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Abstract 

The paper considers a simple example of unconstrained 
maximization, i.e., that of unrestricted profit maximization by a firm 
facing constant input prices, as compared to two restricted (constrained) 
profit problems under “point” or “quantity” rationing of some inputs. 
 

In the former a single constraint is imposed, indicating specific 
point prices and total allowable expenditure on rationed inputs, while in 
the latter rationed input quantities are fixed. 
 

Local sensitivity and Le Chatelier effects in every optimization 
problem are now obtained, in matrix theory terms, via either a primal or a 
dual method. A difficulty, however, appears in constrained optimization 
models, whose  s-o-c  are expressed in the form of a matrix that must be 
semi definite or definite in the tangent subspace of its constraints’ hyper 
surface and, thus, cannot be used directly for either purpose. Economists 
have not exploited fully all the existing mathematical analysis: they have 
only succeeded in performing sensitivity analysis via the primal method, 
by the use of “bordered Hessians”. Otherwise the difficulty still exists 
and, in fact, appears not to have been recognized. 
 

The profit maximization problem, even under point or quantity 
constraints, is so simple that the above difficulty becomes as transparent 
as possible, while the steps required for resolving it are close at hand. 
Finally, a diagrammatic illustration of profit maximization under quantity 
rationing is possible, if there are only two inputs: then, we can show 
global sensitivity and Le Chatelier effects and also specify the conditions 
under which they may be upset. 
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1. Introduction 

 
In this paper we consider a firm that produces its output by using  n  

inputs. Its technology is given by the production function  f (x) = y. 

  nf(x):R R++→   is well behaved  if  

(i) f (0n) = 0 ,  f (x) is finite for every finite nxR +∈ .   For every  

y > 0 there exist nxR +∈   with  f (x) = y. 

(ii) f ∈ C2 on nR++  , with first and second partial derivatives fi (x)  

and  fij (x) ,  i, j = 1, …, n. 
(iii) for any  y > 0 there exist  x  with positive gradient vectors   

fx (x) , i.e., n
xnx S {x R f(x) y,f(x) 0}++∈≡∈ = ≥ .  For any 

x∈ S,     f (x) is strongly concave, i.e.,  f  is a a strictly 

concave function with a negative definite Hessian matrix, 
F(x) ≡ [fij (x)].  

The firm is competitive in all markets, facing constant input prices  
w > 0n and output price  p > 0.  Throughout the paper, except in section 5, 
p is set equal to one. 

 
Our analysis relies on classical optimization techniques in matrix 

theory terms. All vectors are treated as column vectors, unless they are 
enclosed within parentheses or appear as function arguments, while 
matrices are denoted by capital letters: thus e.g. 0, 0n, or O nm denote, 
respectively, the zero scalar, a vector of  n  zeros, or  a  matrix of  zeros. 
A prime after a vector or a matrix denotes transposition. 

 
The paper is organized as follows. Section 2  examines the 

unrestricted profit maximization problem, which is compared to two 
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restricted (constrained) profit maxima, namely, those under “point” or 
“quantity” rationing of some inputs. Since the original problem is an 
unconstrained one, “point” rationing can be dealt with quite smoothly.  

Section 3  introduces the dual method of comparative statics via the 
Envelope theorem. Again, having an unconstrained original profit 
maximum facilitates sensitivity analysis immensely: indeed the 
appropriate Envelope problems, under “point” and “quantity” rationing, 
appear both in an unconstrained and in a constraint form! This felicitous 
feature forces the researcher to recognize the difference of the second-
order-conditions of the two forms and understand why the s-o-c of the 
latter form cannot be used directly for sensitivity analysis.  

Section 4  considers all possible interrelations that can be obtained 
between unrestricted and restricted profit maxima and examines various 
manifestations of distinct local Le Chatelier effects. On the other hand, 

Section 5  is the epitome of simplicity, offering a diagrammatic 
illustration of global comparative static and Le Chatelier effects and their 
upsets, when the firm uses only two inputs, one of which may be fixed in 
quantity. Finally, Section 6  concludes with a historical survey of the 
relevant economic literature and the specific mathematical analysis that 
has to be taken into account so as to permit sensitivity analysis and Le 
Chatelier Principle in the presence of constraints in more complex 
optimization problems. 
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2. Unrestricted and restricted profit maximization under point and 

quantity rationing 

 
 The unrestricted, or first – best, profit maximization problem is 
given by  

x
(w) max{f(x) wx} ,′π ≡−      (P f) 

if  
ofxS∈   satisfies both 

f
xnfoc{f(x)w0}−− −=      (1) 

and 
fs o s c{F(x) isnegativedefinite},−−−   (2) 

then  xf  attains a strict local maximum of (Pf). Using the Implicit function 
theorem we can find, in principle,  xf ≡ x(w) by solving the identities  

fx(x(w) ≡ w in (1), with 1x(w) C∈  in a neighborhood of any  w > 0n. 

 
 (P f) will be contrasted with two restricted, or second best, profit 
maximization problems, namely, those under “point” or “quantity” 
rationing of some inputs. Thus our former  x΄  bundle will be given by   
(x, z), with mx0,z0,1n,1mnandmn,ρ≥≥<<<<+= while  w > 0 ρ   

and  r > 0m  denote the respective input prices. 
 
 In point rationing an equality constraint ,  a΄ z = b , is imposed on 
the choice of rationed inputs, where  a > 0m denote point prices and  b  the 
allowable expenditure on rationed inputs. The profit maximization 
problem is now given by 

x,z
(w,r,a,b) max{f(x,z) wxrz az b}.′′′π ≡−−=    (Pp) 

If  xp , zp  and  λp  satisfy both 
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pp pp
xzm

p

foc{f(x,z)w0,f(x,z)ra0

and az b}

ρ−− −= −−λ=

′ =
    (3) 

and 
pp

n

n

F(x,z) isnegativedefiniteonthe
s o s c tangent subspaceT {( , ) R

(0,a)( , ) 0}and( , ) 0ρ

 
   ′−−− =ζη∈ 
  ′′ζη= ζη≠  

 ,   (4) 

then the implicit function theorem works and px x(w,r,a,b),≡   
ppz z(w,r,a,b) and (w,r,a,b)≡λ≡λ  attain a strict local maximum of  (Pp),  

with  xp, zp   and p 1Cλ∈   in a  neighbourhood of any  (w, r, a, b) > 0΄n+m+1. 
We also note that the Jacobian matrix of (3), in xp, zp and –λp i.e., the 
Bordered Hessian of (Pp)  
 

ppF(x,z) , c , with c (0,a)
c,0

ρ


′≡ ′
,    (5) 

 

in an invertible matrix at  (w, r, a, b) > 0΄ n+m+1.1  Finally, a simple 
inspection of (3) verifies that  x (w, r, a, b) , z (w, r, a, b) and  λ (w, r, a, 
b) are homogeneous functions of degrees zero and (- one), respectively, 
in (a, b). 
 

 In quantity (or straight) rationing  of some inputs we may, first, 
consider gross profit maximization, namely, 

x

x,z

(w,z) max{f(x,z) wx}

max{f(x,z) wx z z} ,

′π ≡−

′′′≡−=       (Pg) 

or, second, net profit maximization, namely. 

   x

x,z

(w,r,z) max{f(x,z) wx rz}

max{f(x,z) wx rz z z}.

′ ′π ≡−−

′ ′′′≡−−=     (P q) 

                                                 
1 For a proof see e.g. Drandakis (2003), Lemma 1. 
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In the second version of (Pg) and (Pq) the  m  constraints appear explicitly, 
while in the first version of  (P q) and in (P g) it is clear that  if  

qgxxx(w,z)≡≡ satisfy both  

xfoc{f(x,z)w0} ρ−− −=       (6) 

and 

xxs o s c{F (x,z) isnegativedefinite},−−−   (7) 

then  xq  attains a strict local maximum, with x(w,z) depending on  w  and  

z , but not on  r. On the other hand, the second versions of (Pg) and (Pq) 

lead to qqxx(w,z),zz≡≡  and the m langrangean multipliers  
gq

jjjj (w,z) and (w,r,z) j 1,...,mµ≡µ µ≡µ = , satisfying, respectively, both  
gg ggg g

xzmfoc{f(x,z)w0,f(x,z) 0,zz}ρ−− −= −µ= =         (8g) 

and 
qq qq q q

xzmfoc{f(x,z)w0,f(x,z)r 0,zz}ρ−− −= −−µ= =  ,  (8q) 

as well as 
qq

n
mmm m

n

F(x,z) is negative definite on
soscT{(,)R[O,I](,)0}and

(,)0

 
   ′′−−−=ζη∈ ζη= 
  ′ζη≠  

   (9) 

and attaining a strict local maximum, with x q, μ g and μ q ∈C1 in a 

neighborhood of any (w,z)  or (w,r,z) . It is clear that 

(w,r,z) (w,z) rµ≡µ− . It is also evident that (9) reduce to (7), since in 

the tangent subspace  ζ  is unrestricted while  η = 0m.  Again the gradient 
matrix [Omℓ, Imm] of the  m constraints in (x, z)  has rank equal to m  and 
so the Bordered Hessian of (Pg) and (Pq) 

qq
r

mrmm

OF(x,z) , C ,withC
IC,O

ρ  
=  ′  

,  (10) 

is an invertible matrix. 
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 Finally, let us note that, while any solution of (P f) for  w > 0 n 
generates positive profits, nothing definite can be said about  π (w, r, a, b) 
or (w,r,z)π . 

Indeed, for any 
o

o1o1oo1
xxSandxS,f(x)(xx)f(x)f(x)∈∈+−> ,  

because of strict concavity of  f(x) ; so if  x1 = 0n we are led to  f(xo) – 
fx(xo)΄ xo > 0 , or to  π (w) > 0  for the corresponding input prices. 
However, in (Pp) or (Pq) we can easily see that  

p pppppppp
xz(w,r,a,b) {f(x,z) f(x,z)x f(x,z)z} b′′π ≡−−+λ  

and 
qqqqq

xz(w,r,z) {f(x,z) f(x,z)x f(x,z)z} z′′′π ≡−−+µ  

and so, if   b  is much bigger than  a΄ z (w, r) , or some  jz   are much 

bigger  than zj (w, r), then  λ (w, r, a, b)  or the corresponding  j (w,r,z)µ  

may become so negative that  π (w, r, a, b) < 0  or  π (w, r,z ) < 0. 
To avoid any complication from having inequality constraints in (Pp) or 
(Pq)2, we will assume that  b  or  jz   are not very big,  so that  fz (xp, zp) =  

= r + λp a >0m  and  qq
zmf(x,z)r 0= +µ> . Thus the firm operates within  S 

despite the constraints, with  
pp pp(w,r,a,b) f(x,z) wx rz 0′′π ≡−−>  
and 

qq(w,r,z) f(x,z) wx rz 0′′π ≡−−>  

and  λ (w, r, a, b) positive, zero, or negative depending on how big  b  is 
relative to  a΄z (w, r)  and similarly for  (w,r,z)µ .  
 

                                                 
2 It must be noted, for example, that (Pp) and (Pq) incorporate only the profits (or losses) generated in 
the production of the firm’s output. If the firm’s technology permits the consideration of inequality 
constraints in (Pp) or (Pq), the possibility that the firm may “rent out” its unused “capacity” has to be 
taken into account. 
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3. Comparative static analysis via the Envelope Theorem 

 
 Comparative static analysis in (Pf) , (Pp) or (Pq), examines the rates 
of change of their solutions as the parameters of each problem vary. This 
is now done in matrix theory terms, via two methods: either a primal 

method, through differentiation of  f-o-c  with respect to parameters and 
evaluation of the properties of the resulting matrix equation system, or a 

dual method that starts from the maximal value function of each problem 
and their derivative properties, through the solution of appropriately 
specified Envelope problems. Each envelope problem compares the profit 
secured by the firm under two alternative policies: a specific feasible, but 
passive, policy of input use is compared to the corresponding optimal 
policy. 
 
 In (Pf) both approaches are quite simple. First, from (1) we get 

F (x(w)) Xw (w) = Imm ,     (11) 
with  Xw (w) ≡ [∂xi (w) / ∂w1] . Since the Hessian of  f (x(w) is invertible, 
we see that  

Xw (w) = F (x (w))-1      (11 ΄) 
is a symmetric and negative definite matrix. 
On the other hand,  π (w) ≡ f (x (w)) – w΄ x(w)  has the derivative 
properties 

πw (w) = Xw(w) fx (x(w)) – Xw (w) w – x (w) = - x(w)   (12) 
and    Π ww (w) = - Xw (w) ,             (13) 
which is a symmetric matrix. For any  wo > 0m  we denote  xo ≡ x (w o) 
and consider the Envelope problem 

oo
w

0max{f(x)wx(w)} ′≡−−π  ,     (EP
f) 
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where parameters have become the choice variables and the former 

choice variables are treated as parameters . It is evident that the 
maximum of  (EP

f) cannot possibly be positive but is at most equal to 
zero, since the  

 f-o-c  { - xo – πw (w) = 0m }      (14) 
are satisfied at wo , as we know from (12). If we also have the  

s-o-s-c  { - Πww (wo)  is negative definite } ,   (15) 
then we attain a strict local maximum of zero.  
We thus see that 

Xw(wo) = - Πww(wo)      (11΄΄) 
is a negative definite matrix. 
 
 Both approaches become more involved in (Pp) or (Pq). Thus only 
the dual method is presented here, with the primal method briefly 
sketched in Appendix A.  
 
 In point rationing, the derivative properties of  π (w, r, a, b) are 

p pppppppp
wra bx, z, zandπ =−π =−π =−λ π =λ      (16) 

and the symmetric matrix  Π (w, r, a, b) = 
 

pppppppp
ww wr wa w r awb b
pppppppp
rw rr ra w r arb b
p ppppppppppppppppppp

waraa wwrraaab bb
pppppppp

wrabw br ba bb b

,,, X,X,X,x
,,, Z,Z,Z,z
,,, Zz,Zz,Zz,zz
,,, ,,,

′′′
α

′′′

ΠΠΠπ


ΠΠΠπ
==−

ΠΠΠπ λ+λλ+λλ+λλ+λ
π π π π −λ −λ −λ −λ











(17) 

 
where function arguments are suppressed and superscripts denote 
problem (Pμ). We note that  

(i)  p 0>
<λ   and p

b 0>
<π   when  b  is smaller or bigger than  a΄ z (w, r), while  

λp = 0  implies  π (w, r) = π (w, r, a, b) 
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(ii) the symmetry of Πp  implies that  of p ppppp
wr aaX,ZandZz ′λ +λ  ,  while 

we also see that 
p pppppppppp
rwawww bXZ,XZzZxz′′′′′′==λ+λ=λ− or p pp pp

ar bXxzX ′+=λ   and, 

similarly,  p pp pp
ar bZzzZ ′+=λ   as well as  p pp pp

a b bzz′ ′′−λ −λ =λ  . 

 
 The Envelope problem in (Pμ) appears in two forms: for any (wo, ro, 
ao, bo) and xo ≡ x (wo, ro, ao, bo) , zo ≡ (wo, ro, ao, bo) and λo = (wo, ro, ao, 
bo) , we may consider a constrained envelope problem, namely,  

no ooo o
w,r,a,b

0max{f(x,z)wxrz(w,r,a,b)azb}′′ ′≡−−−π =    p
c
P(E )  

or, due to the linearity of the constraint in b, we may consider an 

unconstrained envelope problem for any (wo, ro, ao), zo  and xo ≡ x (wo, 
ro,ao, ao΄zo), namely,   

o oooo
w,r,a

0max{f(x,z)wxrz(w,r,a,az)}′′ ′≡−−−π  .   pP(E )  

The latter is simpler and will be examined first. However the 
former is quite instructive since it shows what has to be done so that the 
s-o-s-c of a constrained optimization problem can be turned into envelope 
curvature conditions suitable for sensitivity analysis. On top of that, we 
can immediately verify here that these curvature conditions are non other 

than the  s-o-s-c  of the unconstrained optimization problem, pP(E ) . 

pP(E ) is characterized by  

f-o-c  { - xo – popppo
wrmam b0,z 0, z0ρπ= − −π= −π −π = }   (18) 

which, as we know from (16), are satisfied at (wo, ro, ao) and ao΄zo . Also 
the matrix of partial derivatives of (18) with respect to (w, r, a), namely,  

p
w,r,a−Π =

pppo
ww wr wa wb
ppppo
rw rr ra rb

p op pop ppoop poo
aw ar aabw br ab ba bb

,,z
,,z

z,z,zzzz

′

′

′ ′

 ΠΠΠ+π


−ΠΠ Π−π

Π+π Π+π Π+π +π +π

= 
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ppppo
wra b
ppppo
wra b

pppppppo
wra b

X, X, Xxz
Z, Z, Zzz

Z, Z, (Zzz)

′

′

′′′

 +


=+

λλλ+

 ,     (19) 

as we can easily see from (17), satisfies at (wo, ro, ao)  the 
nm

p0
w,r,a

0
nm m

Forany( , , ) R
(,,) (,,)0

sosc
if ( , , ) 0 t(0,0 ,a)
for any t 0

+

+

  ′ζηθ∈
 

′−ζηθΠ ζηθ<  −−−  
′ζηθ≠ ≠ 

  >  

 .     (20) 

 On the other hand in p
c
P(E ) , we have  

oo o o of(xz) wx rz (w,r,a,b) (b az)′ ′′=−−−π +ξ−  

and so the  
op op po

wrmam
po
b

foc{x 0,z 0, z0,

0,azb}

ρ−−−−π =−−π =−π −ξ=

′−π +ξ= =
   (21) 

are satisfied at (wo, ro, ao, bo) with ooξ =λ , as we know from (16). Since 

the (n + m +1) x (n + m + 1) matrix  -Π p  is the matrix of the partial 
derivatives of the first  n + m -1  equations in (21), we also have at  
(wo, ro, ao, bo)  the  

nm1 po

o
m

oo
nm1 m

Forany(,,,)R (,,,) (,,,)0
onthetangent subspace

soscT{(0,0,z1)(,,,)0}

if ( , , , ) 0 t(0,0 ,a,b)
for any t 0.

++

ρ

++ ρ

  ′′ζηθκ∈ −ζηθκΠζηθκ<
 
 
  ′−−−= −ζηθκ= 
 

′ζηθκ≠ ≠ 
  > 

 .  (22) 

 
When (21) and (22) are satisfied at  (wo, ro, ao, bo), a strict local maximum 

of p
c
P(E ) is attained. 

 
 It must be emphasized that (22) cannot be used directly for 
comparative static analysis because we do not have complete information 
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about the properties of the (n+m+1) x (n+m+1) matrix  Πpo of second 
partial derivatives of  π (w, r, a, b). We only know that its representation 
in the tangent subspace, which is of dimensions (n+m) x (n+m), must be 

positive definite for 0
nm m(, , ) 0 t(0,0,a)foranyt 0+′ζηθ≠ ≠ > . But to 

ascertain the implications of the above property we must, first, find a 
representation of Πpo in its tangent subspace and, second, specify the 
submatrices appearing in it and explain their meaning. 
 
 Fortunately this can be done quite easily3. Indeed a matrix E 0, 
whose first n+m rows and columns form an identity matrix and its last 
row is given by (0n,z0), can do the job! E0 is an (n+m+1) x (n + m) matrix 
with  r(E 0) = n + m and, thus, it provides a basis for all (n + m + 1) 
vectors in the tangent subspace of  –Π (w0, r0, α0,b0 ) ,  since (0n , z0, -1) 
E0 = (0n, z0-z0)=(0n, 0m).  
We see therefore that the product matrix,  -E0΄ Πp0 E0 , is a representation 
of –Π po restricted to its tangent subspace and, so, must be negative 
definite for all (ζ, η, θ) ≠ 0ń+m  ≠ t(0n, a0)  for any  t > 0. 
 Our final task, then, is already at hand: we can see quite easily that 

opoo po
w,r,aEE−Π=−Π  in (19), which also gives us its submatrices expressed 

in terms of the rates of change of the solution of (Pp) and, finally, leads to 
the s-o-s-c  in (20). 
  

We conclude, therefore that the Envelope curvative conditions of 

p p
c
PP(E )and(E )  are the following : 

opoo

o
nm n

Matrix E E,asgivenin(19),
(e c c) isnegativedefinitefor( , , )

0t(0,a)andt0

′

+

  −Π
 

−− ζηθ≠ 
  ′≠≠ > 

     (23) 

                                                 
3 See e.g. Luenberger (1973), chapter 10 on constrained optimization. 
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These conditions lead to the following comparative static results for (Pp). 
It is clear that we have : 
(i)    ζ Χw (wo, ro, ao, bo)  ζ < 0    for  ζ ≠ 0ℓ , 
(ii)   η΄ Ζr (wo, ro, ao, bo) η < 0    for  η ≠ 0m  ≠ t a0 for any  t > 0, 
since differentiating the constraint  a΄ z (w, r, a, b) ≡ b w/r  r  we get       
a΄ Zr (w, r, a, b) = 0m , 

(iii)   if  λ (w o, ro, ao, bo)  > 0  (< 0), the  popoo
a bZzz ′+   is negative (positive) 

semi-definite of  rank  m – 1  
and, finally, 
(iv)   if λ (w o, ro, ao, bo) = 0, then the last m rows and columns of -Eo΄Πpo 
Eo  become zeros4. 
 

On the other hand, in quantity rationing  the profit functions 
(w,z) and (w,r,z)π π  have derivative properties  

gqq
wwr
g
zz
q
zz

x(w,z) , z ,
f(x(w,z),z) (w,z) and
f(x(w,z),z)r (w,r,z)

π =− =π −=π

π= =µ

π= −=µ
     (24) 

 
and the symmetric matrices 

gggg
ww wz w zg
gggg
zw zz w z

,X,X
,M,M

ΠΠ−−
Π= =

ΠΠ
 

and                     (25) 
qqqqq
ww wr w w m z

qqqq
rw rr rz m mn mm
qqqqqq
zw zr zz w r r

,,X,O,X
,,O,O,I
,,M,M,M

ρΠΠΠ−−


Π=ΠΠΠ= −


ΠΠΠ

 ,     

                                                 
4 Ignoring the last zero rows and columns of the matrix in (19), we get the  n x n  matrix 

p po
wr
popo
wr

X,X
Z,Z





 whose interesting relationship to 
fo f
wr
fo fo
wr

X,X
Z,Z

 
 
  

  will be considered in the next 

section. 
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respectively.5 
 
 The Envelope problem in (Pq) appears also in two forms: for any 
specific parameter values (wo, ro, zo) and  xo ≡ x(wo, zo), μo ≡ μ (wo, ro, zo) 
also fixed we may consider a constrained envelope problem, namely,  

oo oo o
w,r,z

0max{f(x,z)wxrz(w,r,z)zz} ′′ ′′≡−−−π =  .   q
c
P(E )  

Due to the linearity of the m constraints, we may also consider an 

unconstrained envelope problem, for specific (wo, ro) and ooxx(w,z)≡ , 

namely, 

 oo
w,r

0max{f(x,z)wxrz(w,r,z)}′′≡−−−π  .    qP(E )  

 Again we examine  qP(E ) , first, which is characterized by  
o

wrmf o c{x (w,r,z) 0 , z (w,r,z) 0}ρ−−−−π =−−π =     (26) 

which, as we know from (24), are satisfied at (wo, ro)  and attain a strict 
local maximum of zero, if for the symmetric  n x m  matrix  

oo oo o
ww wr wam

oo oo
mmmrw rr

(w,r,z), (w,r,z) X(w,z),O
O,O(w,r,z), (w,r,z)

  ΠΠ
−=  

ΠΠ  
 ,  (27) 

we also have the 
qo qo
ww wr
ao qo
rw rr

,
(,) 0

sosc ,
for 0ρ

  ΠΠ ζ  −ζη <   η−−− ΠΠ    
  ζ≠  

 .     (28) 

On the other hand in q
c
P(E )  we have, using   

oo oo of(x,z) wx rz (w,r,z) (z z)′′=−−−π +−ξ  

with ξ  the vector of the  m  lagrangean multipliers, 
oq oq q

wrmzm
o

foc{x 0,z 0, 0,}

and z z}

ρ−− − −π= − −π= −π +ξ=

=
 ,    (29) 

                                                 
5 It is obvious, from x g ≡ x q , μ g ≡ r + μ q  and  (24) – (25), that  

qgq qg
wwrmmzzMM,MIandMM==−=  . 



 15

which are satisfied  at oo(w,r,z)  and  ξo = μo . 

Since the matrix of the partial derivatives of the first  ℓ + m + m 
equations in (29) is -Πq  as given in equation (25) and since the gradient 
matrix of the m constraints in (w,r,z) is given by [Omℓ , Omm, -Imm] , we 

also have at (wo, ro, zo) the  
mm q

mmmmm

mmm

Forany(,,)R,(,,)(,,)0
s o s c onthetangentsubspaceT {(O ,O I )( , , )

0}if(,,)0

+

+

  ′′ζηθ∈ −ζηθΠζηθ<
  ′−−− = − ζηθ= 
  ′=ζηθ≠ 

 . (30) 

 Again these s-o-s-c  cannot be used directly for comparative static 
analysis. To find a matrix that represents  - Πqo when it is restricted in its 
tangent subspace, we use the (ℓ + m + m) x (ℓ + m)  matrix Eo, whose 
first  ℓ + m  rows and columns form an identity matrix and its last  m   
rows consist of zeros. Eo is an (ℓ + m + m) x (ℓ + m)  matrix with  r(Eo) = 
ℓ + m and can, thus, provide a basis for all (ℓ + m + m) vectors in the 
tangent subspace of  -Π (wo, ro, zo), since (Omℓ , Omm, -Imm) Eo= (Omℓ , 
Omm). We see therefore that a representation of -Πqo restricted to its 
tangent subspace is given by  –Eo΄ Πqo Eo  and it is simply the  (ℓ + m ) x 
(ℓ + m)  matrix in (27).6 
 
 We conclude then that the Envelope curvature conditions  of  

qp(E ) and q
c
p(E )  are given by  

oqoo

n

Matrix E Eis negative(e c c)
definitefor( , ) 0

′  −Π −−   ′ζη≠  
 .    (31) 

It is clear from (31) that the only comparative static result of  (Pq) we 

have obtained, so far,  is that o
wX(wz)   is a negative definite  ℓ x ℓ  

matrix. 
                                                 
6 It must be admitted that the last paragraph could have been avoided, if we had noted that in 
the tangent subspace of (30) θ = 0m ,  while (ζ, η) is unrestricted; thus (30) would immediately 
coincide with (28). This was done on penpose so that  q

c
p(E ) would be specified for (Pq). 
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 We cannot end this section without a comparison of the two 
alternative methods for doing comparative static analysis. As the reader 
has seen in Appendix A , the primal method in constrained 

optimization problems examines the bordered Hessian of the problem, a 
matrix having additional rows and columns than the Hesssian, depending 
on the number of constraints imposed. Correspondingly however, the 

primal method produces comparative static results for all choice 

variables, including the lagrangean multipliers. On the other hand, the 

dual method in constrained optimization problems  focuses on a 
reduced matrix of the Hessian of the optimal value function, a matrix 
restricted in the tangent subspace of the Hessian and with a smaller 
number of rows and columns depending on the number of constraints 
imposed. Consequently, however, the comparative static results 
produced, so far, by the dual method are limited to the rates of change of 
choice variables minus those of the lagrangean multipliers. It is obvious 
from the s-o-s-c  of the unconstrained envelope problems (Ep) and (Eq) as 
given in (20) and (28), respectively, that no restrictions on the signs of 

po qo
zzbb andπ Π  can be established. Does this difference point to a 

structural deficiency of the dual method?  Not at all, as we will see in the 
next section. 
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4. Interrelations between unrestricted and restricted profit maxima; 

the various manifestations of distinct local Le Chaterlier Effects. 

 
 It is evident that for any (w, r) and  (a, b) or z   we must have 

(w,r) (w,r,a,b)and (w,r) (w,r,z)π ≥π π ≥π .    (32) 

Equalities may appear in (32) only when –by chance or design– rationing 
constraints happen to be “just binding”,  with either  a΄ z (w, r) = b  or      
z (w, r) = z . Otherwise, it is impossible to relate their solutions and 
compare their rates of change as parameters vary. 
 
 In some cases, however, it is possible to establish interrelations 
between (Pf) and (Pp), or (P f) and (Pq) or of all three, by appropriate 
choices of alternative subsets of parameters so that maximum value 
functions are brought into contact with one another, thereby creating  
tangencies and producing proper curvature conditions on the rates of 
change of their solutions. The Envelope theorem is not only involved in 
all such cases, but appropriate Envelope problem  can also be designed 
so as to bring about such results. In this more general setting, in which 
one of the profit functions depends on actual parameter values while the 
other depends also on properly chosen “shadow” values of some 
parameters, there are for greater opportunities for such tangencies 
between  πf,  πp,  or  πq  to occur. 
 
 In our first comparison , (Pf)  is  assumed to have been solved 
when the point rationing constraint  a΄z = b ,  a > 0m ,  b > 0  is imposed.  
Since a΄ z (w, r) ≠ b , in general, we can reach an envelope tangency at 

the first best optimum quite simply: we only have to select  b  so that  
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az(w,r)b′ = . The feasibility of z (w, r) under this point rationing 

constraint implies that p(P)  has the same solution as (Pf), i.e., that   

(i)  x (w, r, a, b ) ≡ x (w, r) ,  (ii)  z (w, r, a, b ) ≡ z (w, r)  and   

(iii) λ (w, r, a, b ) = 0 

Thus from b≡ a΄ z (w, r) ≡ b (w, r, a)  we get the derivative properties 
fffp

wwrrab aZ,b aZ andb z z′ ′′′′′′====  and, so, we can compare the rates 

of change of the solutions of (Pf) and p(P)  at the first best optimum. As 

shown in Appendix B we get  

(i) p ffff
wrrrwX(1/aZa)XaaXX ′′′+=  , 

(ii) p ffff
rrrrrZ (1/aZa)ZaaZ Z′′+ =    and           (33) 

(iii) p f
rb (1/aZa)′λ≡  ,    

where function arguments are suppressed, while the presence of some 

“shadow’ parameter values is indicated by a  ˜  superscript. Even before 

looking at the proof of (33) in Appendix B , it must be noted that 
f

br(w,r,a,b) (1/aZa) 0′λ=<   and that the rates of change of the solutions of 
p(P)  can be and are indeed expressed in term of those of (Pf) and the 

known  aj `s ,  j = 1, … , m.  The important finding is that all matrices in 
the second terms of the ℓ - h – sides of (33) are negative semi definite of 

rank  1, since  f
raZa0′ <  and matrix aa΄ is positive semi definite of rank 1 

but with positive main diagonal elements. It is obvious that an Envelope 

tangency is attained at the first best optimum, with  (w,r) (w,r,a,b)π =π  

and π (w, r) more convex than (w,r,a,b)π there. The envelope curvature 

conditions (at the first best optimum) are given by 

ii

j j

ii
ww
ij
r r

b

0 x (w,r,a,b) x (w,r), alli

0 z(w,r,a,b) z(w,r), allj

(w,r,a,b) 0

 >>
  >> 
 

−λ >  

     (34) 
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 On the other hand, if quantity rationing  constraints  
zz,zz(w,r)=≠ , are imposed, then by choosing  zz(w,r)≡  a tangency 

between  (Pf) and q(P)  is produced at the first best optimum and 

(i) mx(w,z) x(w,r) and (w,r,z) 0≡ µ≡ . 

Then we get, since qff qff1
zrr zrrXZX,orXXZ −==   , 

qqfqff1ff
wzwwrrrw
qf1
zrmm

(i) X XZ X XZ X X
and (iii)M Z O ,

′−

−

+=+=

−=
      (35) 

since qqf q
rzrmmrmmMMZOandMI+==−  from (25). Thus the envelope 

curvature conditions (at the first best optimum) are given by 

ii
ii
ww

j
z

0 x (w,z) x (w,r), all i

(w,r,z) 0, all j

 >> 
 

−µ >  
     (36)   

as shown in Appendix B. 
 
 The first set of  ℓ inequalities in (36) are the Le Chatelier effects 
established by Samuelson (1947, pp. 36-38) as he introduced  the Le 

Chatelier Principle in the economic literature. 
 
 The second comparison  starts with the solution of  (Pp)  or (P q) 
and considers the possibility of attaining an envelope tangency there if    
λ (w, r, a, b) ≠ 0  or  if   m(w,r,z) 0µ≠ , respectively. 

 With point rationing  we can select the “shadow” prices of 
rationed inputs,  r  , by 

zmr r (w,r,a,b)a f(x(w,r,a,b),z(w,r,a,b) r(w,r,a,b) 0≡+λ = ≡ >  ,   (37) 

with derivative properties p ppp
wrmmammabbRax,RIazRIa ′ ′′=−=−=λ+λ  

and  b
b bra=λ . 
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It is easily shown that such a choice of  r (w, r, a, b) transforms the  f-o-c  

of (P p) into those of f(P)  and, thus, leads to (w,r) (w,r,a,b)π ≡π                    

and to  
(i)  x(w,r) x(w,r,a,b)≡   and    (ii)    z(w,r) zw,r,a,b)≡ . 

We show in Appendix B that  

and       

fpppp
ww bbb

fpppp
rr bbb

(i) X (1/ )x x X

(ii) Z (1/ )z z Z′

′−λ=

−λ=
           (38) 

and also that 
f

br(w,r,a,b) (1/aZa) 0′λ=<  

since rZ(w,r)  is a negative definite matrix for n(w,r) 0′> .      

The envelope curvature conditions at the second best optimum are  

 ii

jj

ii
ww
jj
rr

x(w,r)x(w,r,a,b)0,alli

z(w,r)z(w,r,a,b)0,allj

  << 
 

<<  
.    (39) 

On the other hand, in quantity rationing , the solution of (Pq) can be 

transformed into that of  f(P)   if we select  r   by  

znr r (w,r,z) f(x(w,z),z) r(w,r,z) 0≡+µ = ≡ > .    (37΄) 

Then (i) x(w,r) x(w,z) and (ii) z(w,r) z≡ =  

and so 

and      

fqq1qq
wwzww

fq
brzmm

(i) X MM M X

(ii) ZM I ,

′ −−=

=
                    (40) 

since  qqq
wwrmmrmmzzRM,RIMO,RM==+== ,   and from  fq

rzmmZMI =     

we see that  1
zrM(w,r,z) Z(w,r) −=  is the Inverse of a negative definite 

matrix for  w > 0ρ ,  r,  r > 0m  and  mz0> ,  as shown in Appendix B. 

The envelope curvature conditions at the second best optimum are    
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ii

j

ii
ww
j
r

x(w,r)x(w,z)0,alli

z(w,r)0,allj

  << 
 

<  
     (41) 

 Additional interrelations between fist and second best profit 
maxima are obtained if, having the solution of either one, an appropriate 

Envelope problem  is solved to produce tangencies and curvature 
conditions at the other profit maximum. 
 
 Thus the third comparison starts with the solution of (Pp) in point 

rationing and the envelope problem  

b

b

0max{(w,r,a,b)(w,r)}

or (w,r) max{(w,r,a,b)},

≡π −π

π ≡π      (E b) 

without knowing anything about  (Pf). 
 (E b) is characterized by 

bf oc{ (w,r,a,b) 0}− −π =      (42) 

and 

bbsosc{(w,r,a,b)0}− −−π < ,     (43) 

with b   determines implicitly by solving 

(w,r,a,b) 0λ =  ,      (42 ΄) 

since  bb (w,r,a,b) 0λ=λ <   from (43). 

The b b(w,r,a)≡   has derivative properties p ppp
wr b bbbb (1/ )x , b (1/ )z=λ =λ   

and  p
ab z=   since p 0λ=  , as we can see from (17) .              

With the help of (Eb) we get 

(i)x(w,r) x(w,r,a,b) , (ii) z(w,r) z(w,r,a,b)≡=  

and thus 

and     

fpppp
ww b bb

fpppp
rr b bb

(i) X X (1/ )x x

(ii) Z Z (1/ )z z

′

′

=+λ

=+λ
             (44) 
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We see therefore that the envelope curvature conditions at the first best 
profit maximum are given by 

ii

jj

ii
ww
jj
rr

x(w,r)x(w,r,a,b)0,alli

z(w,r)z(w,r,a,b)0,allj

  << 
 

<<  
   (45) 

On the other hand, in quantity rationing, if (Pq) has been solved we can 
consider  

z
0max{(w,r,z)(w,r)}≡π −π  

z()E 
   or 

z
(w,r) max{(w,r,z)}π ≡π  ,             

with 

mz }foc{(w,r,z)0−−π =     (46) 

and 
(w,r,z)isanegativezzsosc

definitematrix
  
 
  

Π
−−−   .   (47) 

z  is determined implicitly from  

zz m(w,r,z) fx(w,z),z) r (w,r,z) 0π ≡−=µ≡  .    (46΄) 

With the help of  z()E   and the derivative properties of  zz(w,r),≡  or  
fq1q
wzwZMM −=−  and  fq1

rzZM −=  , we get 

(i) x(w,r) x(w,z) ,and (ii) z(w,r) z≡≡  

and thus 
fqqqq
wwzzz

fq1
rz

(i) X X XMX ,
(ii) Z M

′

−

=+

=
       (48) 

and the envelope curvature conditions at the first best profit maximum  

ii

j

ii
ww
j
r

x(w,r)x(w,z)0,alli

z(w,r)0,allj

  << 
 

<  
      (49) 

 Our fourth comparison  starts with the solution of (P f) and 
produces an Envelope tangency at (Pq) or (Pp).7  

                                                 
7 The reason for considering (Pq) first will become apparent below. 
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With the quantity rationing  constraints, zz= ,  we consider the 

Envelope problem 

r
q
rr

0max{(w,r,z)(w,r)}

max{(w,z) rz (w,r)}. ( )E

≡π −π ≡

′≡π −−π

 or  
rr

(w,z) max{rz (w,r)} min{rz (w,r)}.′ ′π ≡−π −π ≡+π  

No prior knowledge of (w,z)π  is necessary: the second form of (Pq) 

follows directly from the first and z  is the known rector of fixed inputs.  
q
r()E  is characterized by  

rm }foc{z(w,r)0−−+π =       (50) 

and 
{ }s o s c (w,r)ispositivedefiniterr−−−Π .    (51) 

r r(w,z)≡  is determined implicitly by  (50) or z (w,r) z(w,r)r≡−π ≡  and 

has the derivative properties: f1f f1
wrwzrRZZandRZ− −=− =  . Thus we get 

m(i) x(w,z) x(w,r) , (iii) (w,r,z) r r 0≡µ+−≡  

and we can derive their rates of change 
qfff1f
wwrrr
qf1
zr r mm

(i) X X XZ X
(ii) M Z O .and 

′−

−

=−

−=
     (52) 

The envelope curvature conditions at the second best profit maximum are  

ii

j

ii
ww

j
z

0 x (w,z) x (w,r), all i

(w,r,z) 0, all j

 >> 
 

−µ >  
    (53) 

When, however, (Pf)  has been solved and a  point rationing  constraint 
is imposed, then an envelope tangency at  (Pp) can only be obtained if             
x (w, r ,a, b) ,   z (w, r, a, b)  and  λ (w, r, a, b)  are already known. Even 

if we treat  (xp, zp, λp)  as given and consider an Envelope problem  p
r()E, 

analogous to q
r()E , we cannot proceed and determine r implicitly from 

the first - order identities,  p
rz(w,r)≡− π   if we do not know how             

zp = z (w, r, a, b) vary with their parameters. But if  (Pp) has also to be 



 24

solved, do we need p
r()E  for attaining a tangency at  (Pp) ?  Is it not easier 

to rely on our second comparison and, having the solution of  (Pp), simply 
define  r   using (37) ? 
 We see therefore, from our examination of all interrelations of any 
two of  (Pf), (Pp) and (Pq), that under quantity rationing conditions (36), 
(41), (49) and (53) exhibit four distinct manifestations of the Le 

Chatelier Principle , while under point rationing  three such 
manifestations appear in (34), (39) and (45). Apparently the complexity 
of the single point rationing constraint,  a΄ z (w, r, a, b) ≡ b  is enough to 

preclude an efficient utilization of p
r()E  for reaching an envelope 

tangency at the second best profit maximum.8 
 We must not also forget the possibility of establishing 
interrelations between all three profit maxima. For example, let us assume 
that (Pp)  has been solved. Then, selecting rr (w,r,a,b)a= +λ , we obtain 

f(P) , as we have seen in  second comparison (a) . But suppose that we 

also want to ascertain the repercussions of imposing quantity rationing 
constraints, chosen so as to have   z z(w,r,a,b) z(w,r)≡ ≡ . Then the           

f – o – c of (P p) are transformed into p
x{f (x,z) w 0−= ,  

p
zmf(x,z)r (w,r,a,b)a0,zz}−−λ = =   or  equivalently into the  f – o – 

c xzm{f (x(w,z),z) w0,f(x(w,z),z) r (w,r,z) 0 ,z z}−= −−µ== , of 
q(P)  with (i)  x(w,z) x(w,r,a,b)≡  and (iii) (w,r,z) (w,r,a,b)aµ ≡λ . 

Differentiating (i)  w/r  to w and  r  we get  
qqpqqpp
wzwwzw rXXZXXXX ′

′+=+=   and  qpp
zrrXZX =  .  Thus we get 

qqpqp
wzrzwXXZXX ′+=  , 

                                                 
8 Samuelson (1947), pp. 163-71, and Graaff (1947-48) have independently examined point rationing 
in the Theory of consumer choice: in that context further problems appear. 
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from which we see that  qpq
zrzXZX ′   is a negative semi definite matrix, 

even if we do not know anything about  q
zX  . 

Similarly 
qpp pqpp
zz bbbbbMz aorzMz 0′=λ =λ< . 

We thus see that we get the envelope curvature conditions at  (Pp) 

iii

j j

iii
www
ij
r r

x(w,r)x(w,r,a,b)x(w,z)0,alli

z(w,r)z(w,r,a,b) 0,allj

  <<< 
 

<<  
    (54) 

  
 Finally, it is evident, from our second comparison  in point or 

quantity rationing, as well as, from the fourth comparison in quantity 

rationing, that we have  
λb (w, r, a, b) = (1/a΄ Zr (w, r  ) a )  < 0 ,   although  λ (w, r, a, b) 0>

<  and 
1

zrM(w,r,z) Z(w,r) −=   is negative definite, although (w,r,z)µ   may 

not be a zero vector. Our proof is based on the negative definiteness of  

rZ(w,r)  for all  n(w,r) 0′>   and 
o

(x(w,r),z(w,r) S′∈  .  If  λ b (w, r, a, b) 

were not a negative scalar and  if  zM(w,r,z) were not a negative 

definite matrix, for all admissible parameter values, then no envelope 

tangency could emerge between  (Pp) or (Pq) and f(P)  or between  (Pf), 

(Eq) and q(P)  at the second best profit maximum.  
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5. Global Comparative Static and Le Chatelier effects and their 

upsets: a diagrammatic analysis with two inputs 

 
 We consider a competitive firm that produces its output with two 
inputs, facing positive input and output prices, (w, wz, p). Thus  

12 x
(w,w,p) max{pf(x) wx}′π ≡− ,      (Pf) 

with  f strongly concave and 2
11 22 12F(x) f (x)f (x) f (x) 0= ⋅−> . With 

input demand functions  xi (w, p) ,   i = 1, 2, we get the comparative static 
results 

22 121
w 2

12 111122 12

f,f11X(w,p) F(x(w,p))
f,fp p{f f f }

− − 
==  −−  

   (53)   

and     

122 2211
px 2

121 1121122 12

ffff11x(w,p) F(x(w,p)) f (x(w,p))
ffffp p{f f f }

− − 
=− =   −−  

. (54) 

 

 The firm’s expansion path , x 2 (x 1) w1/w2 ,  with w 1 / w 2 = a  
constant, is determined implicitly by  

f1 (x1, x2 (x1)) / f2 (x1, x2 (x1)) = w1 / w2       (55) 
and has a slope 

12

2
p121 112

21w/w 1
122 221 p

x(w,p)ffffx(x)
ffff x(w,p)

−′ ==
−     ,       (56) 

while its constant – marginal – product curves , 121w/px(x)  and 

221w/px(x)     are determined implicitly by  

f i (x1, x2 (x1)) = wi / p  ,   i = 1, 2 ,      (57) 
having slopes 

1

11 1 2 1
21 w/p

12121

f(x,x(x))x(x)
f(x,x(x))

′ =−        (58) 
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and    

2

12121
21 w/p

22121

f(x,x(x))x(x)
f(x,x(x))

′ =−   .      (59) 

We see that the EP has a positive slope when both inputs are normal, 

with i
px(w,p)0 > , has a zero slope when   x2 (w, p)  is a neutral input 

and a negative slope when  x2 (w, p) is an inferior input, with EP turning 
towards the  x1, axis; similarly the EP has an infinite or negative slope 
when x1 (w, p) is neutral or inferior, with EP turning towards the  x2 axis. 
We also see that both CMP curves have positive slopes when  f12 (x) > 0 
and negative slopes when  f12 (x) < 0, since  f11(x) , f22 (x) < 0.  
If  f 12(x) = 0 then the slope in (58) is infinite, while that in (59) is zero. Of 

course, the sign of f 12(x) depends, in general, on  x ∈S and may be 

positive or negative, within limits, in one region of  S  or in another. 
In Economic terms two inputs are called complements (co operant) when  
f12(x) > 0, substitutes when f12(x) < 0 and independent when  f12(x) = 0. 
  

 When any two of 
12 121 21ww w/px(x) ,x(x)  or 

221 w/px(x)  

intersect at some  x ∈ S, for the same input and output prices, then the 

third one also passes through the same point. We also establish the 
relations among the slopes of the EP and the CMP curves at a point where 
all three intersect. Thus we can easily show that  
(i) when  f12 (x) > 0  then   

112221 21 21w/p w/w w/px(x) x(x) x(x) 0′′′ >>>   ,   (60) 

(ii) when  f12 (x) = 0  then  

112221 21 21w/p w/w w/px(x) x(x) x(x) 0′′′+∞= > =>   , (61) 

while (iii) when  f12(x) < 0 , but both inputs are normal, then  
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1221 21w/p w/px(x) x(x) 0′′ < <      (62) 

while 
1221 w/wx(x)′  is still positive9. 

 Let us finally note from (53) that            

21
12
ww12x (w,p) x (w,p) 0 whenf (x(w,p)) 0<>

><= . Thus when the two 

inputs are complements, they are also gross complements, with  < 0  in 
the first and  > 0 in the second inequality. On the contrary substitute 
inputs are also gross substitute, with  > 0  in the first and   < 0  in the 
second inequality. 
Those properties hold, not only for two inputs, but for any number of 
inputs: when all inputs are complements they are also gross 
complements, while when all inputs are substitutes they are also gross 
substitutes10. 
 
 We can then turn to the diagrams in Figure 1-3, which illustrate the 
interrelations of EP and the CMP curves, when  f12(x) is either positive or 
negative or changes sign over  S, separated by an  f12(x) = 0 locus11. 
 
 In Figure 1(a)   f 12(x) is everywhere positive. Point A denotes a 
profit maximum, since both CMP curves have the appropriate shapes and 
if  x1 or x2  rise from A then  f1(x) or f2(x) fall. The figure also shows that, 
for a finite increase in w1, the profit maximum moves to point A΄ on the 

original 
221 w/px (x)  curve with both x1 and x2 smaller. In Figure 1(b) 

however, with f 12(x) everywhere negative, the profit maximum at A 
                                                 
9 In the interest of brevity we do not offer a complete analysis of the above interrelations, 
when one of the inputs becomes inferior: the interested reader can easily do it, taking into 
account that a strongly concave f(x)  is also strongly quasi-concave. These two conditions set 
the upper, positive, and lower, negative, limits within which  f12(x) may range. 
10 See Rader (1968), who first examined the implications of  frj(x) > 0,   j ≠ i  for  x i (w, p). 
See also Takayama (1985), ch. 4, for a complete proof. 
11 Such an f12(x) = 0 locus does not, in general, coincide with a particular production isoquant. 



 29

moves to A΄, for a finite decrease in  w1 : we thus see that  x1 increases 
while x2 decreases. Both figures lead to an important global comparative 
static result: when both inputs are complements (substitutes) of one 
another, they are also gross complements (gross substitutes) of one 
another.12,13 
 
 In Figures 2(a) and (b)  the f 12(x) > 0 region is followed by an   
f12(x) < 0  one as output increases, or the opposite. In 2(a) we first 
observe how the positively sloped CMP curves become negatively 
inclined as soon as they enter the f12(x) < 0  region. With A the original 
maximum profit point, greater finite decrease in  w1, move  A  to  A΄,  Α΄΄ 
and finally to Α΄΄΄ . But although  f12(x) < 0 near Α΄΄ and the two inputs 
are substitutes, they are also gross complements, since both increase as 
w1 decreases: indeed, not only  x1 (w1΄΄ , w2 , p) –  x1 (w1,w2, p)  > 0  but 
also  x2(w1΄΄, w2 , p) – x2(w1,w2, p) > 0  for  w1΄΄< w1΄ < w1. Thus  x2  is a 
gross complement of  x1 although as we approach  A΄΄  f12(x) is negative.  
Of course at A΄΄΄, which is reached when the decrease of w1 is greater, we 
observe again a restoration of the implication that “substitute inputs” 
imply “gross substitute inputs”.  In Figure 2(b)  an f12(x) < 0 region is 
succeeded by an f12(x) > 0 one. Again decreases in w1  lead  A  to move to  
A΄, Α΄΄ and Α΄΄΄ with x2(w1΄΄, w2 , p) < x2(w1,w2, p). Thus, although Α΄΄  

                                                 
12 To keep all diagrams as simple as possible, we have not drawn the new EP that passes 
through A΄. Neither have we considered the effects of all possible changes in w1 and w2, 
which we leave for the interested reader. 
13 We also note that of the well known examples of production functions, the Cobb-Douglas 

function - 12
aa12f(x) Axx ,A,a 0,a a 1i12≡>+<  - has  f 12(x) > 0  while  the CES                  

-  
s

f(x) A[ax ax] A,a,a 0,1 ,1s011 22 12
ττ τ≡+>>τ>>  -  has  f12(x) > 0  when  1 > s > τ ,  

f12(x) < 0  when  1 > τ > s > 0  and  f12 = 0  when  1 > τ  = s > 0.  In the latter case f(x) is an 

additive function, like 12A[ax a x ], A,a 0 and1 , 011 22 i 12
ττ

+ >>ττ> . Both types of 
production functions lead to diagrams similar to Figure 1. 
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is in the  f12(x) > 0 region and x1 and x2 are complements, x1 and x2 are 
gross substitutes. 
 
 Finally, in Figures 3(a) and (b)  we illustrate the effects of 

quantity rationing  of input x 2 on the firm’s demand response for x1 
when w1 changes. We assume that 2212xx(w,w,p)=  at the original 

profit maximum at point A. In both Figures 3(a) and (b) we see that A 
moves to Α ΄, Α΄΄  and finally to Α΄΄΄, with  w1 > w1΄ > w1΄΄> w1΄΄΄. We 
see that  at  Α΄΄  we get   112 112x(w,x,p) x(w,w,p)′′ > , namely, a greater 

increase in the demand for  x1 under quantity rationing relative to that 
when both inputs are variables. We thus observe that a global Le 
Chatelier Principle is upset at A΄΄ and restored again at Α΄΄΄.14,15  
 

                                                 
14 Milgrom and Roberts  (1996) examine the global Le Chatelier Principle in a model quite 
more general than in the neoclassical theory of the firm. They show that in the latter case and 
with two inputs upsets of the global Principle are observed, when f12(x) > 0 is followed by a  
f12(x) < 0 region, as illustrated in Figure 3(a). 
15 Long ago Samuelson (1960a), page 372, pointed out that a global Le Chatelier effect can 
be upset if the firm’s maximum profit, without and with quantity rationing, at a point like A in 
Figure 3(b) is “near the critical point where [the input] go from being substitutes to being 
complements, as measured by the sign of [f12(x)]”. 
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Figures 
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6. Concluding Remarks 

 
 Profit maximization is indeed a simple example of an optimization 
problem, even under quantity or point rationing. In compensation of its 
simplicity, it leads to a correspondingly smooth introduction to sensitivity 
analysis and Le Chatelier Principle that may prove quite helpful in more 
complex constrained optimization problems. This may explain the 
usefulness of considering it again at the present time. 
 
 Since the paper is concerned with the Envelope theorem and the 
specification of appropriate Envelope problems, it is natural to start with 

Paul Samuelson, who introduced both concepts into economic theory. 

Samuelson (1947, ch. 3) examines a regular unconstrained maximization 
problem, like 

x
(a) max{f(x,a)}φ ≡   ,      (U) 

for which he derives the basic comparative static result 

xx a xa
1

ax a ax xx xa

F(x(a),a)X(a)F(x(a),a),or
F(x(a),a)X(a) F(x(a),a)F(x(a),a) F(x(a,a) ,−

=−

=−
 

as well as  the derivative property of  φ(a), namely, 

aaxa

na

(a) X(a)f (x(a),a) f (x(a),a)
0f(x(a),a).

′φ= +
=+  

The latter is no other but the “familiar relation of tangency between the 
envelope of a family of curves and the curves which it touches”. He then 
considers the profit maximization problem and the impact of auxiliary 
constraints, or in our notation, problem 

mx

xx
max{f(x,z) wx rz C 0}

zz
    ′′−−−=     
    

  ,    (P) 
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where C΄ is an n x m matrix of constant parameter values. Such a 
formulation of the auxiliary constraints is quite general. Indeed, if 
C΄=[Omℓ,Imm] , then (P) is our (P q), while if the constraint is                    
a΄C΄ = (0ρ, a), then we get the single constraint azaz b′ ′= ≡  of our  (Pp)! 
However, he does not stop to consider the second-order conditions 
relating the envelope and the curves that it touches or to specify a suitable 
Envelope problem for comparative static analysis. As a matter of fact, 

Samuelson  (1960b) and (1965) has specified appropriate Envelope 
problems for sensitivity analysis.16   

Samuelson (1960b), examines problem (Pf),  or  
x

(w) max{f(x) wx}′π ≡−  

and the dual problem  
ww

max{ (w) xw} min{(w) xw}′ ′−π −≡π + .  Then in 

section 6, he introduces a function  n (x, w) ≡ f(x) – π (w) – w΄ x and 
shows that  

ww
max{n(w;x)} max{f(x) xw (w)}′≡ −−π ≡ 0, for prescribed 

values of   x and that 
xx

max{n(x;w)} max{f(x) wx (w)} 0′≡ −−π ≡ , for 

prescribed values of   w.  It is evident that  
w

0max{n(w;x)}≡  is non other 

but our fP(E ). Is it not rather remarkable that no mention of an Envelope 

tangency is made? 
Finally, in Samuelsson (1965) a constrained maximization problem   

x
v(y) max{f(x) yx 1}′≡ = , 

that is familiar in consumer theory, is examined.  He then defines  a  
“new fundamental function”  n (x, y) ≡ f (x) – v(y) with 

x
n(x;y) max{n(x;y) yx 1} 0′≤== , for prescribed y, and with 

y
n(y;x) max{f(x) v(y) xy 1} 0′≤−== , for prescribed x. Clearly 

                                                 
16 After many readings of Samuelson (1960b) I was able to see this, only after I knew the answer and I 
knew what to look for! 
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y
0max{n(y;xy)}=  is the appropriate specification of the envelope 

problem via which the dual method of comparative static analysis works 
in consumer theory.17 
 
 The next development in sensitivity analysis and Le Chatelier 
Principle was due to Eugene Silberberg. 
First, Silberberg (1971) examined Le Chatelier Principle for the general 
unconstrained problem (U), as auxiliary and just binding constraints,  
hj(x(a)) = 0,  j = 1, …,  m ≤ n, are introduced into (U), namely,  

m
mx

(a) max{f(x,a) h(x) 0}′φ ≡ =      (U m) 

and he proved the generalized envelope theorem 
no

no
aaa

nn1o
aa aa aa aa

f(x(a),a) (a) ... (a),
f(x(a),a) (a) ... (a) and
f (x(a),a) (a) (a) ... (a)−

≡φ ≡ ≡φ

=φ = =φ

=φ <φ < <φ
 

 
Then Silberberg (1974) introduced the dual method of sensitivity 
analysis via the Envelope theorem. For a general constrained 
maximization problem 

mx
(a) max{f(x,a) h(x,a) 0}′φ ≡ =   ,     (PS) 

he introduced the dual problem  
ooo

maa
0min{d(a;x)min{(a)f(x,a)h(x,a)0} ′≡≡φ −=     (DS) 

where xo ≡ x(ao). 
The f-o-c  of  (D S)  give the envelope  tangencies, while its s-o-c   are 
subject to constraints and have to be transformed into the appropriate 

                                                 
17 See Drandakis (2007). 
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envelope curvature conditions so that they can be used for sensitivity 
analysis.18,19  
 
 With unusual candor Silberberg (1974) explains, in pp. 161-63 
and footnotes 4  and  9,  that he initially thought from Samuelson’s 
(1965) account about his “new fundamental function” 

oo
mn(x,a) {f(x,a) (a) h(x,a) 0}′≡−φ = , that he could use it in a “primal-

dual problem”, i.e., 

mx,a
min{(a) f(x,a) h(x,a) 0}′φ −=  ,    (PDS) 

where minimization ranges over all  n + m  independent variables (x, a). 
However, (PDS) is not well behaved, since it is over-determined : some of 
the f-o-conditions are derived whenever the others are solved. 
 
Difficulties of this kind are easy consequences of loose language and 
vague specifications. All subsequent researchers use the term “primal-
dual method” while they refer to problem (DS) and not to (PDS).20 
  

Reference must also be made to Hatta (1980), who cleverly 
designed a simpler constrained maximization problem, 

x
(a, ) max{f(x,a) h(x,a) }′φ γ≡ =γ  ,     (PH) 

with γ the rector of constraint levels, which may also vary. (P H) is 
sufficiently simple, that the dual method of sensitivity analysis can go 
through, using his “gain function method”, or  

                                                 
18 Those  s-o-c  are given in the matrix equation system (10) in Silberberg (1974), page 163. 
See also his footnote 9. 
19 It is clear that (D S) is the negative of our cc

p q(E)or(E)  in section 3 above. See also 
Drandakis (2009), s-o-c (7) in page 5. 
20 See e.g. Caputo (1999). 
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ooo
aa

0 min{g(a;x)} min{(a,h(x,a)) f(x,a)}≡≡φ −      (GH) 

which is an unconstrained problem leading directly to envelope 
tangencies and curvature conditions.21   
 
 We must conclude with a remark about an elementary, yet quite 
important, weakness that is still prevalent in the economic literature on 
constrained optimization problems. Such problems lead to s-o-c  in which 
a Hessian matrix is semi definite or definite, but subject to constraints . 
The presence of such constraints precludes the possibility of using those 
s-o-c  directly for comparative static analysis. 
 
 Of course, with the primal -or traditional- method of sensitivity 
analysis, such a difficulty is readily overcome by the use of the properties 
of the bordered Hessian of the problem and, in fact, it is not even 
mentioned. With the dual method, however, the presence of such 
constraints has to be dealt with, at least in general constrained 
optimization problems like that of Silberberg (1974). It is apparent that 
this difficulty has not attracted any attention in the economic literature, 
despite the fact that an appropriate mathematical analysis exists at least 
since Luenberger (1973).  
 
 In his chapter on Constrained Optimization problems, David 

Luenberger considers first the regularity conditions under which the 
tangent subspace can be expressed in terms of the gradient matrix of the 
constraints and, then, he prescribe a procedure under which the Hessian 
matrix appearing in the s-o-c can be reduced in dimensions so as to 
produce its representation in the tangent subspace. Having this reduced 
                                                 
21 Clearly, (GH) is the negative of our (Ep) or  (Eq) in section 3 above. See also Drandakis 
(2009). 
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matrix, we can examine the implications of definiteness or semi 
definiteness. 

 
In our section 3, on the dual method via the Envelope theorem, we 

used Luenberger’s procedure to get the representations of  Πp  or Πq in 
their tangent subspaces, i.e.,  Ε΄Πp Ε  or  Ε΄Πq E, respectively. The profit 
maximization problem is so simple that getting  E, under point or quantity 
rationing, and completing the whole procedure becomes almost a 
triviality.22 
 

                                                 
22 Of course  E is not uniquely determined. As a matter of fact, Luenberger’s  E is 
constructed differently so as to fit better his own purposes. Our  E  is simple and quite natural, 
given our interest –as economists- in sensitivity analysis and our exposure to the usefulness of 
“compensated parameter changes”, in  e.g. the theory of consumer behavior. 



 38

REFERENCES 

 
Caputo M., (1999), “The relationship between two dual methods of 

comparative statics”, Journal of Economic Theory, 243-250. 
 
Caratheodory C., (1935), Calculus of Variations and Partial 

Differentiable Equations of the First Order , in German. English 
translation, 1967, Holden Day. 

 
Drandakis E., (2003), “Caratheodory’s theorem on constrained 

optimization and comparative statics”, Discussion Paper , Athens 
University of Economics and Business. 

 
___________, (2007), “The envelope theorem at work: utility (output) 

maximization under straight rationing”, Discussion Paper , Athens 
University of Economics and Business. 

 
___________, (2009), “The dual method via the envelope theorem for 

sensitivity analysis and Le Chatelier Principle in parametric 
optimization problem”, Discussion Paper , Athens University of 
Economics and Business. 

 
Graaff J. de, (1947-48), “Rothbarth’s ‘virtual prices’ and the Slutsky 

equation”, Review of Economic Studies, 91-95. 
 
Hatta T., (1980), “The structure of the correspondence principle at an 

extremum point”, Review of Economic Studies, 987-997. 
 
Luenberger D., (1973), Introduction to Linear and Nonlinear 

Programming, Addison-Wesley. 
 
Milgrom P. and J. Roberts, (1996), “The Le Chatelier Principle”, 

American Economic Review, 173-79. 
 
Samuelson P., (1947), Foundations of Economic Analysis , Harvard 

University Press. 
 
__________, (1960a), “An Extention of the Le Chatelier Principle”, 

Econometrica, 368-79. 
 



 39

__________, (1960b), “Structure of a Minimum Equilibrium System”, in 
Pfouts A. (ed.), Essays in Economics and Econometrics , Univ. of 
North Carolina press, 1-22.      

 
__________, (1965), “Using full duality to show that simultaneously 

additive direct and indirect utility function implies unitary elasticity of 
demand”, Econometrica, 781-796.   

 
Silberberg E., (1971), “The Le Chatelier Principle as a corollary to a 

generalized Envelope Theorem”, Journal of Economic Theory , 146-
155. 

 
____________, (1974), “A revision of comparative static methodology in 

economics”, Journal of Economic Theory, 159-172. 
 
Takayama A., (1985), Mathematical Economics, 2nd edition, Cambridge 

University Press. 
 



 40

Appendix  A 

 
The Primal method of comparative statics in constrained 

optimization problems – like Profit maximization under point or 
quantity rationing – is based on two premises. The first is 

Caratheodory’s (1935) theorem  about the properties of the Inverse of 
the bordered Hessian matrix while the second is the evaluation of 

Barten’s 1966 fundamental matrix equation system about the rates of 
change of the problems’ solutions as their parameters vary. 
 
 In point rationing, the bordered Hessian is given in (5). Its Inverse 

exists and will be denoted by 
pU,v

v, w

 
 ′ 

 , where  
pp
xx xz
p p
zx zz

U,U
U,U

 
 
  

 is an  n x n  

symmetric matrix,  v  is an  n vector and   w  is a  scalar. Without 
computing the Inverse, Caratheodory’s  Theorem exploits its basic 

property that  
pU,v

v, w

 
 ′ 

p

(n1)x(n1)
F,c I
c,0

+ +


= ′
  and derives several results 

that we need, as shown e.g. in Drandakis (2003, section 2). 
Thus we have: 
(i) Up is a negative semi definite matrix with r(Up)= n – 1, since Upc = 0n. 

However the ℓ x ℓ submatrix p
xxU  is negative definite since, if p

xxU0′ζζ =     

for any ζ≠0n , then  
pp
xx xz p

mxx pp mzx zz

U,U
(,0) U 0

0U,U

 ζ  ′ζ =ζ ζ=  
 

 

and, thus, (ζ, 0m) ≠(0ρ, a) ≡ c΄ would contradict the fact that r (Up) = n -1. 
(ii) From  v΄Fp + w c΄ = 0΄n   and   v΄c = 1  we get   v΄Fp v  + w c΄v  =  
v΄Fp v + w = 0,   
or 

   w = - v΄ Fp v .       (A.1) 
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However, taking into account our assumption that  F (x, z) is a negative 

definite matrix on 
o
S , the same is true for  F (xp, zp) and thus  

w = - v΄ Fp v > 0 .       (A.1΄) 
 
If we then, differentiate the f-o-identities  

{f x (xp, zp) – w ≡ 0ρ,  fz (xp, zp) – r – λp a ≡ 0n ,  a΄zp ≡ b} 
with respect to (w, r, a, b), it can be easily seen that we obtain the matrix 
equation system  

ppoppp
xx xz w r a n mb
pppppp p
zx zz w r a m mm mm mb

pppp p
wra b m

F,F,0X,X,X,x I,O,O,0
F,F,aZ,Z,Z,z O,I, I,0
0,a, 0 ,,, 0, 0, z, 1

ρ ρ

′′′
ρ ρ

 
 

=λ 
  ′ ′−λ −λ −λ −λ ′′ −   

(A.2) 

and so 
pppp
wra b
pppp
wrar
pppp
wra b

X,X, X, x
Z, Z, Z, z

,,,′′′




=

−λ −λ −λ −λ

ppppp
xx xz xz x x
ppppp
zx zz zz z z

pp
xzz

U,U,Uvz,v
U,U,Uvz, v
v, v, vwzwz,w

′

′

′

 λ−
 

λ− 
 ′′′ λ−−  

  (A.2΄)    

Thus our comparative static results are: 

(1)  p p
wxxXU =   is a negative definite matrix, 

(2)  p p
rzzZU=   is a negative semi definite matrix, as we can see from    

differentiating the constraint that prmZa0= ,     

(3)  p
b wλ=−    is a negative scalar from A.1 , 

as well as 

(4)  p pp pp op
arzr bXxzUX ′+=λ=λ   ,   (5)  p pp pp op

azzr bZzzUZ ′+=λ=λ          and 

(6)  p popp
az b(wz)vz ′′′ ′−λ+ =λ =λ  , 

which change signs if  λp > 0  (< 0) and become zero matrices and vectors 
when  λp = 0 . 
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 Finally we observe, if we compare  (A.2΄) and  (17) in the text, that 
the Inverse of the bordered Hessian of (Pp) can be express in terms of 
submatrices of  Πp, namely,  

pppppppp
xx xz x w v ww wrb vb
p ppppppp
zx zz z w r o rw rr rb

p pppppxz wr b bw br bb

U,U,vX,X,x , ,
U,U,v Z,Z,z , ,
v, v,w ,, ,,′′

 Π Ππ


==−ΠΠπ
′′ −λ−λ−λπ π π

   (A.3) 

  
In quantity rationing  the bordered Hessian is given by (10),  

while its Inverse will be denoted by  
qU,V

VW

 
 ′ 

, an (n + m) x (n + m) 

matrix. Again from its basic property we get: 

 

qqqq
xx xx xz zx
qqqq
xx xz xz zz z m

xz m
qqqq
zx xx zz zx m
qqqq
zx xz zz zz z mm

q
zz mm

qq
xxxzzx m

qq
xxzzzz mm

zmm

()UFUFI,
()UFUFVO,
() U O,
()UFUF O,
()UFUFVI,
() U O,
()VFVF O,
()VFVFWOand
() V I.

αα + =

αβ + + =
αγ =

βα + =

ββ + + =

βγ =

′′γα + =

′′γβ + + =
′γγ =

 

 We thus see that 

(i) 
q

q xx m

mmm

U,OU
O,O


= 


 is a negative semidefinite matrix with  r (Uq) = 

n – m = ℓ, while q
xxU    is a negative definite matrix. 
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(ii)  From 
qq
xx xz

xz mmmmnqq
zx zz

F,F
(V,V) W(O,I ) O

F,F


+=


 and  

m
xz mm

mm

O
(V,V) I

I


=


     we get 

qq
mmm mmVFVW(O,I )VVFVWO′′ +=+=  , 

or        W = - V΄ Fq V  ,          (A.4)  
which means that the m x m matrix w  is positive semi definite with 
positive main diagonal elements, since aF(x,z)  is a negative definite 

matrix. 
Then if we differentiate the f–o–identities  

qq qq q q
o ρ 2m{f(x,z) w 0 f(x,z) r μ 0,zz}−= −−==  

w/r   (w, r, z ) we obtain the equation system 
qqqqq
xx xz ρmwvz mm
qqqqq
zx zz nm w r z m mm mm

qqq
ml nm nm w r z m mm mm

F,F,OX,X,X I,O,O
F,F,I Z, Z, Z O,I,O
O,I,OM,M,MO,O,I

  
  =  
  −−−  

 (A.5) 

From (A5) we conclude that the matrix of the rates of change of the 
solution of (Pq) is non other than the Inverse of the bordered Hessian. 
Thus the comparative static results are: 
(1) qq

wxxXU =  is a negative definite matrix 

(2) q
zMW=−  and is a negative semi definite matrix with negative main 

diagonal elements, while 
(3) q

rmXO=    (4) q
zxXV=  

(5) q
wxMV ′=−    (6) q

rmmMI ′=−  . 

 Finally we observe, if we compare 
 

qqqq
wrzxxmX
qqq
wrzmmmnm

qqq''
wrzxmm

X,X,X U,O,V
Z, Z, Z O,O,I
M,M,MV,I,W


 =
−−−

  (A.5΄) 
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and (25) in the text, that the Inverse of the bordered Hessian of (Pq) can 
be expressed in terms of q−Π . We thus see that qq

ww wXΠ =−  is positive 

definite, while qqq
zz zMWVFV ′Π==−=  is negative semi definite with 

negative main diagonal elements. 
 

Indeed quantity rationing constraints are so simple, that we can 
show how the Inverse of the bordered Hessian is expressed in terms of 
the sub matrices of the bordered Hessian itself: 

11

11

qqqq
xx em x xx em xx xz

ne mn mm me nm mn

qq qqqq
xmm zx xx mn zx xx xz zz

U,O,V F,O, FF
O,O,I O,O, I
V, I, W FF,I'FFFF

−−

−−

 −
 = 
 ′ −− 

 . (A.6) 

Just differentiate qqq
xzm{f (x,z) w 0 , f (x,z) r 0 }ρ−≡ −−µ=  w/r  

(w,r,z) to get 
qqqqq
wrzxx m m xz

qqqqq
wrzzx mm m mm zz

X,X,XF,O I,O,F
M,M,MF,I O,I,F

  −
= 

−−− −  
 . 

 
But the Inverse of the first matrix on the left is 

1

1

q
xx m
qq
zx xx mm

F,O

FF,I

−

−



−

   and  so  
qqq
wrz

qqq
wrz

X,X,X
M,M,M

 
 
−−−  

 = 

=  
11

11

qqq
xx m xx xz

qq qqqq
zx xx mm zx xx xz zz

F, O, FF

FF, I, FFFF

−−

−−

 −

−−

 . 
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Appendix  B 

 
 Several interrelations between (Pf), (Pp) and (Pq) are examined, in 
section 4, with the purpose of deriving various distinct manifestations of 
the Le Chatelier Principle. 
 

 First comparison. (a) (P f) and p(P) : with (P f) solved and 

b az(w,r)′=  we have seen that p(P)  is obtained with  

(i) x(w,r,a,b) x(w,r)≡ , (ii) z(w,r,a,b) z(w,r)≡  and 

(iii) (w,r,a,b) 0λ= . 

Differentiating (ii)  w/r  r and using the derivative properties of  b we 

get: p pff
rrr bZzaZZ ′+= . Since p

rmaZ 0′ ′=  from differentiating  

az(wr,a,b)b′ = , we see that ppff
rrr bZazaZaZa′+=  , or pff

rrbz(1/aZa)Za′=  

and so we derive (33ii) in the text, i.e., 
p ffff
rrrrrZ(1/aZa)[ZaaZ]Z′′+=  . 

Differentiating (i)  w/r  w and  r  we get: 
ppffpppf
wwwrrrbbX xaZ X andX xaZ X′′+=+=  . 

From the second equation we get 
p fpfpf
wr rrbbaZ (aZa)ax 0 (aZa)ax aX′ ′

ρ
′′′′′′ +=+=  or, p ff

rbx (1/aZa)aX ′′ ′′= . 

Thus we get (33i), namely, 
p ffff
wrrrwX(1/aZa)[XaaX]X ′′′+=  . 

Finally, from (iii) we get 
ppf pfpp
rrmrr bbbaZ 0or aZa aza1′′′ ′′′λ+λ= λ =−λ== . Thus we get (33iii), 

namely,  
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pf
rb (1/aZa) 0′λ=< . 

 

(b) (P f) and q(P) : With (P f) solved and zz(w,r)≡ , we have seen that 
q(P) is obtained. i.e., (i) x(w,z) x(w,r)≡  and (iii) m(w,r,z) 0µ = . 

We have already shown in the text how (35i) and (35iii) are obtained. 

Obviously, 1
zrM(w,r,z) Z(w,r) −=  is a negative definite matrix while the 

second matrix in the  ℓ - h - side of (35i) is negative semi-definite with 
negative main diagonal elements. So (36) are confirmed. 
 

Second Comparison. (a) (P p) and  f(P) : With (P p) solved and 

r r (w,r,a,b)a≡+λ  we have seen that f(P)  is obtained. Thus we get  

(i)x(w,r) x(w,r,a,b) and(ii)z(w,r) z(w,r,a, b)≡≡ .  

Differentiating (i)   w/r   w  and  b  and  (ii)  w/r  r  and  b  we get 
ffpppfp
wrwr b bbXXaxXandXax−=λ=  , or fpppp

ww bbbX(1/)xxX ′−λ= , as 

well as ffpppfp
rrr rb bbZZazZandZaz′−=λ=  or fpppp

rr bbbZ(1/)zzZ ′− λ= . 

Having got  (38), it remains to show that   λb(w, r, a, b) < 0  in order to 
obtain the curvature conditions in (39). Indeed if we multiply  

ffpp
rrr bZZazZ ′−=   by  p

bza ′  on the left, we get 

pfpfppffpppp
rrrrrmmbbbbbbbzaZzaZaz zaZ(aZa)zz zaZO′ ′′′′′ −=−==  and thus by 

symmetry we get 
ffppp
rrr bbZ(aZa)zzZ ′′− = . 

But this shows that, in the envelope tangency at the second best optimum, 
we must have  

f
br(w,r,a,b) (1/aZa) 0′λ=< . 
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(b) (P q) and f(P): With (Pq) solved and rr(w,r,z)≡ +µ  we have seen 

that f(P) is obtained. Thus we get  

(i)x(w,r) x(w,z) and(ii)z(w,r) z≡≡ . 

Differentiating (ii) w/r  w  and z we get  
ffq fq
wrwmrzmmZZMOandZMI+==  , while differentiating (i)  w/r  w  

we get 
ffqffqq ffqf
wrwwwww rwwr rXXMXZMXor,sinceXZMZ′′′+=+===− ,   
fqfqq
wwwrwwXMZMX ′−= .  Thus we have derived (40) in the text, as well as 

that, in the envelope tangency at the second best optimum, zM(w,r,z)  is 

a negative definite matrix. 
 

Third Comparison. (a) (P p) and (E b) for f(P) : With (Pp) and (E b) 

solved and b  determined implicitly from (42΄) we get 

(i)x(w,r) x(w,r,a,b) and(ii)z(w,r) z(w,r,a,b)≡≡ . 

Differentiating (i) w/r  w  and (ii) w/r  r  we get equation (44) in the text, 
fpppppp
wwww bbbbXXxbX(1/)xx ′′=+=+λ  

and 
fpppp
rr rb bbZZ(1/)zz ′=+λ  

and the envelope curvature conditions at the first best optimum in (45), 

since  b(w,r,a,b) 0λ< . 

 

(b) (Pq) and z(E)  for (P f) :With (Pq) and z(E)solved and  z  determined 

implicitly by (46΄) we get 
(i)x(w,r) x(w,z) and(ii)z(w,r) z≡≡ . 

Differentiating (i) w/r  w  and (ii) w/r  r , we get equation (48) in the text, 
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1fqqfqqqqqqqq
wwzwwzzwwzzzXXXZXXMMXXMX

− ′′=+=− =+  

and   
1fq

rzZM
−

= , 

as well as the envelope curvature conditions at the first best optimum in   
(49) since zM(w,r,z)   is a negative definite matrix. 

 

Fourth Comparison. (a) (P f ) and ( q
rE ) for q(P) : With (Pf) and ( q

rE ) 

solved and  r   determined implicitly from  (50)  we get 

m(i)x(w,z) x(w,r) and(iii) (w,r,z) r r 0≡µ+−= . 

Differentiating (i) w/r  w  and (iii) w/r  to z , we get equation (52) in the 
text, 

1qfffffff
wwrwrrrrrXXXRXXXZX

− ′=+=−−  

and 
1qqf

zzzrwmmMRMZO
−

−=−= , 

as well as the envelope curvature conditions at the second best optimum 

in  (53), since 
1f

zrM(w,r,z)Z
−

=   is a negative definite matrix. 
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