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ABSTRACT

     The paper takes up Bayesian inference in linear models with disturbances from a non-
central Student-t distribution. The distribution is useful when both long tails and
asymmetry are features of the data. The distribution can be expressed as a location-scale
mixture of normals with inverse weights distributed according to a chi square
distribution. The computations are performed using Gibbs sampling with data
augmentation. An empirical application to Standard and Poor’s stock returns indicates
that posterior odds strongly favor a non-central Student-t specification over its symmetric
counterpart.

KEYWORDS: Markov Chain Monte Carlo; Gibbs sampling; skewness; fat tails.

mailto:tsionas@aueb.gr


1

1.  INTRODUCTION

     The symmetric Student-t distribution has a long history in statistics as a device for

modeling data with outliers, see for example Lange, Little and Taylor (1989). Geweke

(1993) uses Bayesian methods to perform inference in linear models with symmetric

Student-t disturbances, and concludes that in possibly non-stationary macroeconomic

time series the Student-t leads to a clear advantage over traditional normal specifications.

The degree of long tails of the distribution is controlled by a single parameter, the

degrees of freedom. In many cases, however, the data is not only heavy tailed but skewed

as well. For example, stock market data containing severe crashes necessitate modeling

both leptokurtosis and skewness. A straightforward way to accomplish this is to use a

non-central t-distribution, where the non-centrality parameter controls the degree of

skewness. An alternative, suggested by Fernandez and Steel (1998) and applicable to any

symmetric distribution, involves assuming different scale parameters for positive and

negative disturbances. Surprisingly enough, however, the idea of using non-central

Student-t distributions to model asymmetric and leptokurtic behavior appears to be novel.

     On the empirical side, applications of the non-central Student t-distribution have been

limited by the fact that the probability density function is not expressible in closed form.

It involves computation of complicated functions or infinite sums of incomplete beta

functions. This makes maximum likelihood estimation a difficult task.  Bayesian analysis

organized around importance sampling techniques encounters more difficulties, since it

requires fine-tuning an importance density to fit the posterior density. As a matter of fact,

to the author’s knowledge, Bayesian analysis of the non-central t-distribution has not

been taken up so far in published research. Among the few empirical applications of the

non-central t-distribution, Lahiri and Teigland (1987) and Dasgupta and Lahiri (1992)

found the distribution useful in analyzing survey data and forecasting record data..

     This paper takes up Bayesian analysis of a linear model with disturbances arising from

a non-central t-distribution, with unknown degrees of freedom and unknown non-

centrality parameter. It exploits the fact that the distribution can be expressed as a

location-scale mixture of normals with inverse weights distributed according to the chi-

square distribution. This establishes some similarity between the symmetric and non-
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central t-distributions, but Bayesian inference is more involved in the non-central case,

because the distribution cannot be expressed simply as a scale mixture as in Geweke

(1993). However, this does not pose a significant overhead because it is shown that

conditional posterior distributions are in a form that facilitates synthetic random number

generation. This motivates performing the computations using a Gibbs sampler with data

augmentation.

     Recent contributions in classical estimation of the non-centrality parameter appear in

Chowdhury and Stedinger (1991) and Rukhin (1992). Contributions to computing the

density function of the non-central t-distribution include Guenther (1975), Kuhlmeyer

(1970), Lenth (1989), and Voit and Rust (1990). Approximations have been considered

by Deutler (1984), Harley (1957), and Kraemer (1978). Detailed tables of percentiles

appear in Bagui (1993). For computer programs regarding the computation of the cdf, see

Cooper (1968) whose algorithm is included in Griffiths and Hill (1985) and  Lenth

(1989). See also Singh, Relya and Bartolucci (1992), and Posten (1993). Chattamvelli

and Shanmugam (1994) have presented an algorithm that avoids the computation of

incomplete beta functions.

     The remainder of the paper is organized as follows. The model is presented in section

2. Conditional distributions necessary for Gibbs sampling are outlined in section 3. The

stock market application and empirical results are presented in section 4. The final

section concludes the paper.

2.  THE MODEL

Let

iii ey  σ+′= βx ,  ni ,...,1=                                                  (1)

be the linear model with n  observations and k  explanatory variables, and let ie  be a

disturbance which arises from a non-central Student-t distribution. Here, σ  is a positive

scale parameter. The definition of a non-central Student-t distribution is as follows. If Z

and w  are independent random variables such that Z  is standard normal, )(~/ 2 νχν w

and δ  is a constant, then )(2/1 δ+= Zwu  has the non-central Student-t distribution with

ν  degrees of freedom and non-centrality parameter δ . It should be mentioned that the
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“skewed Student-t” distribution is different than the one described in this paper. The

former is presented in Fernandez and Steel (1998). The non-central Student-t distribution

in this paper is the distribution of the classical one-sample t-statistic when the null

hypothesis mean if off by an amount δ .

     The probability density function of e  can be expressed as
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 Alternatively, the density can be expressed in terms of incomplete beta function ratios as
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     Several approximations to the non-central Student-t cdf have been proposed in the

literature, see for example Chattamvelli and Shanmugam (1994), Singh, Relyea and

Bartolucci (1992) and Posten (1993) for recent contributions. For a review of older

methods, see Johnson, Kotz and Balakrishnan (1995, volume 2, pp. 514-533. The non-

centrality parameter of the t-distribution affects all central moments and the rth central

moment can be expressed as a polynomial in δ 2 . For large ν , the third moment is

approximately µ δν δ ν3
1 2 13 125= +− −( . )  and, therefore, skewness has the same sign as

δ .
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      Let y = ′[ ]y y yn1 2  ...   be the n ×1 vector of observations for the dependent variable,

X be the n k×  matrix of observations for the explanatory variables. An equivalent

specification of the linear model with non-central Student-t distributed disturbances, is

),(~,,,,,| 22/1
iiii wwNy σδσνδσ +′βxwβX , ni ,...,1=                     (5)

     This is because the disturbance can be expressed as )()( 2/12 δσ += iii Zwu

(conditional on wi ) where iZ  is standard normal, independent of wi . The importance of

non-centrality is that the model is no longer a scale mixture of normals as in the central

Student-t case. Instead, the model is a location-scale mixture of normals, with the same

weights wi  being used in the conditional mean and variance of the process.

    The following prior is assumed:

}/)(exp{)exp(),,,( 22
2
11

δσδδωνσνδσπ −−−∝ −β ,  0, >δσω , ∞<<∞− δ         (6)

    The prior for β  is flat and improper, the prior for )log(σ  is non-informative, and the

prior on ν  is exponential with mean 1−ω . As ω  approaches zero, the prior imposes the

assumption of normality on the error term of (1), as shown by a simple argument in

Geweke (1993). The main reason for adopting this prior for the degrees of freedom

parameter is that it is a conditionally conjugate prior, and facilitates computations while

allowing for some flexibility in describing prior notions about this parameter. Geweke

(1993) uses the same prior, so it is useful when conducting model comparisons. Finally,

the prior on δ  is normal with prior mean δ  and prior standard deviation δσ . As δσ

approaches zero, this prior becomes flat.

     Using Bayes’ theorem the kernel of the posterior distribution is
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where ],..,1 ;[ niwdiag i ==W . Computations will be performed using Gibbs sampling,

see Gelfand and Smith (1990), Smith and Roberts (1993) and Tierney (1994). Gibbs

sampling requires drawing from the conditional distributions of parameters. These

distributions and efficient ways to generate synthetic random samples from them are

presented in the next section.

3.  CONDITIONAL DISTRIBUTIONS

The conditional distribution of regression parameters is

)][),]([~,,,| 1122/1111 −−−−− ′−′′ XWXw(yWXXWXXy,w,β σδσνδσ kN            (8)

where kN  denotes the k -variate normal distribution.

The kernel conditional distribution of the degrees of freedom is

)exp()2/()2/(),,,|( 2/ νννδσνπ ν Snn −Γ∝ −Xy,w,β                              (9)

where S w wi i
i

n

= + +−

=
∑( / ) (log )1 2 1

1

ω . This distribution is exactly the same as the

posterior conditional kernel of degrees of freedom in the symmetric t-distribution model.

Geweke (1993) has shown how efficient random number generation can be performed

using optimal acceptance techniques.

     The conditional posterior distribution of δ  is in a particularly simple form. If we

define )/()( 2/1
iiii wyz σβx′−= and ∑

=

−=
n

i
iznz

1

1  it follows that
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    The conditional posterior distribution of heteroscedastic weights is given by
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where u yi i i= − ′x β .  The conditional posterior distribution of σ  satisfies
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     These distributions are non-standard when the non-centrality parameter is different

from zero. When δ = 0  both wi  and σ 2  are conditionally inverted gamma, which leads

to an extremely efficient Gibbs sampler for the symmetric Student-t distribution model as

shown in Geweke (1993). Efficiency is preserved in the non-central case as well, but

sampling methods are different because the conditional distributions are different. The

sampling method is based on acceptance sampling from appropriate gamma distributions

is detailed in Appendix 1.

4.  EMPIRICAL APPLICATION

     To illustrate the new methods, the model is applied to stock market data of daily

returns for the Standard and Poor’s index over the period 1/1/1995-7/30/1999, for a total

of 1,156 observations. A time series plot of the data is provided in Figure 1, and some

basic summary statistics are presented in Table 1. The skewness coefficient indicates that

asymmetry is an important feature of this data set. Leptokurtosis is also a highly

important feature since the coefficient of kurtosis is 9.214. These aspects of the data offer
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an initial indication that a non-central Student-t might provide a better description of the

data compared to a symmetric Student-t specification.

     If yt  denotes the logarithm of stock prices of date t , the following linear model is

adopted:

∑
=

−+− ++∆+=∆
m

i
ttmitit eyyy

1
110  σβββ                                  (13)

where ty∆   is (100 times) the stock market return.  This model specification is motivated

by the literature on nonstationary time series, especially the formulation of the

augmented Dickey and Fuller statistic and the literature on cointegration. Notice that if

β m+1<1 then stock returns are stationary. If β m+ ≥1 1  returns are non-stationary, and if, in

particular, β m+ =1 1 they contain a unit root. The main focus of this section is not on time

series behavior of returns but on properties of the disturbance term, ut , which is i.i.d

distributed according to a non-central Student t-distribution with degrees of freedom ν

and non-centrality parameter δ . It must be mentioned, however, that based on daily

returns for short time periods it would be extremely surprising if β m+1  turned out to be

non-zero. For that reason, this parameter is set to zero.

      Special attention is devoted to sensitivity of posterior inferences with respect to prior

notions about the degrees of freedom. Four values of the prior parameter are considered,

namely ω =1, 1/5, 1/10 and 1/50. Therefore, prior means of the degrees of freedom are 1,

5, 10 and 50. Notice that ω = 1 50/  almost imposes the assumption of normality.

Regarding the non-centrality parameter, δ , a normal prior with mean zero and variance

one is used. This implies that the parameter is between -2 and 2 with prior probability

95%. In view of the fact that the dependent variable is differences of stock returns, these

values are quite reasonable, since we would expect the non-centrality parameter

somewhere between -1 and 1 almost certainly. Posterior results with a flat prior on δ  (in

other words ∞=δσ ) were very similar, and are not reported.

     Gibbs sampling with data augmentation is based on 5,000 iterations with 1,000

iterations used in the burn-in period to mitigate start up effects. All computations were
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performed using GAUSS 386-i, version 3.01. The present model satisfies the simple

conditions of Roberts and Smith (1993) which guarantee convergence to the posterior.

Standard tests indicated that the samplers converge very quickly in less than 100

iterations. Graphs of the autocorrelation functions (acf) of basic parameters, ν  and δ , in

Figure 2 indicate that autocorrelation is not destructive for the Gibbs samplers. These

samplers reach the equilibrium distribution quickly.

    Posterior statistics of parameters are presented in Table 2. Posterior medians of the

non-centrality parameter are close to -0.20 with small posterior semi-interquartile ranges.

Almost the entire range of posterior variation inδ consists of negative values, since

),|0Pr( Xy≤δ  exceeds 0.90. Posterior medians of degrees of freedom are close to 4.

The posterior probability ),|2Pr( Xy≤ν  was zero for all values of ω . These findings

imply leptokurtic distributions for stock returns, for which moments higher than the

fourth do not exist, and also imply significant negative asymmetry.

     It also follows that posterior medians are not overly sensitive to values of ω . This fact

emerges also from an inspection of Figures 3-5 that present posterior distributions of

degrees of freedom (see Figure 3), and posterior distributions of the non-centrality

parameter (see Figure 4). Predictive distributions were computed by utilizing the infinite

sum representation of the non-central Student-t distribution in (4), and averaging with

respect to the parameters in standard Rao-Blackwell fashion.  The non-central Student-t

densities were computed to precision at least 10-7. The posterior predictive distribution

for 1=ω  and a kernel density estimate from the data are reported in Figure 5. Only the

results for 1=ω  are reported, since for other values of ω  these distributions were

virtually identical.

     These posteriors and predictive distributions differ very little even though ω  values

differ significantly. This finding is at odds with previous results in Bayesian analysis of

central Student-t models: For example, Geweke (1993) finds that marginal posteriors of

degrees of freedom are sensitive to the value of ω , in US quarterly macroeconomic data.

In other words, the data do not seem to update the degrees of freedom to a significant

extent. Tsionas (1999) in a comparison of symmetric stable and Student-t models finds

that the same holds true in monthly exchange rates. If this absence of sensitivity is not an
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idiosyncratic feature of the particular data set, it would seem that the non-central Student-

t model has a desirable property that may facilitate its wider use. Part of the explanation

is, of course, that posterior correlation between degrees of freedom and non-centrality

parameter is not destructively large.

     Inspection of Figure 5 indicates that predictive distributions are consistent with

significant negative asymmetry in stock returns as mentioned before. A formal

comparison between the non-central and central Student-t models can be facilitated by

the use of Bayes factors. Since the second model is nested to the first, the Bayes factor in

favor of central Student t-distribution is the Bayes factor in favor of the hypothesis

H0 0:δ = . The method of Verdinelli and Wasserman (1995) can be used to compute the

Bayes factor. Since the conditional distribution of δ  is normal, computation of the Bayes

factor by this method is straightforward and involves computing

BF
w y X d d d dw

=
=

=
∫ π δ β σ ν β σ ν

π δ

( | , , , , , )

( )

0

0
                               (14)

     The numerator can be computed by averaging the normal conditional distribution of δ

over Gibbs draws, in standard Rao-Blackwell manner. The denominator is simply the

prior evaluated at zero. Bayes factors in favor of 0H  are reported in Table 2. It is

apparent that the hypothesis receives very little support from the data, since Bayes factors

range from 0.091 to 0.129. This finding implies that the non-central Student-t model is

strongly favored over the symmetric Student-t counterpart. The Bayes factors were not

sensitive to the adopted value of ω .

     Although the hypothesis of symmetric Student-t receives almost no support from the

Bayes factor, it is instructive to compare the symmetric and non-central models in terms

of their predictive power. To that end, one needs to obtain the posterior predictive

distribution of the data under a symmetric Student-t specification. This necessitates

conducting formal inference for this model. Bayesian inference for the symmetric

Student-t model can be accomplished by using either the Gibbs algorithm proposed in

this study, subject to the constraint 0=δ , or by using the more efficient Gibbs sampling
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algorithm presented in Geweke (1993). Bayesian inference has been conducted using the

first alternative with 5,000 iterations, 1,000 of which are discarded to mitigate the impact

of start up effects. The prior is exactly the same as in (6) with 1=ω .

     The posterior predictive distributions for the symmetric and non-central Student-t

specifications are provided in Figure 6. Although the two distributions are fairly close,

the symmetric Student-t predictive has a thinner negative tail and a fatter positive tail:

The non-central Student-t specification implies higher probabilities of negative returns

and captures the stock market crashes better. A more formal comparison can be based on

the measures |)(ˆ)(|max rfrfK SRrS −=
∈

 and |)(ˆ)(|max rfrfK NRrN −=
∈

, where r  denotes

stock returns, R  is a set of values for returns over which the posterior predictive

distributions are computed, )(rf S  is the posterior predictive distribution of the

symmetric Student-t model, )(rf N  denotes the posterior predictive distribution of the

non-central Student-t model, and )(ˆ rf  is the kernel density estimate. Since the data is

given, and parameter uncertainty has been fully accounted for in the computation of

posterior predictive distributions, from the Bayesian viewpoint these measures are fixed

numbers, not statistics. So we do not have to examine their sampling behavior, or

compare them with critical values. The ratio NS KK /  was about 1.5 for all values of ω

indicating a superior posterior predictive fit of the non-central Student-t model.

  From the financial point of view, the ability of a model to explain tails and asymmetric

behavior better, is an important property: Market funds are often interested not in

predicting average returns per se but rather in predicting extreme returns in the positive

or negative part of the return distribution. Therefore, a model that provides a better

description of tails and asymmetric behavior would be a significant addition to the

arsenal of market funds or stock market forecasters. The evidence provided in this paper

points to the direction that the non-central Student-t model might be a prime candidate

for such a model.

5.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH
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     The paper presented Bayesian analysis of linear models with disturbances arising from

a non-central Student t-distribution. The distribution can be expressed as a location-scale

mixture of normal distributions, with inverse weights distributed according to a chi-

square distribution. Computations are as straightforward as in the symmetric Student-t

case, and efficient implementation of Gibbs sampling with data augmentation is feasible.

The new method was illustrated using Standard and Poor’s daily return data over the

1987-1988 period. The empirical results suggest that Gibbs sampling is robust, mixes

well and posterior inferences are not sensitive to prior assumptions about the degrees of

freedom parameter. Computed Bayes factors suggest that the symmetric Student-t model

is strongly rejected in favor of the non-central counterpart, which allows for significant

negative asymmetry in stock returns.

      An important avenue of future research would be the empirical application of non-

central Student-t distributions in other stock return or exchange rate data. Posterior

predictive distributions may be used to conduct formal forecasting exercises, and

compare the out-of sample forecasting ability of non-central versus symmetric Student-t

distributions. Useful extensions of the model would include GARCH models with non-

central Student-t innovations: Such models are capable of capturing three features of

financial time series, namely conditional heteroscedasticity of autoregressive type,

leptokurtic innovations (beyond leptokurtosis captured by GARCH) and asymmetric

behavior. Evaluating the overall performance of such models would be an important

empirical matter.

APPENDIX: GENERATING RANDOM NUMBERS

FROM THE CONDITIONAL DISTRIBUTIONS OF wi  AND σ

     The conditional distributions of t wi i= −1 2/  and φ σ= −1  are log-concave. Instead of

using a general log-concave sampler, one can use gamma source densities. The

conditional distribution of each ti  is

)exp(.)|( 2
2 rtttt q

ti
+−∝ νπ
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where

q ui= 2 2/σ  and σδ /iur = .

The conditional distribution of φ  satisfies

)2/exp(.)|( 21 φφφφπ ban +−∝ −

where

∑
=

−=
n

i
ii uwa

1

21  and ∑
=

−=
n

i
ii uwb

1

2/1δ .

    The two distributions are members of the same family whose kernel is given by

])2/(exp[)( 21 BxxAxxf N +−∝ − .

Suppose the proposal density is ),( θNgamma , i.e.

g x x xN N( ) exp( )∝ −−θ θ1 .

     The problem of optimal selection of parameter θ  is min max : ( ) / ( )θ x f x g x . It can be

shown that the parameter is the unique positive root of the quadratic 02 =−+ ANBθθ .

The optimizing value of x  is ** /θNx = . Then, the sampling strategy is to draw a

candidate x  from a ),( θNgamma , and accept if f x g x
f x g x

U( ) / ( )
( ) / ( )* * ≥ , where U  is a

standard uniform variate. Practical experience with the algorithm suggests that it is

extremely efficient. Acceptance rates were typically near 90%.

     Comparisons indicated that the Wild and Gilks (1993) sampler for log-concave

densities is quite inefficient relative to the present algorithm. The reason is that the Wild

and Gilks (1993) sampler is efficient provided a large number of draws is to be made

from a single log-concave distribution. This is because there are set up costs involved in

the algorithm, like computing the mode of the distribution from which random numbers
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are sought, computing suitable bounds which utilize the first derivatives of the logarithm

of the distribution etc. In the non-central t-distribution linear model, we have to draw n

values for the wi ’s and one for σ . For large n , the setup costs accumulate and become

prohibitive relative to the simpler gamma proposal density sampling scheme proposed

here.

     Since the exponential term of the target distribution )(xf  is the kernel of a normal

distribution with mean 1−BA and variance 1−A , I have tried a normal proposal density as

well. For 0>B  the optimized acceptance sampler works well, but it does not work for

0<B  because the second order conditions for solving the minimax problem are not

satisfied. Even when it works, however, the normal proposal density scheme is not

efficient because it requires solving a nonlinear equation to obtain the optimal normal

distribution mean for each heteroscedastic weight. The nonlinear equation arises because

the proposal has to be truncated below at zero and, therefore, the normal cdf is involved

in the minimax problem.

     Finally, following the suggestion of a reviewer, it should be mentioned that the entire

sampling scheme is a kind of Metropolis-Hastings algorithm, see for example Tierney

(1994).
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Table 1.  Summary statistics for Standard and Poor’s data

Mean 0.092
Standard deviation 0.994

Minimum -7.112
Maximum 4.989
Skewness -.579
Kurtosis 9.214

Notes: Returns are computed as 100 times the first difference of log stock prices.

Table 2.  Posterior statistics

Prior specification of degrees of freedom ))(( 1−= ωνE
Parameter 1=ω 5/1=ω 10/1=ω 50/1=ω

0β .285 (.071) .305 (.071) .310 (.076) .308 (.076)

1β -.0038 (.019) -.0040 (.020) -.0027 (.020) -.0040 (.021)

2β -.054 (.019) -.055 (.0109) -.056 (.019) -.056 (.020)

3β -.047 (.019) -.049 (.020) -.048 (.020) -.048 (.019)

4β -.024 (.020) -.023 (.019) -.022 (.020) -.022 (.020)
2σ .486 (.024) .495 (.025) .495 (.025) .494 (.025)

δ -.195 (.087) -.219 (.089) -.232 (.095) -.227 (.093)
ν 3.766 (.307) 3.921 (.325) 3.922 (.330) 3.920 (.338)

),|0Pr( Xy≤δ .935 .962 .953 .938
BF .129 .091 .103 .126

Notes: The table reports posterior medians for parameters. Posterior semi-interquartile
ranges appear in parentheses. BF is the Bayes factor in favor of the symmetric Student-t
specification, i.e. in favor of the hypothesis 0=δ . ),|0Pr( Xy≤δ  denotes the posterior
probability that parameter δ  is non-positive.
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