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Abstract

The paper considers a simple example of unconstrained
maximization, i.e., that of unrestricted profit maximization by a firm
facing constant input prices, as compared to two restricted (constrained)
profit problems under “point” or “quantity” rationing of some inputs.

In the former a single constraint is imposed, indicating specific
point prices and total allowable expenditure on rationed inputs, while in
the latter rationed input quantities are fixed.

Local sensitivity and Le Chatelier effects in every optimization
problem are now obtained, in matrix theory terms, via either a primal or a
dual method. A difficulty, however, appears in constrained optimization
models, whose s-o-c are expressed in the form of a matrix that must be
semi definite or definite in the tangent subspace of its constraints’ hyper
surface and, thus, cannot be used directly for either purpose. Economists
have not exploited fully all the existing mathematical analysis: they have
only succeeded in performing sensitivity analysis via the primal method,
by the use of “bordered Hessians”. Otherwise the difficulty still exists
and, in fact, appears not to have been recognized.

The profit maximization problem, even under point or quantity
constraints, is so simple that the above difficulty becomes as transparent
as possible, while the steps required for resolving it are close at hand.
Finally, a diagrammatic illustration of profit maximization under quantity
rationing is possible, if there are only two inputs: then, we can show
global sensitivity and Le Chatelier effects and also specify the conditions
under which they may be upset.



1. Introduction

In this paper we consider a firm that produces its output by using n
inputs. Its technology is given by the production function f (x) =y.
f(x):R T+~ R iswell behaved if

n

(i) f (0n) = 0, f(x)is finite for every finitexR 1. For every
y > 0 there exiskR 1 with f (x) =y.

(ii) f O ¢ on R, with first and second partial derivative$x)
and f (x), i,j=1,...,n.

(iii) for any y > 0 there exist x with positive gradient vectors
fi (x), i.e.,xBI{x RN [f(x) =vy,f(x), =0} . Forany

xS, f(x)is strongly concave, i.e., f is a a strictly
concave function with a negative definite Hessian matrix,
F(x) = [fy (x)]-
The firm is competitive in all markets, facing constant input prices
w > (0, and output price p > 0. Throughout the paper, except in section 5,

p is set equal to one.

Our analysis relies on classical optimization techniques in matrix
theory terms. All vectors are treated as column vectors, unless they are
enclosed within parentheses or appear as function arguments, while
matrices are denoted by capital letters: thus e.g. 0,,0or O nm denote,
respectively, the zero scalar, a vector of n zeros, or a matrix of zeros.

A prime after a vector or a matrix denotes transposition.

The paper is organized as follows.  Section 2 examines the

unrestricted profit maximization problem, which is compared to two



restricted (constrained) profit maxima, namely, those under “point” or
“‘quantity” rationing of some inputs. Since the original problem is an
unconstrained one, “point” rationing can be dealt with quite smoothly.
Section 3 introduces the dual method of comparative statics via the
Envelope theorem. Again, having an unconstrained original profit
maximum facilitates sensitivity analysis immensely: indeed the
appropriate Envelope problems, under “point” and “quantity” rationing,
appear both in an unconstrained and in a constraint form! This felicitous
feature forces the researcher to recognize the difference of the second-
order-conditions of the two forms and understand why the s-o-c of the
latter form cannot be used directly for sensitivity analysis.

Section 4 considers all possible interrelations that can be obtained
between unrestricted and restricted profit maxima and examines various
manifestations of distinct local Le Chatelier effects. On the other hand,
Section 5 is the epitome of simplicity, offering a diagrammatic
illustration of global comparative static and Le Chatelier effects and their
upsets, when the firm uses only two inputs, one of which may be fixed in
quantity. Finally, Section 6 concludes with a historical survey of the
relevant economic literature and the specific mathematical analysis that
has to be taken into account so as to permit sensitivity analysis and Le
Chatelier Principle in the presence of constraints in more complex

optimization problems.



2. Unrestricted and restricted profit maximization under point and

guantity rationing

The unrestricted, or first — best, profit maximization problem is
given by
TEn) maxif) wk o, (P )

if x50° satisfies both

foctf(x)w0y, * —= (1)
and

s—o-s c{F(x)'

isnegativedefinite}, (2)
then X attains a strict local maximum offX.FUsing the Implicit function
theorem we can find, in principle, X = x(w) by solving the identities

f«(x(w) = w in (1), withx(w) OC' in a neighborhood of any w 3.0

(P f) will be contrasted with two restricted, or second best, profit
maximization problems, namely, those under “point” or “quantity”
rationing of some inputs. Thus our former x” bundle will be given by
(x, ), with x&2g3F5tmpandmn, while w > 0p

and r > @, denote the respective input prices.

In point rationing an equality constraint, a’z=Db, is imposed on
the choice of rationed inputs, where ad@note point prices and b the
allowable expenditure on rationed inputs. The profit maximization
problem is now given by

mErrab)  maxf(x.2) wxrz  |az D} (P°)

If x°,Z and R satisfy both



fotix 2w fR e o P A=

(3)
and az" = b}
and
x?)  isnegativedefiniteonthe
STO" S cngent subspaceT=ptl )’ R" | , (4)
120 109" Ojand( 4 o,
then the implicit function theorem works and xP = x(w,r,a,b),
Z°P=M,r,a,b) and (w,r,a,b) attain a strict local maximum of (B,

with x°, 2 andM C' in a neighbourhood of any (w, r, a, b) 7@:1.
We also note that the Jacobian matrix of (3), in% z” and -\" i.e., the
Bordered Hessian of {P

%(X%) ’ c : I =
, with ¢=(0 , 5
T <o with ¢ =(0pa) (5)
in an invertible matrix at (w, r, a, b) >0’ — Finally, a simple
inspection of (3) verifies that x (w, r,a, b),z(w,r,a,b)and A (w,r, a,
b) are homogeneous functions of degrees zero and (- one), respectively,
in (a, b).

In quantity (or straight) rationing of some inputs we may, first,
considemyr oss profit maximization, namely,
T&v,z) max{f(x,z) wx}

=rrax{f(x,z) WX |z z} (Fg)
or, secondnet profit maximization, namely.
T&rrz) max{f(x,z) wx rz}
_ w5 (P y

=mmax{f(x,z) wx rz |z Z.
X,Z

! For a proof see e.@randakis (2003), Lemma 1.



In the second version ofYPand (P) the m constraints appear explicitly,
while in the first version of (P %) andin (P °)itis clear that if
x&w,2) ~ satisfy both

focff(xzw0} — ~= (6)
and

sT0~ s cfF «(x,z) isnegativedefinite}, (7)
then X attains a strict local maximum, wiktw,z) dependingon w and
z, but not on r. On the other hand, the second versions d @hd (P
lead to  x%&Fz),zz ~ and the m langrangean multipliers

BEUL (w,z) and B=M (w,rz) j=1,...m, satisfying, respectively, both

foctix, 2)wof82) —== o %9 b= 02z °=" (8)
and
foctix 2w 2)r—= o, 9 —u=9 0zz =7 | (&)
as well as
x¥) is negative definite on

soscﬂ%n@[gu](,m}ana " 7, (9)

n

q

and attaining a strict local maximum, with x % p®and u® OC'in a

neighborhood of any (w,z) or (w,r,z) . It is clear that

HEMT,Z) (w,z) r.ltis also evident that (9) reduce to (7), since in

the tangent subspace ( is unrestricted while n.= Bgain the gradient
matrix [Ome, Imm] Of the m constraints in (x, z) has rank equal to m and
so the Bordered Hessian of@nd (P)

0, 0
%(X??) : C withe =g e (10)
DD C,O mm mrD

is an invertible matrix.



Finally, let us note that, while any solution of (Pf) for w>0 ,
generates positive profits, nothing definite can be said about = (w, r, a, b)

or Tw,r,z) .

Indeed, for any XEBIALB, F() 00 )F(X) N ,
because of strict concavity of f(x) ; so if x= 0, we are led to f(X) -
fx(x°)’ x>>0, orto = (w) >0 for the corresponding input prices.
However, in (P) or (F') we can easily see that
Tarral) {f(x2) PPPHEzx T f(x,2)z) b
and
Tl (x99 fxz)x " fxz2)d Tz
and so, if b is much bigger than a” z (w, r) , or some z are much
bigger than z(w, r), then & (w, r, a, b) or the corresponding;(w.r,z)
may become so negative that n (w, r, a, b) <0 or = fy=r0.

To avoid any complication from having inequality constraints in"jFr

(P, we will assume that b oiz; are not very big, so that, (", Z’) =

=r+A"a>0n and f,2% = +4> 0 . Thus the firm operates within S
despite the constraints, with
T&vrab)  f(x,2) wx®rz 0

and

T&rr2) fx29 wx rz 0
and A (w, r, a, b) positive, zero, or negative depending on how big b is

relative to a’z (w, r) and similarly fat(w,r,z) .

2|t must be noted, for example, that Pand (P) incorporate only the profits (or losses) generated in
the production of the firm’s output. If the firm’s technology permits the consideration of inequality
constraints in (B) or (P, the possibility that the firm may “rent out” its unused “capacity” has to be
taken into account.



3. Comparative static analysis via the Envelope Theorem

Comparative static analysis ianE’(P") or (P"), examines the rates
of change of their solutions as the parameters of each problem vary. This
is now done in matrix theory terms, via two methods: either gprimal
method, through differentiation of f-o-c with respect to parameters and
evaluation of the properties of the resulting matrix equation system, or a
dual method that starts from the maximal value function of each problem
and their derivative properties, through the solution of appropriately
specified Envelope problems. Each envelope problem compares the profit
secured by the firm under two alternative policies: a specific feasible, but

passive, policy of input use is compared to the corresponding optimal

policy.

In (Pf) both approaches are quite simple. First, from (1) we get
F (x(w)) Xw (W) = lom, (11)
with Xw (W) = [0xi (W) / ows] . Since the Hessian of f (x(w) is invertible,
we see that
Xw(w) =F (x (W))' (11 )
is a symmetric and negative definite matrix.
On the other hand, = (w) =f (x (w)) —w’” x(w) has the derivative
properties
Ty (W) = Xw(W) fx (X(W)) = Xw (W) W — X (W) = - X(W) (12)
and II ww (W) = = X (W) , (13)
which is a symmetric matrix. For any W> Om we denote X = x (w°)
and consider thEnvelope problem
O@xfi(x)witw)} , (E7)



whereparameter s have become the choice variables and the for mer
choicevariablesaretreated asparameters . Itis evident that the
maximum of (Epf) cannot possibly be positive but is at most equal to
zero, since the

f-o-c {-X—m(W)=0} (14)
are satisfied at W, as we know from (12). If we also have the

s-0-s-¢ { - Ilw (W°) is negative definite } , (15)
then we attain a strict local maximum of zero.
We thus see that

Xuw(W°) = - Thaw(W°) (117)

is a negative definite matrix.

Both approaches become more involved if)Br (P%). Thus only
the dual method is presented here, with the primal method briefly
sketched i ppendix A.

In point rationing, the derivative properties of = (w, r, a, b) are
TE—TI(PREERIRP 7 zand TEA (16)

and the symmetric matrix IT (w, r, a, b) =

T wa w XXX.x : a » g
_ EFReee . " Z,,Z,Z,zm r a b 5(1 7)
%Wnagaﬂmnpmpmmxpggppp D Zz4%Z2.22 bb
TR, T, My, A, oA A -

where function arguments are suppressed and superscripts denote
problem (P). We note that

(i) A*20 and™ Z0 when b is smaller or bigger than a’ z (w, r), while

AP =0 implies = (w, r) == (w,r, a, b)
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(ii) the symmetry of 1l implies that ofXZand®®® A _#A | while
we also see that
X2, XApARRroPP . or XBAxR P gng,

similarly, z22zZ® " as well as—A} -AP2z =A PP

The Envelope problem in {(Pappears in two forms: for any {w’,
a’,b)and X=x(w° r° & b’),2°=Ww"r° a, b)and X = (W’ r°, &,
b°) , we may consider@nstrained envelope problem, namely,

Oﬁ?v),zrgjg(?z)vx?m(’ﬁ?,r,a',b)azb} o (E3)

or, due to the linearity of the constraint in b, we may consider an
unconstrained envelope problem for any (W, 1°, &), 2> and X = x (W’
°,a, 2%, namely,

0max{fk,z)Wxr2{W r,a,az)} (Ew)

The latter is simpler and will be examined first. However the
former is quite instructive since it shows what has to be done so that the
s-0-s-c of a constrained optimization problem can be turned into envelope
curvature conditions suitable for sensitivity analysis. On top of that, we
can immediately verify here that these curvature conditions are non other

than the s-o-s-c of the unconstrained optimization prolgm,.
(Ep)is characterized by
fro-c {-X’- &M%z - -m= 0, -TTM z20= }  (18)

which, as we know from (16), are satisfied at, (W &) and 8'2° . Also

the matrix of partial derivatives of (18) with respect to (w, r, a), namely,

il PRPRLT

M I—Iww” wr wa wb
-NP = —Mm ppp - ' -
N w,r,a rw 15)2 m n ran rb -

ppoop ' poo
% «ga;l‘lz?ﬂ#gzmgﬁﬁ br aa ab ba bb
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%xﬁf:gp" X, Xxzt

=£[ZPPPP0 7 Zzz ,
bpeee 7 (Zzz)

: (19)

as we can easily see from (17), satisfies atrifiwa’) the

H%)rany( {nédy R

e B L (Gne<’
sOSC %% d (9O : (20)
0f1 (AN6%) O #4(0,0 .af

%ér any t=0
On the other hand itEg), we have

=feAM+E—wx® rz° (wrab) (b azf
and so the

fortx —TI=—LP=—T1— op 0, PO 20,

T ot - e
are satisfied at (% r°, &, b’) with €*°=A | as we know from (16). Since
the (n + m +1) x (n + m + 1) matrix -II ° is the matrix of the partial
derivatives of the first n + m -1 equations in (21), we also have at
(w°, r’, &, b) the

HEbrany(, JROD " " ~qn@kMNanerkee ()0
Lohthetangent subspace

SOSS(0.021)(. )9} n ° WO - (22)

Of1(CNOKZ ) O #1(0H m.aB)
L[]
r any t=0.

When (21) and (22) are satisfied at®(w, &, b°), a strict local maximum

of (Ex)is attained.

It must be emphasized that (22) cannot be used directly for

comparative static analysis because we do not have complete information
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about the properties of the (n+m+1) x (n+m+1) matrix I1° of second
partial derivatives of = (w, r, a, b). We only know that its representation
in the tangent subspace, which is of dimensions (n+m) x (n+m), must be
positive definite for (&n6#) 0.4 #1(0,0,a)fofanyt >0. But to
ascertain the implications of the above property we must, first, find a
representation of It in its tangent subspace and, second, specify the

submatrices appearing in it and explain their meaning.

Fortunately this can be done quite easilfl’. Indeed a matrix E°,
whose first n+m rows and columns form an identity matrix and its last
row is given by (Q,zo), can do the job! Eis an (n+m+1) x (n + m) matrix
with r(E O) = n + m and, thus, it provides a basis for all (n + m + 1)
vectors in the tangent subspace of —-I(w, «°,b’), since (., Z°, -1)

E° = (On, 2-2%)=(0n, On).

We see therefore that the product matrix’ H#*°E° | is a representation
of —IT " restricted to its tangent subspace and, so, must be negative
definite for all (, n, 0) # Q'sm # t(0,, ao) forany t>0.

Our final task, then, is already at hand: we can see quite easily that

—Bgor fra in (19), which also gives us its submatrices expressed

in terms of the rates of change of the solution 8f éRd, finally, leads to
the s-o-s-c in (20).

We conclude, therefore that ti@vel ope curvative conditions of
(Ex)and(E &) are the following :
a%atrix ~[B°P° E asgivenin(19),
(e—t c)O6hegativedefinitefor( {N6%) (23)
Hipaanio’
t(0,a)andt0 >

% See e.gLuenberger (1973), chapter 10 on constrained optimization.
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These conditions lead to the following comparative static results for (P
It is clear that we have :

(i) CXe W, r, &, b) (<0 for (#0,

(i) nZ WP, & )n<0 for n£@#ta forany t>0,

since differentiating the constraint a” z (w, r, a, b) =b w/r r we get

a Z(w,rab)=8,

(i) if L (w° %&b >0 (<0),the Z8%®, s negative (positive)
semi-definite of rank m -1

and, finally,

(iv) ifa (w® r°, &, b°) =0, then the last m rows and columns of

4
E° become zerds

On the other hand, in quantity rationing the profit functions

T(W,z) and (w,r,z) have derivative properties

Towr  X(w,z) =T==T0 2z
& f(x(w,z),z)” “H(w,z) and (24)

nE f(x(w,2),2)r —=H (w,r,2)

and the symmetric matrices

ne DEXXw: - w3
hoM, Mz w oz
and (25)
THExOX W W e
NSOANE, 00 = T s
gREEMMM -z w r r

* Ignoring the last zero rows and columns of the matrix in (19), we get the n x n matrix

%% po B<f f [
e whose interesting relationship @tz fog will be considered in the next

section.
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respectively.

The Envelope problem in (P appears also in two forms: for any
specific parameter values (wW’, ) and X=x(W°, 2), ”’=pu (W, r°, 2
also fixed we may considercenstrained envelope problem, namely,

Offax(lez) Wxrz(w.r.2jz)” o N (=
Due to the linearity of the m constraints, we may also consider an
unconstrained envelope problem, for specific (W, r°) and x¥w,z)
namely,

omax{flk,z)Wxrz(w,r.z)} ~ oL (Em)

Again we examine(E), first, which is characterized by

f-od °  dwrz) =T z  (wrz) =0} (26)
which, as we know from (24), are satisfied at {w°) and attain a strict

local maximum of zero, if for the symmetric n x m matrix

Haly - - o] 0
_@D Ww (W!CF’)Z)’_ WI'(W’C}?Z) B %M%ﬁo D ’ (27)
@Hrw(wﬂ'?z): rr(W’(F?Z) O OﬂQﬂ‘ﬂ O
we also have the
ad (App 9 ]
D]:’WW ’ wr < O
sOSC %—%r) GOFEp, % o (28)
00
B8  for ¢ 0p
On the other hand itEZ:) we have, using
=fcH/++€ wx®rz  (wrz) (z 25
with & the vector of the m lagrangean multipliers,
f - oq_T[:rmz — OQ-7r= 0, —T[Q-E: 0,
oc{x wrmzHeZ } | (29)

and z° =z}

® ltis obvious, from x =x Y,n % =r+p % and (24)-(25), that

M FEagIMM A
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which are satisfied div¥z) ~ and &=’

Since the matrix of the partial derivatives of the first £ + m + m
equations in (29) is -f as given in equation (25) and since the gradient
matrix of the m constraints in(w,r,z) is given by [One¢ , Omm, =lmm] , We
also have at (Wr’, 2) the

Horany (., JRRE(')0 mm —~nerene<
STO"s ¢ Etgwthetangentsubspa?eT ={(Omm@m ~1 )(CNB=)  (30)
O ONGn)0 :

Again these s-0-s-c cannot be used directly for comparative static
analysis. To find a matrix that represents ©When it is restricted in its
tangent subspace, we use the (¢ + m + m) x (¢ + m) matrix’Fwhose
first £ + m rows and columns form an identity matrix and its last m
rows consist of zeros. s an (L + m + m) x (¢ + m) matrix with rf{E=
¢ + m and can, thus, provide a basis for all (¢ + m + m) vectors in the
tangent subspace of -II (Wr°, z°), since (One, Omm, ~lmm) E°= (Ome ,
Omm). We see therefore that a representation of -If* restricted to its
tangent subspace is given by “H™E® and it is simply the (¢ +m ) x
(€ + m) matrix in (2755.

We conclude then that the Envelope curvature conditions of
(E)and (E‘;q) are given by

atrix ~B°9° Ejs negative

(e7T ¢ . ,
Eféfinitefor( 0% 0,

(31)

It is clear from (31) that the only comparative static result of (P) we
have obtained, so far, is that X(wz)°" is a negative definite € x ¢

matrix.

® It must be admitted that the last paragraph could have been avoided, if we had noted that in
the tangent subspace of (30) 6=,0while (C, n) is unrestricted; thus (30) would immediately

coincide with (28). This was done on penpose so (Ef%t, ) would be specified for (p.
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We cannot end this section without a comparison of the two
alternative methods for doing comparative static analysis. As the reader
has seenin Appendix A , theprimal method in constrained
optimization problems examines the bordered Hessian of the problem, a
matrix having additional rows and columns than the Hesssian, depending
on the number of constraints imposed. Correspondingly howevethe
primal method produces compar ative static resultsfor all choice
variables, including the lagrangean multipliers. On the other handhe
dual method in constrained optimization problems focuses on a
reduced matrix of the Hessian of the optimal value function, a matrix
restricted in the tangent subspace of the Hessian and with a smaller
number of rows and columns depending on the number of constraints
imposed. Consequently, however, the comparative static results
produced, so far, by the dual method are limited to the rates of change of
choice variablesninus those of the lagrangean multipliers. It is obvious
from the s-0-s-c of the unconstrained envelope problep)safid (E) as

given in (20) and (28), respectively, that no restrictions on the signs of
il and £ can be established. Does this difference point to a

structural deficiency of the dual method? Not at all, as we will see in the

next section.
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4. Interrelations between unrestricted and restricted profit maxima;

the various manifestations of distinct local L e Chaterlier Effects.

It is evident that for any (w, r) and (a, b)orwe must have
T&¥r)  (w,rab)and T&A)  (w,r,z) . (32)
Equalities may appear in (32) only when —-by chance or design- rationing
constraints happen to be “just binding”, with either a”z (w, r)=b or
z (w, r) = z. Otherwise, it is impossible to relate their solutions and

compare their rates of change as parameters vary.

In some cases, however, it is possible to establish interrelations
between (F‘b and (P"), or (Pf) and (P% or of all three, by appropriate
choices of alternative subsets of parameters so that maximum value
functions are brought into contact with one another, thereby creating
tangencies and producing proper curvature conditions on the rates of
change of their solutions. THenvelope theorem is not only involved in
all such cases, but appropriakvelope problem can also be designed
so as to bring about such results. In this more general setting, in which
one of the profit functions depends on actual parameter values while the
other depends also on properly chosen “shadow” values of some
parameters, there are for greater opportunities for such tangencies

f
between 1 i, or © to occur.

In our first comparison, (Pf) is assumed to have been solved
when thepoint rationing constraint a’z=b, a>0 b >0 is imposed.
Since a” z (w, r) # b, in general, we can reach an envelope tangency at

the first best optimum quite simply: we only have to select b so that
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az(w,r)b= . The feasibility of z (w, r) under this point rationing
constraint implies thaP} has the same solution aé)(IPe., that

(i) x(w,r,a,b)=x(w,r), (i) z(w,r,ap)=z(w,r) and

(ii) A (w, r,a,b) =0

Thus fromb=a"z (w, r)=b (w, r, a) we get the derivative properties

e __

buwwrndZ, aZ andb z z and, so, we can compare the rates
of change of the solutions of (I?and (P§ at the first best optimum. As
shown inAppendix B we get

(i) XPeZa)Xdixx ,

(i) Zo#(1/azdfzaaz =z and (33)

(iii) Ag (1/azd)
where function arguments are suppressed, while the presence of some
“shadow’ parameter values is indicated by-a superscript. Even before
looking at the proof of (33) in  Appendix B, it must be noted that
Azfw,r,a,b) (1/azd) 0 and that the rates of change of the solutions of
(P} can be and are indeed expressed in term of those of {Pand the

known a's, j=1, ..., m. The important finding is that all matrices in

the second terms of the £ - h — sides of (33) are negative semi definite of
rank 1, sinceaZh0< and matrix aa’ is positive semi definite of rank 1
but with positive main diagonal elements. It is obvious that an Envelope
tangency is attained at the first best optimum, with T%@tr)  (w,r,a,b)

and = (w, r) more convex than™w,r,a,b) there. The envelope curvature
conditions (at the first best optimum) are given by

%&i&w{w,r,a,b) X (w,r), all

L zfw.r.a,b) zfw,r),  all (34)

B\ (w,r,a,b) >0
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On the other hand, if quantity rationing constraints
ZZZz(W,r) , are imposed, then by choosingzZzw,r) a tangency
between (f’)’ and(Pj is produced at the first best optimum and

(i) x(w,z) Ex(w,r) and HEw,r,z) Op.

Then we get, sincBZX, XXz gfft ,

() X9  x Xz X X

35
and (ilM ¥&= " O (35)
since Mi#FEERdMI a from (25). Thus the envelope
curvature conditions (at the first best optimum) are given by
%&Ww,z) X (wr), all i (36)

Bl (w,rz) >0, all j

as shown iMAppendix B.

The first set of ( inequalities in (36) are the Le Chatelier effects
established bySamuelson (1947, pp. 36-38) as he introduced thelLe

Chatelier Principlein the economic literature.

The second comparison starts with the solution of (P) or (P
and considers the possibility of attaining an envelope tangency there if
A(w,r, a,b)#0 or if lgw,r,z) 0, respectively.
With point rationing we can select the “shadow” prices of
rationed inputs, r, by

r=tA (w,r,ab)a =flx(w,r,a,b),z(w,rab) =r(wrab) >0 (37)

with derivative properties RaxREZREN PP

and ra=A D .
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It is easily shown that such a choice of r (w, r, a, b) transforms the f-o-c
of (P ) into those of  (P) and, thus, leadsto  Tw,r) =T(w,r,a,b)
and to
(i) x(w,r) =x(w,r,a,b) and (i) z(w,r) =zw,r,a,b) .
We show inAppendix B that
(i) xEFRF gy x X
and (38)
(i) ZPRE gz Z
and also that
Aefw,rab)  (1/azd) 0
sincez(w,r) is a negative definite matrix fow,r) >0, .
The envelope curvature conditions at the second best optimum are
Bl r)x(wska,b)0,alli

%jw,r)z(ﬁﬁ*,a,b)o,allj (39)

On the other hand, in quantity rationing, the solution of (P%) can be
transformed into that ofP) if we selectr by
rEth (w,rz) =fxw,z),z) =r(w,r,z) >0 . (37")

Then (i) x(w,r) Ex(w,z) and (i) z(w,r) =z

and so
() x9dsm M X

and (40)
(ii) Zms =1

since RW\FIMERM - -, andfrom Z§Ws=

we see that Mgw,r,z)~ =Z(w,r) ' is the Inverse of a negative definite
matrix for w>Q, r, r >0, and z& ,, as shown ilppendix B.

The envelope curvature conditions at the second best optimum are
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%@W,r)x(v\ﬁi)o,alli a
OO _ (41)
E%w,r)O,éllj

Additional interrelations between fist and second best profit

maxima are obtained if, having the solution of either one, an appropriate
Envelope problem is solved to produce tangencies and curvature

conditions at thether profit maximum.

Thus thethird comparison starts with the solution of {Pin point

rationing and the envelope problem
OH_'ﬂEXb{’([\N,r,a,b)(W,r)}

or T mawrabl )

without knowing anything about foP
(E b) is characterized by

f~oc{T p(w,rab) =0} (42)
and

soscf(wr,a,b)0} < (43)
with b determines implicitly by solving

Aw,ra,b) =0, (42 )

since AgA  (w,r,a,b) <0 from (43).
The b=b(w,r,a) has derivative propertiesb,,.=X1/ P)xPie b =X1/ )z
and b,=Z" sinceM® 0, as we can see from (17) .
With the help of (E) we get
(x(w,r) =x(w,r,a,b) , (i) z(w,r) z(w,r,a,b)
and thus

M) XPPER (17 xpx
and (44)
(i) ZPPA (1] \)zpz
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We see therefore that the envelope curvature conditions at the first best

profit maximum are given by

N)x(wsKa,b)0,alli
E@an( a,b)0,alli

45
HHw,r)z(W7,a,b)0,allj (49)
On the other hand, iguantity rationing, if (P%) has been solved we can
consider
OmBEx{tw,r,z)(w,r)}
(Fz
or TE&NTr) mEaX{(W,r,Z)T ;
with
foc{iw,r,z}0 = m} (46)
and
sosc %%Z—.Z(Yv,r,z)is.anegative 47)
Edefinitematrix
z is determined implicitly from
T{w,rz) SfxWFz),z) r (wrz) O, . (46")
With the help of (E; and the derivative properties of z&w,r), or
Zgr - and ZfF - , we get
(i) x(w,r) =x(w,z) ,and (i) z(w,r) z
and thus
(i) wa\‘,%‘;z( XMX- - (48)

(i) ZZ'=M-"
and the envelope curvature conditions at the first best profit maximum

B@W NX(W2)0,alli

%w r)0,5llj

Our fourth comparison starts with the solution of (P f) and

(49)

produces an Envelope tangency d; ¢ (F).

" The reason for considering§Hirst will become apparent below.
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With the quantity rationing constraints, z= , we consider the

Envelope problem
OFRBX{EW,r,z)(w,r)}

=Tend(w,z) z (W)} (E)
or T(w,2) E'rﬁrtarﬂ{n%’f_ﬂ (w,r)} mrin{r'z_ (w,r)}.

No prior knowledge of Tw,z) is necessary: the second form of (P
follows directly from the first andz is the known rector of fixed inputs.

(E} is characterized by

focfzZ@W,)0 m = }  (50)
and

s—o18 cf rr(w,n)ispositivedefinite }. (51)
r=r(w,z) is determined implicitly by (50) or Z-T(w,r) =z(w,r) and

has the derivative propertieRzzandRz -= ™ Thus we get

(i) x(w,z) =pgwir) , (i) (wrz) r r Oy
and we can derive their rates of change
- qfffs Ty
(i) wav1vrr9<_ XZ X (52)
and(i) M¥-Z,” O -

The envelope curvature conditions at the second best profit maximum are

H%%(va(w,z_) X (w,r), alli
U

- _ . (93)
Q‘@J%(W,r,z) >0, all |

When, however, (| has been solved and point rationing constraint

is imposed, then an envelope tangency at )Rcan only be obtained if
x(w,r,ab), z(w,r,a,b) and X (w,r, a, b) are already known. Even
if we treat (X, 2°, \?) as given and consider an Envelope probl¢f}

analogous to(E; , we cannot proceed and determine implicitly from

the first - order identities,  z{Ww;TJt if we do not know how

P —

Z° =z (w, r, a, b) vary with their parameters. But if (P) has also to be
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solved, do we nee(E? for attaining a tangency at )P Is it not easier

to rely on our second comparison and, having the solution"f sifiply
define r using (37) ?

We see therefore, from our examination of all interrelations of any
two of (P), (F) and (P), that undemuantity rationing conditions (36),
(41), (49) and (53) exhibit four distinct manifestations of the Le
Chatelier Principle , while under point rationing three such
manifestations appear in (34), (39) and (45). Apparently the complexity
of the single point rationing constraint, a” z (w, r, a, b) =b is enough to
preclude an efficient utilization of (E? for reaching an envelope

tangency at the second best profit maxinfum.
We must not also forget the possibility of establishing
interrelations between all three profit maxima. For example, let us assume

that () has been solved. Then, selecting r +A (w,r,a,b)a , we obtain

(Ps , 8s we have seen insecond comparison (a) . But suppose that we

also want to ascertain the repercussions of imposing quantity rationing

constraints, chosen so as to have z=z(w,r,a,b) =z(w,r) . Then the

f-o-cof (P Py are transformed into ~ {f, (x2) W 0 ,
f,Zr —A (w,r,a,b)alzz} ~ = or equivalently into the f—o -
c {f dx(w,2),z) —W0,f(x(w,z),z) = ~“TH=w,r,z) 0 ,z z},of

(PY with (i) x(w,z) =x(w,r,a,b) and (iii) K(w,r,z) =A (w,r,a,b)a .
Differentiating (i) w/r tow and r we get

X KPR X . and X§® = . Thus we get
XgpR -

® Samuelson (1947), pp. 163-71, anGraaff (1947-48) have independently examirgint rationing
in the Theory of consumer choice: in that context further problems appear.
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from which we see that XZ¥ - is a negative semi definite matrix,

even if we do not know anything abo .
Similarly
9P =N aorzMP¥P- =A< Q.

We thus see that we get the envelope curvature condition§)at (P

ggsw (WEES,b)x(w,z)0,all

54
%wr (#t.a,b) 0,allj 54

Finally, it is evident, from our second comparison in point or
guantity rationing, as well as, from théourth comparison in quantity

rationing, that we have

M (W, r,a,b)=(1/a" 4w, r )a) <0, although A (w, r, a,E@ and
M@w,r.z)~ =Z(w,r) ' is negative definite, although H(w,r,z) may

not be a zero vector. Our proof is based on the negative definiteness of
Z(w,r) forall (w,r) >0, and (x(w,r),z(w,r) 0s . If Ao (W, T, a, b)
were not a negative scalar and if M¢w,r,z) were not a negative

definite matrix, for all admissible parameter values, then no envelope

tangency could emerge between *{@r (P and (P5 or between (Ifb,

(E" and(PJ at the second best profit maximum.
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5. Global Comparative Static and Le Chatelier effects and their

upsets: a diagrammatic analysis with two inputs

We consider a competitive firm that produces its output with two

inputs, facing positive input and output prices, (w,py. Thus

TErw.p)  max{pf(x) wk} (P)
with f strongly concave and  |F(x)| =f11()f33(x) f12(x)? 0. With
input demand functions' w, p), i=1,2, we get the comparative static
results

_A -1 Ufd, 41U
X(w,p) == F(x(w,p)) 5 0 (53)
P p{fihe —f} OTfk 14 O
and
xw.p) = Fx(w,p) F (x(w,p)) = . % _ 2 (54)
P p{f1bo ~fi2} 1 112
The firm’s expansion path, x2 (x1) Dwi/wz, withw 1/w2=a

constant, is determined implicitly by
f1 (x1, X2 (1)) / f2 (X1, X2 (X1)) = w1 / we (55)
and has a slope

: _f66f ~ 440 xﬁw,p)
X\, = , (56)
i e i, ~ 21 X¢W,p)
while its constant —marginal — product curves X(Z)Qv/p‘ , and

x@g)v,p‘ , are determined implicitly by

fi(xr, (X)) =w/p, i=1,2, (57)
having slopes

, —_ feoxex)y
B0 e = s
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and

; —_ fexx(x))
B e ™ )

We see that the EP has a positive slope when both inputs aner mal,

(59)

with wa,p)O >, has a zero slope when x(w, p) is a neutral input

and a negative slope when (v, p) is aninferior input, with EP turning
towards the x, axis; similarly the EP has an infinite or negative slope
when x (w, p) is neutral or inferior, with EP turning towards theaxs.

We also see that both CMP curves have positive slopes whex)f> 0

and negative slopes wherp (x) < 0, since #(x) , f22 (x) < 0.

If f12(x) = 0 then the slope in (58) is infinite, while that in (59) is zero. Of
course, the sign of f12(x) depends, in general, on x IS and may be
positive or negative, within limits, in one region of S or in another.

In Economic terms two inputs are calleginplements (co operant) when

f12(x) > 0,substitutes when fiz(x) < 0 andndependent when fix(x) = 0.

When any two of  x¢x) ‘ww X(%9 ‘w4p or XeX) \W/p

intersect at some X! S, for the same input and output prices, then the
third one also passes through the same point. We also establish the
relations among the slopes of the EP and the CMP curves at a point where
all three intersect. Thus we can easily show that

(i) when fi2(x) > 0 then

X60  luo Zx00 | X0 [, 0., (60)
(ii) when fi2(x) =0 then
o= ) [ Tx6) L T xe) [y, 0. (681)

while (iii) when fix) < 0, but both inputs are normal, then



60 |y <xe0 L, <0 (62)

while xég) is still positivg.

‘WAW
Let us finally note from (53) that
xl\fwew,p) =x (w,p) S0 whenf (X(w,p)) 0. Thus when the two

inputs are complements, they are akgamss complements, with <0 in

the first and > 0 in the second inequality. On the contrary substitute
inputs are alsayr oss substitute, with > 0 in the firstand <0 inthe
second inequality.

Those properties hold, not only for two inputs, but for any number of
inputs: when all inputs are complements they are also gross
complements, while when all inputs are substitutes they are also gross

substitute¥.

We can then turn to the diagrams in Figure 1-3, which illustrate the
interrelations of EP and the CMP curves, whe#{xj is either positive or

negative or changes sign over S, separated byan 0 locus”.

In Figurel(a) f 12(x) is everywhere positive. Point A denotes a
profit maximum, since both CMP curves have the appropriate shapes and
if x10rx rise from A then #(x) or fa(x) fall. The figure also shows that,
for a finite increase in w, the profit maximum moves to point A" on the

original X,4(x) curve with both x and x smaller. InFigure 1(b)

wip

however, with f 12(x) everywhere negative, the profit maximum at A

% In the interest of brevity we do not offer a complete analysis of the above interrelations,
when one of the inputs becomes inferior: the interested reader can easily do it, taking into
account that a strongly concave f(x) is also strongly quasi-concave. These two conditions set
the upper, positive, and lower, negative, limits within whigiixf may range. _

"% SeeRader (1968), who first examined the implications ofi(k) > 0, j#i for x' (w, p).

See alsd akayama (1985), ch. 4, for a complete proof.

" Such an+&(x) = 0 locus does not, in general, coincide with a particular production isoquant.
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moves to A’, for a finite decrease in w. we thus see that xincreases
while x2 decreases. Both figures lead to an importgiwbal comparative
static result: when both inputs are complements (substitutes) of one
another, they are also gross complements (gross substitutes) of one

12,13
another.”

In Figures 2(a) and (b) the f12(x) > O region is followed by an
f12(x) < 0 one as output increases, or the opposite. In 2(a) we first
observe how the positively sloped CMP curves become negatively
inclined as soon as they enter the(k) < 0 region. With A the original
maximum profit point, greater finite decrease in, move A to A", A"
and finally to A”"" . But although fxx) <0 near A"" and the two inputs
are substitutes, they are also gross complements, since both increase as
w1 decreases: indeed, not only (w1, w2, p) — X1 (w1,w2, p) >0 but
also »(w1”’, w2, p) —%(w1,w2, p) >0 for w’'<wi <ws. Thus x is a
gross complement of palthough as we approach A1) is negative.
Of course at A”"’, which is reached when the decrease isfgueater, we
observe again a restoration of the implication that “substitute inputs”
imply “gross substitute inputs”. InFigure 2(b) an f12(x) < O region is
succeeded by amxfx) > 0 one. Again decreases in lgad A to move to

A’, A7 and A7 with x2(w1"’, wz , p) < X2(w1,Wz, p). Thus, although A™

"2 To keep all diagrams as simple as possible, we have not drawn the new EP that passes
through A’. Neither have we considered the effects of all possible changes inand wo,
which we leave for the interested reader.
'3 We also note that of the well known examples of production functions, the Cobb-Douglas
function - f(x) 5%6?22 Aa j 0a,,a 1-hasf 1ox) >0 while the CES

s

- f(x) Eﬁ[é?fn axh T Aa,ao 0,1 ,1s0 - has f2(x) >0 when 1>s>1,
fi2(x) <0 when 1>1t>s>0 and«f=0 when 1>t =s>0. Inthe latter case f(x) is an

T
additive function, like  Alax4 12 agy 1, Aa;>®¥@and1 45 0 . Both types of
production functions lead to diagrams similar to Figure 1.
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is in the fi2(x) > 0 region and % and x are complements,xand x are

gross substitutes.

Finally, in Figures3(a) and (b) we illustrate the effects of
guantity rationing of input x 2 on the firm’s demand response for xi
when w1 changes. We assume thatxx£fy,w,p) at the original
profit maximum at point A. In both Figures 3(a) and (b) we see that A
moves to A ', A" and finally to A", with w> w1 >w{"">wq”"". We
see that at A”" we getx{wX,p) > X(ww,p) , namely, a greater
increase in the demand for xunder quantity rationing relative to that
when both inputs are variables. We thus observe that a global Le

Chatelier Principle is upset at A" and restored again af ’A>",

“M ilgrom and Roberts (1996) examine the global Le Chatelier Principle in a model quite

more general than in the neoclassical theory of the firm. They show that in the latter case and

with two inputs upsets of the global Principle are observed, whe)f> 0 is followed by a
f12(x) < O region, as illustrated in Figure 3(a).

'® Long agoSamuelson (1960a), page 372, pointed out that a global Le Chatelier effect can
be upset if the firm’s maximum profit, without and with quantity rationing, at a point like A in
Figure 3(b) is “near the critical point where [the input] go from being substitutes to being
complements, as measured by the sigmgkji”.
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6. Concluding Remarks

Profit maximization is indeed a simple example of an optimization
problem, even under quantity or point rationing. In compensation of its
simplicity, it leads to a correspondingly smooth introduction to sensitivity
analysis and Le Chatelier Principle that may prove quite helpful in more
complex constrained optimization problems. This may explain the

usefulness of considering it again at the present time.

Since the paper is concerned with the Envelope theorem and the
specification of appropriate Envelope problems, it is natural to start with
Paul Samuelson, who introduced both concepts into economic theory.
Samuelson (1947, ch. 3) examines a regular unconstrained maximization

problem, like
®a) maxif(x.a)} (U)

for which he derives the basic comparative static result
F(x(a),a)X(a)F (xta@),a)or
Fix(@)a)X(@) =" Fx(a)a)F(ya)a) Fx(@a) .
as well as the derivative property of ¢(a), namely,
¢Fa) X@)f (x(a).a)*f (x(a).a)

=Ofx(a).a).
The latter is no other but the “familiar relation of tangency between the
envelope of a family of curves and the curves which it touches”. He then
considers the profit maximization problem and the impact of auxiliary
constraints, or in our notation, problem

LBX0O0

max{f(x,z) ~w¥ rz |COONOO- O (P)
X dm=z I
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where C’ is an n x m matrix of constant parameter values. Such a
formulation of the auxiliary constraints is quite general. Indeed, if
C'=[Om¢,Imm] , then (P) is our (P %, while if the constraint is

a’C’ = (0, a), then we get the single constrag#az ~ =b of our (P)!
However, he does not stop to consider the second-order conditions
relating the envelope and the curves that it touches or to specify a suitable
Envelope problem for comparative static analysis. As a matter of fact,
Samuelson (1960b) and (1965) has specified appropriate Envelope
problems for sensitivity analysﬁ%.

Samuelson (1960b), examines problem’\Por T{w) =max{f(x) wx}
X
and the dual problem max{~T(wAT*xw} min{(w) xw} . Thenin
w w

section 6, he introduces a function n (x, w) = f(x) -« (w) —w’ x and

shows that max{n(w;x)} =max{f(x) X%  (w)} =0, for prescribed
ww
values of x and that max{n(x;w)} =max{f(x) ~Wik& (w)} O, for
XX
prescribed values of w. Itis evident th@max{n(w;x)} is non other
w

but our (E ). Is it not rather remarkable that no mention of an Envelope

tangency is made?

Finally, in Samuelsson (1965) a constrained maximization problem

v(y) =max{f(x) lyx =1}

that is familiar in consumer theory, is examined. He then defines a
“‘new fundamental function” n (x, y) =f (x) — v(y) with

n(x;y) STrax{n(x;y) \y'x 1} 0, for prescribed y, and with
X

n(y:x) STRaEX{f(x) Vv(y) |xy 1} 0, for prescribed x. Clearly
y

'° After many readings dfamuelson (1960b) | was able to see this, only after | knew the answer and |
knew what to look for!
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Omax{n(y;xy)} is the appropriate specification of the envelope
y

problem via which the dual method of comparative static analysis works

. 17
in consumer theory.

The next development in sensitivity analysis and Le Chatelier
Principle was due tBugene Silberberg.
First, Silberberg (1971) examined Le Chatelier Principle for the general
unconstrained problem (U), as auxiliary and just binding constraints,

hj(x(a)) =0, j=1, ..., m<n,areintroduced into (U), namely,

02(a) max{f(x,a) lh(x) =0}, (U i

and he proved thgeneralized envelope theorem
f(x(a),a) =@"{a)=... =@ (a),

fxa),a) =¢"a)=... =@ (a) and
faa(x(a),a) =P00(8) <@, (@)<... <@.4(a)

Then Silberberg (1974) introduced the dual method of sensitivity
analysis via the Envelope theorem. For a general constrained

maximization problem

o) maxif(xa) |h(xa)=0} | (R
he introduced the dual problem
orFdta )i (a)f(x,a)h(x,a)0) | ' (De

where X = x(&).
The f-o-c of (Ds) give the envelope tangencies, while its s-o-c are

subject to constraints and have to be transformed into the appropriate

'" SeeDrandakis (2007).
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envelope curvature conditions so that they can be used for sensitivity

. 18,19
analysis.

With unusual candorSilberberg (1974) explains, in pp. 161-63
and footnotes 4 and 9, that he initially thought from Samuelson’s

(1965) account about his “new fundamental function”
n(x,a) ={fpcay (a) |h(x,a) O} , that he could use it in a “primal-
dual problem”, i.e.,

min{@) ~fixa) |h(xa) O} . (PDs)

where minimization ranges over all n + m independent variables (x, a).
However, (PL) is not well behaved, since it is over-determined : some of

the f-o-conditions are derived whenever the others are solved.

Difficulties of this kind are easy consequences of loose language and
vague specifications. All subsequent researchers use the term “primal-

20

dual method” while they refer to problemgjand not to (PE)

Reference must also be made to Hatta (1980), who cleverly

designed a simpler constrained maximization problem,
W) max{fix.a) [h(x.a) =y}, (Pw)

with y the rector of constraint levels, which may also vary. (P +) is
sufficiently simple, that the dual method of sensitivity analysis can go

through, using his “gain function method”, or

® Those s-o-c are given in the matrix equation system (1G liver berg (1974), page 163.
See also his footnote 9.

"It is clear that (Dss) is the negative of our (EEE)r(E)

Drandakis (2009), s-o-c (7) in page 5.
?* See e.gCaputo (1999).

q in section 3 above. See also
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0=Fn{g(axff° min{(ah(x.a))  fix.a)} (Gr)

which is an unconstrained problem leading directly to envelope

. e 21
tangencies and curvature conditiéhs.

We must conclude with a remark about an elementary, yet quite
important, weakness that is still prevalent in the economic literature on
constrained optimization problems. Such problems lead to s-o-c in which
a Hessian matrix is semi definite or definite, bsiibject to constraints.

The presence of such constraints precludes the possibility of using those

s-0-c directly for comparative static analysis.

Of course, with the primal -or traditional- method of sensitivity
analysis, such a difficulty is readily overcome by the use of the properties
of the bordered Hessian of the problem and, in fact, it is not even
mentioned. With the dual method, however, the presence of such
constraints has to be dealt with, at least in general constrained
optimization problems like that o&ilberberg (1974). It is apparent that
this difficulty has not attracted any attention in the economic literature,
despite the fact that an appropriate mathematical analysis exists at least

sinceL uenberger (1973).

In his chapter on Constrained Optimization problems, David
L uenber ger considers first the regularity conditions under which the
tangent subspace can be expressed in terms of the gradient matrix of the
constraints and, then, he prescribe a procedure under which the Hessian
matrix appearing in the s-o-c can be reduced in dimensions so as to

produce its representation in the tangent subspace. Having this reduced

?! Clearly, (Gu) is the negative of our (E) or (Eq) in section 3 above. See alsbrandakis
(2009).
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matrix, we can examine the implications of definiteness or semi

definiteness.

In our section 3, on the dual method via the Envelope theorem, we
usedL uenberger’s procedure to get the representations of @r I1°%in
their tangent subspaces, i.e., EHEI or E'TI? E, respectively. The profit
maximization problem is so simple that getting E, under point or quantity
rationing, and completing the whole procedure becomes almost a

triviality. %

%2 Of course E is not uniquely determined. As a matter of fact,  Luenberger’s E is
constructed differently so as to fit better his own purposes. Our E is simple and quite natural,
given our interest —as economists- in sensitivity analysis and our exposure to the usefulness of
“compensated parameter changes”, in e.g. the theory of consumer behavior.
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Appendix A

The Primal method of compar ative staticsin constrained
optimization problems - like Profit maximization under point or
quantity rationing — is based on two premises. The first is
Caratheodory’s (1935) theorem about the properties of the Inverse of
the bordered Hessian matrix while the second is the evaluation of
Barten’s 1966 fundamental matrix equation system about the rates of

change of the problems’ solutions as their parameters vary.

In point rationing, the bordered Hessian is given in (5). Its Inverse

. . R O EUQB 0
exists and will be denoted b%: 0, where *Oisan nxn
v, wQ SVLEVRA S

Y74
symmetric matrix, v isan nvectorand w is a scalar. Without

computing the Inverse, Caratheodory’s Theorem exploits its basic

R, OO _ :
property that EU; Doy’ =lnaxny» and derives several results
Ov, wOm,0

that we need, as shown e.gDinandakis (2003, section 2).

Thus we have:

(i) UP is a negative semi definite matrix with )& n — 1, since & = Q.
However the € x ¢ submatriXJ, is negative definite since, fJp, =

P Q) ,
for any (G , then (0) mx,%i; xz Eﬂ =C'UPC= 0

and, thus, (¢, #) #(0, a) = ¢’ would contradict the fact that (& n -1.
(i) From vFP+wc =0n and vc=1 weget vFv +wc'v =
VFPv+w=0,
or

=-v' Fv. (A.1)
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However, taking into account our assumption that F (x, z) is a negative

definite matrix onS , the same is true for F°(2’) and thus
w=-v' Fv>0. (A.17)

If we then, differentiate the f-o-identities
fx(®2)-w=0, (X", D)-r-Fa=0, aZ=b}
with respect to (w, r, a, b), it can be easily seen that we obtain the matrix

equation system

%OW 2( X Xp w r a b a O O 0 n m p B
| %ffzz Zz w r a b _mml mm pIrQn m S(A'z)
@ , 0 —)\\Fl’v‘gf’ -A -A —)\b @p Oy, —Zf" 1 B
and so
%{%p X, Xp SJ%‘)JJ,QBVZXQ/ A= Xz X XS
Ozeee z,  z, z =Wz, A, , V23 (A2])
@)\pppp A A A B V., MSwzwzw B

Thus our comparative static results are:

(1) XE,= P is a negative definite matrix,

(2) zR= * is a negative semi definite matrix, as we can see from

differentiating the constraint thagp= |,
(3) A2~ w is a negative scalar from A.1,
as well as

(4) Xg2EN P (5) ZigggRr P P and

(6) ~Mvz PPEN A
which change signs if°7> 0 (< 0) and become zero matrices and vectors
when R=0.
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Finally we observe, if we compare (A.2°) and (17) in the text, that
the Inverse of the bordered Hessian of (IPcan be express in terms of

submatrices of TInamely,

HEER X w v b Mo, M w

ST R 1 wooom o (A3)
—APA— pp

A¥En VW ABA-ATURRRPP bw  br bb

In quantity rationing the bordered Hessian is given by (10),

0
while its Inverse will be denoted by %\J/?//V S, an(n+m)x(n+m)

matrix. Again from its basic property we get:

(WFUFI)q()?quX + XZ zZX -
(WFUFWXZ + Xz zzZ + z = m

By Uy, =Oim
POFUFFY %+ . =Op
POFUFYRS, + . 2% .= o
By Uz, = Opmm
OMFVF i =On
OBFVEWESEnd  + i
Yy (VA =1.

We thus see that

(i) u%= %ﬁ ™ is a negative semidefinite matrix with r {fj=

n—-m = {, whileU}, is a negative definite matrix.
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) £ «
i) From (V,Y) %“J *WOdrmmn) O and
( AR

(V) %ﬂ lom  We get

VEWWteH nm  )VVFVWO mm

or W=-V FV, (A.4)
which means that the m x m matrix W is positive semi definite with
positive main diagonal elements, sinceF(x;z) is a negative definite
matrix.

Then if we differentiate the f-o—identities
fx,2) —w 0, fx2f -T=R" 0,zz)°

w/r (w, r,Z) we obtain the equation system

g quzx X pmwvz Dl ,0,0 mm D
ml _ H

?F 7z nm Zw Zv ZE - %)MJ 70 mm mm[] (A5)
% OMM,MQ,0,F—3¢ | : Bo am amB

From (A5) we conclude that the matrix of the rates of change of the

solution of (P% is non other than the Inverse of the bordered Hessian.

Thus the comparative static results are:

(1) X7 is a negative definite matrix

(2) MYW- and is a negative semi definite matrix with negative main
diagonal elements, while

(3) X&F 4) XY=

6) M= - (6) MREE"

Finally we observe, if we compare

E%

Ko u,0,v
]vrzmmmnz 27 = 0,0,l (A5’)

H gV W -
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and (25) in the text, that the Inverse of the bordered Hessian 8f (@n

be expressed in terms of 1%, We thus see that '}, = X,, is positive
definite, while M&E-§WvFv ' is negative semi definite with

negative main diagonal elements.

Indeed quantity rationing constraints are so simple, that we can
show how the Inverse of the bordered Hessian is expressed in terms of

the sub matrices of the bordered Hessian itself:

a Me A -
%EG’V em X |:|:|:’ F)QXO’ em F)E XZ
D@MQ’I mn mm = [l]] OV{Q! nm Imn . (A.6)
' D:D -1
Do 1. W EREEEFFE, S L L

Just differentiate  {f fxZF ™ 0, ,f (x,2) ~“TH= 0 } wir

(w,r,z) to get

D o REX - _dOF T

ng mm EMWEM - @nlf mm  zz

But the Inverse of the first matrix on the left is

M g _u

DDF”’Q_1 ™ and so%qu O=

%ij’kx mm @MWE,M - E
_ o FE

-t
%Fj)?’ XX I mm Fm XZ 4
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Appendix B

Several interrelations between (B, (P) and (P) are examined, in
section 4, with the purpose of deriving various distinct manifestations of

theL e Chatelier Principle.

First comparison. (a) (P f) and (P} :with (P f) solved and
b=az(w,r) we have seen thé&P} is obtained with
(i) x(w,r,a,b) =x(w,r) , (ii) z(w,r,a,b) =z(w,r) and
(i) AdFr,a,b) 0.
Differentiating (ii) w/r r and using the derivative properties of b we
get: Z%azR"’ . Since aZ?=0 from differentiating
az(wr,a,b)b= , we see thatZ%%!ZgZ'a , or zE%’aZajZa
and so we derive (33ii) in the text, i.e.,

Zbtyazal{ZYaz)z
Differentiating(i) w/r wand r we get:
XPPloehle? X andX  xaZ X

From the second equation we get
aZ® +3azB¥x .. 0, (aZa)ax aX or,  xP =(1/azdax , .

Thus we get (33i), namely,

X{ieza)(Xdax]X
Finally, from(iii) we get
M= 29 0or  APBPa =—A=mzaf . Thus we get (33iii),

namely,
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MK (1/aza) 0.

(b) (PN and (P} : With (P") solved andz&w,r) , we have seen that
(PY is obtained. i.e., (i) x(w,zF x(w,r) and (i) K(w,r,z) =0,,.

We have already shown in the text how (35i) and (35iii) are obtained.
Obviously, Méw,r,z) =Z(w,r) Tis a negative definite matrix while the

second matrix in the £ - h - side of (35i) is negative semi-definite with

negative main diagonal elements. So (36) are confirmed.

Second Comparison. (@) (P ") and (P : With (P ") solved and
r=tA (w,r,ab)a we have seen th(aIP5 is obtained. Thus we get
(Ox(w,r) =X(w,r,a,b) and(ii)z(w,r) z(w,r,a, b).

Differentiating (i) w/r w and b and (ii) w/r r and b we get

X $oneRendXax bb cor XPERRX oo , as
wellas  Z¥88%andzaz b T or ZPPzkg,

Having got (38), it remains to show that wfw, r, a, b) <0 in order to

obtain the curvature conditions in (39). Indeed if we multiply
77 by z8 ' on the left, we get
A== ;37(aza)zz ' zazO and thus by
symmetry we get

Z[8Pajzzz ., =

But this shows that, in the envelope tangency at the second best optimum,

we must have

Afw,r,a,b)  (1/azb) 0.
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(b) (P%) and (P): With (PY) solved and ri@w;tlz) ~ we have seen
that (P') is obtained. Thus we get
(i)x(w,r) =Xx(w,z) and(ii)z(w,r) Z.

Differentiating (ii) w/r w andz we get

ZAERndZM| fa - , while differentiating (i) w/r w

we get

x s zaax%or, sinceXZMZ fraf .

Xm | . Thus we have derived (40) in the text, as well as

that, in the envelope tangency at the second best optihgm,r,z) s

a negative definite matrix.

Third Comparison. (a) (P ") and (E v) for (PS : With (P®) and (Eb)
solved andb determined implicitly from (42°) we get
(ix(w,r) =X(w,r,a,b) and(ijz(w,r)  z(w,r,a,b).
Differentiating (i) w/r w and (ii) w/r r we get equation (44) in the text,
XWM)X&Q b'
and
ZE8ez b oor
and the envelope curvature conditions at the first best optimum in (45),

since AS(w,r,a,b) 0.

(b) (P and (E} for (P"):With (P%) and (Ejsolved and z determined
implicitly by (46°) we get
()x(w,r) =%(w,z) and(ii)z(w,r) z.

Differentiating (i) w/r w and (ii) w/r r, we get equation (48) in the text,
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and

as well as the envelope curvature conditions at the first best optimum in

(49) sinceMéw,r,z) is a negative definite matrix.

Fourth Comparison. (a) (P f yand ( EJ) for (P} : With (Pf) and (E})

solved andr determined implicitly from (50) we get

()x(w,z) =bgwir) and(iii) (w,r,z) r r Op.
Differentiating (i) w/r w and (iii) w/r toz , we get equation (52) in the

text,

X FEex2X7X

and
MMz - |
as well as the envelope curvature conditions at the second best optimum

in (53), sinceMgw,r,z)Z = a is a negative definite matrix.
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