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Abstract

This paper deals with properties of three indirect estimators that
are known to be (�rst order) asymptotically equivalent. Speci�cally, we
examine a) the issue of validity of Edgeworth expansions of arbitrary
order. b) Given a), we are concerned with valid moment approxima-
tions and employ them to characterize the second order bias and MSE
structure of the estimators. Our motivation resides on the fact that
one of the three is reported by the relevant literature to be second
order unbiased. We provide the analytical justi�cation and general-
ize the conditions under which this holds and prove the higher order
non-equivalence between the three estimators. We generalize by in-
troducing recursive indirect estimators, that emerge from multistep
optimization procedures. We provide conditions ensuring that these
are higher order unbiased and retain the MSE.
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1 Introduction
Indirect estimation is a set of inferential procedures, that employ a "misspec-
i�ed" auxiliary model for estimation of the parameters corresponding to the
unknown probability measure with which the underlying measure space is
equipped. The motivation is largely computational, hence the choice of the
auxiliary model is primarily driven by numerical cost considerations. Despite
this motivational characteristic, it enriches the theory of (semi-) parametric
statistical inference,1 since it relies on the existence and the invertibility of
functions between collections of probability measures de�ned on the same
�-algebra. These constitute the core notion upon which the estimators are
built, and are termed binding functions. The resulting estimators are de�ned
by the inversion of their parametric representations.
Apart from the initial articles introducing the indirect estimators under

consideration (Gallant and Tauchen [15], Gourieroux, Monfort, and Renault
[21], and Smith [39]), applications of these estimators have become increas-
ingly popular. They have been applied to stochastic volatility and equity
return models (e.g. Gallant et al. [13], Garcia et al. [16], Andersen et
al. [1], and Sentana et al. [37]), exchange rate models (e.g. Bansal et
al. [4], and Chung and Tauchen [9]), commodity price and storage models
(e.g. Michaelides and Ng [31]), dynamic panel data (e.g. Gourieroux et al.
[22]), stochastic di¤erential equation models (e.g. Gallant and Long [14] and
Gourieroux and Monfort [20]), and in ARMA models (e.g. Chumacero [8],
Ghysels et al. [17], Demos and Kyriakopoulou [11], and Phillips [34]).
This paper is concerned with the derivation of higher order asymptotic

properties of indirect estimators with a view towards their characterization
in terms of their approximate bias and mean squared error (MSE).

1.1 Definition of Estimators
In what follows, when A is a matrix kAk denotes a submultiplicative matrix
norm, such as the Frobenius one (i.e. kAk =

p
trA0A). O" (�) denotes

the open "-ball around � in a relevant metric space and O" (�) its closure.
We denote with PD (k;R) the vector space of positive de�nite matrices of
dimension k�k endowed with the topology of the Frobenius norm. Consider
the following real function from Rk � PD (k;R) for k 2 N

kxkA !
�
x=Ax

�1=2
:

1For the discussion of the computational aspect in a semiparametric framework, see
Dridi and Renault [12].

2



For a given matrix the previous function de�nes a norm on Rk. For s�; s 2 N�
with s� � s, let a� = s��1

2
and a = s�1

2
.

The notions employed in the paper essentially rely on the characteristics
of the statistical model at hand. The following assumption sets these up.

Assumption A.1 For a measurable space (
;F), the statistical model (SM)
is a family of probability distributions on F , that is absolutely continuous to
a dominating measure � and equipped with the topology of weak convergence,
with respect to which it is compact. There exists a homeomorphism par (�)
onto � � Rp for some p 2 N. The likelihood function is �-almost everywhere
(s� + 2) times di¤erentiable, when restricted to an open neighborhood of �0 =
par (P0) 2 Int (�), for P0 in SM.

All three indirect estimators, considered here, essentially involve two step
estimation procedures. In the �rst step, an estimating equation, that can be
associated with part of the structure of an auxiliary, possibly misspeci�ed
statistical model, is employed in order for the statistical information to be
summarized into an estimator with values in the auxiliary parameter space
termed as the auxiliary estimator. Under the appropriate conditions it will
converge to the binding function evaluated at the true parameter.
This motivates the second step. If the inversion of the function at this pa-

rameter value is single valued, and an approximation of the binding function
is available, an indirect estimator is de�ned as a measurable selection on the
set constructed from the inversion of this approximation at the auxiliary es-
timator. The auxiliary estimator is denoted in the paper by �n whereas �n is
the collective notation for the indirect ones. We also employ b (�) to denote
the binding function. Given b (�), di¤erences between indirect estimators
hinge on di¤erent approximations of the binding function.
The auxiliary estimator is de�ned as a minimizer of a criterion formed

as the norm of a measurable function with values on a �nite dimensional
Euclidean space. The following assumption enables the subsequent de�nition.

Assumption A.2 For B a compact subset of Rq, Qn : 
�B ! R is jointly
measurable. Moreover Qn is continuous on B for P�0�almost every ! 2 
.

We suppress the dependence of the random elements involved on 
, for
notational simplicity.

De�nition D.1 The auxiliary estimator is de�ned as

�n = argmin
�2B

Qn (�)
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Qn could be a likelihood function, a GMM or more generally, a distance
type criterion like the ones appearing in the following de�nitions (see also
section 4).

Assumption A.3 The binding function b : � ! B is injective and contin-
uous on �.

Given �n the indirect estimators are de�ned as minimum distance ones.
In our setup the relevant distances are represented by norms with respect to
positive de�nite matrices. As in the context of GMM estimation, we allow
these to be stochastic, and/or depend on initial estimators, say ��n. We term
this general framework as stochastic weighting.

Assumption A.4 W �
n : 
��! Rq and ��n : 
! B are jointly measurable.

The �rst indirect estimator considered here minimizes a distance func-
tion between the �n and b (�). It is termed GMR1 and it was proposed by
Gourieroux, Monfort and Renault [21] in order to relax the numerical burden
associated with the second estimator, de�ned below.

De�nition D.2 The GMR1 estimator is de�ned as

�n = argmin
�2�

k�n � b (�)kW �
n(�

�
n)

The second is termed GMR2 and it minimizes the previous distance be-
tween �n and E��n. First, due to assumptions A.1 and A.3 the following
lemma is trivially true.

Lemma 1.1 Under assumptions A.1 and A.3, kE��nk <1 on �.

Given the above lemma, it is possible to de�ne the GMR2 estimator as:

De�nition D.3 The GMR2 estimator is de�ned as

�n = argmin
�2�

k�n � E��nkW �
n(�

�
n)

In order to de�ne the third estimator, denoted by GT and proposed by
Gallant and Tauchen [15], we need the following assumption.

Assumption A.5 Let Qn be di¤erentiable on B for P��almost every ! 2 
.
We denote with cn the derivative of Qn except for the case where Qn =
kcn (�)kWn(�

�
n)
, where cn : 
 � B ! Rl, Wn : 
 � B ! PD (l;R), and

��n : 
 ! B are jointly measurable. Moreover cn is continuous on B for
P�0�almost every ! 2 
, cn (�) is P��integrable on � � B and E� (cn (�))
is continuous on ��B. Also W ��

n : 
��! Rl is jointly measurable.
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The GT estimator minimizes the norm of the expectation of the auxiliary
estimating vector. We denote by E� (cn (�n)), the quantity E� (cn (�)) j�=�n
for notational simplicity. Due to assumption A.5 we have that kE� (cn (�n))k <
1. Consequently, the following minimization procedure can be de�ned.

De�nition D.4 The GT estimator is de�ned as

�n = argmin
�2�

kE� (cn (�n))kW ��
n (��n)

The usual de�nition of the aforementioned estimator is given only when
the auxiliary estimator is the MLE of the auxiliary model. The current one
is obviously an extension. The existence issue for any of the aforementioned
estimators is resolved by assumption A.2 for �n, A.2, A.3, A.4 for the GMR1,
A.1, A.2, A.4 for the GMR2, and A.2, A.5 for the GT estimator (see also
footnote 4).2

The computation of all three estimators relies on the analytical form of the
binding function or the engaged expectations, which are usually intractable.
Due to this fact, in applications, approximations of these estimators are
de�ned, in which the unknown elements are approximated numerically. It
is easily seen that the simulation counterpart of the GMR2 estimator is the
one associated with the maximal numerical burden among the three.

1.2 Higher Order Properties and Motivation
Gourieroux, Renault and Touzi [23] show that the GMR2 estimator has zero
second order bias, when i) p = q and ii) the binding function is a¢ ne. Notice
that ii) is automatically satis�ed, when the auxiliary model coincides with
the SM and the binding function is approximated by a consistent estimator
of the auxiliary parameters. In this case the particular indirect estimator is
said to perform a bias correction of the �rst step one, a result which was
only derived in a formal (i.e. non topological) manner. First, we provide
this establishment in more general circumstances, and secondly, we de�ne
estimating procedures based on recursions of the GMR2 estimator, that are
characterized by higher order unbiaseness.
Furthermore, the question of whether the above is also true for the re-

maining two indirect estimators follows naturally. To our knowledge, the only

2When p = q = l and Qn (�) = kcn (�)k, cn (�) = hn � E�hn = hn � g (�) with
hn : 
 ! Rp, integrable on � and B, g (�) and m (�) = E�hn invertible, it is easy to
see that a) the GMR1 estimator is a GMM estimator and b) g is linear GMR1 = GMR2.
Notice that a) would be valid even if �n = r � g�1 �hn for r a bijection. Hence the GMR1
can be a GMM estimator even in cases that the auxiliary is an appropriate transformation
of a GMM estimator.
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result that could provide such a connection is Proposition 4.1 of Gourieroux
and Monfort [20], which is not generally true, except for cases where the
argmin operator commutes with integration. However, their result creates
the impression that all three estimators coincide and therefore provide an af-
�rmative answer to this question. By validating the expansions at any order
and deriving the second order expansion for them, we show that the previous
result does not apply in these cases. Hence we essentially derive their higher
order non-equivalence. We are also able to provide comparisons between the
MSE approximations of the estimators.
In section 2 we establish the validity of locally uniform Edgeworth approx-

imations for the examined estimators. We then provide additional assump-
tions that validate the �rst and second moment approximations and derive
the second order ones. In section 4 we generalize the estimation procedures
via multistep extensions of the GMR2 estimator that, under the scope of
section 3, have desirable higher order properties. In section 5 we present two
examples and engage into Monte Carlo experiments. We conclude in section
6. We gather all proofs in an appendix.

2 Validity of Edgeworth Approximations
In this section we expand the assumption framework presented above, in or-
der to facilitate the validation of Edgeworth approximations.3 We initially
assume analogous expansions for �n, and require di¤erentiability of the ran-
dom elements appearing in the de�nitions of �n in a neighborhood of �0.
Given these, we prove that the indirect estimators satisfy �rst order condi-
tions with uniform probability 1�o

�
n�a

��
. Then, a justi�ed use of the mean

value theorem implies o
�
n�a

��
asymptotic tightness of

p
n transformation of

the estimators. Third, a local polynomial approximation of the
p
n transfor-

mation is obtained by a Taylor expansion of the �rst order conditions and
then it is proven that the relevant remainder is bounded by an o

�
n�a

��
real

sequence with probability 1 � o
�
n�a

��
. Then, if valid, the

p
n transforma-

tion and the approximation have the same Edgeworth expansion. Finally,
the validity of the aforementioned approximation is established employing
an argument analogous to Skovgaard [38], i.e. a theorem of invariance of
validity of Edgeworth approximations with respect to sequences of smooth
transformations (see also Bhattacharya and Ghosh [5] in an iid framework,
when the transformation examined is independent of n).

3The Edgeworth distributions discussed in the sequel, are not necessarily the formal
ones. They comply with the general de�nition of Magdalinos [29] (see equations 3.7-8).
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This methodology has been applied in Andrews [2], Andrews and Lieber-
man [3], Hall and Horowitz [25], Götze and Hipp [18] and [19], Lieberman et
al. [27], and Robinson [35].

Assumptions Specific to the Validity of the Edgeworth Approximations

We denote with Dr, the r-derivative operator and with Dr (f (x0)) (x
r) the

rth-linear function de�ned by the evaluation ofDrf at x0 evaluated at (x; :::; x)| {z }
r times

.

Let M denote a universal positive constant, independent of n and �, not
necessarily taking the same value across and inside assumptions proofs and
results. pri;j (x) denotes the transformation of an r

th dimensional vector, say
x = (x1; x2; :::; xr)

0, to a vector containing only the elements of x from the
ith to the jth coordinate, i.e. pri;j (x) = (xi; xi+1; :::; xj)

0, where naturally
1 � i � j � r. Finally whenever the assertion "local" appears in the sequel
it implies "local to �0" unless otherwise speci�ed.4

Assumption A.6 �n is uniformly consistent for b (�) with rate o
�
n�a

��
,

i.e.
sup
�2�

P� (k�n � b (�)k > ") = o
�
n�a

��
;8" > 0:

Moreover ��n is uniformly consistent for � with rate o
�
n�a

��
.

Remark R.1 This assumption along with the boundeness of B enables the
uniform convergence of E��n to b (�), hence the establishment of the analo-
gous property for the GMR2 estimator. Given assumption A.2, assumption
A.6 can be justi�ed by

sup
�2�

P�

�
sup
�2B

kQn (�)�Q (�; �)k > "
�
= o

�
n�a

��
;8" > 0

where Q (�; �) is continuous on B and it is uniquely minimized on b (�) for
any �. When Qn = kcn (�)kWn(�

�
n)
as in assumption A.5, the latter would be

satis�ed if
kcn (�)� cn (�0)k � �n k� � �0k , for all �; �0

with sup��2� P�� (�n > M) = o
�
n�a

��
and

sup
��2�

P�� (kcn (�)� c (��; �)k > ") = o
�
n�a

��
;8" > 0

4Notice that due to the fact that the spaces � and B are separable and closed, suprema
of real random elements over these spaces are typically measurable (see van der Vaart
and Wellner [42], example 1.7.5 p. 47 due to the theorem of measurable projections,
completeness of the underlying probability space, the compactness of � and the continuity
of b).
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where c (�; �) is continuous on B and equals zero i� � = b (�), where c (�; �)
is continuous on B and equals zero i� � = b (�) for any �, Wn satis�es a
similar assumption to A.7 below and ��n satis�es the current assumption.
In this case it is obvious that ��n can be de�ned similarly to �n. Finally
when �n is in the form of an arithmetic mean the asymptotic boundness
with uniform probability 1 � o

�
n�a

��
can be obtained by conditions on the

asymptotic behavior of sup��2�E���
q
n where q is a function of a

� implied
by the form of dependence between the elements forming �n (consider for
example the Yokoyama-Doukhan inequality in the case of weak dependence-
see Andrews [2],7.3.3).

The following concerns the asymptotic behavior of the weighting matrices
involved in the indirect estimation.

Assumption A.7 For j = �; ��, suppose that there exists a sequence of
random elements xn : 
 ! Rm, such that W j

n (�) =
1
n

P
W j (xi (!) ; �) for

measurable W � : Rm��! PD (q;R), W �� : Rm��! PD (l;R) integrable
with respect to P��, such that a)

sup
��2�

P��
�W j

n (�)� E��W j (�)
 > "� = o �n�a�� ;8" > 0

E��W
j (�) is Lipschitz w.r.t. �, for any �� and for the analogous Lipschitz

coe¢ cient (say) �j (��) we have that sup��2� �
j (��) < +1. b) Moreover

W j (x; �) is s� + 1-di¤erentiable on O" (�0) and

sup
��2O"(�0)

P��

 
sup

�2O"(�0)

Ds�+1W j
n (�)

 > M! = o �n�a��
The �rst part of a) can be justi�ed by conditions on the asymptotic behav-

ior of sup�� E��
�
kW j

n (�)� E��W j (�)kq
�
. The second part can be justi�ed

by
sup
��2�

E�� sup
�2�

DW j (xi (!) ; �)
 < +1

Part b) can be justi�ed analogously.
Obviously when W j (x; �) is independent of x and � the above is trivially

satis�ed. Now, let f (x; �) denote the vector that contains stacked all the
distinct components of W � (x; �) and W �� (x; �) as well as their derivatives
up to the order s� + 1.
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Assumption A.8
p
nmn (�) has an Edgeworth expansion of order s� uni-

formly on O" (�0) where

mn (�) =

0@ �n � b (�)
��n � �

1
n

P
f (xi; �)� E� 1n

P
f (xi; �)

1A
or

mn (�) = �n � b (�)
when W � (x; �) and W �� (x; �) are independent of x and �.

Remark R.2 Lieberman et al. [3] and Andrews and Lieberman [3] provide
conditions that validate this assumption in the context of linear, Gaussian,
strongly dependent time series models, when b is the identity and �n is the
MLE or the Whittle MLE. In the context of weakly dependent time series
models, as described in Götze and Hipp [19] one can show that when the
random vector considered here is in the form of their Sn, i.e. as a scaled
sum, if their condition (2) still holds when the supremum with respect to
� 2 O" (�0) is considered, their (3)-(4) hold with constants independent of �
and inf�2O"(�0) kV ar� (Sn)k > 0, then the above assumption follows. This can
be proven if one �rst shows that the aforementioned conditions imply that the
conditions (2.2)-(2.6) of Götze and Hipp [18] hold with constants independent
of �, due to a generalization of lemma 2.1 of Götze and Hipp [19]. Second it
can be proven that lemma 3.33 and consequently 3.3, theorem 2.8 and corol-
lary 2.9 of Götze and Hipp [18] hold with constants and asymptotic bounds
independent of �, due to the fact that in this case lemma 5 of Sweeting [41]
provides a bound independent of �. Notice that the uniform version of condi-
tion (4) in Götze and Hipp [19] would follow if their conditions (2.3.i-ii) hold
with constants independent of � and if the in�mum of the determinant in their
condition (2.3.iii) is positive on a set of positive probability. If the previous
hold for Sn, and

p
nmn (�) = fn (�; Sn) + Rn (�), uniformly with probability

1�o
�
n�

s�
2

�
, with sup�2O"(�0) P� (kRn (�)k > �n) = o

�
n�

s�
2

�
, �n = o

�
n�

s�
2

�
independent of � and fn (�; Sn) satisfy conditions (3.1.I-II) in Skovgaard [38]
uniformly with respect to �, then again the assumption follows. This can
be proven by a slight generalization of lemma 4.6 in Skovgaard [38] with his

�n;s = O
�
n�

s�
2

�
.

Existence of Edgeworth Expansions for the GMR-type Estimators

In this paragraph we establish locally uniform Edgeworth expansions for
the GMR1 and GMR2 estimators. Without any direct reference to Qn we
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utilize additional assumptions concerning the behavior of the coe¢ cients in
the asymptotic polynomial approximations of the estimators by the elements
of the random vector in assumption A.8.

The GMR1 Case Here the local continuous di¤erentiability of b (�) is su¢ -
cient.

Assumption A.9 b (�) is s�+2 continuously di¤erentiable and rankDb (�) =
p, for all � in O" (�0).

In the special case considered in remark R.1 with q = l, the previous
assumption can be justi�ed when c (�; �) is s� + 3 times di¤erentiable on
O� ('0) where '0 = (�00; b0 (�0))

0, for � large enough and rank @c(�;b(�))
@�0 = q for

all � in O" (�0), via the use of the implicit function theorem.
The next lemma provides the results.

Lemma 2.1 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7a)
the GMR1 is uniformly consistent for � with rate o (n�a). ii) If additionally
assumptions A.7b), A.8 and A.9 hold then,

p
n (GMR1��) has an Edgeworth

expansion of order s� uniformly on O" (�0).

TheGMR2 Case The analogous to A.9 is the following.

Assumption A.10 sup�2O"(�0)
Ds�+2E��n

 < M .
Remark R.3 Assumption A.9 along with Assumption A.10 imply that for
r = 1; : : : ; s� + 2, sup�2O"(�0) kD

r (E��n � b (�))k < M , which in turn means
that Dr�1 (E��n � b (�)) are uniformly Lipschitz on O" (�0), and therefore
uniformly equicontinuous on the same ball. This implies the commutativity
of the limit, with respect to n and the derivative operator, uniformly over
O" (�0). This along with the second part of assumption A.9 and continuity
imply that rankDE��n = p, for all � in O" (�0) for n large enough. Due to
Assumption A.1, this assumption is veri�ed via conditions which enable the
use of dominated convergence, hence the commutativity of the integral and
the derivative, and then conditions of the form

lim sup
n

sup
�2O"(�0)

E�
pn (�n � b (�))2 < +1

lim sup
n

sup
�2O"(�0)

E�
pnln (�)2 < +1
10



where ln (�) depends on derivatives of the average likelihood function. For
example when r = 1 we have that ln (�) = sn (�), sn (�) being the average
score, and r = 2, ln (�) = sn (�) s0n (�) +Hn (�), with Hn (�) denoting the av-
erage Hessian. In the light of the results in section 3 the �rst condition holds
when s� � 3 in assumption A.8 and a locally uniform Edgeworth expansion
of order greater than or equal to 3 holds for the random vector containing the
elements of

p
nln (�).

Again, the next lemma provides the results.

Lemma 2.2 i) Under the assumptions A.1, A.2, A.3, A.4, A.6 and A.7a)
the GMR2 is uniformly consistent for � with rate o (n�a). ii) If additionally
assumptions A.7b), A.8, A.9 and A.10 hold then

p
n (GMR2��) has an

Edgeworth expansion of order s� uniformly on O" (�0).

The fact that the Edgeworth approximation of the auxiliary estimator is
locally uniform enables the possibility that the second part of the previous
lemma holds with the strength of assumption A.10 either diminished, or
eliminated in particular cases. We investigate such possibilities. We denote
with ki� (z; �) = z�i�1 (z; �) where �i�1 (z; �) is the polynomial in the density
of the Edgeworth distribution in assumption A.8 with coe¢ cient 1

n
i�1
2
, for

i = 1; : : : ; s�, and with I
V

�
ki� (z; �)

�
=
R
Rq ki� (z; �)'V (�) (z) dz where V (�)

is the asymptotic variance of
p
nmn (�) under P�. We make the following

assumption on the behavior of I
V

�
ki� (z; �)

�
for i = 1; : : : ; s.

Assumption A.11 I
V

�
ki� (z; �)

�
is s� + 2 continuously di¤erentiable for

i = 1; : : : ; s� and V (�) is continuous on O" (�0).

Employing assumption A.8, dominated convergence and the properties
of the density of the normal distribution it is easy to see that the contin-
uous di¤erentiability of the relevant order assumption on the I

V

�
ki� (z; �)

�
would follow from the same assumption on �i�1 (z; �) with respect to � in
the particular neighborhood of �0 for any z.
This assumption essentially enables the following polynomial approxima-

tions of E��n�n for special sequences �
�
n converging to �.

Lemma 2.3 If assumptions A.8, A.9 and A.11 hold for s� > s then for any
sequence ��n for which

sup
�2O"(�0)

P�

�p
n k��n � �k > M ln1=2 n

�
= o

�
n�a

��
11



we have that

sup
�2O"(�0)

P�
�pn �E��n�n � E��n�� An (�) > n� = o �n�a��

where

An (�) =
Ps

i=1

1

n
i�1
2 i!

Di

 
b (�) +

Xs�i

j=1

I
V

�
kj� (z; �)

�
n
j
2

!�p
n (��n � �)

i
�

n = o (n
�a) using the convention that when s� i = 0, then

Ps�i
j=1 is empty.

This lemma enables the derivation of an analogous result to the second
part of lemma 2.2 in the special case where p = q.

Lemma 2.4 Suppose that p = q and assumptions A.1, A.2, A.3, A.4, A.6,
A.7, A.8, A.9 and A.11 hold for s� > s. i) If sup�2O"(�0) kD

2E��nk < M

then
p
n (GMR2��) has an Edgeworth expansion of order s uniformly on

O" (�0). ii) if �n = b (GMR1) with probability 1 � o (n�a) uniformly on
O" (�0) and �n = EGMR2�n with probability 1� o (n�a) uniformly on O" (�0)
then

p
n (GMR2��) has an Edgeworth expansion of order s uniformly on

O" (�0).

Notice that the Edgeworth distributions validated in all cases of lemmas
2.2 and 2.4 need not coincide. However due to the triangle inequality the uni-
form with respect to on O" (�0), convex variational distance (see for example
Andrews [2]) between any pair of them must be o (n�a).

Existence of Edgeworth Expansion for theGT Estimator

We �rst consider a particular case which links the asymptotic behaviors of
the GMR1 and the GT estimators.

Lemma 2.5 Suppose that p = q = l, EGT (cn (�n)) = 0l with probability
1 � o

�
n�a

��
independent of � and E� (cn (�)) = 0l i� � = b (�). i) Under

the assumptions A.1, A.2, A.3, A.4, A.6 and A.7a) the GT is uniformly
consistent for � with rate o (n�a). ii) If additionally assumptions A.7b),
A.8 and A.9 hold then

p
n (GT��) has an Edgeworth expansion of order

s� uniformly on O" (�0). Moreover this expansion coincides with the one of
lemma 2.1.

In a more general case, due to the de�nition of the particular estimator,
we utilize the following two assumptions concerning the asymptotic behavior
of cn.

12



Assumption A.12 Let cn and �n be as in remark R.1 and such that sup� E��n <
+1 and

sup
��2�

lim sup
n
E�� kcn (�)k2 < +1, for all �:

Assumption A.13 For ' = (�0; �0)
0, '0 as before and � large enough for

O� ('0) � O" (�0) � O"0 (b (�0)), rank
�
limn!1

@E�cn(b(�))
@�0

�
= p on O" (�0),

sup'2O�('0)
Ds�+2E�cn (�)

 < M .
Lemma 2.6 i) Under the assumptions A.1, A.2, A.3, A.4, A.6, A.7a) and
A.12 the GT is uniformly consistent for � with rate o (n�a). ii) If additionally
assumptions A.7b), A.8 and A.13 hold then

p
n (GT��) has an Edgeworth

expansion of order s� uniformly on O" (�0).

We �nally note that locally uniform (around '0) expansions ofp
n (cn (�)� c (�; �)) of appropriate order could enable the result of the sec-

ond part of the previous lemma without the use of assumption A.13 in cir-
cumstances analogous to the ones described in lemma 2.4. We do not pursue
this kind of reasoning in order to economize on space.5

3 Validity of 1st and 2nd Moment Expansions
Having established the validity of Edgeworth expansions we are concerned
with the approximation of their �rst and second moment sequences with a
view towards the approximation of their bias-MSE comparisons. The ex-
pansions employed to derive the moment results, concern the so-called delta
method of approximations of moments of estimator sequences (see e.g. Lin-
ton [28] and McCullagh [30], Phillips [33], and Sargan [36]). We provide a
general lemma, which establishes that if the Edgeworth expansions involved
are of an appropriately large order then, the needed moment approximations
are provided by the analogous moments of the Edgeworth distributions.6

5Similarly to the GMR2 case, the Edgeworth distributions validated in lemmas 2.5 and
2.6 need not coincide. Again their distance must be of order o

�
n�a

��
.

6Notice that separate methodologies concerning moment approximations (as for exam-
ple the one in Koenker et al. [26]) are not general enough to cover our framework due to
the following reasons. First, the latter concern only moment approximations, i.e. does not
utilize the Edgeworth expansions, secondly, our auxiliary criterion is more general since
our auxiliary model need not be a linear one, and thirdly these methodologies cannot
provide analogous results for the GMR2 estimator.
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Lemma 3.1 Suppose that K is a m-linear real function on Rw, the support
of an Rw valued random element (say) �n is bounded by Opn� (0) for some
� > 0, and �n admits an Edgeworth expansion of order s

� = 2a+m+1 then����Z
Rq
K (zm)

�
dPn �

�
1 +

Xs

i=1

�i (z)

n
i
2

�
'V (z) dz

����� = o �n�a�
where Pn, and

�
1 +

Xs

i=1

�i(z)

n
i
2

�
'V (z) denote the distribution of �n and the

density of the analogous Edgeworth measure of order s = 2a+1 respectively.
Moreover if Pn depends on �, and �i (z) are continuous on O" (�0) for any z,
V is continuous on O" (�0) and the expansion is uniformly valid on O" (�0),
the approximation holds uniformly on O" (�0).

Due to the fact that we do not derive the Edgeworth approximations
described in the previous results, this lemma is not very practical for the
derivation of the approximations of moments of the indirect estimators. This
di¢ culty can be circumvented if additionally to the above we consider the
following. Suppose that we can invert the Taylor expansion of the �rst or-
der condition that with high probability satis�es each one of the estimators
considered. By similar arguments as in lemma 4.7 of Skovgaard [38] the dis-
tance between the integral of any multilinear function, with respect to the valid
Edgeworth distribution of the estimator under consideration, and the integral
of the same function evaluated at the inverted Taylor polynomial, with respect
to the Edgeworth distribution described in A.8 is of the required order.7 We
proceed on the derivation of the �rst and second moment approximations for
the estimators considered above when s = 2.
In the following we suppress the dependence on � and z where possible for

notational convenience. For the rest of this section we denote by b = b (�), b;j
is the jth element of b,W � = E�W

� (�),W �
j;j0 is the (j; j

0) element ofW �, and
analogously forW ��. Moreover, C = @b0

@�
W � @b

@�0 , ki� (z; �) = pr1;q (z)�i�1 (z; �),
ki�� (z; �) = prq+1;p+q (z)�i�1 (z; �), kiw� (z; �) is the matrix containing the
elements prp+q+1;q2 (z)�i�1 (z; �) and kiw� (z; �) is the matrix containing the
elements of prq2+1;2q2 (z)�i�1 (z; �) at the appropriate orders.

3.1 Valid 2nd order Bias approximation for the Indirect estimators
We are ready to provide the results for the second order bias approximation
of the indirect estimators. Notice that due to their form, the results in

7Lemma 3.1 is analytically derived since we are not acquainted with any reference to
similar results in the relevant literature. The extension of Lemma 4.7 of Skovgaard is only
sketched due to the fact that its proof is similar to the one of that lemma.
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Newey and Smith [32] imply that the bias will depend on the relation between
p; q; l, the non linearities of the relevant estimating vectors and the stochastic
weighting.

GMR1 Estimator We obtain the following lemma.

Lemma 3.2 Let �n denote the GMR1 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 and A.10 hold with s� � 3 then for any
� 2 O" (�0) E�pn (�n � �)� �1 (�)p

n

 = o�n� 1
2

�
where

�1 (�) = C�1
@b0

@�
W �IV

�
k2�
�
� C�1IV

 �
k01��

@2bj
@�@�0

�
j=1;:::;l

W � @b

@�0
C�1@b

0

@�
W �k1�

!

�1
2
C�1@b

0

@�
W �IV

 �
@b0

@�
k01�W

�C�1 @bj
@�@�0

C�1@b
0

@�
W �k1�

�
j=1;:::;q

!

�C�1IV

  
@b0

@�

1p
n
k1w� +

�
@

@�=
W �
j;j0k1��

�
j;j0=1;:::;l

!
@b

@�0
C�1@b

0

@�
W �k1�

!

If moreover assumption A.11 the previous holds uniformly over O" (�0).

The following corollary is trivial and it essentially assumes that the ran-
dom element in assumption A.8 is only

p
n (�n � b (�)).

Corollary 1 When W � is independent of x and � and b (�) is a¢ ne then

�1 (�) = C�1
@b0

@�
W �IV

�
k2�
�

Hence �1 is zero i� IV
�
k2�
�
is.

GMR2 Estimator We continue with the GMR2 case. The approximation
contains the term ��@b0

@�
W �IV

�
k2�
�
something that is not present in the

other two, a fact that is attributed to the existence of E��n in the de�nition
of the particular estimator.
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Lemma 3.3 Let �n denote the GMR2 estimator. If assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9, A.10 and A.11 hold for s� � 3 then
uniformly over O" (�0)E�pn (�n � �)� �2 (�)p

n

 = o�n� 1
2

�
where

�2 (�) = �1 (�)� C�1
@b0

@�
W �IV

�
k2�
�

The following corollary is trivial and establishes general conditions under
which the GMR2 estimator is second order unbiased.

Corollary 2 When W � is independent of x and � and b (�) is a¢ ne then
�2 (�) = 0p.

This result is already known for the case where p = q, �n is a consistent
estimator of �, whence the GMR2 obviously performs a second order bias
correction.8 Hence the previous generalizes the results in Gourieroux and
Monfort [20] and Gourieroux et al. [23].

GT Estimator We conclude the presentation of the expansions with the
last of the three estimators. We present �rst a straightforward case im-
plied by the previous results. Denoting with D = @b0

@�
@c(�;b)
@�0 W

�� (�) @c(�;b)
@�0

@b
@�0 ,

E = @b0

@�
@c(�;b)
@�0 W

�� (�), Hj=
@b0

@�

@2cj(�;b)

@�@�0
@b
@�0 �

h
@cj(�;b)

@�0
@2b

@�0@�r

i
r=1;:::;p

, J =k1w�� +h
@

@�=
W �� (�)j;j0 k1��

i
j;j0=1;:::;l

, J � =
�
@c(�;b)
@�0

@b
@�0D

�1E� Idl
�
@c(�;b)
@�0 and q1� =

D�1E @c(�;b)
@�0 k1� we obtain the following lemma.

Lemma 3.4 Using A.12 suppose that E�cn (�) = c (�; �). Furthermore let
A.1, A.2, A.3, A.4, A.6, A.7, A.8, A.13 hold for s� � 3, then uniformly on
O" (�0) E�pn (�n � �)� �3 (�)p

n

 = o�n� 1
2

�
8If in addition E��n is linear, then the estimator is totally unbiased (see Gourieroux

et al. [23]).
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where

�3 (�) = D�1E @c (�; b)
@�0

IV
�
k2�
�
+

1

2
p
n
D�1E

�
IV
�
k01�
@2cj (�; b)

@�@�0
k1�

��
j=1;:::;l

� 1p
n
D�1E

�
IV
�
q01�
@b0

@�

@2cj (�; b)

@�@�0
k1�

��
j=1;:::;l

+
1

2
p
n
D�1E

h
IV
�
q01�Hjq1�

�i
j=1;:::;l

+
1p
n
D�1IV

 �
q01�Hj � k01�

@b0

@�

@2cj (�; b)

@�@�0

�
j=1;:::;l

W �� (�)J �k1�

!

� 1p
n
D�1@b

0

@�

@c0 (�; b)

@�
IV
�
JJ �k1�

�
:

The following corollary proves that under the conditions in corollary 2
the GT estimator is not 2nd order unbiased as opposed to the GMR2 one.

Corollary 3 When W � is independent of x and � and b (�) is a¢ ne then

�3 (�) = D�1E @c (�; b)
@�0

IV
�
k2�
�
+

1

2
p
n
D�1E

�
IV
�
k01�
@2cj (�; b)

@�@�0
k1�

��
j=1;:::;l

+
1

2
p
n
D�1E

�
IV
�
q01�
@b0

@�

@2cj (�; b)

@�@�0

�
@b

@�0
q1� � 2k1�

���
j=1;:::;l

+
1p
n
D�1IV

 ��
q01� � k

0
1�

� @b0
@�

@2cj (�; b)

@�@�0

�
j=1;:::;l

W �� (�)J �k1�

!
Moreover, even under the scope of stochastic weighting, when p = q = l and
b (�) is a¢ ne, then �3 (�) =

�
@b
@�0

��1 IV �k2��.
An analogous result applies even when E�cn (�) = c (�; �) does not hold.

Under the assumptions in lemma 2.5 we have that the approximate biases of
GT and GMR1 are the same.

Lemma 3.5 Let �n be either GT or the GMR1 estimator. Under the as-
sumptions in lemma 2.5 and for s� � 3 we have that

�2 (�) = �3 (�) =

�
@b

@�0

��1
IV

24k2� � 12
(
k01�

�
@b0

@�

��1
@2bj

@�@�=

�
@b

@�0

��1
k1�

)
j=1;:::;l

35
Furthermore, under assumption A.11 the previous holds uniformly over O" (�0).

This essentially provides a counterexample concerning the hypothesis of
second order asymptotic equivalence between the three estimators.
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3.2 MSE 2nd order Approximations for the Indirect Estimators
Given the results of the previous subsection, establishing the conditions un-
der which only the GMR2 estimator is second order unbiased, the question
arising concerns the comparison between the analogousMSE approximations
between the three. Using these results we obtain the following lemmas.

Lemma 3.6 Let �n denote either the GMR1, or the GMR2 estimator. If
W � (x; �) is independent of x and �, b is a¢ ne and assumptions A.1, A.2,
A.3, A.4, A.6 and A.7, A.8, A.9 and A.11 hold for s� � 4 then,E� �n (�n � �) (�n � �)0��H1 (�)� H2 (�)p

n

 = o �n�1=2�
where

H1 (�) = C�1@b
0

@�
W �V (�)W � @b

@�0
C�1

H2 (�) = C�1@b
0

@�
W �IV

�
k2�k

0
1�

�
W � @b

@�0
C�1

This along with corollary 2 establishes the second order superiority of the
GMR2 estimator in the particular case. For the GT we obtain the following.

Lemma 3.7 Let �n denote the GT estimator. If W �� (x; �) is independent
of x and �, b is a¢ ne, E�cn (�) = c (�; �) and assumptions A.1, A.2, A.3,
A.4, A.6, A.7, A.8, and A.13 hold for s� � 4 then, uniformly on O" (�0)E� �n (�n � �) (�n � �)0��H1 (�)� H2 (�)p

n

 = o �n�1=2�
where

H1 (�) = D�1E @c (�; b)
@�0

V (�)
@c0 (�; b)

@�
E 0D�1

H2 (�) = D�1E @c (�; b)
@�0

IV
�
k2�k

0
1�

� @c0 (�; b)
@�

E 0D�1

Notice that even in the case of stochastic weighting, whenW � = @c(�;b)
@�0 W

��

then H1 (�) coincide for all three estimators. This is in accordance with the
conditions implying their �rst order equivalence (see for example chapter 4 of
Gourieroux and Monfort [20]). Moreover under the assumptions of both lem-
mas and if p = q = l then, H2 (�) coincide for all three estimators establishing
the superiority of the GMR2 estimator.
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4 Recursive GMR2
The previous section highlights the fact that the second order bias properties
of the GMR2 estimator depend among others on the local to �0 behavior of
the binding function. Due to assumption A.9, and theorem 10.2 of Spivak
[40] (p. 44) as p � q B can always be chosen so that the binding function

b is of the form
�

�
0q�p

�
at least in a small enough neighborhood of �0.

This along with non stochastic weighting and corollary 2 imply that there
always exists an auxiliary parametrization such that the GMR2 estimator is
second order unbiased. Usually, the reparametrization of the auxiliary model
is analytically intractable.
However there exists at least one indirect estimation procedure that can

be employed in order to approximate this "canonical" parameterization.
Given the GMR1, let �0n = (GMR10; 0q�p)and apply the GMR2 estimator
to the latter. Then the resulting indirect estimator is derived from a three-
step procedure, in the last step of which the binding function is obviously0@�1; �2; : : : ; �p; 0; : : : ; 0| {z }

q�p

1A0

. An extension of the three step procedure of the

previous remark to an arbitrary number of steps, where the ith-step auxiliary
estimator is the the GMR2 of the previous step embedded to Rq, can provide
an unbiased indirect estimator of arbitrary order when i is large enough. This
extension is the object of study of the present section. Obviously, the embed-
ding of the auxiliary estimator in any step after the �rst to Rq is irrelevant
and therefore will be dropped.
We de�ne recursive indirect estimation procedures as follows. Let �(0n

denote any estimator of �.

De�nition D.5 Let � 2 N, the recursive � � GMR2 estimator (denoted by
�(�n ) is de�ned in the following steps:

1. �(1n = argmin�
�(0n � E��(0n ,

2. for � > 1 �(�n = argmin�
�(��1n � E��(��1n

.
Using the results of the previous section, we are now able to prove the

following lemma.

Lemma 4.1 Suppose that assumptions A.6, A.8, A.11 hold for �(0n for s
� �

2�+3. Moreover suppose that lim supn sup�2O"(�0)E�
pnln (�)2 <1 where
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ln (�) contains the elements of sn (�) and sn (�) s0n (�) +Hn (�).Then the � �
GMR2 estimator is of order s = 2�+1 unbiased and has the same MSE with
the (� � 1)�GMR2, up to 2� order, uniformly on O" (�0).

Consider again the case where � = 1. Then 1�GMR2 is actually 3rd order
unbiased at �0 hence the previous results are essentially expanded under the
conditions of the lemma. Furthermore, the 1� GMR2 has the same second
order MSE as the 1�GMR2 one.
It is worth mentioning that the recursive GMR2 procedure is a gener-

alization of iterated bootstrap. To elaborate on this, consider the GMR1
estimator. Bootstrapping this estimator is equivalent to one� step GMR2
estimation (one� step in the spirit of Andrews [2]) onGMR1 (see Gourieroux
et al. [23] section 1.5). Bootstrapping the bootstrapped GMR1 is equiva-
lent to one� step GMR2 on one� step GMR2 on GMR1 etc. Consequently,
the iterated bootstrap estimator is a recursive one� step GMR2, on every
recursion.9 Let us now turn our attention to two examples.

5 Examples and Monte Carlo Experiments
In this section we present a set of examples concerning the further speci�ca-
tion of our assumption framework in statistical models and indirect estima-
tors.

5.1 The MA(1) Case
Let the statistical model in assumption A.1 be described by the set of sta-
tionary ergodic process de�ned by the recursion

yt = "t + �"t�1; "t
i:i:d:s D (0; 1) (1)

for some distribution D. For t 2 Z, � 2 � a compact subset of (�1; 1) with
�0 2 int�.
Consider now the auxiliary estimator �n =

Pn
t=1 ytyt�1Pn
t=1 y

2
t�1
, which can be also

interpreted as the OLSE or the conditional QMLE of an AR(1) auxiliary

model, over B = b (�) and b (�) = �
1+�2

. Notice that the GMR1 = 1�
p
1�4�2n
2�n

and coincides with the GT estimator. To evaluate the GMR2 estimator we
have to evaluate the E��n (see de�nition D.3).

9It is easy to see that analogous recursive GMR1 and/or GT type estimators would
simply coincide with �(0n .
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Applying now GMR2 on the GMR1 we get the 1�GMR2 (or equivalently
�(1n employing the notation of section 4). Again, its expected value must be
evaluated.

Proposition 4 If E"14i < 1 and if D (0; 1) is a smooth continuous den-
sity, then the �n, GMR1, GT, GMR2 and 1� GMR2 admit 5th order valid
Edgeworth expansions, uniformly over �.

Given the results of the above proposition and those in section 3, the 2nd

order �rst and second moment approximations are valid, for all estimators
(see lemma 3.1). Furthermore, since the binding function is not linear, neither
the GMR1 nor the GMR2 and the GT are 2nd order unbiased (see results in
section 3.1). However, the 1 � GMR2 is 3rd order unbiased by lemma 4.1.
Also lemmas 3.6 and 3.7 imply the second order superiority of 1 � GMR2
w.r.t. the GMR1, the GMR2 and the GT uniformly over �.10

Monte Carlo Experiment To evaluate the GMR2 estimator we need E��n (see
de�nition D.3) which is analytically intractable. We approximate this expec-
tation numerically, i.e.

E��n '

0B@ 1

H

HX
h=1

Pn
i=2 y

(h
i y

(h
i�1Pn

i=2

�
y
(h
i�1

�2
1CA ;

where H = 1600 and y(ht is given as in equation (1). The same applies for
E�GMR1 needed for the 1 � GMR2 estimator. In this respect we obtain
approximate GMR2 and 1 � GMR2 estimators. To assess the impact of
these numerical approximations on our results as well as the performance of
the resulting estimators for �nite n, we engage to the following Monte Carlo
experiment.
We draw a sample of n 2 f30; 50; 100; 250; 500; 750; 1000g observations

from a standard normal. For each random sample, we generate the MA(1)
process yt for � 2 f�0:5; 0:4g. We evaluate �n and if the estimate is in the
[�0:499999; 0:499999] interval we retain the sample, otherwise we throw it
away and draw another one. For each retained sample we evaluate the three
estimators, i.e. the GMR1, GMR2, and 1�GMR2. We perform 50000Monte
Carlo replications. To approximate E��n and E�GMR1 we chose H = 1600.

10Notice that the expansions of the �n and GMR1 estimators are available from the work
of Demos and Kyriakopoulou [11]. These formulae imply that both estimators, GMR1 and
GMR2, are biased, unless � = 0.
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In �gure 1 the absolute biases, multiplied by n, of all three estimators are
presented, for � = 0:4. According to the results of Demos and Kyriakopoulou
[11], for this value of �, we should have that n jE� (GMR1)� �j � 1:252 =
o (1), n jE� (GMR2)� �j�2:094 = o (1) and the 1�GMR2 estimator should
be 2nd order unbiased. It is obvious that, for � = 0:4, the theoretical results
are validated for n � 500. In terms of MSE s, in �gure 2, it seems again that
for n � 500 theMSE of all three estimators are close to their theoretical value,
which is 1:796. Consequently, the 1�GMR2 estimator appears second order
superior to the GMR1 and GMR2 ones. Similar results emerge for � = �0:5,
not presented here for reasons of economy of space.

5.2 The GARCH(1,1) Case
Let, again, the statistical model in assumption A.1 be described by the set
of stationary ergodic and covariance stationary processes de�ned by the re-
cursion

yt = zt
p
ht; ht = �1 (1� �2 � �3) +

�
�2z

2
t�1 + �3

�
ht�1 (2)

�1; �2; �3 > 0; �2 + �3 < 1; zt
i:i:d:s N (0; 1) ;

and � = (�1; �2; �3)
0 2 � a compact subset ofR++�[0; 1]2 such that sup�2�Eh140 (�) <

+1. Employing the Pantula reparameterization, the conditional variance
equation can be written as an ARMA(1; 1) process in y2t

y2t = �1 (1� �2 � �3) + (�2 + �3) y2t�1 + vt � �3vt�1; where vt = y
2
t � ht;

and vt is a martingale di¤erence sequence (see Bollerslev [6]).
Taking the ARMA(1; 1) representation as an auxiliary model, de�ne the

auxiliary estimator as:

�n =

�
y2; b�1; b�2b�1

�0
where y2 = 1

n

Pn
t=1 y

2
t , b�i is the ith order sample autocorrelation of the

squared y0s, i.e. b�i = Pn
t=i+1(y2t�y2)(y2t�i�y2)Pn

t=i+1(y2t�y2)
2 . It is easily seen that �n con-

verges in probability to

b (�) =

�
�1;
�2 (1� (�2 + �3) �3)
1� 2�2�3 � �23

; �2 + �3

�0
:

22



The GMR1 estimator is given by

�n =

0BBB@
y2

1�(br)2�q(1�(2c�1�br)2)(1�(br)2)
2(c�1�br)

�(1�2c�1br+(br)2)+q(1�(2c�1�br)2)(1�(br)2)
2(c�1�br)

1CCCA ;
where br = c�2c�1 and equals the GT. As in the previous example, the evaluation
of the GMR2 estimator needs the evaluation of the E��n (see de�nition D.3).
Now employing the GMR2 estimator, treating the GMR1 as an auxiliary

one, we get the 1 � GMR2 estimator. Again, the E� (GMR1) needs to be
evaluated.

Proposition 5 �n, GMR1, GT, GMR2 and 1�GMR2 admit 5th order valid
Edgeworth expansions, uniformly over �.

Given the results of the previous proposition and those in section 3 the 2nd

order �rst and second moment approximations are valid, for all estimators.
Furthermore, since the binding function is not linear, neither the GMR1 nor
the GMR2 nor the GT are 2nd order unbiased (see results in section 3.1).
However, the 1 � GMR2 is 3rd order unbiased and has the same second
order MSE with the other three (see lemma 4.1), due to lemmas 3.6, and 3.7
indicating the second order superiority of 1�GMR2 w.r.t. to GMR1, GMR2
and GT uniformly over ��.

Monte Carlo Experiment As we have already mentioned, we have to evaluate
E��n and E� (GMR1) which are analytically intractable. Consequently, we
approximate these expectations numerically, i.e. we approximate E��n by

E��n '
 
1

H

HX
h=1

y2
(h
;
1

H

HX
h=1

b�1(h; 1H
HX
h=1

b�2(hb�1(h
!0
;

where H = 60, b�i(h = Pn
t=i+1

��
y
(h
t

�2
�y2

���
y
(h
t�i

�2
�y2(h

�
Pn
t=i+1

��
y
(h
t

�2
�y2(h

�2 , y2
(h
= 1

n

Pn
t=1

�
y
(h
t

�2
and y(ht is as in equation (2), and similarly for the E� (GMR1). Again, we
perform the following Monte Carlo experiment to assess the impact of these
approximations on our results as well as the �nite sample behavior of the
resulting estimators.
However, notice that the analytic results of sections 3 and 4 cannot be

applied since there are no Edgeworth expansions� analytic results for the
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�rst step estimator �n. We generate, with n 2 f250, 500, 1000, 5000, 10000,
20000, 50000, 100000g, the GARCH (1; 1) model of equation (2), plus 250
observations to initialize the process. We choose (�1; �2; �3) = (1:0; 0:05; 0:7)
and perform 5000 Monte Carlo replications. Notice that under the following
conditions the �n estimator is always de�ned:

b�1; b�2 > 0; b�2b�1 < 1; and b�1 � b�2b�1 < 0:
In case that any of these conditions is not satis�ed the random drawing is
thrown away and we draw a new one.
In �gure 3 the norms of the biases of the three estimators, multiplied by

n, are presented. It is obvious that for this model the asymptotic results
are validated for large n. Notice that for any n the bias of the 1 � GMR2
estimator is almost zero. Furthermore, the norms of, the MSE s of the three
estimators are almost equal, for large sample values (see �gure 4). Hence
we can say that �rst, the results of this paper are validated, for the chosen
GARCH(1; 1) process, and second, that the approximations to the expecta-
tions are satisfactory. As in the previous example the 1 � GMR2 estimator
appears second order superior to the other three estimators.

6 Conclusions
Our results can be summarized as follows: we provide conditions that ensure
the validity of Edgeworth approximations for the three IE, of arbitrary order.
Notice that the conditions validate a fortiori the �rst order theory providing
a rigorous framework for the derivation of the GMR2 properties. Then, we
provide integrability conditions that validate moment approximations of the
aforementioned estimators. We derive the relevant 2nd order bias and MSE
approximations for the three IE under quite general conditions. These enable
di¤erences in the dimensions of the auxiliary estimating equations and/or the
parameter spaces employed, and consequently the possibility of stochastic
weighting in any of the steps of the estimation procedure. We con�rm that
under our assumption framework and in the special case of deterministic
weighting and a¢ nity of the binding function, the GMR2 estimator is second
order unbiased. This result can be easily generalized when the auxiliary
model is properly reparameterized. The GMR1 and GT estimators do not
have this property under the same conditions. Moreover the second order
approximations of the MSE in this case imply the superiority of the GMR2
estimators.
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Furthermore, by generalizing to multistep procedures we are able to pro-
vide recursive indirect estimators that are locally uniformly unbiased at any
given order when analogous conditions hold. However, the practical imple-
mentation of these seems numerically involved. Nevertheless, the construc-
tion of algorithms to implement these estimators, possibly employing results
in Andrews [2], could be the object of further research.
Possible further extensions are the following: First, the derivation of the

analogous approximations when the true parameter value and/or its image
w.r.t. the binding function lie at the boundary of the parameter spaces (see
Calzolari et al. [7]). This could also imply the �rst order asymptotic non-
equivalence between the three IE. Second, an application of the Edgeworth
approximations could lay in the derivation of higher order properties of in-
direct testing procedures. Third, the introduction of indirect estimators via
the actual use of the Edgeworth approximations for the auxiliary one. For
example, an indirect estimator could be de�ned by substituting E��n with
I'V (�)

�
k2�
�
in de�nition D.3. We leave all these questions for future work.
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Appendix-Proofs
Proof of Lemma 2.1. i). Assumptions A.6, A.7a) and the triangle
inequality imply that for any " > 0

sup
�2�

P� (kW �
n (�

�
n)� E�W � (�)k > ") = o

�
n�a

��
This along with assumption A.6 implies that for any " > 0

sup
��2�

P��

�
sup
�2�

���k�n � b (�)kW �
n(�

�
n)
� kb (��)� b (�)kE��W �(��)

��� > "� = o �n�a��
which in turn along with A.2 and A.3 implies the uniform consistency of
GMR1. ii). Given i), we have that GMR1 2 O"0 (�0) � O" (�0) with prob-
ability 1 � o

�
n�a

��
that is independent of �. Hence due to the mean value

theorem submultiplicativity and assumption A.9

sup
�2�

P�

�p
n kGMR1��k > M ln1=2 n

�
� sup

�2�
P�

�p
n k�n � b (�)k > M ln1=2 n

�
+ o

�
n�a

��
which is o

�
n�a

��
due to A.8 (see also the second part of the proof of lemma

3.1). Assumptions A.7b), and A.9 enable a Taylor expansion of order s�

around (�n � �;mn) of the f.o.c.�s that the estimator satis�es. Moreover
assumption A.7b) implies that DiW �

n (�) is asymptotically equi-Lipschitz on
O" (�0) with probability 1 � o

�
n�a

��
independent of �, for i = 0; : : : ; s.

Analogously assumption A.9 implies that Dib (�) is Lipschitz on O" (�0), for
i = 0; : : : ; s+1. These along with A.8 imply that the remainder (say) Rn (�)
satis�es

sup
�2O"(�0)

P� (Rn (�) > n) = o
�
n�a

��
with n = o

�
n�a

��
independent of �. Also due to A.9 an inversion of the

expansion implies that
p
n (�n � �) = fn

�p
nmn

�
+R�n (�)

where fn is polynomial with coe¢ cients satisfying the conditions (3.1.I-II) of
Skovgaard [38] uniformly on O" (�0). Hence a generalization of lemma 4.6 of
Skovgaard [38] implies that fn (

p
nmn) admits an Edgeworth expansion of

order s� uniformly on O" (�0). Due to the behavior of Rn (�) and A.7b), A.9

sup
�2O"(�0)

P� (R
�
n (�) > 

�
n) = o

�
n�a

��
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with �n = o
�
n�a

��
independent of �. Hence

p
n (�n � �) admits the same

Edgeworth expansion with fn (
p
nmn).

Proof of Lemma 2.2. i). The proof is almost identical to the proof of
2.1.i) except for the fact that A.6 along with A.2 imply that

sup
�2�

kE��n � b (�)k = o (1)

which in turn implies that for any " > 0

sup
��2�

P��

�
sup
�2�

���k�n � E��nkW �
n(�

�
n)
� kb (��)� b (�)kE��W �(��)

��� > "� = o �n�a��
ii). Notice that assumptions A.9, A.10 due to remark R.3 imply that for n
large enough rankE��n = p, for all � in O" (�0) and that DiE��n is equi-
Lipschitz on O" (�0) on O" (�0). The rest follow in an analogous manner to
the proof of 2.1.ii).
Proof of Lemma 2.3. We obtain that

sup
�2O"(�0)

P�
�pn �E��n�n � E�0�n�� An (�) > n�

� sup
�2O"(�0)

P�
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�2O"(�0)

p
n

E��n � b (�)�Ps
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1

n
i
2

IV (ki (�))
 > n
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!

+
Ps
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�
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i�1
2

kBn (�)k >
n
3s

�
+ sup
�2O"(�0)
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�p
n

b (��n)� b (�)�Ps
i=1

1

i!
Dib (�)

�
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i
� > n

3

�
+ o

�
n�

s��1
2

�
where

Bn (�) = IV (ki (��n))� IV (ki (�))�
Ps�i

j=1

1

i!
DjIV (ki (�))

�
(��n � �)

j
�

Now we have that

an =
p
n

E��n � b (�)�Ps
i=1

1

n
i
2

IV ki (�)
 = o �n�a�

independent of �, due to lemma 3.1 and similarly due to Taylor�s theorem
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�2O"(�0)
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�
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n
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which due to the continuity of Ds�i+1I'V (�) (ki) and the assumed behavior of
��n the latter bound is less than or equal to

sup
�2O"(�0)

P�

 
ln

s�i+1
2 n

n
s
2

sup�2O"(�0) kD
s�i+1IV (ki (�))k

(s� i+ 1)! >
n
3s

!
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��
and the displayed bound is zero when n � ln
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2 n

n
s
2

3s sup�2O"(�0)kDs�i+1IV (ki(�))k
(s�i+1)! .

Furthermore using the same reasoning as above
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the last probability is zero when n �

3 sup�2O"(�0)kDs+1b(�)k
(s+1)!
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s+1
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s
2
. Hence for
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; 6an;
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3s sup�2O"(�0)kDs�i+1IV (ki(�))k
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�
the result follows for large enough n.
Proof of Lemma 2.4. Notice that the uniform consistency and its sub-
sequences follow for the GMR1 and GMR2 due to the �rst parts of lemmas
2.1, 2.2. Then for i) we have that remark R.3 implies that for n large enough
rankE��n = p, for all � in O" (�0), hence �n = EGMR2�n. Then due to 2.1

sup
�2O"(�0)

P�

�p
n kGMR1��k > M ln1=2 n

�
= o

�
n�a

��
Hence with probability 1� o

�
n�a

��
independent of �, due to the mean value

theorem and A.9

kGMR1�GMR2k � M k�n � b (GMR2)k
� M (k�n � EGMR2�nk+ kEGMR2�n � b (GMR2)k)

and the �rst term in the last display is zero. Due to lemma 3.1 the second
term is O

�
1
n

�
. Hence

sup
�2O"(�0)

P�

�p
n kGMR2��k > M ln1=2 n

�
= o

�
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��
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Therefore due to lemmas 2.3, 3.1 we obtain that

sup
�2O"(�0)

P�
�pn (�n � EGMR2�n)� �n (�) > n� = o �n�a��

where n = o (n
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�
This along with A.9 implies the result as in the last part of the proof of
2.2. ii) follows the same way as i) except now k�n � EGMR2�nk is zero with
probability 1� o

�
n�a

��
independent of ��.

Proof of Lemma 2.5. It is easy to see that this special assumption implies
that GMR1 = GT with probability 1� o

�
n�a

��
independent of �. The rest

are trivial consequences of lemma 2.1.
Proof of Lemma 2.6. i). Assumptions A.6, A.7a) and the triangle
inequality imply that for any " > 0

sup
�2�

P� (kW ��
n (�

�
n)� E�W �� (�)k > ") = o

�
n�a

��
Assumption A.12 implies that

sup
�2�

kE�cn (�)� c (�; �)k = o (1)

and
kE�cn (�)� E�cn (�0)k �M k� � �0k , for all �; �0

which in turn along with A.6 imply that for all " > 0

sup
��2�

P�� (kE�cn (�n)� c (�; b (��))k > ") = o
�
n�a

��
which along with the asymptotic behavior of the weighting matrix imply that
for all " > 0

sup
��2�

P��
����kE�cn (�n)kW ��

n (��n)
� kc (�; b (��))kE��W ��(��)

��� > "� = o �n�a��
which along with A.12 and A.3 implies the uniform consistency of GT. ii).
The proof follows analogously to the proof of 2.1 by noting that assumption
A.13 implies that DiE�cn (�) is equi-Lipschitz on O� ('0), for i = 0; : : : ; s+1.
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Proof of Lemma 3.1. LetQn denote the measure with density
�
1 +

Xs

i=1

�i(z)

n
i
2

�
'V (z).

Since 2a + m + 1 > 2a + 1, we have that supA2BC jPn (A)�Qn (A)j =
O (n�a��), where � > 0. Hence
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Due to the hypothesis for the support of Pn
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As supA2BC n
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p
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lemma 2 of Magdalinos [29]. Finally na
R
RqnOc(lnn)� (0)

jK (xm)j jdQnj = o (1)
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due to Gradshteyn and Ryzhik [24] formula 8.357. For the uniform case �rst
notice that
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�2O"(�0)
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k�nk > M ln1=2 n

�
= o

�
n�a

��
This is due to the fact that the set

n
x 2 Rq : kxk �M ln1=2 n

o
has boundary

of Lebesgue measure zero and
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Z
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n
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���i �V 1=2 (��i ) z; ��i ����' (x) dx
where �max (�) denotes the maximum absolute eigenvalue of V 1=2 (�) and �

�
i 2

O" (�0) exist for all i = 1; : : : ; s� due to the continuity and are independent of
z due to the positivity and the fact that �i are polynomials in x, and �

� exists
due to continuity of V and the compactness of O" (�0). For M � s��max (��)
the result follows from lemma 2 of Magdalinos [29]. The rest follows in the
same spirit of the �rst part.
Proof of Lemma 3.2. The assumptions and lemma 3.1 ensure the va-
lidity of the mean approximation. Following the procedure described in the
paragraph immediately after lemma 3.1 we obtain that the relevant inversion
is
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Integrating with respect to
�
1 + �1(z;�)p

n

�
'V (�) (z), and noting that k1� (z; �) =

z, k2� (z; �) = z�1 (z; �) we obtain the result.
Proof of Lemma 3.3. Argue as in the proof of the previous lemma and
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use lemma 2.3 in order to obtain that the relevant inversion is given by
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Integrating the above w.r.t.
�
1 + �1(z;�)p

n

�
'V (�) (z) we get the result.

Proof of Lemma 3.5. It follows directly by lemmas 2.5 and 3.2.
Proof of Lemma 3.4. The assumptions and lemma 3.1 ensure the va-
lidity of the mean approximation. Following the procedure described in the
paragraph immediately after lemma 3.1 we obtain that the relevant inversion
is
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Integrating the above w.r.t.
�
1 + �1(z;�)p

n

�
'V (�) (z) we get the result.

Proof of Lemma 3.6. The assumptions and lemma 3.1 ensure the validity
of the second moment approximation. Following the procedure described
in the paragraph immediately after lemma 3.1 the result is obtained when
the outer products of the formulae in the proofs of lemmas 3.2 and 3.3 are
computed in the particular case and the results are integrated w.r.t. to�
1 + �1(z;�)p

n

�
'V (�) (z).

Proof of Lemma 3.7. The assumptions and lemma 3.1 ensure the validity
of the second moment approximation. Following the procedure described in
the paragraph immediately after lemma 3.1 the result is obtained when the
outer product of the formula in the proof of lemma 3.4 is computed and the
result is integrated w.r.t.

�
1 + �1(z;�)p

n

�
'V (�) (z).
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Proof of Lemma 4.1. First notice that in any step of the procedure
the binding function is the identity. Next the o

�
n�a

��
uniform consistency

of �(0n ensures the analogous for any step of the recursion. Then condition

lim supn sup�2O"(�0)E�
pnln (�)2 <1 ensures that sup�2O"(�0)

D2E��
(h
n

 <
M for any h = 0; : : : ; � and the same holds for condition A.11. These imply
that in any step of the recursion
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 �(hn � � > M ln1=2 np
n

!
= o
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n�a

��
and that accordingly admits a locally uniform Edgeworth expansion of order
s�. The proof for the moment approximations for the case h = 1 follows
easily. Using induction if these hold for some h, then notice that the Taylor
inversion approximating appropriately

p
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The result follows by integrating this and its exterior product with respect
to the Edgeworth distribution of

p
n
�
�(hn � �

�
that has density of the form�

1 +
P2s+2

i=1
�i(z;�)

ni=2

�
'V (�) (z) and by holding the relevant terms.

Proof of Proposition 4. Let s� = 5, y20 is observed and for t = 1; : : : ; n,

xt = (yt; ytyt�1) and c (xt; �) =
�

y2i�1 � �1
yiyi�1 � �2

�
.

We have that cn (�) =
�

1
n

P
i yiyi�1 � �1

1
n

P
i y
2
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�
and W � = Id2. Notice that
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�
ytyt�1
y2t�1

�
=

�
�

1 + �2

�
, B = b (�) compact and assumption

A.9. Now for E ("14i ) <1 assumption (2) of Götze and Hipp [19] is satis�ed
uniformly over �. Further, their assumption (3) is satis�ed, uniformly over
�, due to the 1 � Dependence of the MA(1) model. For the same reason
conditions (i) and (ii) of their lemma 2.3 are satis�ed, uniformly over �,
while for their condition (iii), the choice of l1 = 0 and l2 = 1 (in their
notation) implies that the relevant derivative equals a linear combination of
"�2, "�1, "0, "1 and "2, with coe¢ cients that are not zero for any choice
of � in �, and the condition follows due to independence. Consequently,
p
n

�
1
n

P
i yiyi�1 � �

1
n

P
i y
2
i�1 � 1� �2

�
has a 5th order Edgeworth expansion uniformly

over �.
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For the auxiliary estimator, �n =
Pn
t=1 ytyt�1Pn
t=1 y

2
t�1
, consider the function f (x; y) =

x
y
. All derivatives, up to 5th order, of f evaluated at x = � and y = 1 + �2

are of the form either �

(1+�2)
k or 1

(1+�2)
k . Hence, the derivatives of f (x; y)

satisfy assumption 3.1 I and II of Skovgaard [38], uniformly with respect
to � (see the second part of remark R.2). Assumption A.11 also follows
from di¤erentiability of E�yri , for r = 1; :::; 14, the di¤erentiability of f (x; y)

and dominated convergence. Consequently,
p
n
�
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1+�2

�
has a 5th order

Edgeworth expansion, uniformly over � implying also assumption A.6. This
implies that GMR1, and GMR2 are uniformly consistent with rate o (n�2).
Assumption A.9 applies for the function b (�) = �

1+�2
and therefore due to

lemma 2.1
p
n (GMR1��) has a 5th order Edgeworth expansion, uniformly

over �. This implies also that the 1 � GMR2 is uniformly consistent with
rate o (n�2). The same moment condition implies that

p
nln (�) (where ln (�)

as in lemma 4.1) has an Edgeworth expansion of third order uniformly over
� and therefore DE��n is non degenerate for all � for large enough n. Hence
due to lemma 2.4.i) GMR2 has a 5th order Edgeworth expansion, uniformly
over � which is also true for 1�GMR2 due to lemma 4.1.
Proof of Proposition 5. Proceed as in the proof of proposition 4 where
now y2�1 and y

2
0 are observed and for i = 1; : : : ; n, xi =

�
y2i ; y

2
i y
2
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2
i y
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1CCA.
The uniform versions of the Götze and Hipp conditions (see remark R.2) can
be veri�ed due to the moment condition employed and the weak-dependence
of the ARMA(1; 1) representation of the model. Hence

p
n (��n � �� (�)) ad-

mits a �fth order Edgeworth expansion uniformly over �. Considering the

auxiliary estimator �n =
�
��1n ;

��3n
��2n
;
��4n
��2n

�0
proceed analogously to the proof

of the previous proposition using properties of f (x; y; z; w) =
�
x; z

y
; w
y

�0
to

obtain the needed results.
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Figures

The MA(1) Case, � = 0:4.

Figure 1: n�
���dBias���. Figure 2: n�[MSE.

The GARCH (1; 1) Case, (�1; �2; �3) = (1:0; 0:05; 0:7).

Figure 3: n�
dBias. Figure 4: n�

[MSE.
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