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Abstract

In this paper we de�ne a set of indirect estimators based on mo-
ment approximations of the auxiliary estimators. We provide results
that describe higher order asymptotic properties of these estimators.
The introduction of these is motivated by reasons of analytical and
computational facilitation. We extend this set to a class of multistep
indirect estimators that have potentially useful higher order bias prop-
erties. Furthermore, the widely employed "feasibly biased corrected
estimator" is an one optimization step approximation of the suggested
one.
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1 Introduction
Indirect estimators, hereafter abbreviated as IE, are multistep extremum
statistics derived in the premises of a (semi-) parametric statistical model
(sayM) used for the estimation of a particular element of the model, termed
as the true parameter value.1 They were formally introduced by Gourieroux
Monfort and Renault [[13]]. They are de�ned as (potentially measurable
selections of approximate) minimizers of criteria (inversion criterion) that are
functions of an auxiliary estimator, itself derived as an extremum estimator.
The latter minimizes a criterion function (auxiliary criterion), that re�ects
(part of) the structure of a possibly misspeci�ed auxiliary model (say A).2
The inversion criterion, depends on a function on the set AM (or on the
set AM�
, where (
;F ; P ) is a relevant probability space). This is termed
the binding function. Minimization of the inversion criterion, which usually
has the form of a stochastic norm, essentially inverts the binding function,
thereby obtaining an estimator with values inM.
Given an auxiliary estimator, IE di¤er due to relevant di¤erences in the

inversion criteria that hinge on di¤erences between the binding functions that
each one involves. Among the IE involving the same auxiliary estimator,
the consistent ones depend on sequences of binding functions that converge
appropriately to a common limit binding function that satis�es some iden-
ti�cation condition. In these cases, the auxiliary estimator, also converges
in a similar manner to the value of the limit binding function at the true
parameter value, hence consistency follows from identi�cation. More re�ned
asymptotic properties of the cases considered may be di¤erent across the
particular IE, essentially due to the di¤erences on the involved sequences on
binding functions.
Moreover, it is usually the case that the binding functions are not an-

alytically known, hence are approximated numerically. In some instances
the derivation of particular IE involves nested numerical optimization pro-
cedures that impose a large numerical cost, a fact that potentially creates,
among practitioners, unattractiveness towards them. The same IE under a
more involved assumption framework also have attractive high order asymp-
totic properties,3 that are not exploited due to the aforementioned numerical
burden.
Part of the scope of the present paper, is the introduction of a class of

1This is usually a point in a topological space that is the image of the probability
distribution with which the undelying probability space is endowed, with respect to a
parameterization.

2A could simply be a reparameterization ofM.
3See e.g. Gourieroux and Monfort [[12]], and Gourieroux, Renault and N. Touzi [[14]].
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(potentially multistep) IE, in which cases the binding functions depend on
approximations of moments of the auxiliary estimator. These approxima-
tions when are analytically known essentially reduce the numerical cost of
computation of the estimator. This can also remain the case when the par-
ticular moment approximations are also approximated numerically. Under a
relevant assumption framework, higher order asymptotic properties of these
estimators are potentially similar to the ones mentioned in the previous para-
graph. Hence this class of estimators can surpass the computational burden
without sacri�cing useful properties.
The analysis of higher order asymptotic properties of the aforementioned

class of IE, along with already established results, provides us with an in-
teresting uni�cation of distinct procedures of (potentially approximate) bias
correction.
First, it is already established by Gourieroux, Renault and Touzi [[14]]

that the indirect estimator proposed by Gourieroux et al. [[13]], derived as
the solution of �n � E��n = 0, is approximately unbiased, while it is ex-
actly unbiased if E��n is linear w.r.t. �. Analogous properties hold for the
estimator de�ned as �n � E�n�n which can, under relevant conditions, be
approximated by a bootstrap procedure. Gourieroux et al. [[14]] show that
the latter coincides with the estimator derived by the sequential Newton-
Raphson approximation of the solution of �n�E��n = 0 when it is restricted
to halt upon the completion of the �rst step. Hence they interpret the boot-
strap estimator as a one step numerical approximation of the indirect one
with equivalent second order properties.
In a direct analogy, when the previous framework is considered, the IE

proposed in this paper are essentially derived as solutions of �n���K (�; a) =
0, where � + K (�; a) is an approximation of E��n in an appropriate sense.
Under relevant conditions, K (�; a) would converge uniformly as a ! 1 to
E��n, hence these IE would converge in the appropriate sense to the one
proposed by Gourieroux et al. [[13]]. Under the same conditions the former
is also approximately unbiased of the same order. Again, a widely used
estimator in the econometric literature when K (�; a) is available, is �n �
K (�n; a), which is also approximately unbiased. It can be easily seen that
under the same conditions, and as a!1, due to the aforementioned uniform
convergence �n�K (�n; a) would converge to the bootstrap estimator, while
it can also interpreted as a one step numerical approximation of the zero of
�n � � �K (�; a). Hence, if the one step Newton-Raphson approximation is
considered as an appropriate self function on the relevant space of estimators,
we obtain that the diagram shown below with the obvious choice of notation
commutes, while the relevant higher order properties of zero (�n � E��n) are
retained across it.
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zero(�n � � �K(�; a))
a!1���! zero(�n � E�(�n))

1�NR
??y ??y1�NR

�n �K(�n; a)
a!1���! �n � E�n(�n)

(1)

Second, under appropriate conditions, E��n can be expressed employing
an auxiliary reparameterization that depends on n, as the identity function
when restricted at an open neighborhood of the true parameter value. In
this case the IE proposed by Gourieroux et al. [[13]] is unbiased. However
the (sequence of) auxiliary reparametrization(s) is (are) usually analytically
intractable. The same is true for K (�; a), while it can be shown that when
K (�; a) is locally the identity for any a, when a ! 1 converges to the
aforementioned local canonical representation of E��n. We approximate the
canonical representations of K (�; a) using multistep procedures of indirect
estimation, where the number of steps depend on a. In this respect, although
the arbitrarily close approximation of the unbiased IE remains infeasible, we
are able to construct estimators that are approximately unbiased of any given
order.
Before the discussion of the framework on which the current results are

based upon, in section 2, notice that indirect inference algorithms were ini-
tially used by Smith [[24]], were formally introduced by Gourieroux et al.
[[13]], complemented by Gallant and Tauchen [[10]] and extended by Calzo-
lari, Fiorentini and E. Sentana [[8]]. Properties similar to those studied here
were more or less algebraically studied in Gourieroux et al. [[14]] and more
formally in Arvanitis and Demos [[4]]. In section 3 we de�ne the estimators
and derive their asymptotic properties in the following one. In section 5 we
extend the procedures to multi step ones, and apply them in two examples
presented in section 6. Conclusions are gathered in section 7 and in the ap-
pendix A we collect all proofs. In appendix B we present some useful tools
concerning the derivation of our results and in appendix C we gather the
calculations of the expansions employed in our examples.

2 General Framework
In this paragraph a general assumption framework is described, that facili-
tates the presentation of the already de�ned IE. This assumption framework
can be generalized in particular ways, some of which are locally remarked.
Then, two already known IE are presented along with some of their properties
and relations, that rely upon the particular assumption canvas.
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Given a metric space (X; dX) and Rq equiped with the usual metric we de-
note with LS (X;Rq) the set of functions X ! Rq with lower semi-continuous
components, suppressing the dependence on the metrics. The symbol O" (�)
will denote the "-ball around the point � in a relevant metric space and
O" (�) its closure. We denote with Dr, the rth- order derivative operator on
a relevant function space that maps to the space of the algebraic element
containing all the rth-order partial derivatives of the �rst.
For a matrix W , kWk will denote a submultiplicative matrix norm,4

such as the Frobenius norm (i.e. kWk =
p
trW 0W ). The relevant metric

space of r-dimensional square real matrices is denoted by M (R; r). We let
PD (R; r) �M (R; r) be the cone of positive de�nite real matrices of dimen-
sion r.
When suprema, with respect to parameters, of derivatives are discussed

these are obviously considered where the di¤erentiated function is di¤eren-
tiable. For a 2 A +

�
i
2
, i 2 N

	
, d = 2a + 2 and  denote convergence in

distribution.

Assumption A.1 The following characterize the basic framework:

1. � denotes a compact subset of the p-dimensional Euclidean space for
p 2 N, equipped with the relevant subspace topology. Let �0 2 Int (�).
Given a measurable space (
;F), the statistical model at hand is de-
�ned by a correspondence par : �� P the set of probability measures
on F such that par (�) \ par (�0) 6= ? i¤ � = �0. The (arbitrary) un-
known probability measure (say P ) at which the inferential procedures
de�ned later aim, belongs to par (�0). Also let P� denote any member
of par (�).

2. The limit binding function (lbf) b 2 LS (X;Rq), for B be a compact
subset of Rq for q � p, such that b (�) � Int (B) and suppose that
b (�0) = b (�) i¤ � = �0. b is d + 1 times continuously di¤erentiable on
O" (�0) for some " > 0, and rank

�
@b
@�0 (�0)

�
= p.

3. There exists a function &n : 
�B ! R that is BR= (F 
 BB)�measurable
and &n (!; �) is (lower semi) continuous on b (�) for P��almost all !,
for any �, and there exists a function & : � � b (�) ! R such that
&n (!; �)  & (�; �) uniformly over b (�), uniformly over P� for any
� 2 �. Also & (�; b (�)) < & (�; �) 8� 2 b (�) and 8� 2 �.5

4Notice that due to the fact that �nite dimensional matrix spaces are identi�ed with
�nite dimensional Euclidean spaces, the norm equivalence theorem applies.

5Componentwise lower semi-continuity of the lbf would follow from the continuity of
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4. LetW �
n (�; �) be BM(R;q)= (BFn 
 B�)�measurable and P�0-almost surely

positive de�nite, for every � 2 �.

We denote with E�f (�
0) =

Z
f (!; �0) dP� (!) for any appropriate f and

�; �0 2 �.

Remark R.1 For an appropriate sequence of measurable spaces ((
n;Fn))1n=1,
we usually have that 
 =

Q
n
n, F =

N
nFn and that any P � 2 par (�) is

the unique extension on F , of a sequence of probability measures (P �n)
1
n=1-

with P �n de�ned on
Nn

i=1Fi- that is Kolmogorov consistent. Given the Kol-
mogorov consistency, the existence of P � is guaranteed when
n is a Hausdor¤
topological space, Fn is the relevant Borel algebra, and P �n is tight for any n
(see corollary 15.28 of Aliprantis and Border [[1]]).Usually 
n is homeomor-
phic to Rm for some m in N and Fn is the Borel algebra with respect to the
Euclidean topology.

Remark R.2 Since B and � are compact subsets of �nite dimensional
Euclidean spaces they are totally bounded. Also note that due to the fact
that the spaces � and B are separable, suprema of real random elements
over these spaces are measurable. Obviously the lbf is bounded something
that is also true for its derivatives on O" (�0).

In the following we suppress the dependence of the aforementioned bind-
ing functions on 
 where unnecessary. We also let �+n denote a random
element with values in �. We consider the following real function on Rr �
M (R; r)

(x;W )! (x0Wx)
1=2

for a given W 2M (R; r). This de�nes a pseudo-norm on Rr which becomes
a norm if W 2 PD (R; r).

Definitions and Properties of Already Known IE We can now de�ne the already
known auxiliary, GMR1, and GMR2 estimators. These were initially formal-
ized by Gourieroux et al. (1993).

par (i.e. for any �, �n ! � the sequence comprised by any member of par (�n) converges
inside par (�) with respect to the weak topology), the uniform w.r.t. P� &n (!; �) & (�; �)
uniformly over b (�), a furher condition of injectivity for b and he identi�cation of b (�)
with the degenerate probability measure at b (�). The di¤ereniability assumptions could
follow from analogous assumptions for & (�; �) and the implicit function theorem.

6



De�nition D.1 The auxiliary estimator �n is de�ned as

&n (�n) = inf
�2B

&n (�)

Remark R.3 In view of assumption A.1.3 and by remark AR.4 (in Appen-
dix B) the above estimator is well de�ned.

De�nition D.2 The GMR1 estimator is de�ned as

k�n � b (GMR1)kW �
n(�+n ) = inf

�2�
k�n � b (�)kW �

n(�+n )

De�nition D.3 Let bn (�) = E��n, then the GMR2 estimator is de�ned as

k�n � bn (GMR2)kW �
n(�+n ) = inf

�2�
k�n � bn (�)kW �

n(�+n )

Remark R.4 The GMR1 and GMR2 estimators are de�ned as q
�
W �
n

�
�+n
�
; b (�) ; �n

�
and q

�
W �
n

�
�+n
�
; bn (�) ; �n

�
respectively where

q (A; k (�) ; c) + argmin
�2�

�J (A; k (�) ; A)

and
J (A; k (�) ; c) + kc� k (�)kA

Their existence is justi�ed by remark AR.4 in view of assumption A.1. The
computation of the estimators relies on the knowledge of b and bn which is
in most cases unavailable. Hence the estimators are usually approximated
by the use of resampling techniques such as Monte Carlo simulations, which
itself involves nested numerical optimizations that is of potentially large com-
putational cost especially in the case of the second estimator.

Assumptions Specific to a New Class of IE Let a� = s�1
2
for s � 2a + 1. Let

also EDGn;�;a� denote the nth term of an Edgeworth measure of order s with
respect to N (0; V�), where V� is a positive de�nite q � q matrix for any �,
and BC the collection of measurable convex subsets of the Euclidean Rq+p
(see Appendix B).

Assumption A.2

sup
A2BC

��P� �pn (�n � b (�)) 2 A
�
� EDGn;�;a� (A)

�� = o
�
n�a

��
for any � 2 �. Then, there exist ki+1 (z; �), i = 0; : : : ; 2a that are polynomial
functions in z, with O (1) coe¢ cients such thatZ

Rq
zdEDGn;�;a =

2aX
i=0

1

ni=2
Eki+1 (z; �) (2)

where Ek1 (z; �) = 0q�1 on �.
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Lemma 2.1 If s > 2a+ 1E��n � b (�)�
2aX
i=0

1

n(i+1)=2
Eki+1 (z; �)

 = o
�
n�a�

1
2

�
(3)

Remark R.5 The assumption on the
p
n rate of convergence of the auxiliary

estimator could be extended so as to allow di¤erent rates as long as these do
not depend on �.

The remaining assumptions are local. The next one concerns the asymp-
totic behavior of the sequence of stochastic weighting matrices described in
A.1.5,6.

Assumption A.3 W �
n (�) is d-continuously di¤erentiable P�0-almost surely

8� 2 O" (�0). There exists a M (R; l) valued function denoted by W � (�),
de�ned on O" (�0), such that

P (kW �
n (�)�W � (�)k > �) = o

�
n�a

��
, 8� > 0, 8� 2 O" (�0)

Moreover

P

 
sup

�2O"(�0)

DdW �
n (�)

 > CW �

!
= o

�
n�a

��
for some CW � > 0.

The following assumption, enables the stochastic approximation of the
Edgeworth mean in (2). This can facilitate the de�nition of the IE that de-
pend on the latter, in case where Eki+1 (z; �) are analytically unknown for
some i, due to the structure of statistical model that could involve the pres-
ence of nuisance parameters, analytically unknown moments in the frame-
work of non linear models etc. We suppose the existence of another probabil-
ity space that enables the possibility of stochastic approximation via sampling
methods like Monte Carlo simulations, bootstrap e.t.c.

Assumption A.4 The following characterize the basic framework:

1. For a probability space (
0;F 0; P 0) and each i = 1; : : : ; 2a, there exist
� i+1n : 
 � 
0 � � ! Rq, that is BRq= (F 
 F 0 
 B�)-measurable, Q-
almost everywhere continuous on � and Q-almost everywhere d + 1
continuously di¤erentiable on O" (�0), where Q = P � P 0.

2. Q
�
sup�2�

� i+1n (!; !0; �) > Mi

�
= o

�
n�a

��
, forMi > 0, 8i = 1; : : : ; 2a.
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3. Q
�
sup�2O"(�0)

Dr� i+1n (!; !
0; �)
 > Mi;r

�
= o

�
n�a

��
, for Mi;r > 0,

8i = 1; : : : ; 2a, for r = 1; 2.

!0 can be thought of as a simulated random element, which along with the
"observed" sample ! constitutes a generalized sample that can be employed
to approximate the relevant expectations. The space 
0 can also depend on
some index that indicates the number of simulated paths which is suppressed.
In our framework we are only interested in the case that the number of
simulated paths remains bounded.

Remark R.6 This setup is general enough to allow for cases in which � i+1n
is computed on initial estimators of �0, and/or on estimators of nuisance
parameters. Similarly it allows for cases in which Eki+1 (z; �) depends on
analytically intractable moments and/or moments that do not belong in the
structure of the statistical model at hand. These are generally functions of
� and are approximated either by analogous sample moments w.r.t. relevant
functions of !0 and �, or their value at �0 is approximated by measurable
functions of !. This allows also for approximations of Eki+1 (z; �) when
the latter is partially computed at stochastic point close to �0, enabling the
derivation of estimators that emerge from partial optimization.

We enrich our assumption framework by a partial extension of assump-
tion A.2 that allows for analogous moment approximations of the estima-
tors to be de�ned in the next section. Let fn (�) be the vector contain-
ing the elements of W �

n (�) � W � (�), and vecDiW �
n (�) � Ti (�), for i =

1; : : : ; d for Ti (�) : O" (�0) ! RdimvecDiW �
n(�), for any � 2 O" (�0). Let qn (�)

be the vector containing the elements of � i+1n (!; !
0; �) � Eki+1 (z; �) and

vecDi� i+1n (!; !
0; �)� Zi (�), for i = 1; : : : ; d+ 1 for Zi (�) : O" (�0)! R for

any � 2 O" (�0). Let alsom�
n (�0) be

�
(�n � b (�0))

0 ,
p
n
�
�+n � �0

�
; f 0n (�0) ; q

0
n (�0)

�0
and EDG�n;�;a� denote the nth term of an Edgeworth sequence of order s, forp
nm�

n (�0) under Q.

Assumption A.5

sup
A2BC

��Q �pnm�
n (�0) 2 A

�
� EDG�n;�0;a� (A)

�� = o
�
n�a

��
Remark R.7 Due to assumption A.2 and lemma 2 of [18] we have that,

Q
�p

n km�
n (�0)k > Cm

p
lnn
�
= o

�
n�a

��
, for some Cm > 0

Then it trivially follows that Q (km�
n (�0)k > ") = o

�
n�a

�� 8" > 0.
9



A discussion on the validation of assumptions A.2, A.3, A.5 is provided
in Appendix B. The following lemma is useful, especially for lemma 4.5.

Lemma 2.2 Assumptions A.3, A.2,A.5 imply that

P
�W �

n

�
�+n
�
�W � (�0)

 > �
�
= o

�
n�a

��
, 8� > 0

Assumption A.5 along with the postulated behavior of the binding func-
tion and the de�nition of the GMR1 estimator implies that the latter admits
also a valid Edgeworth expansion of the same order. Due to reasons that
will become apparent in the next paragraph we also denote with �n (0) the
GMR1 estimator.

Lemma 2.3 Under assumptions A.1, A.3, A.4, and A.5
p
n (�n (0)� �0)

admits a valid Edgeworth expansion of order 2a� + 1.

3 Definition of the GMR2� (a) Estimators
We are now ready to de�ne a new class of IE based on these moment ap-
proximations. In what follows we suppress the dependence of the approxi-
mating functions � i+1n on the generalized sample space for notational conve-
nience and denote �n (�; a) =

�
�2n (�) ; : : : ; �2a+1n (�)

�
and bn (�; �n (�; a)) =

b (�) +
P2a

i=1
1

n(i+1)=2
� i+1n (�).

De�nition D.4 The GMR2� (a) estimator is de�ned by

k�n � bn (�n (a) ; �n (�n (a) ; a))kW �
n(�+n ) = inf

�2�
k�n � bn (�; �n (�; a))kW �

n(�+n )

hence GMR2� (a) = q
�
W �
n

�
�+n
�
; bn (�; �n (�; a)) ; �n

�
.

Remark R.8 The existence of GMR2� (a) is facilitated by assumptions A.4
and A.3, and remark AR.4 in the appendix.

Remark R.9 Due to Ek1 (z; �) = 0q�1 we identify the GMR1 estimator
with the GMR2� (0) one, and this justi�es the relevant choice of notation in
the previous paragraph.

Remark R.10 Due to the fact that the analytical derivation of bn (�; �n (�; a))
for �nite a is generally easier than the analogous task for bn (�) theGMR2� (a)
estimators can surpass the nested optimization burden associated with the
GMR2 estimator. Of course it increases the analytical burden, but this is a
shank cost.
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Remark R.11 In the case that �n = �n (0), and b (�) = �, we consider a
variant of the GMR2� (a), de�ned as

��n (a) = �n (0)�
2aX
i=1

1

n(i+1)=2
� i+1n (�n (0))

Q-almost everywhere, the computation of which is of minimal arithmetic bur-
den. In this case ��n (a) admits another interesting characterization. Consider
without loss of generality the issue of minimization of�n (0)� � �

2aX
i=1

1

n(i+1)=2
� i+1n (�n (0))


2

Due to the structure of the problem, the solution could be characterized
as a limit of a Newton recursion scheme, in which the ith-term of the re-
cursion would be de�ned as �(i)n = �n (0) �

P2a
i=1

1
n(i+1)=2

� i+1n

�
�(i�1)n

�
, for

i = 0; 1; 2; : : :, and �(i�1)n = �n (0). It is obvious that �
�
n (a) = �(1)n , hence it

is an one-computational step approximation of GMR2� (a). ��n (a) is widely
used in the literature in the case where a = 1

2
, and in this case it is called

"feasible bias corrector" of �n (0). We will consider how some of its properties
are related to the analogous ones of GMR2� (a) in subsequent sections. In
this instance we note only the following:

1. it is possible that for some n and some measurable subset of Rm of
positive probability, ��n (a) =2 � or it will be in the boundary of � with
positive Q probability, as it will be the case in some of the examples
considered later.

2. there is a direct analogy between the GMR2� (a) and ��n (a) as its one-
computational step approximation, and the GMR2 and the bootstrap
estimator as its one-computational step approximation.

4 Higher Order Asymptotic Theory
In this section the �rst part of the results are presented. This part concerns
the asymptotic properties of the newly de�ned estimator. Consistency, as-
ymptotic tightness, Edgeworth and moment approximations are established
in that order.
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4.1 Consistency
It is proven that the GMR2� (a) is contained in an arbitrary neighborhood of
�0 with probability 1� o

�
n�a

��
. It is also shown, that given consistency, the

particular estimator has a very convenient characterization as a near mini-
mizer of the GMR1 and GMR2 criteria. Analogous relations are established
between GMR2� (a) and GMR2� (a0), for any a, a0 in A.

Lemma 4.1 Under assumptions A.4, A.3 and A.2 8" > 0,

Q

�
sup
�

��J ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J (b (�0) ; b (�) ;W

� (�0))
�� > "

�
= o

�
n�a

��
and therefore

Q (k�n (a)� �0k > ") = o
�
n�a

��
Remark R.12 In the light of lemma 4.1 it is evident that for example, �+n
could be de�ned as ��n (a) for some choice of the weighting matrix sequence
(e.g. Wn =Idq�q).

The GMR2 estimator �n is de�ned by

J
�
�n; E�n (�n) ;W

�
n

�
�+n
��
= inf

�
J
�
�n; E� (�n) ;W

�
n

�
�+n
��

From lemma 4.1 we obtain the following results. These concern possible
characterizations of the estimator under examination. We employ �rst the
following proposition.

Proposition 4.2 If sup�2� kE��n � b (�)k = o (1), then

Q

�
sup
�2�

kbn (�)� bn (�; �n (�; a))k > "

�
= o

�
n�a
�
;8" > 0

Remark R.13 The assumption sup�2� kE��n � b (�)k = o (1) would follow
from the uniform pseudo consistency of the auxiliary estimator given the com-
pactness ofB. If the lbf is a bijection sup�2� P�

�
sup�2B k&n (�)� &(�; �)k > �

�
=

o (1) 8� > 0 would be su¢ cient for this, given assumption A.1.3.

Corollary 4.3 Under the assumptions of lemma 4.1 and proposition 4.2 we
have that

J
�
�n; E�n(a) (�n) ;W

�
n

�
�+n
��
� J

�
�n; E�n (�n) ;W

�
n

�
�+n
��
+ �n

with P (�n > ") = o
�
n�a

��
, a� = s�1

2
, 8" > 0 and �n is almost surely non

negative.
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Remark R.14 The examined estimator is essentially an �n-GMR2 estima-
tor (approximate minimizer of the GMR2 criterion). The �n (1) estimator
(if it exists) is almost surely equal to the GMR2 estimator for every n greater
than some n� 2 N. In the same respect, and in the light of paragraph 1.5
of Gourieroux et al. (2000), when �n is a consistent estimator of �0, i.e. the
binding function is, at least locally, the identity, we obtain that the ��n (1)
(if it exists) is almost surely equal to the bootstrap estimator for every n
greater than some n� 2 N. Hence, we obtain an analogy in which the GMR2
estimator can be perceived as a limiting GMR2 � estimator, and the bootstrap
estimator, which is an one computational step approximation of the former
is a limit of the one step computational approximation of the latter (see also
remark R.11.2).

Remark R.15 We cannot be more informative on the minimum rate of
convergence to zero of any real sequence that bounds �n with probability
1 � o

�
n�a

��
, due to the lack of information with respect to the analogous

rate of uniform convergence of bn (�) to b (�). However, ifE��n � b (�)�
X1

i=1

1

n
i+1
2

Eki+1 (z; �)

 = o
�
n�a
�

for any a 2 A, uniformly on �, then sup�2� kbn (�)� bn (�; �n (�; a))k =
o (n�a) for � i+1n (�) = Eki+1 (z; �), for any i = 1; : : : ; 2a, and therefore it is
easy to see that P (�n > n) = o

�
n�a

��
for n = o (n�a). It follows that

if a ! 1, hence a� ! 1, P (�n > n) = o (n�a) for n = o (n�a) for all
a and therefore fGMR2gn is asymptotically indistinguishable as a sequence
from fGMR2� (1)gn hence we obtain the characterization of the GMR2
estimator as a GMR2� (1) one, with the obvious abuse of terminology. An
analogous asymptotic relationship can be established between the sequences
of the �rst order approximations of the aforementioned estimators, thereby
identifying ��n (1) with the bootstrap estimator. In this respect we justify
the commutative diagram presented in the introduction.

The previous reasoning can also establish analogous relations between
GMR2� (a) and GMR2� (a0) estimators, for a 6= a0 with a more detailed de-
scription of he structure of the error of the analogous approximation. With-
out loss of generality, let a > a0.

Corollary 4.4 Under the assumptions of 4.1, for both a and a0, there exists
a real sequence n = o

�
n���

1
2

�
such that

J
�
�n; bn (�n (a

0) ; a) ;W �
n

�
�+n
��
� J

�
�n; bn (�n (a) ; a) ;W

�
n

�
�+n
��
+ �0n

13



with P (�0n > n) = o
�
n�a

��
, where � =

�
1
2
+ " if a = 1

2

a0 if a > 1
2

with 0 < " < 1
2
.

Remark R.16 Again, any GMR2� (a0) is an approximate GMR2� (a) for
any a > a0. This is particularly valid when a0 = 0, sinceGMR1 = GMR2� (0).

Remark R.17 Obviously lemma R.7 could be readily deduced from lemma
4.4 and an easily established uniform convergence of J (�n; b (�) ;W

�
n (�

�
n)) to

J (b (�0) ; b (�) ;W
� (�0)) in P�0-probability 1� o (n�a).

4.2 Asymptotic Tightness and Validity of Edgeworth Approximation
In this paragraph, we are concerned with the higher order approximation of
the distribution of GMR2� (a) for a > 0. We essentially rely on the previous
results, the local di¤erentiability of the criterion from which it emerges and
lemma AL.1 presented at the appendix.

Lemma 4.5 Under the assumptions of corollary 4.4, there exists an f�00ngn,
with Q (

p
n k�00nk > 0n) = o

�
n�a

��
, and 0n = o (n�") for some " > 0, andp

n (�n (a)� �n (0)) = �00n with probability 1� o
�
n�a

��
.

The validity of the Edgeworth expansion of
p
n (�n (a)� �0) of order s =

2a� + 1 can now be established by assumption A.2, lemma 4.5 and corollary
AC.1 presented in the appendix. In this case the sequence of distributions of
the aforementioned estimator is also approximated in the o

�
n�a

��
- convex

variational distance by the relevant sequence of distributions of an sequence
of random vectors that are polynomial in a standard normal random vector
and in 1p

n
.

Lemma 4.6 Under the assumptions of lemma 4.5, the GMR2� (a) admits
an Edgeworth expansion of order s = 2a� + 1.

Lemma 4.7 Under the assumptions of corollary 4.6, there exists a C� > 0
such that Q

�p
n k�n (a)� �0k > C� ln1=2 n

�
= o

�
n�a

��
.

Lemma 4.6 does not provide any further insight on the form of the Edge-
worth approximation for GMR2� (a). However, lemma 4.7 along with the
�rst part of lemma AL.3 can validate an Edgeworth approximation, the poly-
nomials of the density of which, are obtained as in the proof of the �rst part
of latter lemma.

Lemma 4.8 Under the assumptions of lemma 4.5, the GMR2� (a) admits
an Edgeworth expansion of order s = 2a�+1, the density of which is obtained
as in the proof of the �rst part of lemma AL.3.
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4.3 Moment Approximations
Lemma 4.8 in the light of lemmas 7.1 and AL.3 if a� > a, provide with
an approximation of the sequence of (any order) moments of the de�ned
estimator. In the following we expicitily provide this type of approximation
in the case where a = 1

2
for the mean.

Lemma 4.9 If a� � a+ m
2
, then����E�0 �K �pn (�n (a)� �0)

�m�� Z
Rq
K (( n (z))

m)

�
1 +

Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz

����
is o (n�a) where  n (z) = Prp

�P2a+1
i=1 Di���1n (0) (zj)

�
, ��n = (�n; $n), �n is as

in the proof of lemma 4.8$n : Rdim(m
�
n) ! Rdim(m�

n)�p is an orthogonal projec-
tion of Rdim(m�

n) to a dim (m�
n)�p dimensional subspace composed with a lin-

ear isometry with Rdim(m�
n)�p, such (Dgn (0))

�1 \ ($n (0))
�1 = f0g, K is any

m-linear function onRp and xm = (x; x; : : : x)| {z }
m

and
�
1 +

Xs

i=1

1

n
i
2
�i (z)

�
'V (z)

denotes the density of the Edgeworth approximation of order 2a + 1 ofp
nm�

n (�0) and Prp is the projection on the �rst p coordinates.

We next provide the analogous approximation for a = 1
2
. We obtain the

following lemma.

Lemma 4.10 If the previous assumptions hold for a = 1
2
a� > 1

2
, thenE�0pn��n�12

�
� �0

�
� E (q1 (z; �0))�

1p
n
E (q2 (z; �0))

 = o
�
n�a
�

where
q1 = BW � (�0) k1

and

q2 = BW � (�0)

 
(k2 � Ek2)�

1

2

�
trq1q

0
1

@2bj (�0)

@�@�0

�
j=1;:::;q

!

+

 �
@b0 (�0)

@�
W � (�0)

@b (�0)

@�0

��1 �
@bj (�0)

@�@�0
q1

�
W � (�0)

!
Ak1

+

 
Bw� (z; �0) +B

�
@

@�=
W �
rj (�0) q

�
1

�
r;j=1;:::;q

!
Ak1
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A =

�
Idq � @b(�0)

@�0

�
@b0(�0)
@�

W � (�0)
@b(�0)
@�0

��1
@b0(�0)
@�

W � (�0)

�
,

B =
�
@b0(�0)
@�

W � (�0)
@b(�0)
@�0

��1
@b0(�0)
@�

w� (z; �0) and q�1 are the O
�

1p
n

�
terms

of the mean of the Edgeworth distribution of
p
nm�

n (�0) corresponding to
the weightening matrix and the initial estimator respectively, and z is a zero
mean normal random vector of dimension equal to dim (m�

n (�0)). MoreoverE�0pn (�n (0)� �0)� E (q�1 (z; �0))�
1p
n
E (q�2 (z; �0))

 = o
�
n�a
�

where
q�1 = q1

and
q�2 = q2 +BW � (�0)Ek2

Remark R.18 Lemma 4.10 is in accordance with the well known result that
the second order bias of estimators of this sort hinges on a) non linearity of
the estimating equations, b) di¤erence in the relevant dimensions and c)
stochastic weighting (see for example Newey and Smith 2001).

Remark R.19 Notice that neither q1 nor q2 depend on the analogous terms
in the approxiamtions of the remaining elements of

p
nm�

n (�0). This would
not hold in higher order expansions concerning �n

�
1
2

�
.

Remark R.20 It is easy to see that q1 and q2 would provide the analogous
approximation to bias of �n (ea) for ea > 1

2
.

Remark R.21 Even if the aforementioned moment approximations are not
valid (for example in cases where a� = 1

2
), the relevant moments of the

Edgeworth measures could be used for comparisons between the employed
estimators in the spirit of Magdalinos [[18]] (see the second paragraph imme-
diately after Theorem 2).

When p = q, then A = 0q�q and BW � (�0) =
�
@b(�0)
@�0

��1
. Consequently,

we trivially get the following corollary.

Corollary 4.11 Under the assumptions in lemma 4.10 and for p = q we
obtain

q1 =

�
@b (�0)

@�0

��1
k1

16



and

q2 =

�
@b (�0)

@�0

��1 
k2 � Ek2 �

1

2

�
trq1q

0
1

@2bj (�0)

@�@�0

�
j=1;:::;q

!
Use the following de�nition.

De�nition D.5 An estimator admitting a moment expansion such as the
ones considered in the previous sections, will be termed approximately unbi-
ased of order s = 2a+ 1 if the relevant expansion is valid, andE�0pn (�n � �0)� E

�
g

�
z;

1p
n
; �0

�� = o
�
n�a
�

where E
�
g
�
z; 1p

n
; �0

��
= o (n�a).

Hence if @
2bj(�0)

@�@�0 = 0, e.g. b (�) is linear, we trivially get:

Corollary 4.12 If in addition to the provisions of the previous corollary
@2bj(�0)

@�@�0 = 0p�p 8j = 1; : : : ; q, Eq2 = 0p, hence the estimator is approximately
unbiased of order 2. This is not true for the GMR1 estimator unless the
auxiliary estimator is is approximately unbiased of order 2 since Eq2 = Ek2.

Remark R.22 As it will become apparent next, the previous result can
easily be extended in the case of the ��n (a) estimator for any a � 1

2
. That is,

if
@2bj(�0)@�@�0

, vanishes 8j , then ��n (a) becomes second order unbiased at �0.
Remark R.23 Under conditions that ensure that the derivatives of E��n
are uniformly bounded around �0, an analogous result would hold for the
GMR2 estimator (see Arvanitis and Demos [[4]]).

Remark R.24 If the previous assumptions hold for a = 1
2
a� > 1, in the

light of lemma 4.9 q1 and q2 can be used in order to provide the second order
MSE of the estimator. In the particular case and due to the fact that Ek1 is
zero, it can be easily seen thatE�0n ((�n (�)� �0)) (�n (�)� �0)

0 � Eq1q
0
1 �

1p
n
E (q1q

0
2 + q2q

0
1)

 = o
�
n�a
�

for any � 2 A, thereby establishing the superiority of ��n (a) for any a � 1
2
,

over ��n (0) w.r.t. 2
nd order mean-MSE comparisons.
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Returning to the issue of the bias approximation we extend the previous
result when the binding function is in local canonical form. For the de�nition
of the local canonical form, see Arvanitis and Demos [[4]], section 4.2, which
is derived by theorem 10.2 of Spivak [[25]]) (p. 44). This notion concerns
the choice of the auxiliary parameterization so that the binding function be-
comes canonical around �0, hence locally linear. In this case, the GMR2�

�
1
2

�
estimator is second order unbiased, as the next corollary demonstrates, if the
weighting matrix is non-stochastic.

Corollary 4.13 If b (�0) is in local canonical form and W �
n (�0) = W � =�

W1;p�p W3;p�q�p
W 0
3 W2;q�p�q�p

�
then

q1 =
�
Idp�p W�1

1;p�pW3;p�q�p
�
k1

and
q2 =

�
Idp�p W�1

1;p�pW3;p�q�p
�
(k2 � Ek2)

Remark R.25 The GMR2�
�
1
2

�
estimator is second order unbiased even in

cases where q > p, when there is non stochastic weighting given that the
binding function is in local canonical form. However, given an admissible
auxiliary statistical model, there always exists an auxiliary parameterization
such that the previous result is valid, given the relevant weighting structure.

Remark R.26 We now consider the case of the one-computational step ap-
proximation of GMR2�

�
1
2

�
, named ��n

�
1
2

�
and described in remark R.11. It

can be veri�ed using our assumption framework thatE�0 �pn���n�12
�
� �0

��
� E (k1) +

1p
n
E (k2 � Ek2)

 = o
�
n�1=2

�
thereby it is in this respect equivalent to

p
n
�
GMR2�

�
1
2

�
� �0

�
, while it is

of minimal computational burden. However, we make the following observa-
tions:6

1. Due to remark R.11.1 ��n
�
1
2

�
could be non-de�nable for �xed n, on

subsets of the sample space of positive probability.

2. They could be non-equivalent with respect to higher order relations,
whereas the analogous expansions could favorGMR2�

�
1
2

�
, with respect

to its higher order bias structure.

6Notice that analogous ascertainments could hold with respect to the issue of the kth

order comparison between ��n (a) and �n (a) for arbitrary a; k.
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3. The same could be true even with respect to the second order relation,
when �0 lies on the boundary of the parameter space, in which case Ek1
could be di¤erent from zero. We suspect that in this case GMR2�

�
1
2

�
would possess a more favorable second order bias structure than its one
step computational approximation. The validation of this statement
is out of the scope of the present paper, as it requires a theory of
higher order approximations of distributions of M-estimators when the
parameter is on the boundary.

5 Recursive Indirect Estimation
In the current section we are concerned with the issue of extending the notion
of indirect estimation in order to allow for procedures that potentially involve
an arbitrary number of auxiliary steps. This will enable the construction of
multistep IE that are approximately unbiased of some prescribed order with-
out explicit reparameterizations. These will provide a procedure of recursive
bias correction of any desired order of an arbitrary estimator of �0 that admits
a valid moment approximation of the same order.7 We make the following
assumption.

Assumption A.6 ,The binding function is the identity, and the auxiliary
estimator satis�es assumption A.2 for some s� � 2a+1 given a. For any a+ �
a consider any function of the form �n (�; a

+) =
�
�2n (�) ; : : : ; �(2a+)n (�)

�
where for each i = 1; : : : ; 2a+, assumptions A.4 and A.5 hold, under the
convention that if �n is s

th
� -order approximately unbiased for any s� � s�,

then � i+1n (�) = 0 Q � a:s: for any 1 < i � s� � 1 and any �. Denote by
GMR� (�n (�; a

+)) the GMR2� (a+) derived via the use of �n (�; a
+).

The �rst part of the previous assumption does not pose any loss of gen-
erality compared to the previous sections, since �n could itself be an IE of
�0. In this respect any concern about the asymptotic behavior of sequences
of weighting matrices becomes asymptotically irrelevant. Denote the set of
functions satisfying the second part by Zn (a+; �n). This convention is moti-
vated by the fact that Zn (0; �n) = f0�g. We denote with GMR� (�n (�; a

+))
GMR2� (a+) w.r.t. �n (�; a

+) 2 Zn (a+; �n).8

7It will also provide an algorithm for the computation of the local canonical form of
the binding function, discussed in the previous section.

8Considering the notions that follow, it would be more appropriate to de�ne Z (a) as
the set of equivalence classes of approximating functions, with respect to the relation that
renders two such functions equivalent, i.e. i¤ they de�ne the same GMR2� estimator. We
choose to disregard this detail for notational convenience.
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De�nition D.6 Given a1; a2 � a, let

GMR� (�n (�; a2))~GMR� (�n (�; a1))

denote the indirect estimator emerging as follows:

1. GMR� (�n (�; a1)) is derived using �n (�; a1) 2 Zn (a1; �n), and

2. GMR� (�n (�; a2)) is derived using �n (�; a2) 2 Zn (a2; GMR� (�n (�; a1))).

In this respect the GMR� (�n (�; a2)) ~ GMR� (�n (�; a1)) is an indirect
estimator emerging in essentially three steps, the �rst one being the deriva-
tion of �n. Obviously such estimators can be derived by making the number
of steps arbitrary, yet �nite. Hence, in general

~Ki=1GMR� (�n (�; af (i))) + GMR� (�n (�; af (K)))~
�
~K�1i=1 GMR� (�n (�; af (i)))

�
where in the (K + 1)th step the GMR� (�n (af (K))) is derived using as an
auxiliary the ~K�1i=1 GMR

� (�n (�; af (i))), forK 2 N, and af : f1; 2; : : : ; Kg !
f0; : : : ; ag. Notice that [GMR� (�n (�; a3))~GMR� (�n (�; a2))]~GMR� (�n (�; a1))
is non de�nable, a fact that prevents this set of estimators from obtaining a
rich enough algebraic structure.

Remark R.27 It is trivial to see that in the present framework

GMR� (�n (�; a))~GMR1 = GMR1~GMR� (�n (�; a)) = GMR� (�n (�; a))

for any a.

Lemma 5.1 Under assumption A.6 and if �n is approximately unbiased of
order (2a1 + 1), for a1 � a, then GMR� (�n (�; a2)) ~ �n is approximately
unbiased of the same order, 8a2 � a1.

Lemma 5.2 If �n is approximately unbiased of order (2a1 + 1), for a1 � a,
then GMR� (�n (�; a2)) ~ �n is approximately unbiased of order 2 (a1 + 1),
8a2 > a1.

Given the following question:

Question Does there exist an IE procedure providing an estimator that is
is approximately unbiased of order 2a+ 1?

An answer is provided by the next algorithmic procedure.
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Algorithm Suppose that �n is approximately locally unbiased of order (2a1 + 1),
for a1 < a:

� set �(0)n = �n and a
(0) = a1,

� for a(i) = a(i�1)+ 1
2
, i = 1; : : : ; 2 (a� a1), set �

(i)
n =GMR�

�
�n
�
�; a(i)

��
~

�(i�1)n where �n
�
�; a(i)

�
2 Zn

�
a(i); �(i�1)n

�
. The expansions needed for

the derivation of �(i)n can be obtained from the initial one and calcula-
tions similar to the proof of lemma 5.2, due to which it is approximately
unbiased of order

�
2a(i) + 1

�
.

Then �(2(a�a1))n is approximately unbiased of order 2a(2(a�a1))+1 = 2a+1
as required due to lemma 5.2. Obviously the above construction generalizes
the case where a = 1

2
and a1 = 0, as implied by the results of the previous

section.9

Remark R.28 In the case the ��n
�
a(i)
�
is needed for some i, remarks R.11

and R.26 would also hold.

Let us now turn our attention to two examples.

6 Examples
In this section we apply the suggested estimators to, approximately, correct
the bias of various estimators corresponding to the MA(1) model and the
MLE for an ARCH(1) one under conditional normality. To provide with
additional evidence for our theoretical results we perform a small simulation
exercise.

6.1 MA(1)
Consider the invertible MA(1) process

yt = ut + �ut�1; t = :::;�1; 0; 1; :::; j�j < 1; ut
iidv D(0; �2):

Suppose that � is a compact subset of (�1; 1), the GMR1 estimator of

� is given by 1�
p
1�4�2n
2�n

, where �n is the QMLE of the AR(1) coe¢ cient

9Due to the need to avoid the relevant moment approximations at boundary points we
could consider a �nite sequence of parameter spaces, say �(i) for i = 0; : : : ; 2 (a� a1) such
that �(i) � �(i�1), and �(i) is compact with non empry interior, and the relevant results
hold for any � in the interior of �(i).
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of an AR(1) auxiliary model (see Gourieroux et al. [[13]], and Demos and
Kyriakopoulou [[6]]). Notice also that b (�) = �

1+�2
, and let B be a compact

subset of
�
�1
2
; 1
2

�
compliant to assumption A.1.

From the calculations in appendix C we have that

E
�p
n (GMR1� �)

�
=

1p
n
�
1 + 5�2 + 2�4 + �6 � �8�

1� �2
�3 (4)

as in Demos and Kyriakopoulou [[6]]. As expected the GMR1 is not 2nd

order unbiased as the binding function is not linear.
Now a third step estimator of �, GMR2S, simply solves the equation

�n =
�

1+�2
� 1

n

�
�4 + 2�3 � 2�2 + 2� + 1

�
�2+�+1

(�2+1)
3 . In this case, the binding

function is the identity and consequently GMR2S is 2nd order unbiased (see
appendix C for details). In fact, this is GMR2�

�
1
2

�

GMR1 (see section 5).

Alternatively, as a second step estimator, one can consider the application
of GMR2�

�
1
2

�
on �n, named GMR2R. As the binding function is not linear,

this estimator is not 2nd order unbiased (see appendix C for calculations),
apart from � = 0. Hence

E
�p
n (GMR2R� �)

�
=

1p
n

�2 + 4�4 + �6 + �8 + 1�
�2 + 1

� �
�
3� �2

��
1� �2

�3 : (5)

However, considering GMR2RS + GMR2�
�
1
2

�

GMR2R, we have that,

as the binding function is the identity in this case, GMR2RS is 2nd order
unbiased. Finally, estimating � by the GMR2 we have that

E
p
n (GMR2� �) =

1p
n

�
�
3� �2

�
1� �2

�2 + 4�4 + �6 + �8 + 1�
1 + �2

�5 ; (6)

i.e. the GMR2 is not 2nd order unbiased, as expected due to nonlinearities
in the binding function. Comparing equation (5) with (6) it is obvious that
GMR2 is less 2nd order biased than GMR2R for all values of �, apart from
� = 0 in which case both are 2nd order unbiased at 0.
Notice that our assumption framework is easily validated for any of the

IE described in the previous paragraph. More speci�cally, assumption A.1.1-
3 follows easily while A.1.4 is irrelevant. Assumption A.2 follows from the
results of Demos and Kyriakopoulou [[6]] for a = 1

2
and a� = 1. Assumption

A.3 is again irrelevant, while due to the fact that �2 = Ek2 assumptions
A.4-A.5 follow trivially from the continuity of the relevant expressions and
their derivatives and the compactness of �. For the aforementioned IE in
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the realm of section 5, assumption A.6 follows trivialy (�(2) is chosen as a
compact subset of the initial �).
In terms of simulations, we draw a random sample of n 2 f50; 100; 150; 250;

500; 750; 1000; 1500; 3000g observations from a non-central Student-t distri-
bution with non-centrality parameter � = 1 and � = 20 degrees of free-
dom, standardized appropriately so that they have zero mean and unit vari-
ance. For each random sample, we generate the MA(1) process yt for � 2
f�0:4; 0:4g. We evaluate �n and if the estimate is in the [�0:499999; 0:499999]
interval we estimate all estimators, otherwise we throw away the sample and
draw another one. For each retained sample we evaluate eight estimators,
i.e. the GMR1, GMR2, GMR2S, GMR2R, GMR2RS, the QMLE of �,
say QMLE, the second step GMR2�

�
1
2

�
on the QMLE, say QMLES, as

well as the feasibly bias corrected estimator of GMR1, BCGMR1, where
the estimated value of � is employed in equation 4 for bias correction, i.e.

BCGMR1 = ��n (0)�
1

n
��n (0)

1 + 5 [��n (0)]
2 + 2 [��n (0)]

4 + [��n (0)]
6 � [��n (0)]

8�
1� [��n (0)]

2�3 :

Out of these estimators only GMR2S, GMR2RS, QMLES and BCGMR1
are 2nd order unbiased. We set the number of replications to 100000.
For the GMR2 estimator an additional question arises from the presence

of E��n in its objective function (see section 2). In general this expecta-
tion is unknown and consequently is approximated by an average of, say H,
monte carlo replications (see Gourieroux et al. [[13]]). Of course under the
assumptions in Gourieroux et al. [[13]] as H !1 we have that the average
converges to the expected value. Nevertheless, in practice a �nite number
of H is employed. Consequently, it could be of interest to compare the the-
oretical results, i.e. when H = 1, with those in practice, i.e. when H is
�nite. Clearly, the larger H is the better the approximation is and the more
cputime is needed per iteration within the maximization routine. The second
e¤ect is of course undesirable. Furthermore, on this point, one expects the
GMR2S to be faster than the GMR2, however how much faster is an open
question.
Consequently, we employ two values of H, i.e. H = 10 and H = 200,

denoting them by GMR2 (10) and GMR2 (200), respectively. Taking the
average over the 100000 replications, in �gure 1 we present the absolute
value of the biases of the estimators, multiplied by n, i.e. nE jGMR2 (i)� �j,
i = 10; 200, where the true � is �0:4. It is obvious that for H = 10 the bias
of the estimator is far away from the approximate, up to o

�
1
n

�
, absolute bias

which equals to 0:816 for this value of � (see equation 6). Consequently, in
what follows we consider only the GMR2 (200) one.
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In �gure 2 we present the absolute biases, multiplied by n, of the biased
estimators. It seems that, apart from the GMR2R and GMR2, 250 obser-
vations are enough for the estimators to reach their asymptotic approximate
bias. For � = �0:4 these are 1:252 and 0:4 for the GMR1 and QMLE,
respectively. For the GMR2R, 500 observations are needed to reach its as-
ymptotic bias (2:094), whereas 3000 are needed for the GMR2.
In �gure 3 the absolute biases, multiplied by n, of the unbiased estimators

are presented. It is obvious that, apart from the BCGMR1 estimator, all
estimators are by all means unbiased for sample size bigger or equal to 250.
The same is true for the BCGMR1 one but for sample size bigger or equal
to 500. It is worth noticing that, as expected, in almost all sample size cases
the multistep bias corrected estimators (GMR2S and GMR2RS) are less
biased than the feasibly bias corrected GMR1 estimator (BCGMR1).
It is worth noticing that, for n = 250, the average cpu time per iteration

for the GMR2S estimator is 2:47 � 10�4 seconds, whereas the equivalent
time for the GMR2 estimator is 2:88 seconds. Consequently, the suggested
indirect estimator is not only 2nd order unbiased but the procedure is very
fast, as well, at least for this model.10

The results for � = 0:4 are qualitatively the same and are not presented
to conserve space. Let us now turn our attention to the second example.

6.2 ARCH(1)
Consider the second order stationary ARCH (1) model

yt = u
1=2
t zt; ut = �1 + �2y

2
t�1; t = :::;�1; 0; 1; :::;

�1 > 0; �2 2 (0; 1) zt
iidv N(0; 1):

For the above model we have, from the Edgeworth expansions validated in

Iglesias and Linton [[16]], and Iglesias and Phillips [[17]], that Ek2 =
�

G
G�

�
for the MLE �n =

 b�1nb�2n
!
where G and G� are given in the appendix C.

We draw a random sample of n 2 f150; 300; 500; 750; 1000; 1500; 2000g
observations, plus 250 for initialization, from a standard normal distribution.
We perform 10000 replications. For each random sample, we generate the
ARCH(1) process yt with �1 = 1:0 and �2 = 0:5, and we �nd the MLEs of
the two parameters, as well as the feasibly bias corrected ones as suggested
in Iglesias and Linton [[16]], named IL, and the indirect estimator suggested

10All simulations have been performed to a computer with Intel i7 processor.
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here, named AD. As the Hi and H�
i terms, for i = 2; :::; 7, (see appendix

C) involve summations up to the sample size, we truncate them in 10 and
40 and call these estimators IL � 10, IL � 40, and AD � 10 and AD � 40,
for the feasibly corrected estimators and the indirect ones, respectively (see
Iglesias and Linton [[16]], and Iglesias and Phillips [[17]]).
In fact, these terms are evaluated from a long simulation with n� =

100000, where the MLE estimates are employed to generate the ARCH (1)
process in the case of the two IL estimators. For the two AD ones the
summation terms are treated as nuisance parameters, implicitly depending
on the estimated parameters. Under the distributional assumptions of our
experiment, the validity of the above mentioned procedure, as well as the
expansions, are justi�ed (see Corradi and Iglesias [[9]]). This experiment
elucidates remark R.6. It is in this case that the Eki+1 are analytically in-
tractable as functions of �. Hence they are approximated in the manner
described above. Notice that in the spirit of the same remark, a variety of
approximations could also be used, that could additionally involve approxi-
mations of some (or all) of the unknown moments involved in the expansions
using the observed sample (instead of or in addition to the Monte Carlo sam-
pling), as well as the computation of some of the approximating functions on
the QMLE etc. We did not employ such cases that can be easily adopted in
the framework of assumption A.4 for reasons of presentational convenience.
Our assumption framework can be validated for the AD type of estima-

tors as follows. � is chosen compact and the binding function is obviously the
identity. Hence assumption A.1 (again due to the coincidence of the under-
lying dimensions assumption A.1.4 is irrelevant) follows trivially. A.2 follows
for the results of the aforementioned papers for a = 1

2
, a� = 1. A.3 is again ir-

relevant while assumption A.4 follows from the continuity of G, G� and their

derivatives with respect to � =
�
�1
�2

�
, the compactness of�, the conditional

normality and the fact that ut (�) has a uniform strictly positive lower bound.

For A.5 consider the random element represented by 1
n

Pn
i=1

�
�1i (�)
�2i (�)

�
where �1i (�) containes the elements of the derivatives of the of the i

th factor
of the logarithmic likelihood function up to order d = 3. �2i (�) contains the
elements that are used in the description above to approximate, via simula-
tions, the analytically unknown moments that emerge inG andG�. These are
in the form of arithmetic means with respect to independent random elements
that depend on � (for example an element of �2i (�) would be

1
h

Ph
j=1

1
uj(�)

,

where h = n�

n
). Due to the compactness of �, the conditional normality and

the fact that ut (�) has a uniform strictly positive lower bound and the results
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of the aforementioned papers, the conditions 2-4 of Gotze and Hipp [[11]] for�
�1i (�)
�2i (�)

�
are easily (yet tediously) established, a fact that validates an

Edgeworth expansion of order 3 for 1p
n

Pn
i=1

�
�1i (�0)� E�1i (�0)
�2i (�0)� E�2i (�0)

�
. No-

tice that
p
n (�n � �0) = �n

�
1p
n

Pn
i=1

�
�1i (�0)� E�1i (�0)
�2i (�0)� E�2i (�0)

��
+ Rn with

P (kRnk > n) = o (n�1) for n = o (n�1), and �n satisfying the assumptions
of lemma AL.3 (see for example the proof of lemma 8 of Andrews [[2]]). Hence0@

p
n (�n � �0)

1p
n

Pn
i=1 (�1i (�0)� E�1i (�0))

1p
n

Pn
i=1 (�2i (�0)� E�2i (�0))

1A admits a valid Egdeworth expansion of

order 3. Moreover the elements of �2i (�) are smooth functions of � and more-

over 1p
n

Pn
i=1 (�2i (�n)� E�2i (�0)) = ��n

0@
p
n (�n � �0)

1p
n

Pn
i=1 (�1i (�0)� E�1i (�0))

1p
n

Pn
i=1 (�2i (�0)� E�2i (�0))

1A+
R�n with P (kR�nk > �n) = o (n�1) for �n = o (n�1), and ��n in the premises

of remark R.29. Hence

0BBB@
1p
n

Pn
i=1 (�2i (�n)� E�2i (�0))p

n (�n � �0)
1p
n

Pn
i=1 (�1i (�0)� E�1i (�0))

1p
n

Pn
i=1 (�2i (�0)� E�2i (�0))

1CCCA admits a valid

Egdeworth expansion of order 3. Now,

p
nmn (�0) =

0@ p
n (�n � �0)p

nG
��

1
n

Pn
i=1 �2i (�n)

�
; �0
�
�G (E�2i (�0) ; �0)p

nG�
��

1
n

Pn
i=1 �2i (�n)

�
; �0
�
�G� (E�2i (�0) ; �0)

1A
can be easily seen to satisfy an analogous expression with respect to a se-

quence of smooth functions of

0BBB@
1p
n

Pn
i=1 (�2i (�n)� E�2i (�0))p

n (�n � �0)
1p
n

Pn
i=1 (�1i (�0)� E�1i (�0))

1p
n

Pn
i=1 (�2i (�0)� E�2i (�0))

1CCCA and an

appropriate remainder. Hence assumption A.5 follows. An analogous rea-
soning would justify the Edgeworth expansions for the IL estimators.
In few cases the feasibly bias corrected estimator of �2 turns out to be

either greater than 1 or smaller than 0 (see remark R.11). In these cases we
throw away the particular Monte Carlo samples and draw new ones.11

11In fact for n = 150 we observed that in 1.33% and 2.10% of the experiments the
resulting IL�10 and IL�40 estimator was greater than 1 or smaller than 0, respectively.
Of course for larger n these cases are fewer and for n � 750 there is none.
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In �gure 4 the absolute biases, multiplied by n, of the estimators of the
constant �1 are presented. It is immediately obvious that both estimators,
IL� 10 and AD� 10, do not correct the bias of the MLE, for n � 750. For
the 40�window estimators both partially only correct the bias of theMLE,
although for n = 2000 the biases of both estimators are close to their MC
errors (around 0:987). For the bias-corrected estimators of �2 (the ARCH
parameter), in �gure 5, it is obvious that all four estimators correct the bias
of the MLE. With the exemption of n = 1500, the 40� window estimators
are less biased than the 10�window ones and close to their MC error (0:894).
Notice also that in almost all sample size cases the AD� 40 estimator is less
biased than the IL� 40 one.

7 Conclusions
In this paper we de�ne a set of indirect estimators based on moment ap-
proximations of the auxiliary estimators and provide results concerning their
higher order asymptotic behavior. Our motivation resides on the following
properties that these estimators posses:

1. Computational facility as they are derived from procedures avoiding
the nested numerical optimization burden that is usually the case with
the simulated analog of the GMR2 estimator. This comes at the �xed
cost of the analytical derivation of the approximation. This remark
also holds in cases where the analytical form of the approximation is
unknown and is in turn numerically approximated.

2. The GMR1 estimator has a convenient interpretation as an approxi-
mate minimizer of the criteria from which the considered estimators
are derived. This facilitates enormously the analytical derivation of
some of the asymptotic properties. Analogous results hold between
any pair of the estimators studied.

3. More generally, their asymptotic properties are analytically more tractable
than the analogous of the GMR2 estimator. For example, there is no
need of imposing rate of convergence conditions on the derivatives of
the error of approximation, since the result that would be based on
such a condition in the case of the GMR2 estimator, is now based on
local boundeness conditions of the parameter functions of the relevant
polynomials in 1p

n
.
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We extend this class of estimators to multistep indirect estimators that in
conjunction with the previously mentioned results identi�es subclasses that
have potentially useful bias structure of any given order.
We demonstrated that the well known "feasibly biased corrected" estima-

tor is an one-computational step approximation of the suggested estimator.
As expected the later performed better, in terms of bias, in two examples. Of
course, one could apply the suggested procedures to more complex models
than the expository ones employed in this paper.
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Appendices

A Proofs of Lemmas, Propositions and Corollaries.
Proof of Lemma 2.1. The result follows from the compactness of B and
lemma 7.1.
Proof of Lemma 2.2. Due to assumpion AL.1 �+n lies in O" (�0) with
P -probability 1 � o (n�a). Then a Taylor expansion of order d of Wn

�
�+n
�

around �0 along with assumptions A.3, AL.1, implies that for any � > 0,
exist �i > 0, i = 0; : : : ; d such that

P
�W �

n

�
�+n
�
�W (�0)

 > �
�

� P (kW �
n (�0)�W (�0)k > �0) +

Pd
i=1 P

��+n � �0
 > �i

�
= o

�
n�a
�

Proof of Lemma 2.3. First notice that due to the de�nition of the GMR1
and remark R.7 the estimator lies in O" (�0) with probability 1 � o

�
n�a

��
.

Hence it satis�es �rst order conditions with the same probability due to
A.1.2. A mean value expansion of the �rst order conditions around �0 along
with A.2, A.4, A.5 implies that P

�p
n k�n (0)� �0k > C

p
lnn
�
= o

�
n�a

��
,

for some C > 0. A Taylor expansion of order d of the �rst order conditions
implies that with probability 1� o

�
n�a

�� p
n (�n (0)� �0) = L

p
nm�

n (�0) +
1p
n
�n (

p
nm�

n (�0)) + Rn where L is an p � dim (mn (�)) matrix of rank p
due to A.1, A.3, �n is a polynomial function with absolutely bounded coe¢ -
cients due to A.1, and P (kRnk > n) = o

�
n�a

��
for some n = o

�
n�a

��
due

to P
�p

n k�n (0)� �0k > C
p
lnn
�
= o

�
n�a

��
, A.2, A.4, A.5. Hence from

lemma AL.1 the result would follow if L
p
nm�

n (�0) +
1p
n
�n (

p
nm�

n (�0)) has
a valid Edgeworth expansion of the respective order. This is established by
lemma 3 of [18] and assumption A.5.
Proof of Lemma 4.1. We have that
Q
�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J2 (b (�0) ; b (�) ;W

� (�0))
�� > "

�
=

Q

�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
��
� J2 (�n; bn (�; �n (�; a)) ;W

� (�0))
��

+sup�2� jJ2 (�n; bn (�; �n (�; a)) ;W � (��0))� J2 (b (�0) ; b (�) ;W
� (�0))j > "

�
�

Q
�
sup�2�

��J2 ��n; bn (�; �n (�; a)) ;W �
n

�
�+n
�
�W � (�0)

��� > "
2

�
+

Q
�
sup�2� jJ2 (�n; bn (�; �n (�; a)) ;W � (�0))� J2 (b (�0) ; b (�) ;W

� (�0))j > "
2

�
.

Now, due to the triangle inequality, submultiplicativity A.4.3, A.2, R.7 and
2.2 we have for the �rst term of the last sum that it is less than or equal to
Q
�
sup�2�

�n � b (�)�
P2a

i=0
1

n(i+1)=2
� i+1n (�)

2 W �
n

�
�+n
�
�W � (�0)

 > "
2

�
�
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Q

 
sup�n2O"�1 (b(�0))

sup�2�
�n � b (�)�

P2a
i=0

1
n(i+1)=2

� i+1n (�)
W �

n

�
�+n
�
�W � (�0)

1=2 > "
2

!
+

Q
�
�n =2 O"�1 (b (�0))

�
�

Q

� �
k�nk+ sup� kb (�)k+

P2a
i=0

1
n(i+1)=2

sup�2�
� i+1n (�)�W �

n

�
�+n
�
�W � (�0)

 > "
2

�
+

P
�
�n =2 O"�1

(b (�0))
�
�

P

�W �
n

�
�+n
�
�W � (�0)

 > "

2
�
c1+c2+

P2a
i=0

Mi

n(i+1)=2

�
�
+

P
�
�n =2 O"�1

(b (�0))
�
+
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
= o

�
n�a

��
due to

remark R.7. For the second term we have that due to the continuous map-
ping theorem 9� > 0 :
Q
�
sup� jJ2 (�n; bn (�; �n; a) ;W � (�0))� J2 (b (�0) ; b (�) ;W

� (�0))j > "
2

�
�

Q (sup� jJ (�n; bn (�; �n; a) ;W � (�0))� J (b (�0) ; b (�) ;W
� (�0))j > �) and due

to the triangle inequality, this is less than or equal to
Q
�
sup�

��n � b (�)�
P2a

i=0
1

n(i+1)=2
� i+1n (�)

�
� (b (�0)� b (�))


W �(�0)

> �
�
�

Q
�
k�n � b (�0)k+

P2a
i=0

1
n(i+1)=2

sup�2�
� i+1n (�) > �

�
. The last term is less

than or equal to

Q

�
k�n � b (�0)k > �P2a

i=0
Mi

n(i+1)=2

�
+
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
which

is obviously o (n�a). The result follows from the continuous mapping theorem
and assumption A.1.3 which implies that J (b (�0) ; b (�) ;W � (�0)) is uniquely
minimized at �0.
Proof of Proposition 4.2. We have thatQ (sup�2� kbn (�)� bn (�; �n (�; a))k > ") �
P
�
sup�2� kbn (�)� b (�)k > "

2

�
+Q

�P2a
i=1

1
ni+1=2

sup�2�
� i+1n (�) > "

2

�
�

P
�
sup�2� kbn (�)� b (�)k > "

2

�
+Q

�P2a
i=1

Mi

ni+1=2
> "

2

�
+
P2a

i=0Q
�
sup�2�

� i+1n (�) > Mi

�
,

for some " > 0. Now due to assumption A.1.3 and due to the hypothesis
that sup�2� kbn (�)� b (�)k converges to zero uniformly on �, the �rst two
probabilities are exactly zero for large enough n, and therefore the result
follows from remark R.7.
Proof of Corollary 4.3. From the de�nition of the two estimators we
obtain that
J
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Proof of Lemma 4.6. The result follows directly from AC.1 in appendix
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follows from the �rst part of lemma AL.3.
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which is the required result. The result for the GMR estimator follows anal-
ogously.
Proof of Corollary 4.13. Follows from direct substitutions on the results

of lemma 4.10 by noting �rst that @b(�0)
@�0 =

�
Idp�p
0q�p�p

�
,
@b2j (�0)

@�@�0 = 0p�p 8j =
1; : : : ; q, and w� = 0p.
Proof of Lemma 5.1. For a2 = 0 the result follows from remark R.27.
For a2 � 1

2
we have that for large enough n by expanding analogously and

keeping terms up to O (n�2a1) we obtain
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n (�n (a2)� �0)

due to the fact that any partial derivative of any order up to 2a1 of � i+1n
at �0 for any i = 1; : : : ; 2a2 is 0 due to the convention of de�nition A.6, and
therefore we obtain that

p
n (�n (a2)� �0) v

a1

p
n (�n � �0) due to the same

convention. The result follows since an analogous expansion would be valid
for any � at a relevant open neighborhood of �0 due to local approximate
unbiaseness of the assumed order.
Proof of Lemma 5.2. We have that for large enough n in the case where
the �nal computation concerns the �n (a�), by expanding analogously
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due to the fact that any partial derivative of any order up to 2a2 of � i+1n at
�0 for any i = 1; : : : ; 2a1 is 0 due to the convention of A.6, and therefore by
keeping terms up to O

�
n�a1�

1
2

�
we obtain

p
n (�n (a2)� �0) s
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1
2

p
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(ki+1 (z; �0)� Eki+1 (z; �0)) +
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na1+
1
2

(k2a1+2n (z; �0)� Ek2a1+2n (z; �0))

and the result follows since an analogous expansion would be valid for any �
at a relevant open neighborhood of �0 due to local approximate unbiaseness
of the assumed order.

B Proofs of General Lemmas and Corollaries.
In this appendix we include several results, either directly drawn from the rel-
evant references or simple extensions and/or corollaries of the latter. These
are employed throughout the main body of the paper. Let f�ng denote a
generic sequence of random vectors. In the following �i denote polynomial
real functions on Rq for i in some index set, with O (1) coe¢ cients. Finally
'V denotes the standard density function of the q-dimensional Normal dis-
tribution with zero mean and covariance matrix V . V may also depend on
n, hence we suppose that it converges to a positive de�nite matrix which we
also denote with V .

De�nition D.7 Suppose that A is a borel set. We say that A has the
"-neighborhood property with respect to a probability measure P if P at-
tributes probability of order O (") as " # 0 to the "-neighborhood of the
boundary of A.

De�nition AD.1 �n admits an Edgeworth expansion of order s around the
normal distribution with zero mean and covariance matrix V if there exist
polynomial functions �i for i = 1; : : : ; 2a where a = s�1

2
such that

sup
A2BC

����P (�n 2 A)� Z
A

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx

���� = o
�
n�a
�

where BC denotes any class of Borel sets with the "-neighborhood property
with respect to the Normal distribution with mean zero and covariance ma-
trix V . The resulting signed measure whose density is

�
1 +

Xs

i=1

1

n
i
2
�i (x)

�
'V (x)
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is denoted as EDGn;a. In the case that the �i are derived from the inversion
of a Taylor approximation of the Fourier-Stieljes transform of P , then the
Edgeworth measure is known as the formal one (see among others Magdali-
nos [[18]]) section 4, or Gotze and Hipp [[11]] page 2063, for the de�nition of
the polynomials in this case).

Remark AR.1 When the Edgeworth expansion exists it is not unique. This
is due to the fact if ��i is another polynomial such that j�i (x)� ��i (x)j =
o
�
n�a+

i
2

�
for any x and some i then the relevant Edgeworth measure con-

structed by the new polynomials provides also a valid Egdeworth expansion
of the same length to �n. It is also trivial to establish that when an Edge-
worth expansion of order s is valid then, the Edgeworth expansion of order
s� is also valid for any s� � s, where the latter is the one with density�
1 +

Xs�

i=1

1

n
i
2
�i (x)

�
'V (x) given the former.

Remark AR.2 When BC denotes the largest class of sets with the "-neighborhood
property, then it can be easily seen that it also satis�es the provisions of theo-
rem 12.5 of Stokey and Lucas [[23]], hence it comprises of a weak convergence
determining class. The de�nition hence implies that the sequence of EDGn;a
comprises of an o (n�a) approximation to the sequence of distributions of �n
with respect to the weak topology. This in turn implies that the de�nition
uniformly holds for any class of Borel sets with the relevant property (see for
example Rao [[21]] or Bhattacharya and Rao [[21]]. Hence the de�nition is
equivalent to the aforementioned weak approximation. The same conclusion
could also be drawn if BC is chosen smaller than the previous. A typical
example consists of the class of convex Borel sets which is used in the main
body of the present paper.

Remark AR.3 It can be easily seen that given EDGn;a thenZ
A

x

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx =

Xs

i=1

1

n
i
2

ki

where ki =
R
A
x�i (x)'V (x) dx which always exists, could depend on n and

converges to zero. This is essentialy used for the de�nition of the proposed
estimators in the present paper.

Lemma AL.1 Suppose that �n admits a valid Edgeworth expansion of order
s = 2a+1. Let fxng denote a sequence of random vectors and there exists an
" > 0 and a real sequence fang, such that an = o (n�") and P (kxnk > an) =
o (n�a). Then any �n, such that P (�n + xn = �n) = 1 � o (n�a), admits a
valid Edgeworth expansion of the same order.
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Proof. We have that
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the last term being o (n�a). Now by assumption
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� (z) dz
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where BC denotes the collection of convex Borel sets of Rq and �i (z) = O (1).
Then,

P (�n + xn 2 A) � P (�n 2 A� an) + o
�
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�

uniformly over BC . Therefore
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as A� an is convex. Now,Z
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Hence, if Hk (z) denotes the kth order Hermite multivariate polynomial,
L (Hk (z) ; an; i) and i-linear function of an with coe¢ cients from Hk (z), and

� (z � an) = � (z)
KX
k=0

1

k!
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where
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1
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(�1)K+1 L (Hk (z � a�n) ; an; K + 1)� (z � an)

and a�n lies between an and zero. If a � " set K = 0, else, choose some
natural K � a

"
� 1.

Then, 
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where the ��i (z)
0 s areO (1) polynomials in z and qn (z) =

�
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for some C; � > 0. Hence, since supA2BC
��Rn � RA qn (z) dz�� = o (n�a), and

therefore

sup
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qn (z) dz
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due to the fact that the transformation from �i (z) to ��i (z) does not depend

onA but only on an withRn = P (�n + xn 2 A)�
R
A
� (z)

�
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i=1 n�

i
2��i (z)

�
dz.

Corollary AC.1 If a � " then �i (z) = ��i (z), 8i, and therefore the result-
ing Edgeworth distribution coincides with the initial.

Now, denote by Pn the measure P � ��1n . Given the previous approxima-
tion and by strengthening the order of the Edgeworth expansion we obtain
the following lemma that is quite useful for the validation of the analogous
moment approximations.
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Lemma 7.1 Suppose thatK is am-linear real function on Rp, if the support
of �n is bounded by Opn� (0) for some � > 0 and �n admits an Edgeworth
expansion of order 2a+m+ 1 then����Z

Rq
K (xm) (dPn � dQn)

���� = o
�
n�a
�

where Qn denotes the analogous Edgeworth measure of order 2a + 1 and
xm = (x; x; : : : x)| {z }

m

.

Proof. Since 2a+m+1 > 2a+1, we have that supA2BC jPn (A)�Qn (A)j =
O (n�a��), where � > 0. Hence
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+na+m��mqmP (k�nk > c (lnn)�)

+na
Z
RqnOc(lnn)� (0)

jK (xm)j jdQnj :
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As supA2BC n
a jPn (A)�Qn (A)j = O (n��) for � > 0, we have that

(lnn)2� sup
A2BC

na jPn (A)�Qn (A)j = o (1)

and na+
m
2 �mqmP (k�nk > c (lnn)�) = o (1) if � � 1

2
and c �

p
2a+m+ 1 by

lemma 2 of Magdalinos [[18]]. Finally na
R
RqnOc(lnn)� (0)

jK (xm)j jdQnj = o (1)

due to Gradshteyn and Ryzhik [[15]] formula 8.357.
We extend the previous result in the case where �n has unbounded sup-

port in exchage for the boundeness of the relevant moments of this random
element.
In the next lemma let Prp : Rq ! Rp (p < q) denote projection to the

�rst p coordinates.

Lemma AL.2 Suppose that �n admits a valid Edgeworth expansion of order
s. Then Prp (�n) admits an analogous expansion of the same order.

Proof. Let BC denote the class of convex Borel sets on Rp. Then for A 2 BC
we have that since Pr�1p (A) has the "-neighborhood property with respect
to the relevant normal distribution, hence

P (Prp (�n) 2 A) = P
�
�n 2 Pr�1p (A)

�
=

Z
A�Rq�p

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx+ o

�
n�a
�

=

Z
A

�
1 +

Xs

i=1

1

n
i
2

��i (v)

�
'IV I0 (v) dv + o

�
n�a
�

where v = Prp (x), x = (v; v�), I = (Idp�p; 0p�q�p), and ��i (v) =
R
Rq�p �i (v; v

�)'V (v; v
�) dv�.

The o (n�a) is independent of A hence the result holds uniformly over BC and
therefore uniformly over any class of Borel sets with the "-neighborhood prop-
erty with respect to the normal distribution with zero mean and covariance
matrix IV I 0 due to remark AR.2.

Lemma AL.3 Suppose that �n admits a valid Edgeworth expansion of order
s. Let also Hn (C) =

n
x 2 Rq : kxk < C ln1=2 n

o
for C > 4a + 2 and gn :

Rq ! Rp (p � q) be measurable and continuously di¤erentiable of order s+1
on Hn, for large enough n, with limn!1 rankDgn (0) = p , kDign (0)k

s
i�1 =

o (n�a) for 1 < i < s + 1 and kDmgn (x)k = o (n�a) uniformly in Hn. Then
gn (�n) admits an analogous expansion of the same order, i.e. there exist
polynomials ��i : Rp ! R, i = 1; : : : ; s such that

sup
A2BC

����P (gn (�n) 2 A)� Z
A

�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx

���� = o
�
n�a
�
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Furthermore, if K is a m-linear real function on RpZ
Rp
K (xm)

�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx

=

Z
Rq
K (( n (z))

m)

�
1 +

Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz + o

�
n�a
�

where BC denotes the class of convex Borel sets on Rp, L = limn!1Dgn (0),
 n (z) = Prp

�
1
i!

Ps
i=0D

ig�n (0) (z
j)
�
, g�n = (gn; $n), $n : Rq ! Rq�p is an

orthogonal projection of Rq to a q � p dimensional subspace composed with
a linear isometry with Rq�p, such (Dgn (0))�1 \ ($n (0))

�1 = f0g, gn is
restricted to Hn and xm = (x; x; : : : x)| {z }

m

.

Proof. For the �rst part assume p = q without loss of generality. For if p < q
then consider g�n satis�es the assumptions of the lemma if gn does. Then the
result would follow from lemma AL.2. Due to the assumption for �n the
choice of C > 4a + 2 stems from lemma 2 of Magdalinos [[18]]. Notice that
when gn is restricted toHn (C) then due to a slight modi�cation of lemmas 3.5
and 4.4 of Skovgaard [[22]], which consists in replacing 1Rk with L in equations
(4.4) and (4.5) and in the proof of 3.5, it has an inverse g�1n satisfying the
same assumptions, de�ned on Hn (C

�) for some C� < C < 4a+ 2. Then  n
is essentially the s-th order McLaurin polynomial of gn. Then for A 2 BC we
have that g�1n (A) and g�1n (A)\Hn (C) possess the "-neighborhood property
with respect to the normal distribution with mean zero and covariance matrix
LV L0. Hence

P (gn (�n) 2 A) = P
�
�n 2 g�1n (A)

�
=

Z
g�1n (A)

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx+ o

�
n�a
�

=

Z
g�1n (A)\Hn(C)

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx

+

Z
g�1n (A)\Hn(C)

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx+ o

�
n�a
�

=

Z
g�1n (A)\Hn(C)

�
1 +

Xs

i=1

1

n
i
2

�i (x)

�
'V (x) dx+ o

�
n�a
�

due to lemma 2 of Magdalinos [[18]]. Now since gn is inverible on Hn (C) the
last integral equalsZ

A\gn(Hn(C))

�
1 +

Xs

i=1

1

n
i
2

�i
�
g�1n (z)

��
'V
�
g�1n (z)

�
det
�
Dg�1n (z)

�
dz

47



and due to the proof of lemma 3.5 of Skovgaard [[22]] Hn (C�) � gn (Hn (C))
hence this equalsZ

A\Hn(C�)

�
1 +

Xs

i=1

1

n
i
2

�i
�
g�1n (z)

��
'V
�
g�1n (z)

�
det
�
Dg�1n (z)

�
dz

+

Z
A\(gn(Hn(C))=Hn(C�))

�
1 +

Xs

i=1

1

n
i
2

�i
�
g�1n (z)

��
'V
�
Dg�1n (z)

�
det
�
g�1n (z)

�
dz

the latter is bounded fromZ
Hc
n(C�)

�
1 +

Xs

i=1

1

n
i
2

�i
�
g�1n (z)

��
'V
�
g�1n (z)

�
det
�
Dg�1n (z)

�
dz

which is o (n�a).Then the needed polynomials are obtained fromZ
A\Hn(C�)

�
1 +

Xs

i=1

1

n
i
2

�i
�
g�1n (z)

��
'V
�
g�1n (z)

�
det
�
Dg�1n (z)

�
dz

as in the proof of the �rst part of lemma 4.6 of Skovgaard [[22]] using re-
peated Taylor expansions and the fact that det (Dg�1n (z)) = det�1 (L)+o (1)
uniformly on Hn (C�), holding terms of the relevant order and esimate the
remainders as o (n�a) terms. The previous holds uniformly on BC due to the
fact that none of the employed consrucions depends on A. For the second
part, when p = q the result follows directly from the second part of lemma
4.6 of Skovgaard [[22]]. When p < q use the construction described in the
begining of the proof so thatZ

Rq
K (( n (z))

m)

�
1 +

Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz

=

Z
Hn(C�)

K (( n (z))
m)

�
1 +

Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz

+

Z
Hc
n(C�)

K (( n (z))
m)

�
1 +

Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz

due to the previous. The last integral is o (n�a) due to equation (A.8) in the
proof of lemma 2 of Magdalinos [[18]]. Hence the previous equals

Z
Hn(C)

K

��
Prp

�
1

i!

Ps
i=0D

ig�n (0)
�
zj
���m��

1 +
Xs

i=1

1

n
i
2

�i (z)

�
'V (z) dz + o

�
n�a
�

=

Z
g�n(Hn(C))

K

��
Prp

�
1

i!

Ps
i=0D

ig�n (0)
�
g��1n (z)

�j��m��
1 +

Xs

i=1

1

n
i
2

�i (gn (z))

�
'V (gn (z)) dz + o

�
n�a
�

=

Z
g�n(Hn(C))

K (xm)

�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx+ o

�
n�a
�

48



=

Z
Rp
K (xm)

�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx

�
Z
Rp=g�n(Hn(C))

K (xm)

�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx+ o

�
n�a
�

andZ
Rp=g�n(Hn(C))

kK (xm)k
�
1 +

Xs

i=1

1

n
i
2

��i (x)

�
'LV L0 (x) dx = o

�
n�a
�

since g�n (x) = Lx+ o (1) uniformly in Hn (C), the fact that �n admits a valid
Edgeworth expansion of order s + 1 and due to equation (A.8) in the proof
of lemma 2 of Magdalinos [[18]].

Remark R.29 Notice that the previous result can be easily established in
the case where gn is stochastic and it satis�es the needed conditions with
probability 1� o (n�a).

Further Comments on the Assumption Framework

In this section we provide a brief commentary on our assumption framework.
This is in the form of further remarks with respect to several groupings of
the assumptions that appear in the main text.

Remark R.30 (Assumptions A.3, A.4 A.5) The �rst part of assump-
tion A.3 can be established for example when W �

n (�) =
1
n

P
W (xj (!) ; �)

with xj andW appropriate random elements and function respectively. If for
any � 2 O" (�0) the sequence (W (xn (!) ; �)) is stationary and strong mixing
(see Assumption 3 of Gotze and Hipp [[11]]), and

E�0 kW (x1 (!) ; �)� E�0W (x1 (!) ; �)kp < +1

for p > 2a� then the �rst part of the assumption follows from the Yokoyama
moment inequality (see Andrews [[2]], proof of lemma 3) with W � (�) =
E�0W (x1 (!) ; �). In an analogous manner the existence of the Ti functions
can be established. Hence if

E�0
DiW (x1 (!) ; �)� E�0D

iW (x1 (!) ; �)
p < +1

then the Ti can be identi�ed with vecE�0D
iW (x1 (!) ; �) for all i = 1; : : : ; d.

The second part of the assumption could be obtained from an asymptotic
equi-Lipschitz condition with probability 1 � o (n�a) for DdW �

n (�) and the
compactness of O" (�0). In the case that W �

n (�) =
1
n

P
W (xj (!) ; �) then a
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Lipschitz coe¢ cient ofDdW �
n (�)�E�0DdW (x1 (!) ; �) would be 1n

P
(l (xj (!)) + El (xj (!)))

where lj is the analogous coe¢ cient for DdW (xj (!) ; �) and if the sequence
(l (xj (!))) is stationary and strong mixing, and

E�0 kl (x1 (!))� E�0l (x1 (!))k
p < +1

then the equi-Lipschitz property would follow from lemma 3.b of Andrews
[[2]]. Assumption A.4.2,3 would, analogously to the previous, follow from
equi-Lipschitz conditions with probability 1 � o (n�a) on � i+1n (!; !

0; �) (on
�), and D2� i+1n (!; !

0; �) (on O" (�0)). In the case that � i+1n (!; !
0; �) =

1
n

P
�i+1 (yj (!; !

0; �) ; �) for �i+1 appropriate functions and yj (!; !
0; �) ap-

propriate random elements then along the same lines of the previous dis-
cussion the needed conditions would follow from strong mixing, stationarity
and moment conditions on the relevant Lipschitz coe¢ cients. In the same
respect the functions Zi (�), used in assumption A.5, can be identi�ed with
vecEQD

i�i+1 (y1 (!; !
0; �0) ; �).

Remark R.31 (Assumptions A.2, A.5, A.6) This particular set of as-
sumptions requires the validity of Edgeworth approximations of the distribu-
tions of random elements smooth transformations of which are the IE at hand.
Obviously this can be established with the help of the general results that
appear in the previous section along with more primitive assumptions that
guarantee analogous expansions for similar random elements. Assume the ex-
istence of a sequence of random elements Sn (!; !0; �) with values in Rl (l �
dim (m�

n)) of the form Sn (!; !
0; �) = n�1=2 (Xn (!; !

0; �)� E�Xn (!; !
0; �)),

Assumptions 2-4 of Durbin [[7]] hold. These assumptions essentially concern
the rate of uniform integrability of the characteristic function of Xn, the
asymptotic behavior of its derivatives and of the cumulants of Xn of order
2a+ 2 uniformly in a neighborhood of �0. These assumptions guarantee the
validity of the formal Edgeworth expansion uniformly in the aforementioned
neighborhood. These do not require independence between the random vari-
ables comprising Xn, nor that the latter is in a form of a sum. They were
used for example by Andrews and Lieberman [[3]] for the validation of the
formal Edgeworth expansions of Sn when Xn is comprised by the elements of
the derivatives of the aforementioned order of the likelihood function or the
Whittle likelihood function and the consequent validation of the Edgeworth
expansion of the analogous MLE and WMLE respectively uniformly on their
parameter space for long memory Gaussian processes. In a similar fashion
Sn (!; !

0; �) could be of the form n�1=2 (
Pn

i=1 (Xi (!; !
0; �)� EXi (!; !

0; �)))
where Xn (!; !

0; �) = g ("n�i (!; !
0) ; �; i 2 N) and the "n comprise an i.i.d.

process. Using the results of Gotze and Hipp [[11]] (Lemma 2.3, Assump-
tions 2-4) if for any �, g satis�es some Lipschitz conditions, has almost
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everywhere continuous derivativw w.r.t. to ", these are appropriately non-
degenerate in a set of positive probability, E kX1 (!; !

0; �)k2a+3 < 1, and
g ("n�i (!; !

0) ; �; i 2 N) sati�es a weak dependence condition, then Sn (!; !0; �)
again admits a valid formal Edgeworth expansion of order 2a + 2 for any
�. Given the previous if

p
nm�

n (�) = �n (Sn (!; !
0; �)) + Rn (�) with P�-

probability 1� o (n�a), where for any �, �n satis�es the provisions of lemma
AL.3 and P� (kRn (�)k > n (�)) = o (n�a) for n (�) = o

�
n��(�)

�
with � (�) >

0, then due to lemmas AL.3 and AL.1 the discussed assumptions hold (in fact
assumption A.5 holds for any �). In the case that � (�) = a then the relevant
expansion can be identi�ed as the formal one. Notice �nally, that due to
the fact that m�

n (�) contains the elements of �n � b (�) and �+n � �, which
can be assumed to satisfy smooth �rst order conditions with P�-probability
1�o (n�a) which can be reduced with P�-probability 1�o (n�a) to be formed
by elements of Sn (!; !0; �), the elements of �n and Rn corresponding to the
elements of �n � b (�) and �+n � �, say ��n and R�n, can be obtained by recur-
sive applications of the implicit function theorem. The conditions imposed by
lemma AL.3 on ��n would then be justi�ed by conditions-imposed on the func-
tion that de�nes these �rst order conditions-enabling that the jacobian at � is
asymptotically invertible and the higher order derivatives satisfy conditions
similar to the ones imposed by this lemma . Analogous Lipschitz continu-
ity conditions on the highest order derivative, would ensure that kR�n (�)k
is bounded with P�-probability 1 � o (n�a) by kzn (�)k

Sn(!;!0;�)p
n

2a+2 with
P� (kzn (�)k > M (�)) = o (n�a) for M (�) > 0 (see for example the proof of
lemma 8 of Andrews [[2]]).

argmin Properties

In the following, let � be a compact metric space, and (
 ;F ; P ) a complete
probability space. Let (K (�) ;H) denote that space of compact subsets of
�, equipped with the Hausdor¤ metric. Let BH denote the corresponding
Borel algebra.

Remark AR.4 Let J be a real function on 
 � �, continuous on � for
almost every ! 2 
 and jointly measurable on the product algebra of 
��.
Then due to the compactness of � and by theorem 3.10 (iii) of Molchanov
[[19]] argmin� �J is non empty, measurable and almost surely compact val-
ued. By theorem 2.13 of Molchanov [[19]], argmin� � J has a measurable
selection.
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C Examples’ Expansions
MA(1) calculations

Given the expansion results in [6], and employing the notation of lemma 4.2
in Arvanitis and Demos [[4]] we have that

k1 = !z; and k2 = �2�
�4 + 1�
�2 + 1

�3 � 16 a1 + 3a3!2
+
1

6

a1 + 3a3
!2

z2

where

!2 =
�2 + 4�4 + �6 + �8 + 1�

1 + �2
�4 ; a1 =

6�
�
1 + �4

�2�
1 + �2

�5 +

�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

�6 �23;

a3 = �4
�
�
�2 + 4�4 + �6 + �8 + 1

� �
1 + �4

��
�2 + 1

�7 ;

�3 is the third order cumulant of ut, and z is a standard normal random
variable.
Now from Arvanitis and Demos (2010) we have, for the second step esti-

mator �n (0), that:

q1 =

�
@b0

@�=

��1
k1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z

q2 =

�
@b0

@�=

��1 
k2 �

1

2

�
@b0

@�=

��1
@2b0
@�@�0

q21

!

= �2 �

1� �2
�4 + 1

�2 + 1
+

�
1 + �2

�2
1� �2

a
(1)
1 + 3a

(1)
3

6!2
�
z2 � 1

�
�
�
�
�2 � 3

�
�2 + 1

�2 + 4�4 + �6 + �8 + 1�
1� �2

�3 z2:

Now for �n
�
1
2

�
,applying corollary 4.11 again we get that

q�1 = q1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z;

q�2 =
1

6

�
�2 + 1

�2
1� �2

a1 + 3a3
!2

�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� �z2 � 1�
and consequently E

�
��n
�
1
2

�
� �
�
= o (n�1).

52



For GMR2R applying corollary 4.11 once more we get:

q��1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z

and

q��2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� z2:
Taking expectations we get the result in section 6.1.
On the other hand for GMR2RS, we have that

q���1 =

p
�2 + 4�4 + �6 + �8 + 1

1� �2
z;

q���2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�2 + 4�4 + �6 + �8 + 1�

1� �2
�3 �

�
3� �2

��
�2 + 1

� �z2 � 1�
and

E
p
n

�
����n

�
1

2

�
� �

�
= o

�
n�

1
2

�
:

Finally, for the GMR2 estimator we have that

q1 =

�
�2 + 1

�2
1� �2

!z;

and

q2 =
1

6

�
�2 + 1

�2
1� �2

a
(1)
1 + 3a

(1)
3

!2
�
z2 � 1

�
+
�
�
3� �2

�
1� �2

�2 + 4�4 + �6 + �8 + 1�
1 + �2

�5 z2:

Taking expectations we get the result in section 6.1.

ARCH(1) calculations

For the ARCH(1) model we have that

G = H�1
1

"
E

�
y4t�1
u2t

�2
H2 � E

�
y4t�1
u2t

�
E

�
y2t�1
u2t

�
(H3 + 2H4)

#

+H�1
1

264
�
E
�
y2t�1
u2t

�2
+ E

�
y4t�1
u2t

�
E
�
1
u2t

��
H5

+E
�
y2t�1
u2t

�2
H6 � E

�
1
u2t

�
E
�
y2t�1
u2t

�
H7

375 ;
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and

G� = H�1
1

"
E

�
y2t�1
u2t

�2
H3 + E

�
y4t�1
u2t

�
E

�
1

u2t

�
H4 � E

�
y4t�1
u2t

�
E

�
y2t�1
u2t

�
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#
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1

�
�E

�
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�
E

�
1

u2t

�
(2H5 +H6) + �3E

�
1

u4t

�
H�
7

�
;

where

H1 =

"
E

�
1

u2t

�
E

�
y4t�1
u2t

�
� E

�
y2t�1
u2t

�2#2
; H2 =

nX
i=1

E

�
1

u2tut�i
�

y2t�i
u2tu

2
t�i

�
;

H3 =

nX
i=1

E

�
y2t�i�1
u2tut�i

�
y2t�iy

2
t�i�1

u2tu
2
t�i

�
; H4 =

nX
i=1

E

�
y2t�1
u2tut�i

�
y2t�1y

2
t�i

u2tu
2
t�i

�
;

H5 =
nX
i=1

E

�
y2t�1y

2
t�i�1

u2tut�i
�
y2t�1y

2
t�iy

2
t�i�1

u2tu
2
t�i

�
; H6 =

nX
i=1

E

�
y4t�1
u2tut�i

�
y4t�1y
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t�i

u2tu
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�
and
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Now taking into account that
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where
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and H2 as before.

Figure 1: n jE (GMR2(i)� �)j, i = 10; 200, MA(1) model, � = �0:4
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Figure 2: n
���E �b��� �

��� Biased Estimators, MA(1) model, � = �0:4:
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Figure 3: n
���E �b��� �

��� Unbiased Estimators, MA(1) model, � = �0:4:
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Figure 4: n
���E �b�1�� �1

��� ARCH(1) model, �1 = 1:0 and �2 = 0:5:

Figure 5: n
���E �b�2�� �2

��� ARCH(1) model, �1 = 1:0 and �2 = 0:5:
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