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Abstract

In this paper we establish the de�nition of IE and their strong
consistency, when the binding function is a compact valued corre-
spondence under mild conditions. These results are generalizations of
the analogous results in the relevant literature, hence permit a broader
scope of statistical models. We provide some examples that concern
linear models with weak instruments, and conditionally heteroskedas-
tic ones.
KEYWORDS: Indirect estimator, lower semicontinuous function,

random set, normal integrand, measurable selection, upper topology,
Fell topology, epi convergence, binding correspondence, indirect iden-
ti�cation, weak instuments, conditional heteroskedasticity.

1 Introduction
The set of indirect estimators (henceforth IE) is a subset of the set of M-
estimators de�ned in the context of (semi-) parametric statistical models,
associated with the requirement that their derivation involves strictly more
than one optimization procedures. They are minimizers of criteria (inver-
sion criterion) that are functions of an auxiliary estimator, itself derived as
an extremum estimator. The latter minimizes a criterion function (auxil-
iary criterion) that partially re�ects the structure of a possibly misspeci�ed
auxiliary statistical model. The inversion criterion depends on the auxiliary
estimator, as well as on a function de�ned on the parameter space of the
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statistical model that "approximates" properties of the aforementioned esti-
mator. The latter is usually termed binding function. Minimization of the
inversion criterion, which usually has the form of a stochastic norm, essen-
tially inverts the binding function thereby obtaining the indirect estimator.1

In the present paper, we are concerned with the issue of the existence and
strong consistency of an IE, under more general conditions than the usual
ones employed for analogous establishments in the econometric literature.
More speci�cally, we are occupied with the particular question without ne-
cessitating the uniform almost sure convergence on compacta of the auxiliary
criterion to a real valued function that possesses a unique minimizer.
Our generalization is thus threefold. First, using mild assumptions on

the structure of the aforementioned criterion functions, we are occupied with
weaker notions of convergence of the relevant sequences of criterion func-
tions, that essentially concern the almost sure asymptotic behavior of their
epigraphs and are suitable for the study of the asymptotic behavior of their
minimizers.
Secondly, we allow for the analogous limit functions to have values on

the extended real line. This also generalizes the set of the statistical models
that are in accordance with these conventions, hence the analogous set of
estimators under this scope.
Finally, we allow for the set of minimizers of the relevant limit functions

to be generally non empty and compact valued and therefore, we are con-
cerned with the issue of the de�nition and the asymptotic behavior of indirect
estimation procedures, when the aforementioned binding function is actually
a compact valued correspondence. This is essentially the representation of
a function de�ned on the parameter space of the statistical model at hand,
with values on the hyperspace of the compact subsets of the parameter space
of the auxiliary model.
It can be perceived that all the above are generalizations of the analogous

results residing in the relevant literature which in fact is quite limited. For
the sake of completeness we notice that indirect inference algorithms were
initially employed in [14], formally introduced by [5], complemented by [6]
and extended by [4].
The structure of the paper is as follows. We �rst describe brie�y some

general notions that are essentially used in the sequel and formulate our
general set up. We then de�ne and study the asymptotic behavior of the
auxiliary estimator, the binding correspondence and �nally of the IE. No-

1The set of IE can be enlarged when the binding function itself, in the inversion cri-
terion, is approximated in some relevant sense by a possibly random function de�ned on
the parameter space of the statistical model.
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tice that notions concerning the asymptotic behavior of random sets that
emerge as the argmin correspondences of random semicontinuous functions
are brie�y described locally. We conclude with some examples and pose some
questions for future research.

2 General Notions, Assumptions and Main results

2.1 Some General Notions
Fell and Upper Topology

Let (E; �E) denote a general topological space. We identify the space with
E when there is no risk of confusion. We denote with F (E) the set of closed
subsets of E, when endowed with the Fell topology which is de�ned by the
use of the following subbase.

De�nition D.1 F (E) is generated by the subbase consisting of

1. FG = fz closed : z \G 6= ?g, 8G 2 �E, and

2. FK = fz closed : z \K = ?g, 8K � E and compact.

Due to Theorem B.6 of [9] we have that when E is locally compact, zn !
z with respect to the Fell topology i¤ z = lim infnzn = lim supnzn, where
lim infnzn is the set comprised of the limit points of any possible xn 2 zn,
and lim supnzn is the one comprised of the analogous cluster points. Hence,
in this case this type of convergence coincides with the Painleve-Kuratowski
convergence (see among others, Appendix B of [9]). Moreover if E is locally
compact and Hausdor¤ (LCHS), the Fell topology is metrizable.
When the subbasic sets are restricted we obtain another useful topology

on the set of closed sets.

De�nition D.2 The upper topology U (E) is generated by the subbase con-
sisting of

FG = fz closed : z \G 6= ?g ;8G 2 �E

The upper topology is extremely useful for the analysis of the asymptotic
behavior of sequences of sets of minimizers.

Remark R.1 When E is compact U� (E) = U (E)�f?g is hemimetrizable
due to Proposition 4.2.2 of [13].

3



Epigraphs of Semicontinuous Functions and Epiconvergence

We consider now the case that E is LCHS, we let R denote the two point com-
pacti�cation of R, equipped with the �nal topology that makes the relevant
inclusion continuous, i.e. the extended real line, and c : E ! R.

De�nition D.3 The epigraph of c is

epi (c) = f(x; t) 2 E � R : c (t) � tg

We note that, despite the fact that the image of c may include non real
numbers, epi (c) is by de�nition a subset of E�R. If c is lower semicontinuous
(lsc) we have that due to Proposition A.2 of [9], epi (c) 2 F (E � R) with
respect to the obvious product topology. Hence any relevant lsc function can
be identi�ed with its epigraph, which in turn lies in a space endowed with
Fell topology, which in turn implies a notion of convergence.

De�nition D.4 A sequence fcngn of lsc functions epiconverges to c (cn
e!

c) i¤ epi (cn)! epi (c) with respect to the Fell topology.

A sequential characterization of epiconvergence that is described in Propo-
sition 3.2 of [9] dictates that the notion is equivalent to that, 8x 2 E:

1. lim infn!1 cn (xn) � c (x) for any sequence such that xn ! x and

2. lim supn!1 cn (xn) � c (x) for at least one sequence such that xn ! x.

It is also true that the epi-limit function is also lsc. The notion of epi-
convergence is particularly suitable for the description of the asymptotic
behavior of the set of minimizers of sequences of lsc functions. Theorem 3.4
of [9] dictates that if cn

e! c then lim supn!1 argminx2E cn � argminx2E c
and hence, argminx2E is U (E) continuous as a function on the space of
lower semicontinuous functions equipped with the topology of epiconver-
gence. This result can be easily extended to near minimizers using Theorem
7.31.b of [7]. If fcngn and c are co�nitely proper, i.e. they do not assume the
value �1 while they are not constant on +1 and co�nitely inf-compact,
i.e. their level sets are compact, then the corresponding sets of minimizing
point are non-empty and compact, i.e. belong to the space K (E) comprised
of the non empty compact subsets of E with the subspace Fell topology.
Inf-compactness follows readily in the case that E is itself compact.

4



Closed and Compact Valued Correspondences-Random Closed Sets

A closed valued correspondence is by de�nition a representation of an un-
derlying function c from a set 
 to F (E) (i.e. a closed valued multifunc-
tion), when this is considered as a relation in X � E. A correspondence is
usually abbreviated as cor :X � E, while the bene�t of not directly con-
sidering the underlying function, is the fact that we can consider the graph
of cor as the set f(!; x) : x 2 c (!)g with values in 
 � E instead of the
set f(!;z) : z = c (!)g with values in 
 � F (E). When c (!) is compact
on 
, then the correspondence in obviously termed as compact valued. In
this sense, epi (cn) de�ned in the previous paragraph, can be identi�ed by a
closed valued correspondence that is compact valued when inf-compactness
holds. In the following we do not make explicit distinction between the cor-
respondence and the underlying multifunction.
Since F (E) is actually a topological space (usually termed as a hyper-

space), it also de�nes a Borel algebra which we abbreviate by B (F ) and is
usually termed as E¤ron algebra. If (
;J ) is a measurable space, then c is
a random closed i¤ f! 2 
 : c (!) 2 zg 2 J for any z 2 B (F ).

2.2 Assumptions and Main results
General Assumptions and the Structure of the Statistical Problem

We are now ready to state our framework and describe the underlying statis-
tical problem. Let the triad (
;J ; P ) denote a complete probability space.
Let also (�; d�) and (B; dB) denote two separable compact metric spaces,
and the relevant metric topologies by �� and �B analogously. Let B (�),
B (B) denote the corresponding Borel algebras respectively, and denote with
B (R) and B

�
R
�
the Borel algebras of the real and the extended real num-

bers with respect to the usual topologies analogously. Consider a sequence
of functions cn (!; �; �) : 
 � � � B ! R. For a sequence of functions
yn : 
 � � ! Kn, where Kn is a topological space; cn could be de�ned as
qn (yn; �) where qn : Kn�B ! R. We abbreviate with P a.s. any statement
that concerns elements of J of unit probability.

Assumption A.1 Let the following hold:

1. cn is B (R) =J 
 B (�)
B (�) measurable.

2. cn (!; �; �) : B ! R is lower semicontinuous and proper P a.s., 8� 2 �.

Remark R.2 By assumption A.1.2 argminB cn (!; �; �) is non empty and
compact due to theorem 1.9 of [7] 8n, 8� 2 �, cn (!; �; �) P a.s. due to the
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fact that cn is inf-compact P a.s. 8� 2 �. This follows from the fact that
B is compact Hausdor¤. 8n, 8� 2 �, cn (!; �; �) is usually termed as the
auxiliary criterion.

Consider the family of �-parametrized correspondences
epin (!; �) + epi (cn (!; �; �)). Due to the fact that B is locally compact,
epin (!; �) is a random closed set in the sense of the previous paragraph,
i.e. a B (F (B)) =J 
 B (�)-measurable correspondence. Hence epin (!; �) is
an B (F (B)) =J -measurable correspondence due to the measurability of the
relevant projection. Using the metrizability of the relevant Fell topology, we
denote a corresponding metric be denoted by DF (B) and the open ball of
center epin (!; �) and radius " > 0 by BDF (B) (epin (!; �) ; ").

Remark R.3 qn can be implied by some part of the structure of an auxiliary
model, which in turn is a statistical model de�ned on the same measurable
space, with B as its parameter space. It could be a reparametrization of the
underlying statistical model.

De�nition D.5 Let �0 be an arbitrary element of �. The statistical problem
in question concerns the existence of strongly consistent indirect estimators
of �0 from cn (!; �0; �).

Auxiliary Estimator

We are now ready to de�ne and explore properties of the auxiliary estimator.

De�nition D.6 For a non negative random variable "n, the auxiliary cor-
respondence �#n (!; �; "n) is de�ned as

�#n (!; �; "n) =
n
� 2 B : cn (!; �; �) � inf

B
cn (!; �; �) + "n

o
Lemma 2.1 �#n (!; �; "n) is B (F (B)) =J 
 B (�)-measurable, hence B (F (B)) =J -
measurable 8� 2 �, and P a.s. non empty-compact valued 8� 2 �.

Proof. First �#n (!; �; "n) is non empty due to A.1. Second, from separabil-
ity of B and the joint measurability of cn due to assumption A.1, the result
follows from Proposition 3.10.(i) of [9] which itself applies due to the fact that
infB cn (!; �) is a random variable due to separability of B and the joint mea-
surability of cn, and Proposition 3.10.(i)) that guarantees compactness and
measurability for a = infB cn (!; �) in the �rst case and a = infB cn (!; �)+"n
in the second. Pointwise measurability then follows.
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Remark R.4 �#n (!; �; 0) = argminB cn (!; �; �) P a.s.

Lemma 2.2 There exists a B (B) =J 
 B (�)-measurable, 8� 2 �, random
element �n ("n) : 
��! R termed as auxiliary selection, de�ned as

cn (!; �n ("n) (!; �)) � inf
B
cn (!; �; �) + "n

Proof. The result follows from lemma 2.1 and the fundamental selection
theorem (Theorem 2.13 of [9]).

Epi-Limit Objective and Characterization

The following assumption facilitates the aforementioned asymptotic concern.

Assumption A.2 There exists a function c : �� B ! R with the relevant
epigraph correspondence denoted as epi (�) = epi (c (�; �)) such that

1. 8� 2 �, cn
e! c P a.s.,

2. c (�; �) is proper 8� 2 �, and

3. � ! c (�; �) is epicontinuous on � which means that is a continuous
mapping on � into the space of lower semicontinuous real functions
equipped with the Fell topology, i.e. it satis�es that 8� 2 �, 8�n ! �,
8� 2 B

(a) 8�n ! �, lim infn!1 c (�n; �n) � c (�; �) and
(b) 9�n ! �, such that lim supn!1 c (�n; �n) � c (�; �).

Remark R.5 8� 2 �, c (�; �) : B ! R is lower semicontinuous due to
the fact that epiconvergence preserves this type of continuity (see proposition
7.4.a of [7]). In the case that cn is ergodic and in the form of an average then
the assumed epiconvergence would follow from pointwise convergence and a
condition of the form �1 < E (infB cn (!; �; �)) < 1 (see [8]). Properness
is actually an ad hoc consideration (see, for example, in [15] Part 1, (ii) in
association with Part 2 of the proof of Theorem 5.3.1, where cn is a quasi
likelihood function and � coincides with B. Inf-compactness follows from the
compactness of �.

Remark R.6 Notice that for the � ! c (�; �) continuity, only sequences and
not generally nets on � and B are considered, due to the fact that both of
these spaces are �rst countable. The required continuity can then be obtained
from conditions that guarantee:
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1. The almost everywhere continuity of � ! cn (!; �; �) which in turn
would follow from A.2.3.a-b applied to cn almost everywhere for any n,
which is equivalent to the almost everywhere continuity of
DF (B) (epin (!; �) ; epin (!; �0)) for any �; �0 2 �. If supB jcnj < 1
P a.s., for any �, and due to the fact that the Fell topology is weaker
than the topology of uniform convergence (see [7] Theorem 7.14), the
aforementioned almost everywhere continuity would follow from the al-
most everywhere continuity of supB jcn (!; �; �)� cn (!; �0; �)j, for any
�; �0 2 �.

2. Given (1), it is then su¢ cient that sup�2�DF (B) (epin (!; �) ; epi (�))
converges almost surely to zero due to corollary 46.6 of [10], which in
turn applies due to the metrizability of the Fell topology from the local
compactness of B, and the local compactness of �. In the case that
sup��B jcnj < 1 P a.s., and due to the fact that the Fell topology
is weaker than the topology of uniform convergence (see [7] Theorem
7.14), the aforementioned continuity would follow if
sup�2� sup�2B jcn (!; �; �)� c (�; �)j converges P a.s. to zero.

Corollary 2.3 If assumption A.2.1-3 is valid then

1. The correspondence b (�) = argminB c (�; �) is non empty-compact val-
ued 8� 2 � and,

2. b (�) is U (B) =��-continuous.

Proof. Non emptiness and compact valuedness follows from R.5. Now, due
to A.2.2 � ! c (�; �) is a continuous mapping from � to the space of lower
semicontinuous functions equipped with the Fell topology due to A.2.2, and
the argminB correspondence is TU=TF -continuous at c on � (see equation 3.1
of Theorem 5.3.4 and proposition Appendix.D.2 of [9]). The result follows
from b (�) = argminB �c (�; �).

Remark R.7 If b (�0) is single valued, then from the previous corollary fol-
lows that lim sup�!�0 b (�) = fb (�0)g since B is compact.

Upper Pseudo-Consistency of the Auxiliary Correspondence

We translate the almost sure asymptotic inclusion of the set of cluster points
of the auxiliary correspondence at �0 to b (�0), to the asymptotic behavior of
the sequence of auxiliary selections. We �rst make the following assumption
that concerns the almost sure convergence of optimization "error" to zero.
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Assumption A.3 "n (!) converges to zero P a.s.

In the following result we utilize the concept of the distance of a point
from a closed set in a metric space, that is de�ned as the in�mum between
the distances of every point in the set from the particular one. Notice
that this in�mum is measurable due to the fact that B is separable, and
that separability is a hereditary property. In this case we use the notation
dB (c; A) + infc02A d (c; c0) where c 2 B and A 2 F (B). Notice that due to
the fact that A is closed, then dB (c; A) = 0 if and only if c 2 A. A natural
convention dictates that dB (c;?) =1.

Lemma 2.4 If assumptions A.2 and 2.4 are valid then

dB (�n ("n) (!; �0) ; b (�0))! 0 P a.s.

Proof. Due to A.3, A.2 and Theorem 7.31.b of [7], we have that
lim supn!1 �

#
n (!; �0; "n) � b (�0), and lim supn!1 �

#
n (!; �0; "n) 6= ?, due

to compactness.2 P a.s.

Remark R.8 In case that b (�0) is a singleton from lemma 2.4 we have that
lim supn!1 �n (!; �0; "n) = fb (�0)g P a.s. due to compactness of B..

Definition, Existence and Consistency of the Indirect Estimator

We are now ready to de�ne the indirect estimator (IE) and explore the issues
of its existence and consistency. Lemma 2.4 allows us concentrate on prop-
erties of the real function on 
� �, dB (�n ("n) (!; �0) ; b (�)) which enables
the following de�nition.

De�nition D.7 Let "�n be a non negative random variable, the indirect esti-
mator �n ("�n) (!) is de�ned by

dB (�n ("n) (!; �0) ; b (�n ("
�
n) (!))) � inf

�
dB (�n ("n) (!; �0) ; b (�)) + "

�
n

We denote a generic auxiliary almost surely convergent subsequence at
�0 as

n
�nj

�
"nj
�
(!; �0) ; b (�0)

o
and its almost sure limit by bj (�0). It is

obvious that dB (bj (�0) ; b (�0)) = 0, and by strengthening this property we
will be provided with an asymptotic identi�cation condition for �0. We also
denote the set of almost sure cluster points of the sequence of auxiliary
correspondences at �0 by b# (�0). We are initially concerned with the question
of existence of the IE.
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Lemma 2.5 If lemma 2.4 is valid then �n (!) is B (F (�)) =J -measurable
almost surely non empty, compact valued correspondence.

Proof. First, notice that inf� dB (�n ("n) (!; �0) ; b (�)) is P a.s. bounded
from below by zero, while the function is almost surely proper with domain �
hence inf� dB (�n ("n) (!; �0) ; b (�)) < 1 P a.s. Secondly,
dB (�n ("n) (!; �0) ; b (�)) = sup�2�n("n)(!;�0) inf�02b(�) dB (�; �

0), and
sup�2A infB dB (�; �

0) hemi-metrizes the upper topology U� (B) and is there-
fore jointly semicontinuous. Hence, due to corollary 2.3.2 dB (�n ("n) (!; �0) ; b (�))
is P a.s.almost surely continuous and therefore P a.s. almost surely lower
semi-continuous. Analogously due to lemma 2.2, dB (�n ("n) (�; �0) ; b (�)) is
measurable for any � 2 � and therefore it is a Caratheodory function. Due
to the separability of � and Lemma 4.51 of [1], it is jointly measurable and
therefore a normal integrand. Due to the compactness of � and the P a.s.
lsc property it is P a.s. inf-compact. Hence the correspondence

�#n (!; "
�
n) +

�
� 2 � : dB (�n ("n) (!; �0) ; b (�n ("�n) (!)))
� inf� dB (�n ("n) (!; �0) ; b (�)) + "�n

�
is B (F (�)) =J -measurable, and almost surely non empty-compact valued
8� 2 � due to Proposition 3.10.(i) of [9]. The result follows from the funda-
mental selection theorem (Theorem 2.13 of [9]).
Having established the existence of the IE, we turn to the issue of consis-

tency. We need the following assumption that facilitates the investigation of
the issue of the strong consistency of the particular estimator sequence.

Assumption A.4 If � 6= �0 ) b# (�0) \ b (�) = ?.

Remark R.9 This assertion follows if � 6= �0 ) b (�) \ b (�0) = ? due to
the fact that b# (�0) � b (�0). In the case that the binding correspondence is
single valued, this reduces to � 6= �0 ) b (�) 6= b (�0).

The main result of the current section follows after the introduction of
the following assumption which is directly analogous to A.3.2.

Assumption A.5 "�n (!) converges to zero P a.s.

Lemma 2.6 If lemmas 2.4, 2.5, and assumptions A.4- A.5 are valid, then
�n ("

�
n) (!) converges �0 P a.s.

Proof. Notice �rst that dB
�
�nj

�
"nj
�
(!; �0) ; b (�)

�
, and dB (bj (�0) ; b (�))

are P a.s. well de�ned continuous functions of � due to the compactness of
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�, the continuity of the hemimetric and the upper continuity of the binding
correspondence by corollary 2.3. Then we have that

sup
�2�

���dB ��nj �"nj� (!; �0) ; b (�)�� dB (bj (�0) ; b (�))���
� dB

�
�nj

�
"nj
�
(!; �0) ; bj (�0)

�
+ dB (b (�) ; b (�))

due to [13], exercise 4.7.3 and the fact that in the notation of the particular
reference �u (A;B) = �l (B;A), where now

dB (b (�
�) ; b (�)) = �u (b (�

�) ; b (�)) + sup
�2b(��)

inf
�02b(�)

d (�; �0)

Since dB
�
�nj

�
"nj
�
(!; �0) ; bj (�0)

�
converges by construction P a.s. to zero,

and dB (b (�) ; b (�)) = 0 we have that dB
�
�nj

�
"nj
�
(!; �0) ; b

�
��nj

��
con-

verges uniformly over �, P a.s. to dB (bj (�0) ; b (�)). From assumption
A.4 the latter is uniquely minimized in �0, since dB (bj (�0) ; b (�)) = 0 i¤
bj (�0) 2 b (�) from to the fact that b (�) is closed for any � due to corollary
2.3 and this is true i¤ � = �0 due to identi�cation. The result follows.

3 Examples
In this section we consider a set of examples that represent the previous
results in speci�c statistical models. We begin with a semi-parametric linear
model which contains a set of weak instruments, and continue with a pair of
examples that involve conditionally heteroskedastic processes.

Example Semi - Parametric Linear Model with Weak Instruments.
Consider the n� p and n� q dimensional random matrices X (!) and Z (!)
respectively, where n � q � p. Let � 2 K (Rp) and suppose that X0X

n
!

MX0X , Z0Z
n
! MZ0Z , Z0X

n
! MZ0X almost surely, where rank (MX0X) =

rank (MZ0X) = p and p � l + rank (MZ0Z) � q. Consider that cosets of
Rq, de�ned for each � 2 �, by the linear systems MZ0Z� = MZ0X� and
denote them as � � Coset (Hq�l) + K� + Hq�l, where K represents an in-
jective linear map from Rp to Rq due to the rank condition of MZ0X and
Hq�l is a q � l-dimensional subspace of Rq, which is trivial if and only if
l = q whereas K = M�1

Z0ZMZ0X , and maximal in the case that l = p. Let
B 2 K (Rq) be such that B \ � � Coset (Hq�l) 6= ?, 8� 2 �, which ex-
ists due to the Axiom of Choice. Let Y (!; �0) = X (!) �0 + " (!), where
u (!) is a n � 1 random vector. Let the underlying statistical model be the
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set of "regressions" fY (!; �) = X (!) � + " (!) , � 2 �g which is obviously
well speci�ed. Consider for any � 2 B, cn (!; �; �) = 1

n
(Y � Z�)0 (Y � Z�),

which clearly satis�es assumption A.1 due to continuity with respect to �
and the compactness of B. The statistical problem consists of the consis-
tent estimation of �0 and cn can be perceived to emerge from an auxiliary
set of regression functions on Z�, � 2 B. Lemma 2.2 assures the exis-
tence of an auxiliary selector �n (!; �0) ("n) given an appropriate "n. Let
also MX0";M"0" 2 R and assume that X0"

n
! MX0", "

0"
n
! M"0" and Z0"

n
! 0

almost surely. In this sense Z (!) is interpreted as a matrix of weak in-
struments. It can be easily seen that sup��B jcn (!; �; �)� c (�; �)j almost
surely where c (�; �) = �0MX0X� � 2�0MX0Z� + �

0MZ0Z� + 2�
0MX0" +M"0"

and that due to the joint continuity of c on � � B implied by the uniform
convergence � ! c (�; �), is also epicontinuous on � as implied by remark
R.6. Also due to the compactness of B it is inf-compact for any �, hence
assumption A.2 applies and therefore corollary 2.3 is veri�ed. Notice that
b (�) = B \ ��Coset (Hp�l) due to the fact that � 2 argminB c (�; �) if and
only if it satis�es MZ0Z� = MZ0X�, due to the fact that c can be extended
to an open set that contains B. Assumption A.3 follows from the compact-
ness of B and the appropriate de�nition of f"ng. Hence lemma 2.4 is valid.
For an appropriate "�n, the IE is also de�ned and its existence is assured by
lemma ?? due to compactness of �. Finally, assumption A.4 is implied by an
assumption of the form K (� � �0) =2 Hq�l, if � 6= �0, which guarantees that
b (�) \ b (�0) = ? if � 6= �0 due to remark R.9, and assumption A.5 follows
from an appropriate de�nition of f"�ng. Hence, lemma 2.6 follows.�

The following examples involve conditionally heteroskedastic processes,
some characteristics of which are reviewed, before any example description.
We again consider � 2 K (Rp) and B 2 K (Rq). Let also z : 
 ! RZ
be an i.i.d. sequence of random variables, with Ez0 = 0, and Ez20 = 1.
Consider a random element �2 : � � 
 ! (R+)Z, with the product space
� � 
 equipped with B (�) 
 F with �2t (�) independent of (zi)i�t, 8t 2 Z,
8� 2 �. For arbitrary � 2 �, �2 (�) is a BN

(R+) =J -measurable function.
Analogously, de�ne the random element y : �� 
! (R)Z as

(yt (!) (�))t2Z;�2� =

�
zt (!)

q
�2t (!) (�)

�
t2Z;�2�

Then 8� 2 �, (yt (�))t2Z is called a conditionally heteroskedastic process,
while the random element (yt (!) (�))t2Z;�2� a conditionally heteroskedastic
model. Notice that y (�) : 
 ! RZ is BZ (R+) =J -measurable 8� 2 �.
We consider (yt (!) (�0))t2f1;:::;ng for some �0 2 �, and de�ne the statistical
problem in question to be the consistent estimation of �0.
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Assumption A.6 Theorem 2.6.1. of [15] holds, hence (�2t (�))t2Z is station-
ary ergodic 8� 2 �.

Remark R.10 Conditions that ensure assumption A.6 are described and
employed in a variety of heteroskedastic models in chapter 4 of [15].

Corollary 1 (yt (�))t2Z and (y
2
t (�))t2Z are stationary ergodic 8� 2 �.

Proof. It follows from the de�nition of z; y, the previous assumption and
Proposition 2.2.1 of [15].

Example Regressions on Squared Heteroskedastic Processes.
Consider the random vector Y (�) = (y2t (!) (�))t2f1;:::;ng for any � 2 � and
set Y = Y (�0), and the n � q dimensional random matrix Z (!; �), jointly
measurable with respect to B (�)
F , where n � q � p and ergodic for any
� 2 �. Its columns could partly emerge from time shifts (lags) of Y . Simi-
larly set Z (�) = Z (!; �) and Z = Z (�0). Consider for any � 2 B 2 K (Rq),
cn (!; �; �) =

1
n
(Y (�)� Z (�) �)0 (Y (�)� Z (�) �), where B is to be further

speci�ed below, which clearly satis�es assumption A.1 due to continuity
with respect to � the compactness of B and the joint measurability of Z.
This consideration is motivated from the ARMA(1,1) representations of the
GARCH(1,1) model with respect to martingale di¤erence "errors" (see, for
example, [2]) and cn can be perceived to emerge from an auxiliary model that
is consisted of the set of "auxiliary" regression functions of Y on Z�, � 2 B.
As in the previous example, Lemma 2.2 assures the existence of an auxil-
iary selector �n (!; �0) ("n) given an appropriate "n. Let, also E (h0 (�)) <1
for any � 2 �, which along corollary 1 and Birkho¤�s ergodic LLN implies
that Y 0(�)Y (�)

n
! E (h0 (�)) almost surely. In the same fashion assume that

E (kZ 0 (�)Z (�)k) < 1, for any � 2 �, which along another application of
Proposition 2.2.1 of [15] and Birkho¤�s ergodic LLN implies that Z

0(�)Z(�)
n

!
MZ0Z (�), for any � 2 �. Assume that l (�) + rank (MZ0Z (�)) � p for
any � 2 �, and that E (h0 (�)), and MZ0Z (�) are continuous functions on
�. The previous moment existence assumptions along with another appli-
cation of Proposition 2.2.1 of [15] and Birkho¤�s ergodic LLN imply that
Z0(�)Y (�)

n
! MZ0Y (�) 2 Rq for any � 2 �. Assume that MZ0Y (�) is an injec-

tive continuous function on �. Due to Proposition 2.2.1 of [15], we have that
cn (!; �; �) is also stationary ergodic for any � 2 � and any � 2 B, the fact
that Ecn (!; �; �) = E (h0 (�))� 2E

�
Y 0(�)Z(�)

n

�
� +E

�
�0Z

0(�)Z(�)
n

�
�
<1 for

any � 2 � and any � 2 B and Birkho¤�s ergodic LLN cn (!; �; �)! c (�; �)
pointwise on ��B , where c (�; �) = E (h0 (�))�2MZ0Y (�) �+�

0MZ0Z (�) �.
Also, consider, E infB cn (!; �; �) =
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E infB

����Y 0(�)Y (�)n
� 2Y

0(�)Z(�)
n

� + �0Z
0(�)Z(�)
n

�
���� � E (h0 (�))+c1E �


Y 0(�)Z(�)n




�+
c2E

�
Z0(�)Z(�)

n

�
<1, for any � 2 �, due to the previous, for some c1; c2 > 0

which exist due to the compactness of B. Hence, by remark R.5 cn
e! c

for any � 2 �. Due to the joint continuity of c on � � B implied by the
previous continuity assumptions c is also epicontinuous on � as implied by
remark R.6. Also, due to the compactness of B it is inf-compact for any �,
hence, assumption A.2 applies, and therefore corollary 2.3 is veri�ed. Notice
that b (�) = B \ Coset (H (�)) due to the fact that � 2 argminB c (�; �) if
and only if it satis�es MZ0Z (�) � = MZ0Y (�), since c can be extended to an
open set that contains B. Similarly we can assume that B \Coset (H (�)) 6=
?, 8� 2 �, which is possible due to the Axiom of Choice, where again
Coset (H (�)) + K (�) + H (�), where K (�) represents an injective linear
map from Rp to Rq due to the injectivity of MZ0Y (�) and that l (�) � p for
any � 2 �, andH (�) is a q�l (�)-dimensional subspace of Rq, which is trivial
if and only of l (�) = q whereas K (�) = M�1

Z0Z (�)MZ0Y (�), and maximal in
the case that l (�) = p. Assumption A.3 follows from the compactness of B
and the appropriate de�nition of f"ng. Hence lemma 2.4 is valid. For an
appropriate "�n, the IE is also de�ned and its existence is assured by lemma
?? due to compactness of �. Finally assumption A.4 is implied by an as-
sumption of the form K (�)�K (�0) =2 span (H (�0) ; H (�)), if � 6= �0, which
guarantees that b (�) \ b (�0) = ? if � 6= �0 due to remark R.9, and assump-
tion A.5 follows from an appropriate de�nition of f"�ng. Hence, lemma 2.6
follows.�

In the previous examples we have encountered cases in which the image of
the limit objective function c is in R. In the �nal example, we consider a case
in which c attains values in R outside of R. We consider the case of the second
order non stationary GARCH(1,1) model described as follows. Let � =
B 2 K (R3) and �2t (�) be the stationary solution of the stochastic di¤erence

equation �2t (�) = ! +
�
az2t�1 + b

�
�2t�1 (�), where � =

0@ !
a
b

1A such that

! > 0; a; b � 0 and �+ b 2 [1; 1 + c], for c > 0 ensuring A.6. This also means
that E (�20 (�)) = 1 on �, justifying covariance non-stationarity (see [15],
section 5.4.2). We also consider the random element h : 
! ��B� (R+)Z,
with the product space B � (R+)Z equipped with B (�) 
 B (B) 
 BZ (R+)
with ht (�; �) independent of (yi (�))i�t, 8t 2 Z, 8� 2 �, 8� 2 B, de�ned by
the the stochastic di¤erence equation ht (�; �) = !�+a�y2t�1 (�)+b�ht�1 (�; �),

14



where � =

0@ !�
a�
b�

1A. Due to corollary 1 and Theorem 2.6.1 of [15], ht (�; �)

is stationary ergodic if b� < 1 and we therefore �nalize the description of
� = B, to be such that b� < 1. Notice that due to compactness of �, 9k >
0 : inf(�;�)2�2 ht (�; �) > k, 8! where k is independent of !, and therefore
inf�2� inf!2
 ht (�; �) > k. k is actually the lower bound of the compact
interval that contains the possible values of h. Since �2t (�) = ht (�; �), the
same is true for inf�2� �2t (�). Then for n 2 N, given the aforementioned
volatility model we consider the following sequence of real random functions:

cn (!; �; �) + 1

n

nX
i=1

li (!; �; �)

li (!; �; �) + lnhi (�; �) +
y2i (�)

hi (�; �)

Remark R.11 In practice cn (!; �0; �) is unknown but approximated by an
analogous bcn (!; �0; �) dependent on non ergodic solutions of the stochastic
di¤erence equation that de�nes h based on arbitrary initial conditions. In this
case, due to assumption A.6, Proposition 5.2.12 of [15] can be employed in
order to ensure that supB jcn (!; �; �)� bcn (!; �; �)j converges almost surely
to zero for any � 2 � (see the �rst part of the proof of Theorem 5.3.1 of [15]),
thereby facilitating the asymptotic analysis of minimizers of bcn (!; �; �) by the
analogous analysis of minimizers of cn (!; �; �).

Example �cn is the Qausi-Likelihood Function of the Heteroskedas-
tic Model.
cn satis�es assumption A.1, from the continuity with respect to (�; �) which
follows from the continuity of the parameterization and the existence of k,
due to the compactness of � and the evident joint measurability. Lemma 2.2
assures the existence of an auxiliary selector �n (!; �0) ("n) given an appro-
priate "n. Due to corollary 1, the ergodicity of h, and Theorem 2.6.1 of [15]
li (!; �; �) is stationary ergodic 8�; � 2 �, and therefore cn (!; �; �) epicon-
verges to a proper lower semicontinuous c jointly on��B, hence for any � in
�, due to the reasoning in Part 2 of the proof of Theorem 5.3.1 of [15] which is
based on Lemma 3.11 of [11] and the fact that

E inf(�;�)2�2
�
lnh0 (�; �) +

z20�
2
0(�)

h0(�;�)

�
� inf(�;�)2�2 E

�
lnh0 (�; �) +

z20�
2
0(�)

h0(�;�)

�
�

inf�2�

�
E lnh0 (�; �) + E

�20(�)

h0(�;�)

�
= E lnh0 (�; �) + 1 where the equality fol-

lows from Part 1.(iii) of the proof of Theorem 5.3.1 of [15] and E lnh0 (�; �)
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exists due to that h0 (�; �) = �20 (�), E log
+ �20 (�) < 1 on �, the ap-

plicability of Jensen�s inequality on E ln�20 (�) 1�20(�)�1 and the fact that

lnh0 (�; �) +
z20�

2
0(�)

h0(�;�)
� ln k hence E inf(�;�)2�2

�
lnh0 (�; �) +

z20�
2
0(�)

h0(�;�)

�
> �1.

This result allows the application of remark R.5. Properness follows from the
existence of k and the fact that the monotonic transformation of the limit
E
�
� ln �2i (�)

hi(�;�)
+

�2i (�)

hi(�;�)

�
equals 1 when � = �, which is the in�mum of the

latter. Since c (�; �) is jointly lower semicontinuous A.2.3.a follows readily
while A.2.3.b follows for �n = �n, since E ln�2i (�) < 1 and it is continu-
ous 8� 2 �, hence lim supn!1 c (�n; �n) = lim supn!1 (E ln�

2
i (�n) + 1) =

limn!1 (E ln�
2
i (�n) + 1)

= E ln�2i (�) + 1 = c (�; �). Also, due to the compactness of � it is inf-
compact for any �, hence, assumption A.2 applies, and therefore corollary
2.3 is veri�ed. Assumption A.3 follows from the compactness of � and the
appropriate de�nition of f"ng. Therefore, lemma 2.4 is valid. For an appro-
priate "�n, the IE is also de�ned and its existence is assured by lemma 2.5 due
to compactness of �. Finally assumption A.4 is implied by the previous re-
mark on the behavior of E

�
� ln �2i (�)

hi(�;�)
+

�2i (�)

hi(�;�)

�
and assumption C.4 of [15]

(page 100), which is veri�ed when the support of the distribution of z0 has
more than two elements as lemmas 5.4.4-5 of [15] imply. In this case b (�0)
is single valued and equals �0. Assumption A.5 follows from an appropriate
de�nition of f"�ng. Hence lemma 2.6 follows.�

4 Conclusions
In this paper we have established the de�nition of Indirect Estimators and
their strong consistency, when the binding function is a compact valued cor-
respondence under mild conditions. These concern the asymptotic behavior
of the epigraphs of the criterion functions involved in the relevant procedures,
as well as asymptotic indirect identi�cation that restricts the behavior of the
aforementioned correspondence. These results are wide generalizations of the
analogous results in the relevant literature, hence permit a broader scope of
statistical models.
We leave for future research the issue of further generalization of these

results on IE that are de�ned by possibly random approximations of the
binding correspondence, as well as the issues of considering the other stages
of �rst step asymptotic theory, namely the one concerning the establishment
of rates of convergence, as well as of the one concerning the establishment of
the asymptotic distributions of IE in our general set up.
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