assume that ui ∼ N(0, 1), while for

xi, we consider (a) the normal distribution N(µx, σx) with µx = 0 and σx = 1, (b) the

Student’s-t distribution with ν = 6 and ν = 9 degrees of freedom (i.e. a t(6) and a t(9)),

and (c) a Logistic distribution with location parameter µ = 0 and scale σ = 1.

For all cases (a)-(c), we consider the following data generating process.

x̃i

ui

 ∼ N


0.0
0.0

 ,

 1 0.6

0.6 1




Then, we obtain the series xi as transformation of x̃i, as follows:

xi = QF (Φ(x̃i)), (14)

where QF denotes the corresponding quantile function of the distributions that we would

like to generate xi, namely the Normal, Student’s-t (Φ−1, T−1
6 and T−1

9 ) and the Logistic.

We carry out 1000 iterations using samples of T = {50, 100, 250, 500} observations.

In each iteration, we generate data from model (13), under the different simulation

scenarios considered, and we estimate the augmented with regressor x∗i version of the

model based on the two-step LS method suggested in the section 2. To evaluate the

performance of the method, we present average values of the bias of the estimates of

β1 and β2 from their true values (denoted as BIAS), over all iterations, and their root

mean squared errors (RMSE). Finally, for the non-parametric estimation of the marginal

distribution Fx(xi), employed in the first step of the estimation procedure of the method,

we consider the ECDF.7

6We have also considered other pairs of values β1 and β2, such that they deviate substantially from
one another (e.g., β1 = 3.0 and β2 = 1.0). The results suggest that the MEE1 estimator for very small
samples (N = 50) exhibits a leftover bias regarding the intercept (β1) roughly over 6.5%. The bias,
however, reduces rapidly with N . MEE2 and the RLS show no such issue.

7We have also considered a smooth Kernel density estimator, using the Epanechnikov kernel and
Silverman’s bandwidth, however it performed poorly compared to the ECDF. The corresponding results
are available upon request.
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In our MC study, we also evaluate the size and power of the standard t-ratio tests

regarding the hypotheses β1 = 1, β2 = 1 and λ = 0. Data generated under the null

hypothesis follow the original data generating mechanism described above. To generate

data for the alternative hypotheses we consider (i) the same data generating process and

we alter the values of β1 to 0.8 and β2 to 0.8 to compute the power for the corresponding

tests, and (ii) the original data generating process described above setting the correlation

ρ(xi, ui) equal to 0. For all tests we compute bootstrap standard errors, primarily

because the augmented regression includes an estimated regressor, and also because

MEE1 and MEE2 estimators are numerically evaluated and do not produce a closed

form formula for the covariance matrix. We calculate the bootstrap covariance matrix

as follows:

1. We estimate the models under the null (or alternative) hypothesis and save the

residuals produced under the null hypothesis, êi.

2. For each bootstrap iteration j = 1, 2, ..., B, we draw a random sample with re-

placement from the distribution of êi and compute ê
∗(j)
i = f(êi), where

f(êi) =

(
N

N −K

)1/2

êi (15)

(see Davidson and MacKinnon (2006) for a discussion).

3. Based on sample values of the vector of regressors xi and x∗i , the estimates, denoted

as b̂ underH0 and the bootstrap samples ê
∗(j)
i for all i = 1, 2, ..., N , we calculate the

associated bootstrap samples for the dependent variable, denoted by y
(j)
i . Then,

we estimate the regression under the null (or alternative) hypothesis and calculate

new bootstrap estimates for vector b = (β1, β2, λ)
′.
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4. Finally, we calculate the bootstrap Covariance matrix

CovB(b̂) =
1

B − 1

B∑
j=1

(
b̂(j) − ¯̂

b
)(

b̂(j) − ¯̂
b
)′

, (16)

where
¯̂
b =

1

B

B∑
j=1

b̂(j).

The results of our MC experiments are reported in Tables 1, 2, 3A-3C and 4A-4C.

More specifically, Table 1 presents results of the correlation coefficients between the

endogenous regressor and its copula transformation to see how severe is the problem

of multicollinearity. This is done across all the distributions considered (see (a)-(c)),

namely the Student’s-t distribution with six and nine degrees of freedom, respectively

and the Logistic distribution, as well as, the normal distribution. In this table, we also

present estimates of the correlation coefficient between the ECDF estimation error, given

as v̂ = x∗ − x̂∗, and the endogenous regressor and its copula transformation to see if

this error can cause any significant contemporaneous correlation (endogeneity) regression

problem. Yet, we present estimates of the mean and standard deviation of v̂ to see if it

is important.

Table 2 presents the rejection frequencies of tests statistics for the normality assump-

tion of regressor x of the PG method. A similar exercise is conducted by Becker et al.

(2022). Tables 3A-3C present results of the bias and root mean square (RMSE) error of

the following alternative estimators employed, across the distributions (see (a)-(c)) con-

sidered: the ML estimator (based on equation (3)), LS estimators ignoring the endoge-

nous regressor problem, the LS estimator of the augmented regression with the copula

term, and the three estimators employed to deal with the problem of multicollinearity

of the augmented regression, namely MEE1, MEE2 and RLS. Finally, Tables 4A-4C

present results of the size and power of the t-ratio test statistics to conduct inference on

the vector of coefficients b = (β1, β2, λ)
′.
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Table 1: Estimation error - Summary statistics

N = 50 N = 100 N = 250 N = 500 N = 1000
xi ∼ N(0, 1)

ρ(x, x̂∗) 0.98855 0.99357 0.99696 0.99844 0.99914
ρ(x, v̂) 0.00086 0.00057 -0.00015 -0.00006 -0.00006
ρ(x∗, v̂) 0.00086 0.00057 -0.00015 -0.00006 -0.00006
st.dev.(v̂) 0.17767 0.13039 0.08761 0.06286 0.04622
mean(v̂) 0.00167 0.00075 0.00051 0.00106 -0.00047

xi ∼ t(6)

ρ(x, x̂∗) 0.97348 0.97967 0.98314 0.98566 0.98712
ρ(x, v̂) 0.00036 0.00037 0.00053 0.0004 0.00067
ρ(x∗, v̂) 0.00033 0.00033 0.00045 0.00038 0.00065
st.dev.(v̂) 0.17628 0.13 0.08689 0.06366 0.04621
mean(v̂) -0.0023 -0.00005 0.0016 0.00046 -0.00011

xi ∼ t(9)

ρ(x, x̂∗) 0.98106 0.98669 0.99096 0.99328 0.99441
ρ(x, v̂) 0.00071 -0.00048 0.00043 -0.00015 0.00052
ρ(x∗, v̂) 0.0007 -0.0005 0.00037 -0.00014 0.00053
st.dev.(v̂) 0.17754 0.13037 0.08721 0.06319 0.04565
mean(v̂) 0.00143 0.00047 0.00048 -0.00024 0.00096

xi ∼ Logistic(0, 1)

ρ(x, x̂∗) 0.97959 0.9855 0.99047 0.99258 0.99386
ρ(x, v̂) 0.00082 -0.00023 0.0005 0.00053 0.00039
ρ(x∗, v̂) 0.00081 -0.00026 0.00046 0.00051 0.00036
st.dev.(v̂) 0.17676 0.13058 0.08651 0.06272 0.04596
mean(v̂) -0.00598 0.00256 -0.00343 0.00039 -0.00105

Notes: The table presents the Pearson correlation coefficients among the regressor x, the true and

estimated CCF, denoted as x∗ and x̂∗ respectively, and the estimation error of the CCF, i.e. v̂ = x∗− x̂∗.

Summary statistics regarding the CCF estimation error v̂ are also presented, namely the mean and

standard deviation.
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Table 2: Rejection frequencies for Normality tests

Anderson-Darling Jarque-Berra Lilliefors Shapiro-Wilk Cramér-von Mises
xi ∼ t(6)

N = 50 24.0% 35.6% 17.2% 34.6% 4.5%
N = 100 34.7% 54.1% 21.6% 51.1% 6.1%
N = 250 68.6% 84.3% 46.5% 82.6% 10.8%
N = 500 88.9% 97.0% 72.8% 96.5% 27.9%
N = 1000 99.8% 100.0% 96.7% 100.0% 64.6%

xi ∼ t(9)

N = 50 12.3% 22.5% 9.8% 20.8% 5.1%
N = 100 17.8% 35.7% 11.8% 33.4% 5.1%
N = 250 36.2% 59.5% 20.4% 56.9% 6.4%
N = 500 59.2% 82.0% 34.8% 79.0% 9.1%
N = 1000 87.3% 97.2% 62.1% 96.1% 18.3%

xi ∼ Logistic(0, 1)

N = 50 15.1% 28.3% 11.0% 26.8% 4.5%
N = 100 25.5% 40.1% 15.2% 38.6% 6.2%
N = 250 45.4% 66.9% 28.6% 64.2% 7.5%
N = 500 77.2% 90.4% 53.8% 88.6% 13.0%
N = 1000 95.7% 99.0% 82.5% 98.5% 32.1%

Notes: The table presents rejection frequencies of popular tests statistics for the normality assumption of

regressor x of the PG method. We consider the Anderson and Darling (1952), Jarque and Bera (1987),

Shapiro and Wilk (1965)/Shapiro and Francia (1972), Lilliefors (1967) and Cramér-von Mises (Cramér

(1928) and von Mises (1928)) tests. All tests are conducted at the 5% significance level.
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Table 3A: Simulation Results xi ∼ t(6)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 1 0.008 0.118 0.011 0.16 0.009 0.133 -0.036 0.14 0.006 0.146 0.008 0.158
β2 = 1 0.495 0.505 0.356 0.726 0.365 0.495 0.016 0.169 0.011 0.178 -0.037 0.314
σ = 1 -0.198 0.214 0.055 0.381 -0.121 0.152 0.009 0.123 0.019 0.126 0.065 0.196
ρux = 0.6 -0.438 0.686 -0.382 0.594 -0.039 0.158 -0.031 0.168 -0.05 0.279

N = 100

β1 = 1 0.000 0.082 -0.006 0.104 -0.004 0.092 -0.023 0.1 -0.002 0.102 -0.003 0.109
β2 = 1 0.496 0.501 0.28 0.553 0.313 0.428 0.036 0.173 0.033 0.18 -0.049 0.247
σ = 1 -0.2 0.208 -0.009 0.262 -0.115 0.142 -0.005 0.121 0.002 0.125 0.058 0.159
ρux = 0.6 -0.344 0.566 -0.323 0.509 -0.047 0.161 -0.044 0.172 -0.012 0.215

N = 250

β1 = 1 0.001 0.052 0.003 0.062 0.003 0.058 -0.006 0.062 0.003 0.063 0.003 0.068
β2 = 1 0.487 0.489 0.174 0.356 0.222 0.32 0.047 0.173 0.046 0.182 -0.071 0.194
σ = 1 -0.198 0.201 -0.045 0.174 -0.1 0.127 -0.017 0.115 -0.014 0.118 0.057 0.133
ρux = 0.6 -0.218 0.391 -0.225 0.373 -0.061 0.166 -0.061 0.179 0.018 0.149

N = 500

β1 = 1 -0.001 0.037 0.000 0.044 0.000 0.042 -0.004 0.045 0.000 0.045 0.000 0.049
β2 = 1 0.485 0.486 0.1 0.245 0.143 0.214 0.037 0.154 0.036 0.158 -0.09 0.164
σ = 1 -0.195 0.197 -0.036 0.148 -0.077 0.106 -0.013 0.108 -0.011 0.11 0.069 0.122
ρux = 0.6 -0.125 0.25 -0.131 0.226 -0.049 0.139 -0.049 0.144 0.042 0.106

N = 1000

β1 = 1 0.001 0.025 0.001 0.031 0.001 0.03 -0.001 0.031 0.001 0.031 0.001 0.034
β2 = 1 0.485 0.486 0.06 0.17 0.082 0.141 0.03 0.13 0.028 0.133 -0.092 0.144
σ = 1 -0.196 0.197 -0.027 0.116 -0.049 0.078 -0.012 0.094 -0.011 0.095 0.07 0.11
ρux = 0.6 -0.069 0.156 -0.067 0.135 -0.036 0.112 -0.035 0.114 0.051 0.09

Notes: Simulation results for model (13), when xi ∼ t(6). Bias and RMSE of the alternative estima-

tors employed are presented; namely OLS, the copula control function approach (CCF), the maximum

likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum entropy estimators,

denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh et al. (1986), denoted

as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Table 3B: Simulation Results xi ∼ t(9)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 1 -0.003 0.113 -0.003 0.158 -0.002 0.126 -0.043 0.135 -0.002 0.138 -0.002 0.146
β2 = 1 0.532 0.542 0.42 0.855 0.412 0.554 -0.008 0.176 -0.013 0.182 -0.012 0.36
σ = 1 -0.204 0.218 0.087 0.435 -0.124 0.152 0.02 0.121 0.029 0.124 0.056 0.191
ρux = 0.6 -0.489 0.739 -0.411 0.626 -0.019 0.144 -0.012 0.153 -0.073 0.322

N = 100

β1 = 1 0.000 0.08 0.001 0.108 0.000 0.093 -0.021 0.101 0.000 0.102 0.000 0.108
β2 = 1 0.532 0.537 0.357 0.674 0.384 0.513 0.017 0.179 0.015 0.19 -0.022 0.289
σ = 1 -0.199 0.208 0.013 0.293 -0.114 0.139 0.01 0.118 0.015 0.123 0.043 0.157
ρux = 0.6 -0.42 0.652 -0.396 0.589 -0.032 0.153 -0.032 0.168 -0.043 0.249

N = 250

β1 = 1 0.001 0.049 0.002 0.059 0.002 0.054 -0.007 0.059 0.002 0.06 0.002 0.064
β2 = 1 0.529 0.531 0.273 0.503 0.313 0.425 0.035 0.17 0.035 0.181 -0.044 0.217
σ = 1 -0.2 0.203 -0.044 0.218 -0.111 0.135 -0.008 0.11 -0.006 0.114 0.043 0.132
ρux = 0.6 -0.323 0.512 -0.317 0.48 -0.046 0.151 -0.047 0.164 -0.006 0.178

N = 500

β1 = 1 0.001 0.036 0.000 0.044 0.001 0.041 -0.003 0.045 0.001 0.045 0.001 0.049
β2 = 1 0.527 0.528 0.206 0.404 0.238 0.343 0.043 0.18 0.044 0.189 -0.059 0.199
σ = 1 -0.198 0.2 -0.049 0.187 -0.094 0.123 -0.012 0.113 -0.01 0.116 0.051 0.125
ρux = 0.6 -0.244 0.413 -0.238 0.383 -0.055 0.16 -0.058 0.173 0.01 0.16

N = 1000

β1 = 1 -0.001 0.025 0.000 0.03 0.000 0.029 -0.002 0.03 0.000 0.031 0.000 0.033
β2 = 1 0.527 0.527 0.125 0.281 0.135 0.228 0.038 0.169 0.039 0.174 -0.082 0.165
σ = 1 -0.199 0.2 -0.045 0.156 -0.064 0.097 -0.013 0.108 -0.012 0.11 0.06 0.113
ρux = 0.6 -0.146 0.27 -0.124 0.236 -0.048 0.142 -0.05 0.149 0.037 0.108

Notes: Simulation results for model (13), when xi ∼ t(9). Bias and RMSE of the alternative estima-

tors employed are presented; namely OLS, the copula control function approach (CCF), the maximum

likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum entropy estimators,

denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh et al. (1986), denoted

as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Table 3C: Simulation Results xi ∼ Logistic(0, 1)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 1 0.002 0.116 0.000 0.153 0.001 0.127 -0.043 0.133 0.000 0.138 -0.002 0.166
β2 = 1 0.33 0.337 0.263 0.498 0.259 0.348 0.074 0.16 0.063 0.171 -0.085 0.256
σ = 1 -0.205 0.221 0.053 0.362 -0.126 0.156 -0.05 0.135 -0.029 0.131 0.146 0.279
ρux = 0.6 -0.49 0.738 -0.421 0.637 -0.132 0.254 -0.119 0.284 -0.002 0.295

N = 100

β1 = 1 0.000 0.08 0.003 0.108 0.002 0.092 -0.02 0.096 0.002 0.1 0.004 0.122
β2 = 1 0.332 0.335 0.201 0.403 0.228 0.308 0.074 0.153 0.064 0.163 -0.099 0.229
σ = 1 -0.203 0.211 0.005 0.302 -0.118 0.144 -0.051 0.133 -0.032 0.133 0.148 0.27
ρux = 0.6 -0.393 0.623 -0.369 0.562 -0.126 0.242 -0.116 0.268 0.036 0.239

N = 250

β1 = 1 -0.002 0.05 -0.003 0.061 -0.003 0.056 -0.012 0.059 -0.004 0.06 -0.005 0.072
β2 = 1 0.33 0.331 0.151 0.306 0.186 0.259 0.075 0.151 0.068 0.159 -0.1 0.199
σ = 1 -0.199 0.202 -0.033 0.223 -0.105 0.131 -0.05 0.128 -0.038 0.13 0.141 0.239
ρux = 0.6 -0.297 0.494 -0.305 0.472 -0.13 0.241 -0.124 0.259 0.053 0.19

N = 500

β1 = 1 0.001 0.037 0.001 0.044 0.001 0.042 -0.003 0.044 0.001 0.045 0.001 0.053
β2 = 1 0.33 0.331 0.106 0.217 0.131 0.192 0.066 0.137 0.059 0.14 -0.105 0.175
σ = 1 -0.199 0.201 -0.05 0.17 -0.091 0.119 -0.046 0.119 -0.037 0.12 0.139 0.215
ρux = 0.6 -0.199 0.351 -0.198 0.33 -0.111 0.212 -0.103 0.219 0.074 0.158

N = 1000

β1 = 1 0.000 0.027 -0.001 0.032 -0.001 0.031 -0.003 0.032 -0.001 0.032 -0.001 0.037
β2 = 1 0.329 0.33 0.073 0.163 0.085 0.139 0.053 0.122 0.048 0.123 -0.101 0.156
σ = 1 -0.198 0.199 -0.044 0.143 -0.066 0.099 -0.038 0.112 -0.032 0.113 0.129 0.194
ρux = 0.6 -0.133 0.25 -0.122 0.225 -0.09 0.179 -0.084 0.181 0.078 0.134

Notes: Simulation results for model (13), when xi ∼ Logistic(0, 1). Bias and RMSE of the alterna-

tive estimators employed are presented; namely OLS, the copula control function approach (CCF), the

maximum likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum entropy

estimators, denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh et al. (1986),

denoted as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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The results of the tables lead to the following interesting conclusions. Firstly, Table 1

indicate that all three distributions considered for the endogenous regressor imply a close

to unity correlation coefficient between the endogenous regressor (x) and its transfor-

mation (x∗), which can lead to a serious multicollinearity problem. The problem can

become more severe as the sample size increases, since the variance of the estimation

error of the ECDF (st.dev.(v̂)) reduces. In addition, it can be also more profound for

the Student’s-t distribution with 9 degrees of freedom which is more close to the nor-

mal distribution. The decline of the standard deviation of the estimation error v̂ with

N , observed in the table, is in accordance to the Glivenko - Cantelli theorem. Finally,

another interesting conclusion that can be drawn from the table is that the correlation

coefficients between the estimation error v̂ and either of variables x or x∗ are almost

zero, which does not raise any concern for endogeneity of the CCF x∗. This result is

true for all distributions considered.

Secondly, the rejection frequency of the normality tests, reported in Table 2, indicate

that we need large sizes of N so that the tests to have very good power (e.g. bigger

than 90%) to reject the normality of x. This is true across the alternative distributions

considered. Note that, for the Cramér-von Mises test, this power is not achieved even

for sample sizes of N = 1000.

Thirdly, regarding the performance of the alternative estimators considered, the re-

sults of Tables 3A-3C clearly indicate that, as was expected, ignoring endogeneity leads

to seriously biased and highly RMSE estimates of the slope coefficients of the linear

regression (see the first two columns of the tables), especially the slope coefficient β2.

The bias does not substantially reduce with N and becomes worst (almost 50% of the

true value of β2) for the case of the Student’s-t distribution which is closer to the normal.

For the two other distributions considered, the bias is also severe ranging from 50% to

30% of the true value of β2. Similar conclusions can be drawn for the RMSE of the

slope estimates, reported in the tables. Moreover the bias exists even for cases that
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the normality tests, reported in Table 2, reject the normality hypothesis at very high

rejection frequency.

The ML and LS estimators suggested by PG to control for the endogenous regression

problem, based on the CCF, are not able to substantially remove the bias (or reduce the

RMSE) in the estimates of β2 even in moderate or large sizes of N , i.e., N = {500, 1000}

and for cases that the normality hypothesis of x is clearly rejected. The performance

of these two estimators is worst and improves very slowly with N in the case of the

Student’s-t distribution, which is closer to the normal. As in Becker et al. (2022), we

have found that we need a very large size of sample (i.e., N ≥ 1000), not often met,

in practice) so that the bias of the two estimators to be eliminated. Evidence of non-

normality of x is not sufficient to guarantee satisfactory performance of the method.

The results of the tables clearly indicate that the two maximum entropy estimators

and the ridge estimator considered can offer a solution to the above problems. The

use of these estimators reduces substantially the bias and RMSE of the estimates of

coefficient β2 even for small samples, e.g. N = {50, 100}. These results hold across all

the distributions considered. Note that the performance of the above estimators is very

satisfactory even for the case that x is normally distributed, reported in the appendix, for

which x and x∗ are fully multicollinear asymptotically. Another interesting conclusion

that can be drawn from the results of tables 3A-3C concerns the performance of the above

estimators themselves. The results suggest that the two maximum entropy estimators

(MEE1 and MEE2) perform equally well to each other and clearly outperform the ridge

estimator, in terms of both the bias and the RMSE metrics reported in the tables.

Finally, regarding inference about the slope coefficient estimates, the results of Ta-

bles 4A-4C do not change our conclusion about the superiority of the MEE1 and MEE2

estimators. For the two entropy estimators, the t-ratio statistics used to test the following

null hypotheses H0 : β1 = 1 and H0 : β2 = 1, are found to be slightly oversized in smaller

samples, especially for H0 : β1 = 1. The t-ratio statistic for hypothesis H0 : β2 = 1 at-
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Table 4A: Power and Size, xi ∼ t(6)

β1 = 1 β2 = 1 λ = 0
size power size power size power

N=50 MEE1 0.135 0.517 0.102 0.201 0.311 0.829
MEE2 0.115 0.382 0.099 0.226 0.317 0.822
RLS 0.118 0.395 0.236 0.741 0.142 0.617

N=100 MEE1 0.112 0.72 0.091 0.163 0.213 0.818
MEE2 0.108 0.656 0.086 0.175 0.213 0.789
RLS 0.139 0.605 0.392 0.095 0.755 0.886

N=250 MEE1 0.11 0.962 0.09 0.137 0.127 0.812
MEE2 0.11 0.946 0.086 0.144 0.128 0.779
RLS 0.141 0.938 0.652 0.556 0.81 0.983

N=500 MEE1 0.11 0.999 0.079 0.184 0.089 0.894
MEE2 0.104 0.999 0.071 0.191 0.097 0.864
RLS 0.139 0.998 0.387 0.789 0.698 0.985

N=1000 MEE1 0.101 1.000 0.073 0.279 0.065 0.962
MEE2 0.1 1.000 0.069 0.275 0.076 0.954
RLS 0.14 1.000 0.61 0.919 0.834 1.000

Notes: The table presents the power and size of the t-ratio test statistics of the null hypotheses H0 :

β1 = 1 and H0 : β2 = 1 and H0 : λ = 0 against the alternatives defined in the text. Values equal to

1.000 correspond to values greater or equal than 0.9995.
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Table 4B: Power and Size, xi ∼ t(9)

β1 = 1 β2 = 1 λ = 0
size power size power size power

N=50 MEE1 0.121 0.517 0.076 0.229 0.34 0.802
MEE2 0.088 0.412 0.083 0.259 0.363 0.789
RLS 0.115 0.417 0.461 0.452 0.426 0.854

N=100 MEE1 0.119 0.729 0.058 0.179 0.326 0.758
MEE2 0.107 0.651 0.063 0.199 0.299 0.736
RLS 0.133 0.643 0.431 0.472 0.509 0.834

N=250 MEE1 0.077 0.95 0.046 0.149 0.197 0.75
MEE2 0.079 0.936 0.046 0.155 0.164 0.716
RLS 0.109 0.923 0.42 0.458 0.491 0.934

N=500 MEE1 0.105 0.999 0.06 0.131 0.135 0.761
MEE2 0.11 0.998 0.053 0.135 0.131 0.725
RLS 0.144 0.998 0.459 0.802 0.754 0.97

N=1000 MEE1 0.101 1.000 0.077 0.131 0.102 0.885
MEE2 0.092 1.000 0.076 0.134 0.102 0.856
RLS 0.125 1.000 0.545 0.829 0.779 0.996

Notes: The table presents the power and size of the t-ratio test statistics of the null hypotheses H0 :

β1 = 1 and H0 : β2 = 1 and H0 : λ = 0 against the alternatives defined in the text. Values equal to

1.000 correspond to values greater or equal than 0.9995.
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Table 4C: Power and Size, xi ∼ Logistic(0, 1)

β1 = 1 β2 = 1 λ = 0
size power size power size power

N=50 MEE1 0.105 0.535 0.074 0.159 0.239 0.498
MEE2 0.089 0.405 0.069 0.196 0.266 0.516
RLS 0.159 0.439 0.526 0.528 0.705 0.82

N=100 MEE1 0.1 0.743 0.071 0.147 0.176 0.487
MEE2 0.086 0.658 0.066 0.161 0.185 0.481
RLS 0.178 0.671 0.512 0.762 0.621 0.85

N=250 MEE1 0.08 0.961 0.083 0.158 0.121 0.467
MEE2 0.076 0.938 0.073 0.179 0.121 0.475
RLS 0.146 0.925 0.236 0.802 0.798 0.645

N=500 MEE1 0.096 0.996 0.066 0.205 0.098 0.568
MEE2 0.101 0.995 0.06 0.222 0.105 0.56
RLS 0.192 0.994 0.672 0.935 0.776 0.991

N=1000 MEE1 0.105 1.000 0.093 0.286 0.083 0.746
MEE2 0.106 1.000 0.081 0.302 0.098 0.733
RLS 0.171 1.000 0.597 0.966 0.868 0.994

Notes: The table presents the power and size of the t-ratio test statistics of the null hypotheses H0 :

β1 = 1 and H0 : β2 = 1 and H0 : λ = 0 against the alternatives defined in the text. Values equal to

1.000 correspond to values greater or equal than 0.9995.
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tends a size closer to its nominal 5% value, even for the small size N = 100. The power

of the statistics is always higher than their size, meaning that they are unbiased. Note

that the power also increases with N , as is expected. In contrast, for the ridge estimator,

the size performance of the above statistics is much worse, especially for H0 : β2 = 1.

For this case the size reached levels of 50%, or above.

Regarding the t-ratio statistic of the null hypothesis H0 : λ = 0, meaning that

regressor x is exogenous, the results of the tables demonstrate that, for both the two

entropy and ridge estimators the above statistics are critically oversized in small samples

of size N = {50, 100, 250}. However, the size approaches its nominal size as N increases

to N = 1000 for the two maximum entropy estimators. For the ridge estimator, the

size performance of the test always remains unsatisfactory, and it is not improved with

N . This may be attributed to the fact that the ridge estimator is biased. As a final

note that both the size and power of the t-ratio statistics improve considerably, as the

distribution of the endogenous regressor deviates from the normal. This can be easily

seen by comparing, for instance, the results of the Student’s-t distributions with nine

and six degrees of freedom, respectively.

Summing up, the results of this section indicate that the two maximum entropy

estimators, MEE1 and MEE2, coping with the problem of multicollinearity in linear

regressions, can be successfully employed to improve the performance of the copula

approach to control for the endogenous regressor problem in linear regressions cases

where regressors are close to normal distribution. These estimators clearly outperform

the ridge estimator, especially in conducting inference about the slope coefficients of the

regression and the CCF term.
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3.2 Multiple regression MC results

Next, we consider a multiple regression model with two regressors:

yi = β1 + β2xi2 + β3xi3 + ui, (17)

where xi2 and xi3 follow the same distribution and they are correlated with each other,

but only one of them is endogenous (say xi2). By modelling the correlation structure

among xi2, xi3 and ui via a Gaussian copula, we can obtain a multiple factor represen-

tation similar to equation (5), such that the transformed regression becomes

yi = β1 + β2xi2 + β3xi3 + λ1x
∗
i2 + λ2x

∗
i3 + ei, (18)

where

λ1 = σu
ρ(ui, xi2)− ρ(xi2, xi3)ρ(ui, xi3)

1− ρ(xi2, xi3)2
(19)

λ2 = σu
ρ(ui, xi3)− ρ(xi2, xi3)ρ(ui, xi2)

1− ρ(xi2, xi3)2
(20)

From equation (20) it is clear that even though xi3 is strictly exogenous, i.e. ρ(xi3, ui) =

0, it holds that λ2 ̸= 0, since ρ(xi2, xi3) ̸= 0. See, also, Yang et al. (2022) for a discussion.

For this simulation scenario, we generate 1000 samples of size N = 50, 100, 200, 500

from a joint normal distribution:


ui

x̃i2

x̃i3

 ∼ N



0.0

0.0

0.0

 ,


1 0.6 0.0

0.6 1 0.3

0.0 0.3 1


 , (21)
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and obtain series for xi2 and xi3 as transformations of x̃i2 and x̃i3 respectively, as:

xik = QF (Φ(x̃ik)), for k = 2, 3. (22)

where QF denotes the corresponding quantile function of the considered distribution.

Then, we construct yi based on equation (17), with β1 = 0.5, β2 = 1 and β3 = −0.5.

The results of the multiple regression model are reported in Tables 5A-5C. The tables

report results on the bias and RMSE metrics for all six alternative estimators considered

in our single regression analysis (see Tables 3A-3C). Again, this is done across the three

distributions considered (see (a)-(c)). Two main conclusions can be drawn from the

results of the tables. Firstly, ignoring the endogeneity of a regressor can also lead to

biased estimates of the exogenous regressor, when the two regressors are correlated. This

result is consistent with Yang et al. (2022) analysis. Note that the bias of the exogenous

regressor remains important as a percentage term of its true value, even if we control for

the regressor endogeneity by adding in the RHS of the linear regression CCF terms of

both the endogenous and exogenous regressors. As in the single regression, these biases

can be attributed to identification problems related to the Gaussian transformation of

both regressors of the model which are closely normally distributed.

Secondly, as in the single regression case, our results indicate that the maximum

entropy estimators can save the copula approach from the above problems. MEE1 and

MEE2 can substantially reduce the bias and RMSE of the slope coefficients of all the

regressors of the model, including the endogenous and exogenous ones. The performance

of these estimators is better than the ridge estimator. This is very satisfactory even for

small samples, and increases fast with N . These results hold for all distributions of the

regressors considered.
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Table 5A: Simulation Results xi2 ∼ t(6) and xi3 ∼ t(6)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 0.5 0.001 0.113 0.000 0.183 -0.498 0.498 -0.014 0.137 0.004 0.146 0.004 0.159
β2 = 1 0.54 0.549 0.349 0.719 0.541 0.552 0.024 0.167 0.021 0.17 -0.065 0.254
β3 = −0.5 -0.163 0.189 -0.126 0.587 -0.164 0.193 0.029 0.179 0.024 0.189 0.092 0.218

N = 100

β1 = 0.5 -0.002 0.078 -0.004 0.113 -0.497 0.497 -0.013 0.098 -0.004 0.101 -0.004 0.11
β2 = 1 0.538 0.542 0.295 0.556 0.537 0.543 0.049 0.166 0.048 0.169 -0.068 0.206
β3 = −0.5 -0.157 0.173 -0.088 0.469 -0.156 0.174 0.014 0.184 0.009 0.193 0.092 0.186

N = 250

β1 = 0.5 -0.002 0.05 -0.002 0.067 -0.496 0.497 -0.005 0.064 -0.002 0.065 -0.001 0.07
β2 = 1 0.533 0.535 0.17 0.334 0.533 0.535 0.055 0.164 0.056 0.167 -0.091 0.166
β3 = −0.5 -0.156 0.162 -0.072 0.315 -0.157 0.163 -0.001 0.168 -0.005 0.175 0.092 0.148

N = 500

β1 = 0.5 0.001 0.036 0.000 0.045 -0.494 0.496 -0.001 0.045 0.000 0.045 0.000 0.05
β2 = 1 0.532 0.533 0.107 0.238 0.532 0.533 0.047 0.15 0.048 0.152 -0.102 0.151
β3 = −0.5 -0.157 0.16 -0.026 0.215 -0.157 0.161 0.003 0.157 0.001 0.161 0.095 0.134

N = 1000

β1 = 0.5 0.001 0.025 0.001 0.031 -0.486 0.491 0.000 0.031 0.001 0.031 0.001 0.034
β2 = 1 0.532 0.533 0.063 0.167 0.53 0.532 0.034 0.129 0.034 0.13 -0.104 0.14
β3 = −0.5 -0.158 0.159 -0.016 0.147 -0.157 0.161 0.001 0.123 -0.001 0.125 0.091 0.117

Notes: Simulation results for model (17), when xi2, xi3 ∼ t(6) and xi3 is exogenous. Bias and RMSE of

the alternative estimators employed are presented; namely OLS, the copula control function approach

(CCF), the maximum likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum

entropy estimators, denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh

et al. (1986), denoted as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Table 5B: Simulation Results xi2 ∼ t(9) and xi3 ∼ t(9)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 0.5 0.005 0.112 0.003 0.184 -0.497 0.498 -0.015 0.135 0.002 0.144 0.000 0.15
β2 = 1 0.582 0.592 0.455 0.848 0.58 0.591 0.01 0.169 0.009 0.172 -0.027 0.263
β3 = −0.5 -0.172 0.203 -0.136 0.707 -0.174 0.208 0.046 0.193 0.04 0.205 0.091 0.245

N = 100

β1 = 0.5 -0.002 0.078 0.000 0.116 -0.498 0.498 -0.009 0.098 0.000 0.101 0.000 0.105
β2 = 1 0.58 0.585 0.394 0.677 0.58 0.586 0.03 0.164 0.03 0.168 -0.036 0.216
β3 = −0.5 -0.173 0.188 -0.13 0.596 -0.173 0.19 0.023 0.197 0.016 0.209 0.082 0.211

N = 250

β1 = 0.5 -0.003 0.051 -0.003 0.068 -0.497 0.498 -0.006 0.063 -0.003 0.063 -0.003 0.066
β2 = 1 0.579 0.581 0.295 0.52 0.579 0.581 0.052 0.179 0.054 0.183 -0.049 0.189
β3 = −0.5 -0.174 0.181 -0.096 0.44 -0.175 0.182 0.014 0.188 0.008 0.197 0.086 0.172

N = 500

β1 = 0.5 0.002 0.035 0.003 0.045 -0.494 0.496 0.001 0.044 0.003 0.044 0.003 0.047
β2 = 1 0.579 0.58 0.219 0.394 0.578 0.579 0.061 0.179 0.062 0.183 -0.067 0.158
β3 = −0.5 -0.174 0.177 -0.069 0.323 -0.174 0.178 0.006 0.178 0.001 0.186 0.089 0.146

N = 1000

β1 = 0.5 0.002 0.025 0.001 0.031 -0.484 0.49 0.000 0.031 0.001 0.032 0.002 0.035
β2 = 1 0.578 0.579 0.123 0.275 0.577 0.578 0.041 0.163 0.042 0.165 -0.095 0.148
β3 = −0.5 -0.173 0.174 -0.041 0.255 -0.173 0.177 0.003 0.171 0.000 0.176 0.093 0.136

Notes: Simulation results for model (17), when xi2, xi3 ∼ t(9) and xi3 is exogenous. Bias and RMSE of

the alternative estimators employed are presented; namely OLS, the copula control function approach

(CCF), the maximum likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum

entropy estimators, denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh

et al. (1986), denoted as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Table 5C: Simulation Results xi2 ∼ Logistic(0, 1) and xi3 ∼ Logistic(0, 1)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 0.5 -0.002 0.112 -0.005 0.18 -0.497 0.498 -0.02 0.129 -0.001 0.138 -0.002 0.171
β2 = 1 0.362 0.368 0.266 0.501 0.362 0.37 0.083 0.156 0.079 0.158 -0.116 0.228
β3 = −0.5 -0.11 0.129 -0.086 0.447 -0.109 0.132 -0.006 0.152 -0.011 0.162 0.103 0.194

N = 100

β1 = 0.5 0.008 0.079 0.011 0.119 -0.498 0.499 0.001 0.093 0.011 0.098 0.012 0.12
β2 = 1 0.362 0.365 0.228 0.41 0.363 0.366 0.091 0.153 0.088 0.155 -0.117 0.208
β3 = −0.5 -0.106 0.115 -0.064 0.335 -0.107 0.119 -0.011 0.145 -0.014 0.154 0.107 0.171

N = 250

β1 = 0.5 0.002 0.049 0.001 0.067 -0.495 0.497 -0.003 0.061 0.001 0.063 0.001 0.076
β2 = 1 0.362 0.363 0.161 0.291 0.361 0.363 0.088 0.152 0.086 0.153 -0.124 0.184
β3 = −0.5 -0.107 0.11 -0.059 0.252 -0.107 0.111 -0.019 0.14 -0.022 0.147 0.096 0.145

N = 500

β1 = 0.5 0.000 0.034 0.000 0.047 -0.49 0.493 -0.002 0.044 0.000 0.045 -0.001 0.054
β2 = 1 0.362 0.363 0.119 0.221 0.362 0.363 0.082 0.139 0.08 0.14 -0.121 0.167
β3 = −0.5 -0.107 0.109 -0.031 0.189 -0.107 0.109 -0.011 0.13 -0.012 0.135 0.097 0.133

N = 1000

β1 = 0.5 0.001 0.025 0.001 0.031 -0.47 0.482 0.000 0.03 0.001 0.03 0.001 0.036
β2 = 1 0.361 0.361 0.078 0.158 0.358 0.365 0.061 0.119 0.06 0.119 -0.124 0.158
β3 = −0.5 -0.107 0.108 -0.02 0.134 -0.105 0.115 -0.008 0.109 -0.009 0.112 0.092 0.119

Notes: Simulation results for model (17), when xi2, xi3 ∼ Logistic(0, 1) and xi3 is exogenous. Bias and

RMSE of the alternative estimators employed are presented; namely OLS, the copula control function

approach (CCF), the maximum likelihood estimator (MLE) proposed by Park and Gupta (2012), the

two maximum entropy estimators, denoted as MEE1 and MEE2, and the ridge LS estimator as suggested

by Singh et al. (1986), denoted as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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4 Conclusion

Since the seminar work of Park and Gupta (2012), there exist a growing number of em-

pirical applications of the Gaussian copula method to deal with the endogenous regressor

problem in marketing and management research. Results in the literature reveal critical

limitations of the method when the distribution of the endogenous regression is close to

the normal, implying a near multicollinearity problem between the endogenous regressor

and its copula transformation term added to the regression as a control function regres-

sor to deal with the endogeneity. This raises concerns about the ability of the method

to identify the true regression slope coefficient values.

In this paper, to improve upon the performance of the method in the above cases,

we suggest using estimators often employed in the literature to cope with the issue of

near-multicollinearity. These include the maximum entropy and ridge estimators. We

consider two variants of the maximum entropy estimator. The first takes into account

the magnitude of the parameter estimates and their probabilities, and the second also

considers magnitude and the probability specification of the error term estimates. To

evaluate the performance of the above suggested estimators, we carry out a comprehen-

sive simulation study which considers distributions of the endogenous regressor which are

close to the normal distribution. In particular, we consider the Student’s-t distributions

with six and nine degrees of freedom and the Logistic which are close to the normal.

These distributions lead to serious multicollinearity problems between the endogenous

regressor and its copula transformation. Our analysis can be also extended to other

distributions, which may also lead to near-multicollinearity problems.

We provide a number of very useful results for applied work. Firstly, we show that

all of the above estimators can considerably improve the performance of the PG method

in cases that the distribution of the endogenous regressor is close to the normal. We

find that the maximum entropy estimators can reduce substantially the bias of the least
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square estimates and their root mean square error (RMSE). These results hold not only

for the single regression, but also for a multiple extension of it considering an exogenous

regressor correlated to the endogenous one. Secondly, we find that the two variants of

the maximum entropy estimators perform equally well and clearly outperform the ridge

estimator, in terms of both bias and RMSE reductions. These two estimators are also

found to perform well in conducting inference for the slope coefficients of the augmented

linear regression with the copula transformed control function as an additional regressor

to deal with the endogeneity problem, based on a bootstrap procedure.
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Appendices

A Derivation of the conditional expectation

In this appendix we derive the conditional expectation E(ui|xi). Based on equation (4)

the conditional density fu|x(ui|xi) can be derived as follows

fu|x(ui|xi) =
∂

∂ui
Fu|x(ui|xi)

=
∂

∂ui
Φ2

(
ui
σu

− ρuxΦ
−1 (Fx(xi))

(1− ρ2ux)
1/2

)

=
1

σu (1− ρ2ux)
1/2

ϕ

(
ui
σu

− ρuxΦ
−1 (Fx(xi))

(1− ρ2ux)
1/2

)
, (23)

where ϕ(·) denotes the univariate standard normal density function. Then E(ui|xi) can

be derived analytically as

E(ui|xi) =
∫
R
uifu|x(ui|xi)dui

=

∫
R
ui

1

σu (1− ρ2ux)
1/2

ϕ

(
ui
σu

− ρuxΦ
−1 (Fx(xi))

(1− ρ2ux)
1/2

)
dui

= ρuxσux
∗
i (24)

where x∗i = Φ−1 (Fx(xi)).

B Simulation results for the Normal case

In this appendix we present results for the bias and RMSE of the estimators for (β1, β2)

for the single regression case with a normally distributed regressor (see Table B1). Note

that the estimation error involved, in the first step, to obtain the CCF term x∗i implies

that xi and x∗i are near (and not perfect) multicollinear. This allows us to implement

the MEE1, MEE2 and RLS methods in finite samples. If we used the true CDF, Φ(·),
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to obtain x∗i , estimation would not be feasible due to perfect multicollinearity between

x and x∗.

The results of this table are similar to those reported in Tables 3A-3C on the main

text, for the other distributions. They show that, even for this most sever multicollinear-

ity case, the above estimators perform well, with the two MEE estimators exhibiting

superior performance. Similar conclusions can be drawn for the multiple regression case

(see Table B2).

Table B1: Simulation Results xi ∼ N(0, 1)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 1 -0.003 0.112 -0.004 0.171 -0.003 0.127 -0.043 0.138 -0.002 0.141 -0.002 0.144
β2 = 1 0.601 0.612 0.593 1.118 0.515 0.673 -0.052 0.178 -0.054 0.181 0.058 0.454
σ = 1 -0.205 0.219 0.152 0.521 -0.122 0.15 0.046 0.117 0.053 0.12 0.036 0.195
ρux = 0.6 -0.597 0.848 -0.466 0.681 0.013 0.116 0.019 0.124 -0.128 0.381

N = 100

β1 = 1 0.000 0.08 0.002 0.126 0.001 0.094 -0.021 0.103 0.001 0.104 0.001 0.107
β2 = 1 0.604 0.609 0.608 1.024 0.538 0.687 -0.033 0.17 -0.032 0.178 0.077 0.404
σ = 1 -0.201 0.209 0.098 0.401 -0.106 0.13 0.039 0.11 0.042 0.113 0.014 0.167
ρux = 0.6 -0.604 0.844 -0.507 0.704 0.008 0.116 0.009 0.127 -0.127 0.355

N = 250

β1 = 1 0.001 0.048 0.000 0.067 0.002 0.055 -0.007 0.063 0.002 0.064 0.002 0.064
β2 = 1 0.598 0.6 0.594 0.946 0.513 0.664 -0.022 0.167 -0.018 0.178 0.077 0.368
σ = 1 -0.202 0.205 0.043 0.332 -0.101 0.125 0.023 0.1 0.024 0.103 0.005 0.136
ρux = 0.6 -0.589 0.804 -0.498 0.683 -0.001 0.118 -0.005 0.133 -0.116 0.336

N = 500

β1 = 1 0.000 0.035 0.001 0.047 0.001 0.04 -0.003 0.045 0.001 0.045 0.001 0.044
β2 = 1 0.6 0.601 0.621 0.961 0.477 0.646 -0.007 0.164 -0.002 0.176 0.101 0.363
σ = 1 -0.199 0.201 0.044 0.317 -0.086 0.113 0.016 0.1 0.016 0.103 -0.006 0.137
ρux = 0.6 -0.631 0.836 -0.479 0.672 -0.009 0.111 -0.015 0.127 -0.13 0.332

N = 1000

β1 = 1 0.001 0.026 0.001 0.034 0.001 0.03 -0.001 0.032 0.001 0.032 0.001 0.032
β2 = 1 0.6 0.601 0.594 0.907 0.209 0.403 -0.004 0.17 0.003 0.184 0.092 0.352
σ = 1 -0.2 0.201 0.019 0.278 -0.048 0.073 0.014 0.099 0.012 0.103 -0.003 0.127
ρux = 0.6 -0.594 0.802 -0.202 0.426 -0.013 0.122 -0.02 0.139 -0.119 0.326

Notes: Simulation results for model (13), when xi ∼ N(0, 1). Bias and RMSE of the alternative estima-

tors employed are presented; namely OLS, the copula control function approach (CCF), the maximum

likelihood estimator (MLE) proposed by Park and Gupta (2012), the two maximum entropy estimators,

denoted as MEE1 and MEE2, and the ridge LS estimator as suggested by Singh et al. (1986), denoted

as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Table B2: Simulation Results xi2 ∼ N(0, 1) and xi3 ∼ N(0, 1)

OLS CCF MLE MEE1 MEE2 RLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

N = 50

β1 = 0.5 0.000 0.115 -0.014 0.215 -0.497 0.498 -0.02 0.142 -0.003 0.15 -0.004 0.152
β2 = 1 0.659 0.67 0.681 1.126 0.659 0.67 -0.028 0.158 -0.028 0.161 0.062 0.356
β3 = −0.5 -0.196 0.232 -0.209 0.939 -0.196 0.234 0.075 0.199 0.068 0.211 0.063 0.304

N = 100

β1 = 0.5 -0.003 0.08 -0.007 0.134 -0.495 0.496 -0.013 0.101 -0.004 0.104 -0.005 0.104
β2 = 1 0.658 0.663 0.625 0.99 0.657 0.663 -0.023 0.149 -0.022 0.152 0.041 0.286
β3 = −0.5 -0.195 0.212 -0.167 0.82 -0.195 0.213 0.073 0.198 0.066 0.208 0.074 0.254

N = 250

β1 = 0.5 0.001 0.052 0.001 0.08 -0.498 0.498 0.000 0.066 0.003 0.067 0.003 0.067
β2 = 1 0.663 0.665 0.668 0.975 0.664 0.666 0.004 0.152 0.006 0.156 0.066 0.284
β3 = −0.5 -0.196 0.203 -0.183 0.691 -0.196 0.203 0.058 0.183 0.05 0.194 0.059 0.22

N = 500

β1 = 0.5 0.000 0.034 0.001 0.054 -0.495 0.496 -0.003 0.044 -0.001 0.045 -0.001 0.044
β2 = 1 0.659 0.66 0.659 0.96 0.658 0.659 0.009 0.154 0.013 0.158 0.07 0.28
β3 = −0.5 -0.197 0.201 -0.192 0.722 -0.198 0.201 0.052 0.198 0.045 0.21 0.05 0.228

N = 1000

β1 = 0.5 0.000 0.025 0.001 0.037 -0.484 0.49 -0.002 0.033 -0.001 0.033 -0.001 0.033
β2 = 1 0.66 0.66 0.644 0.92 0.656 0.661 0.024 0.161 0.028 0.167 0.075 0.274
β3 = −0.5 -0.197 0.199 -0.213 0.696 -0.199 0.211 0.038 0.201 0.029 0.213 0.041 0.221

Notes: Simulation results for model (17), when xi2, xi3 ∼ N(0, 1) and xi3 is exogenous. Bias and

RMSE of the alternative estimators employed are presented; namely OLS, the copula control function

approach (CCF), the maximum likelihood estimator (MLE) proposed by Park and Gupta (2012), the

two maximum entropy estimators, denoted as MEE1 and MEE2, and the ridge LS estimator as suggested

by Singh et al. (1986), denoted as RLS. Values equal to 0.000 correspond to values less than 5× 10−4.
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Spanos, A. (2018). Misspecification testing in retrospect. Journal of Economic Surveys,

32(2):541–577.

Spanos, A. and McGuirk, A. (2002). The problem of near-multicollinearity revisited:

erratic vs systematic volatility. Journal of Econometrics, 108(2):365–393.

Thisted, R. A. (1976). Ridge Regression, Minimax Estimation, and Empirical Bayes

Methods. PhD thesis, Department of Statistics, Stanford University.

von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer.

Yang, F., Qian, Y., and Xie, H. (2022). Addressing Endogeneity Using a Two-stage

Copula Generated Regressor Approach. Working Paper 29708, National Bureau of

Economic Research.

40



Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 

76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 

 
 

Department of Economics 

Athens University of Economics and Business 

 

List of Recent Working Papers 
 
2021 

 

01-21 Historical Cycles of the Economy of Modern Greece From 1821 to the Present, George 

Alogoskoufis 

02-21  Greece Before and After the Euro: Macroeconomics, Politics and the Quest for Reforms, 

George Alogoskoufis 

03-21 Commodity money and the price level, George C. Bitros. Published in: Quarterly Journal 

of Austrian Economics, 2022 

04-21 Destabilizing asymmetries in central banking: With some enlightenment from money in 

classical Athens, George C. Bitros. Published in: Journal of Economic Asymmetries, 2021 

05-21 Exploring the Long-Term Impact of Maximum Markup Deregulation, Athanasios 

Dimas and Christos Genakos 

06-21 A regularization approach for estimation and variable selection in high dimensional 

regression models, Y. Dendramis, L. Giraitis, G. Kapetanios 

07-21 Tax Competition in the Presence of  Environmental Spillovers, Fabio Antoniou, Panos 

Hatzipanayotou, Michael S. Michael, Nikos Tsakiris 

08-21  Firm Dynamics by Age and Size Classes and the Choice of Size Measure, Stelios 

Giannoulakis and  Plutarchos Sakellaris 

09-21 Measuring the Systemic Importance of Banks, Georgios Moratis, Plutarchos Sakellaris 

10-21 Firms' Financing Dynamics Around Lumpy Capacity Adjustments, Christoph Görtz, 

Plutarchos Sakellaris, John D. Tsoukalas 

11-21 On the provision of excludable public goods General taxes or user prices?  George 

Economides and Apostolis Philippopoulos 

12-21 Asymmetries of Financial Openness in an Optimal Growth Model,  George Alogoskoufis 

13-21 Evaluating the impact of labour market reforms in Greece during 2010-2018 , Georgios 

Gatopoulos, Alexandros Louka, Ioannis Polycarpou, Nikolaos Vettas  

14-21 From the Athenian silver to the bitcoin standard: Private money in a state-enforced free 

banking model, George C. Bitros 

15-21 Ordering Arbitrage Portfolios and Finding Arbitrage Opportunities. Stelios Arvanitis 

and Thierry Post 

16-21 Inconsistency for the Gaussian QMLE in GARCH-type models with infinite variance, 

Stelios Arvanitis and Alexandros Louka 

17-21 Competition and Pass-Through: Evidence from Isolated Markets, Christos Genakos and 

Mario Pagliero  

18-21 Exploring Okun’s Law Asymmetry: An Endogenous Threshold LSTR Approach, 

Dimitris Christopoulos, Peter McAdam and  Elias Tzavalis 

19-21 Limit Theory for Martingale Transforms with Heavy-Tailed Multiplicative Noise,  

Stelios Arvanitis and Alexandros Louka  

20-21 Optimal taxation with positional considerations,  Ourania Karakosta and  Eleftherios 

Zacharias 



Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 

76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 

21-21 The ECB’s policy, the Recovery Fund and the importance of trust: The case of Greece, 

Vasiliki Dimakopoulou, George Economides and Apostolis Philippopoulos 

 

 

2022 

 

01-22 Is Ireland the most intangible intensive economy in Europe? A growth accounting 

perspective, Ilias Kostarakos, KieranMcQuinn and Petros Varthalitis  

02-22 Common bank supervision and profitability convergence in the EU, Ioanna Avgeri, 

Yiannis Dendramis and Helen Louri 

03-22 Missing Values in Panel Data Unit Root Tests, Yiannis Karavias, Elias Tzavalis and  

Haotian Zhang 

04-22 Ordering Arbitrage Portfolios and Finding Arbitrage Opportunities, Stelios Arvanitis 

and Thierry Post 

05-22 Concentration Inequalities for Kernel Density Estimators under Uniform Mixing,  

Stelios Arvanitis 

06-22 Public Sector Corruption and the Valuation of Systemically Important Banks, Georgios 

Bertsatos, Spyros Pagratis, Plutarchos Sakellaris 

07-22 Finance or Demand: What drives the Responses of Young and Small Firms to Financial 

Crises?  Stelios Giannoulakis and  Plutarchos Sakellaris 

08-22 Production function estimation controlling for endogenous productivity disruptions, 

Plutarchos Sakellaris and Dimitris Zaverdas 

09-22 A panel bounds testing procedure, Georgios Bertsatos, Plutarchos Sakellaris, Mike G. 

Tsionas 

10-22 Social policy gone bad educationally: Unintended peer effects from transferred students,  

Christos Genakos and Eleni Kyrkopoulou 

11-22 Inconsistency for the Gaussian QMLE in GARCH-type models with infinite variance, 

Stelios Arvanitis and Alexandros Louka 

12-22 Time to question the wisdom of active monetary policies, George C. Bitros 

13-22 Investors’ Behavior in Cryptocurrency Market, Stelios Arvanitis, Nikolas Topaloglou 

and Georgios Tsomidis 

14-22 On the asking price for selling Chelsea FC, Georgios Bertsatos  and  Gerassimos 

Sapountzoglou 

15-22 Hysteresis, Financial Frictions and Monetary Policy, Konstantinos Giakas 

16-22 Delay in Childbearing and the Evolution of Fertility Rates, Evangelos Dioikitopoulos 

and Dimitrios Varvarigos 

17-22 Human capital threshold effects in economic development: A panel data approach with 

endogenous threshold, Dimitris Christopoulos, Dimitris Smyrnakis and  Elias Tzavalis 

18-22 Distributional aspects of rent seeking activities in a Real Business Cycle model, Tryfonas 

Christou, Apostolis Philippopoulos and Vanghelis Vassilatos 

 

 

2023 

 

01-23 Real interest rate and monetary policy in the post Bretton Woods United States, George 

C. Bitros and Mara Vidali 

02-23 Debt targets and fiscal consolidation in a two-country HANK model: the case of Euro 

Area, Xiaoshan Chen, Spyridon Lazarakis and Petros Varthalitis 

03-23 Central bank digital currencies: Foundational issues and prospects looking forward, 

George C. Bitros and  Anastasios G. Malliaris 

04-23 The State and the Economy of Modern Greece. Key Drivers from 1821 to the Present,  

George Alogoskoufis 

05-23 Sparse spanning portfolios and under-diversification with second-order stochastic 

dominance, Stelios Arvanitis, Olivier Scaillet, Nikolas Topaloglou 



Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 

76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 

06-23 What makes for survival? Key characteristics of Greek incubated early-stage 

startup(per)s during the Crisis: a multivariate and machine learning approach,  

Ioannis Besis, Ioanna Sapfo Pepelasis and Spiros Paraskevas  

07-23 The Twin Deficits, Monetary Instability and Debt Crises in the History of Modern 

Greece, George Alogoskoufis  

 



 

Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5.  E-mail: econ@aueb.gr / www.aueb.gr    
76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5  

 
 

 

 

 

Department of Economics 

Athens University of Economics and Business 

 

The Department is the oldest Department of Economics in Greece with a 

pioneering role in organising postgraduate studies in Economics since 1978. Its 

priority has always been to bring together highly qualified academics and top 

quality students. Faculty members specialize in a wide range of topics in 

economics, with teaching and research experience in world-class universities 

and publications in top academic journals.  

 

The Department constantly strives to maintain its high level of research and 

teaching standards. It covers a wide range of economic studies in micro-and 

macroeconomic analysis, banking and finance, public and monetary economics, 

international and rural economics, labour economics, industrial organization and 

strategy, economics of the environment and natural resources, economic history 

and relevant quantitative tools of mathematics, statistics and econometrics.  

 

Its undergraduate program attracts high quality students who, after successful 

completion of their studies, have excellent prospects for employment in the 

private and public sector, including areas such as business, banking, finance and 

advisory services. Also, graduates of the program have solid foundations in 

economics and related tools and are regularly admitted to top graduate programs 

internationally. Three specializations are offered:1. Economic Theory and 

Policy, 2. Business Economics and Finance and 3. International and European 

Economics. The postgraduate programs of the Department (M.Sc and Ph.D) are 

highly regarded and attract a large number of quality candidates every year. 

 

For more information: 

 

https://www.dept.aueb.gr/en/econ/  

 
 
 


	Introduction
	A brief overview of the Gaussian Copula method in handling endogenous regressors
	Monte Carlo simulation
	Single regression MC results
	Multiple regression MC results

	Conclusion
	Derivation of the conditional expectation
	Simulation results for the Normal case

