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Abstract

In this paper we are concerned with the issue of the existence of
locally uniform Edgeworth expansions for the distributions of random
vectors. Our motivation resides on the fact that this could enable
subsequent uniform approximations of analogous moments and their
derivatives. We derive sufficient conditions either in the case of sto-
chastic processes exhibiting weak dependence, or in the case of smooth
transformations of such expansions. The combination of the results
can lead to the establishment of high order asymptotic properties for
estimators of interest.
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1 Introduction

In this paper we are concerned with the issue of the approximation of the
distributions of a sequence of random vectors by sequences of Edgeworth dis-
tributions uniformly with respect to a compact valued Euclidean parameter.
Our motivation resides on the fact that this could enable subsequent uniform
approximations of analogous moments and their derivatives with respect to
the aforementioned parameter. This in turn can facilitate the extraction
of higher order asymptotic properties of estimators that are defined by the



use of such moments. A prominent example is the indirect estimator de-
fined by Gourieroux et al. [9] (abbreviated as GMR2 estimator in Arvanitis
and Demos [I], definition D.3.) as a minimizer of a criterion involving the
expectation of an auxiliary estimator.

We will hereafter refer to the aforementioned approximation as a locally
uniform Edgeworth expansion of the involved random vectors. We notice
that analogous expansions have been studied by Bhattacharya and Ghosh
[2] (see Theorem 3) in the i.i.d. case and Durbin [6] for the case where the
random vectors are of the form of \/n times an arithmetic mean.

In what follows we will provide sufficient conditions for the ezistence of
such an approximation in two cases. The first concerns the one where the
random vectors are of the form of y/n times an arithmetic mean, the elements
of which are members of a stochastic process exhibiting weak dependence, in
the spirit of Gotze and Hipp [§]. There, the authros validate the pointwise
(w.r.t. the parameter) formal Edgeworth expansions. We essentially follow
their line of reasoning, whereby by strengthening their conditions we estab-
lish the result ensuring that the relevant remainders are independent of the
parameter. In the second case we assume that a locally uniform Edgeworth
expansion is valid, and given a sequence of smooth transformations for the
random vector at hand, we provide sufficient conditions for an analogous ex-
pansion to exist for the transformed random vector. In this case our line of
reasoning is close to the one in Skovgaard [13], but compared to this paper
we utilize additional conditions concerning the dependence of the transfor-
mations on the parameter. Obviously the two cases can be combined for the
establishment of valid locally uniform Edgeworth expansions in composite
cases.

The structure of the paper is as follows. In the next two sections we are
concerned with the aforementioned cases repsectively. In the fourth section
we provide a simple example concerning a GARCH model involving estima-
tors for the asymptotic analysis of which we utilize all the previous results.
In the final section we conclude.

2 Valid Locally Uniform Formal Edgeworth Expansions
Under Weak Dependence

In the following we denote with © a compact subset of R? (w.r.t. the usual
topology). The following assumption defines the form of the eligible stochas-
tic processes for the results that follow.



Assumption A.1 Let (g;) be a sequence of iid random variables, g : RN x
© - R and h : R? x © — RF be Borel (jointly) measurable functions and
suppose that h has uniformly equicontinuous (w.r.t. ©) first order derivative
w.r.t. (Zj,...,Zj1p-1). Define for j € Z, 0 € ©

Zj : :g(gj_i:iZOﬁ) (1)
Xj : :h(Zj,...,Zj+p,1,9)

where supgeg E | Dzh (Z;, ..., Zitp-1,0)|| < K for some constant K > 0.
We supress the dependence of Z; and X; on 6 for notational simplicity.
Now, let S, (0) = \/iﬁ Yo (Xi(0) — EX1(0)), forr =0,... 5 let x,., (t) be
the cumulants of 7S, of order r, i.e.

T

dx”

log E exp (z’xtTSn)
=0

Xpn (1) =

Obviously ¥,.,, depend on ¢. Let ¥,  (t) be the formal Edgeworth measure

of S,, of order s — 2, s > 3, defined by its characteristic function ‘:I\fnﬁs (t) =
s—2

exp (XQ,S) + Z n_T/Qﬁm (t), where the functions ﬁm (t), r =1,2,... satisfy
r=1
the formal identity
= 1 r— r— = "D
exp (xg,n +D T I, (t)> = exp (Xo,) + > 7 Frn (1)
r=3 r=1

and B, the collection of convex Borel set of R¥.

Question Given under what conditions

sup sup |P (S, (6) € A) = Wy (6) (4)] =0 (n") 2)
0€O AeB.

The next assumption provides with sufficient conditions so that the previous
question is well-posed and has an affirmative answer. It essentialy corre-
sponds to a uniform extension of the analogous conditions (2)-(4) in Gotze
and Hipp [§]. The proof of sufficiency folows naturally the line of proof of
Theorem 1.1 of Gotze and Hipp [§], by establishing that due to the terms
appearing in the relevant bounds are independent of 6.

Assumption A.2 Let the following conditions hold:
-M (Existence of Moments)

sup B || X4 [ < B,y
0cO
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-WD (Weak Dependence) There exist constants K < oo and a > 0 inde-
pendent of 0 such that for m > 1,

Ellg(ej:7>0,0)—g(co,---16m,0,...,0)]| < Kexp(—am)

-SM (Smoothness) There exist o > 0 independent of 0 and r > 0 such
that for arbitrary large fivred kK > 1 and all n > m > o~ ! and t € R* with
e > o,

E|E (exp (V-1 (Xo + ...+ Xan)) /ej : |1 —m| = 7)| < exp (—a)
The next theorem provides the required result.

Theorem 2.1 If assumptions and[A.3 are valid then[3 holds.

Auxiliary Lemmas For the proof of the previous theorem we will need the fol-
lowing auxiliary results. First, we denote with D4, _1_p, j+p41 the o-algebra
generated by (€j4p—1-m, - - ., €;j4p+1) Which is obviously independent of # and
satisfies conditions (2.4) and (2.6) of [7] for any m,n,p due to the definition
of (¢;) in assumption [A.1] The first auxiliary result is the uniform extension
of Lemma 2.1 of [g].

Lemma 2.2 Under assumptions[A.1], [A-dM and[A. WD there exist a con-
stant Ky independent of 8 and a (for any 0 € ©) Djip_1_m j+p+1-measurable
random element X such that

s
ElX, — X¥ <K —— 3
o B, = X)) < Kre | g g ¥
Furthermore under[A.1 and then
inf liminf inf var (¢'S, (0)) >0 (4)

60 n |il=a

Remark R.1 [t is easy to see that implies that infyce liminf,, A™™ () > 0
where \™ () denotes the minimum eigenvalue of var (S, (0)) implying that
they are uniformly positive definite. Suppose the contrary, i.e. there exists
x 7 Op for which infeee lim inf, 2’ var (S, (0)) 2 = 0. Then let z = i and

0= ”z—‘f infycg liminf,, var (2SS, (0)) which is impossible due to .

Proof of Lemma Let go be the composition of h(-,6) and ¢ (-, )
such that X; = go (€j4p—1: 1 > 0,0). For m >p—1 let

Xi(0) == g0 (€j4p-1s- -+ Ejmip-1,0,...,0)



Define the obviously Dj;—1-m,j+ps1-measurable random element X7 (0)

X0 = %01 (|30 <),

where a,, = exp (%) Further, let B,, be the set of sequences of ¢; such
that

sup ||DZh (Zju B Zj-i—p—l) 0)” S Kam

0co

and
am
sup HZJ+U - g (€j+v7 s 7€j+vfm707 s 7(9)H < KeXp |:_ - (m - U>:| :
00 3

By the assumption of uniform equicontinuity, there exist mg such that for
m > mg and ¢;, j € Z, in By, supyee ||Dzh| < K exp (%) on the segment
connecting the Z vectors of the infinite and truncated (at m) sequence of ¢;
for any 6 € ©. Now,

E||X; - X;
L HX'” 1 1 [>akf ) T E HX*” 1|X lI>an
< 2B X" a0,/ + B||X; - X

IN

1/(s+1) +E||X X*H 1|X-||§a71,{(5+1)

]-”X lI<a! 1/(s+1)

snce [ > a2 6 1] < 11 a0 and P (I > ol <
E X1 am /D que to Markov’s inequality. Also

E|x; - X7 B||X; - X;

L x, j<atyer0 1, +E || X5 — X5

||X ||<al/(s+l) - 1HX H< 1/(s41) 1Bp

and
B, C {(5) csup |Dh(Z;,. .., Zj1p—1,0)| > Kam}
6c0
DL+ 1 Zetp = 9 st 5pmsOs -, O)| > Kt exp (—a (m — p))}
Due to |1 and the fact that a > 0 we have that for any m
P ({(5) sup || Dh (X5, ..., Xjp)| > Kam}) =0
0€0
and that due to[A.2JWD and the inequality of Markov
P Ztsp — 9 (€juaps -1 Ejp—m, 0, ..., 0)|| > Kay, exp (—a (m — p)))

Bl =9 Cromstpipm 0O Kewp(cam)
Kap, exp (—a(m —p)) ~ Kayexp (—a(m —p)) "




Hence
s+1

P (B;,) < exp(—ap) an™"

and therefore

s

il
1 s+ 1pe < 2exp (—ap) 1/(5+1)a = 2exp (— Tt

E|X; = X711y <as ap) tm

Finally due to the Mean Value Theorem and the fact that 1H X, <al/ G+ 1, =
JII>x0m
1 means that 1||X,_||<a1/(s+1) =1

E||X; = X7[| 1 x, <atyte 1,
Z;—g(gj,-- 1 €j—m,0,...,0)
< KapFE : 1B,
Zivp-1—9Ejrpy -+ Ejrp—m, 0, ..., 0)
< C’KampKZ exp (ia) exp (—am) a,, P (B,,) = C*a; !

for C* = pCK 2wP (By) > 0 and independent of #. Hence

exp(a)—
E|X; - Xj|
< 2B ||1X;|" amtT + 2exp (—ap) am T + Crazt

S
_ T sF1
- Klams )

1
where K; = <2E 111”7 4 2 exp (—ap) + C*am”l) independent of 6.

1 1—exp(—2a)
1- exp( 27) 2
qg=r+1+ L L Jog <K1as+3C’S JE5 |1 X 8+1>J , where |z | denotes the integral

part of z. Notice that all constants, v, C; , and ¢, are independent of 6. For
n > 2q let D; denote the o-algebra generated by ¢;, | < jg+p—1, and define

Ay =02 (B (S,ID;) — E (S./D;-1)].

Now let v = ﬂ and Cs , = and

Writing n = Lg+ N with N < ¢, the following variance decomposition holds:
var (t'S,) ‘1ZEA2+E[ (Sp — E(Syler,l <n+p—1—N).

Since X,,v < jq, are Dj-measurable for any 6 € ©, we obtain

jg—1 n
A= Y (X - EGIFL) + Y (B (XF) - E(X|F)
v=jq—q+1 v=jq
= Vi+ R



Define €, 1 = (Epip-1sEvip-2s---»Ergip-1,0,...) for v > Mgq and ¢, =
(€vtpi : 1 > 1). We have that

E1/2A? Z EI/Q‘/jQ o E1/2R§
and emloying Holder’s inequality
E'?R} < Ca®K (1 — exp (—a)) ™" exp (—ayq),

where C' = E'V/* |t/ X;|*"" independent of §. By definition of ¢ we get

independent of . On the other hand the inequality x%/2 > 2sin® (z/2) =
1 — cos (x) together with

1
var (7) = 5B (7 - Z*)? >1—|Eexp(iZ))?

for any r.v. Z and an independent copy, say Z*, as well as condition [A.2].SM
with ||t]| = « we get
2
EVE > 1 —exp(—2a)
which concludes the proof of equation [4] as all bounds are independent of 6.
[ |
Hence, the following corollary.

Corollary 2.3 Under assumption conditions (2.2)-(2.6) of Gotze and
Hipp [7] hold with constants independent of 6.

Proof of Corollary By assumption [A.2] conditions (2.2), (2.4), (2.5)
and (2.6) of Gotze and Hipp [7] obviously hold with constants independent
of #. Condition of (2.3) of Gotze and Hipp [7] follows from lemma n

Now we need to show how the uniform versions of conditions (2.2)-(2.6)
of Gotze and Hipp [7] imply intermediate results that lead to the proof of
therem 2.1 Again these are uniform extensions of the analogous results in
Gotze and Hipp [7]. We shall employ the following notation. Define

T(x):{ z if |z|| < nf

ﬁ%ﬁw (H37H 77/_'8) otherwise

where 1 € C* (0, 00) independent of 0, satisfying
(r) = r ifr<1
1 is increasing
b(r) = 2 ifr>2



For j = 1,.,nlet Y; = T(X;) and Z; =Y; — E(Z;). Define S;; =
n~ V2 (Zi + ...+ Z) and H, (t) = Eexp (it"S}). Notice that P, ,, Yj, zZ3,
Sy and H,, depend on 6.
Let
E.U = EUexp (it"S:) /H, (t)

and define the cumulant of order p
ke (a1 Sy oyl S2) = .o InH, (t+er1a1 + .. + €pap),

where ay, ..., a, € R¥. Write

T qQ* T ox* T o* T o
ki | @ Sr..a S@,f) Sy, 008,

J/

TV TV
j—times l—times

the Taylor expansion of In H,, (t) can be written

s

1
InH,(t) = Z —jho (it"SE) 4+ Resq (t)  where (5)
r=2 "
1 /!
Rei (1) = (1= m)° e (3" S 40)

st Jo

Lemma 2.4 Under assumption lemma (3.33) of Gotze and Hipp [7]
holds with constant ¢ independent of 0, i.e. for every t with ||t|| < cn®, we
have that

D% (Ha ) = T 1))
< clrdys fal) (14 Bup) (14 1P exp (= (a) )?) n-0-2/2F

Proof of Lemma From Lemma (3.28) of Gotze and Hipp [7] we have
that for 2 <r <s
|K}0 (af Si,...,al'SE)

o n

<c(rd,s)n~ 20 | lan|

where ¢* depents on 7 and d but not on §. Now for ||t|] < ¢n® we have that

1 for s < ||
n~ =22 for3<|al < s .
n 2P for |af < 3

o s Ko (ZtTS;ZT)
b Z rl ‘:

r=3

8



Now using equation [ we get

A = D* (Hn(t)—exp [iM])

r=3
o ° Ko ZtTS:LT o
= Y CawDM e [Z%]D * (exp [Rup (1) — 1)
a1tas=a r=3 ’

Now from Lemma (3.20) of Gotze and Hipp [7] we have that

8l

8_8l Rs—i-l (t + 5a)

e=0

< e(rd) (14 Bup) n= T (140, (077 (14 )

where 0 < e* < 1, for every ¢ satisfying
0 (1) = (u5) (1) +exp (—e (d)n/2)) [H, (1) < 00, ] < e =7

(6)

where a € R* with ||al| < 1 and
v (1) :SUP{‘EGXP <5§p)>) cp<m,|I| < 7’}

where [ such that s+1 < r < s+1+1, %) = in V2T 3" Z; and 3_* extends
over all 1 < j < n such that |j — j1| > mr. Hence we get that

A< e ) (T ) 7 (1 Bp) n= 2 exp (= ) (146 (1))

Now for complex a; € C* with ||Im a;|| < 7 from Lemma (3.30) of Gotze and
Hipp [7] we have that

ko (al'S3, ... alS%) — ko (al' Sy, ...y al'S,)| (7)
< e(r)n 2R g ey ||, for 1 <r<sand 0< e <1

Hence we have that

exp (ZS: Ko (Ti!tTSZr>> = exp [0 (n V2 e)))] (\/I}ns () + T, (t))

r=2

= U, (t)+ R, (t)
where

Ry (t) < c(ryd,s)n V2 (148,,,) (||t||5+1 + Ht||3(5_1)) exp (—cs [|Ret|* + czn?)

9



Since U, (t) and R, (t) are analytic in ¢, the Cauchy’s inequalitics can be
employed to estimate the derivatives D*R; (t) as

max{‘ﬁs ®|:llzj—till =n, 2€CF j=1, 7k} U

Noting that due to|A.2  and remark [R.1 ‘\/I\Ins (t)‘ < cexp (—c|Re (t)||2), for
some ¢ > 0 independent of @, ||[Im (¢)|| < n and ||Re (¢)|| < cn®™ we get

DR, ()] < e (ryd,s)n 22 (1 5070 ) exp (~ct]))
for every t € R¥ with ||t|| < en®”. Hence

D7 (Ha () = B (1)
< elrd,s) (14 Bon) (14 1P (140, (1)) exp (e t?) n-0-2/22

Now for 6, (t) in equation @ let T; = n~/2 22:1 Zj, for 1 <1 < n for
any sequence j; < j» < ... < j; and define H (T},t) = Eexp (it"T;). Now
equation [, Lemma (3.20) and Lemma (3.28) of Gotze and Hipp [7] can be
employed together to prove that for 1 <! <n and a = 0:

1 _
H (T 1) = exp | (772 + en=2 ] 913 (1)
where
3
0,5 ()] < sup {‘ <exp(—cn€) v H (Tl(fz),t)) /H (Tl,t)‘ ] <3,0<p< m,Tl}

where TI(,ZZ) = in VT S°" Z; where " extends over all 1 < j <[ such that
|7 — j1| > pm for every j; € I C {1,2,...,1}. Notice that here €, c and m are
independent of [, 1 <[ < n. The claim is that

sup {103 (1)] : It <n°} <2 forl=1,2,...,n (8)

provided that n is sufficiently large (depending on s,k,d, 3,,,) but not on
0. For [ = 1 the above inequality holds trivially. Suppose that it is true for
1 <1 < r. Assuming that it does not hold for [ = r + 1, i.e. there exists a
to, such that for [|to]] < n® and |0,413 (to)| = 2, we have that

_ 3
<exp (—cn%) +H (T[(,pr)ﬂ,to)) JH (T,11,10)

2 < sup
Lp

10



Substituting out H <TI(7];) 1 t0> and H (T,41,t) and employing |0,41 3 (to)| =
2, we get that, for large n,

3

- 1 1 _
2 < sup lexp (—en™) + exp {5% (ET20) = 5ro0 (TT0F ) = den™2 (r +1) ||tll‘°’]
(9)
Since
ro (£7720) = ro (PTF) | < ol BT = T | - 1)

< clt)Pmn V2 < Y2 E<

| —

However, for large n, this contradicts equation [9 proving that equation [§ is
true for [ = r + 1 and completing its proof. Hence,

10,, ()] < 26F1D/3 for every ||t|| < n®

completing the proof of inequality of the Lemma. Furthermore, notice that
all the employed constants depend on s, the order of the cumulants r, d, and
the order of the derivative a and in any case are independent of . m

Lemma 2.5 Under the assumptions of the previous Lemma, Lemma (3.3)

s—2+446

of Gotze and Hipp [7] holds with constant ¢ and o (n 2 ) independent of

0, i.e. for f:R¥ — R such that |f (z)] < M (1 +||z||*) for every x € R*
and M independent of 6. Then for k > 0

sup
0cO

< c(k,s,Beq) M sup Sup/ ’DO‘ [(Hn (t) — {I}n,s (t)) K (n™"t) exp (itTen)} ‘ dt

|a|<k+1+so 0€O

Bf(S) - [ fav..

+c (k, 8, B4p1) supw (g:n™") + 0 (n—s_§+5>
0o
where

6 > 0, g(x)=f(x)/ 1+ |lzlI*),
w(g:n™") = /sup{lg(wry)—g(ﬂﬂ)!i\lyllén‘“}q>zn(dx),
Y, = var(S,)

and K is a continuous function with compact support independent of 6.

11



Proof of Lemma Following the proof in Gotze and Hipp [7], define
S} =n=1/2 >°1Y; and letting £ > 0, to be defined later, define

A= {supHSnH Sna}, B = {supHS/LH gng}.
0co 0co

Then employing that (z +y)" < 2™ (z™ +y"), n, z, y > 0 we get

sup £/ ||Sn — S/L”SO
e

< ¢(s) (supE |S.]1° 14c + sup E HST/LHSO 1ge + n™ sup P {5, # Sé}) .
9€0 9e® )

Furthermore, due to equation [7| we have that there exists 0 < ¢ independent
of 0, such that

sup E || S, || 1 4
0cO

< c(8,Bysq) 0 (nET2H2) L op=o sup P S, # S, } + sup E || S]] 15
0co 0co

and consequently,
E|S, = Si[”
< ¢ (3, 55+1) (supE HS,/LHSO 1ge + n®° sup P {Sn #* S,/l}) +o (n7(372+5)/2) .
0cO 0cO

Now Lemma imply that for arbitrary positive integer r we have that

SUPgco Sup,, &/ ‘ SH| < oo and consequently for € such that

0<E<(s+1)fy1—(s—2)/2
_hence independent of 6-we get that
E||Sy = S| < ¢ (5,801) 0 (077272
This along with the definition of f imply that
|Ef (S.) — Ef (S0)| < c(s,B441) 0 (n272).
Notice that for

en, =0 (n1/2n—865+1) — 0 (n—(s—2+5)/2)

12



which is independent of 6 and

[ reendv,. - [ rav,

Now from Lemma 11.6 in Bhattacharya and Rao [3], by applying the Sweeting
Smoothing Inequality (Lemma 5 of [I4]) and by noting that this inequality
involves constants that depend solely on the properties of g and therefore are
independent of 6 along with a similar choice of K we get the result. m
We are now ready to prove theorem [2.1]

Proof of Theorem Consider the functions f and ¢ as defined in
Lemma[2.4 Then, from Lemmal[2.4/and Lemmal[2.Fland for k = (s — 2 + §) /2
we obtain that

sup — 0 (n7(572+5)/2) ‘

0cO

‘Ef 5 [ fav..

< ¢ ks, Bu) supw (g -0~ ) e (ky s, B,,0) Mo (n™ 5
0cO

Now for f () = 1¢ (z) (1 + ||z||™)[]where C' € Bc, and 1¢ () is its indicator
function we have that

sup |l (z+y) — 1o (2)] < 1(80)”;@ (7)

y<n=F

for large enough n (where 0 is the boundary operator and the superscript
™" denotes the analogous enlargement), hence

SUD (g : n7(372+5)/2)
0€O

= sup [sup {lg (o +9) ~ g @] s [yl < w2 s, (a0
S Y

< sup/l 2482 () Py, (dz :sup/l _ —(s—215)2 () @ (dx
e (90) w2 (7) Py, (dr) e) =, 200) 2472 (7) @ (d)

and due to remark for ¥* the diagonal matrix with elements consisting

of the inverse of infycg lim inf,, {/A™™ (), due to the fact that O and enlarge-
ment commutes with 3*, the linear transformation of a convex set is convex
the we have that the last term is less than or equal to

_ —(5-2)/2
/1(8(2*0))n(52+6)/2 (z) @ (dz) =0 (n )

due to Corollary 3.2 of Bhattacharya and Rao [3]. =

I'Notice that in this case M = 1 and therefore independent of the choice of C.

13



2.1 Sufficient Conditions For Smoothness

In this paragraph we provide uniform versions of conditions 2.3.(i)-(iii) of
Gotze and Hipp [8] and prove that they imply assumption [A.2]SM in the
case that X in assumption is represented as

X;=g(ei:i€Zb), jel (10)

(obviously ¢ in the current representation could be the composition of A (-, 9)
with ¢ (-,0) in the language of assumption . Again the proof of suffi-
ciency traces the arguments in the proof of Lemma 2.3 of Gotze and Hipp
[¥], establishing that the analogous bounds can be chosen independent of 6.
Again we employ the auxiliary notation of the aforementioned paper as well
as extend to uniform versions the auxiliary results. Hence, for j € Z and
y € RZ z € R let (y,x)” be the sequence with coordinates

T, 1=]
Yie1 1> 7.

Consider the following assumption.

Assumption A.3 Let the following conditions hold:
-EL (Exponential small Locally Lipschitz) There exist K < oo, n > 0
and o > 0, not depending on 6, such that for j € Z and 1 € R, xy €

6($1777)

sup £ g (20" ,0) =g (222 0) | < K [y — aaf exp (e

-CPD (Almost sure continuity of partial derivatives) For j € 7 there
erists G; C R, P(G;) = 1 independent of 0, such that for all o € G; , 1,
0 > 0 there exists T > 0 independent of 6 satisfying
yERZ Ve R, |z —mo| < T, a%oXj exists at the point (y,z)’ and
subpee | 25X (W 2),0) = 22X ((w.20) ,0)| <9

-NDD (Nondegenerate derivatives on a set of positive probability)
For some distinct 1y, ...l > 0 independent of 0,

: — 0

=0

on a set of positive P-probability independent of 6.

2Notice that this is weaker than the condition 2.3.(i) in page 2073 of Gotze and Hipp

8]-
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The required result is the following.

Lemma 2.6 Under[10, assumption[A.3 and if €; admits a positive continu-
ous density, then assumption .SM holds for the sequence (X;), j € Z.

For its proof, we shall need the following lemma which is the uniform
extension of lemma 2.2 of Gotze and Hipp [§].

Lemma 2.7 Let O, C R* denote an open ball with radius r and let F :
R¥ x © — R* denote a measurable function that is injective and continuously
differentiable function on O, w.r.t. the first argument for any 6 € O, such
that for constants n > 0 and M < oo that do not depend on 6 and for all
x €O,

n < ’detF/ (,0)] <M and HF/ (z,0)|| < M.

where F/ denotes the aforementioned derivative. Let h denote a density on
R* satisfying h(z) > n, € O,, and fir 6 > 0. Then there exists p < 1
depending only on n, 6, M and r such that for t € RF with ||t| > 4,

sup <p(k,d,Mr).

0cO

/exp [it" F (z,0)] h () dx

Proof of Lemma By a change of variables we have that

/ exp [z’tTF (x, 6)} h(x)dr = / exp [z’tTu} h (FJ (U))

du.
) (O [det 7/ (B, " (u),0)]

with Fy (O0,) = F (O,,0) and F; " (u) = F~! (u,0). Now for x € O we have

. h I
that infyco m

T h (F9_1 (u)) n .
/Fe«or) o it (\det F/(Fy ' (u),0)] M) = /orh(x) dm_/m(or) e

Fix 1 < j <k and uy,...,uj_1, Ujt1, ..., up. Then {u; : (uq,...,ux) € Fp (O,)}
is an interval with endpoints, say, a (6) < b () and

> - and therefore

b(9)
/ exp [itTu] du;
a(9)

exp [@ 3 tmum] — (exp it ()] — exp it (0)])

m#j J

Let A(@) = {(ul,...,uj,l,ujﬂ, ,uk) : E|Uj eR: (ul, ,uk) € Fy (Or)} We

have
‘/ exp [itTu] du| < — duy...duj_1dujq...dug.
Fp(Or)

1] Ja)

15



Since now A () is the projection of Fy (O,) onto R¥"1 and Fj (0,) is con-
tained in a ball of radius Mr, we get that
< = (2Mr)F!

/ exp [itTu] du
Fy(Or) I

Since 1 < j < k was arbitrary, we can find £ > 0 depending on k, n, M and
r only such that for t € R* and ||t|| > &,
1
<= / dx.
2 Jry0n)

/ exp [itTu] du
F9 (Or)

2
t

Hence for these t,

' / exp [it F (z,0)] h (z) dz

< /h(a:)dx—i—/ dx—— dx—l— dx
,9 T Fe(or FG(O’!‘)
n n? k2
= 1—-—— 1——/ —:p(k,n,M,r).
2M FG(O) 2MF( +1)

Now for ||t]| < &, the multivariate version of theorem 1 in Petrov [12], page 10,
yields that for any characteristic function f (¢), t € R*, with |[f (t)| <c < 1
for [|¢]} > ¢,

1—¢2

HOIESEE

=p(c,&)  for |t <¢

proving the assertion. m

We are now ready to prove lemma
Proof of Lemma By assumption [A.3INDD we can find a number
n > 0 and a set A of sequences y € RZ, independent of 0, with P(A) > 0
such that for y € A the partial derivatives Bes 2 X, j € Z, are defined at y,

and
=1....
(za% — k)

Let ||B|| = sup {||Bz|| : ||z]| < 1} for any k x k matrix B and let ¢ (k) denote
a universal constant satisfying

inf det

>n.
0c® =1

det By — det By| < (k) (I1By]*™" + 1Bal*) 1B = Bl

16



for arbitrary k x k matrices B; and By. From assumption [A3EL we get
that

suij;E (|2 w1 0) 1)

( . HXj(...,yS,...)—Xj(...,yo,...)HlA(y)>

A
£
L[]

&

066 =5 \y5€0(y0.8).5 w0 6 — ol
< supE (1a(y)) K exp (—aj
0O Z | ‘
2K
< (12)
1 —exp(—a)

It follows that there exists a measurable subset A/ C A , independent of 6,
with P (A/) > 0 and mg > 0 such that for y € A/,

= 0
—X,(y):v=1,..,k
€lu

Ui

< 4
i =10 (k, K, a)

0cO

j=mo+1

where C (k, K,a) = 2C (k) (2K/ (1 — exp[—a]))". Further estimating the
difference of determinants for all y € A/ we get

det <Z 351,, =1, ,k)

For y € RZ and © = (x1,...,71) let (y,x) be the sequence, such that for
v=1,....k, x, is inserted at place [, and all other places are filled with the
components of y :

w
3

(13)

B zj, ifje{l,. ...k},
(y,2); = { Yj—i, ifi=1,. kandl,_1 <j<li.

Here ly = —oo and I, = +o0o. For x € R¥ let
A(x)={yeR”: (y,z) € A}.

Since P (A) > 0, we can find (¥ € G}, x ... x Gy, such that P (A (z(?)) > 0.
Assumption [A.3|CPD implies that for § > 0 there exists a small ball B C R*
containing #(® ans a set A’/ ¢ A/ with P (A//) > 0 such that for y € A//

17



and z € B and for v = 1,...,k and j = 0, ..., my, %Xj exists at (y,x) for
all 0 € © and

9
861

v

X, ((.2) ,6) -

sup _Gel

0cO

X, (0).0)| <o

Choosing appropriately small 0, we obtain (estimating the change of deter-
minants) from this and equation , r€Bandyec A/,

det (Z %Xj ((y,x),0):v=1, ,k:)

1

inf
9O

> 1
=72

This implies that for m > mg and « € B, y € A’/ we have by equation ??
again estimating the change of determinants

det (i %Xj ((y,x),0):v=1, ,kj)

j=0 "l

inf >
)

>3

By lemma[2.7] we get that for § > 0 there exists p < 1 depending only on 0,
and B (not on m and ) such that for m > mg and all y € A// and ||t|| > 6,

k
/ exp [itT (XO + ...+ Xm)} H h (El,,) d{:‘ll...dﬂk
B

v=1

sup <p(d,n,B)

0cO

where b is the radius of the ball B. Now the left-hand side is an upper bound
for
|E (exp [itT (Xo+ ... + Xm)} lej |7 —m| > T)|

where 7 = max (y, ..., ). This implies
E|E (exp [it" (Xo+ ... + Xp)| lgj 1 [j —m| >7)[ <1-P (A//) +pP (A//) )

which proves the lemma. m

3 Sequences of Smooth Transformations of Valid Locally
Uniform Edgeworth Expansions

We are now considering the question of whether appropriately smooth trans-
formations of sequences of random elements-with distributions that admit
locally uniform Edgeworth expansions as the one described in [2tadmit anal-
ogous expansions. In this paragraph we follow the line of reasoning of Skov-
gaard [I3]. We suppose that (.S, (f)) is a sequence of random elements not
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nesessarily of the form described immediately after assumption[A.T] Further-
more the distribution of S, (f) admits a locally uniform Edgeworth expansion
of order s — 2, i.e. there exists some 6, and € > 0 for which equation [2| holds
with U, ; (6) an Edgeworth distribution (not necessarily the formal one)ﬂ

Question Let f, : R? — RP. Find sufficient conditions for the validity of

sup sup | P (£, (S (6) € A) = W, (6) (A)] =0 (n77)  (14)

0O AcB*

where U7 () is an Edgeworth distribution of order s —1 (s > 3) on R? and
B is the collections of the convex Borel subsets of RP.

In the example of the following section we will utilize the forthcoming
answer to this in order to establish locally uniform Edgeworth expansions of
statistical functions of interest. We first make the following assumption.

Assumption A.4 Let the following conditions hold:
. mi 1 i
-POL f, (x,0) = S°2 Aun0)(2) where A;, 1 © x RY™ — RP 4s (i 4 1)-

1=0 ni/2

linear ¥0 € ©, ' = | z,....z |, Ao, (0) = Ao (9), rank Ay (§) = p VO € O,
A;, equicontinuous on ©, VTl

-EEQ The i polynomial, say, m;(z,0) of U, . (0) is equicontinuous on ©
VzeRY, fori=1,...,s—2, and if ¥ (0) denotes the variance matriz in the
density of U,, s (0) then it is continuous on © and positive definite.

Remark R.2 Obviously assumption [A.) POL implies that p < q while if
U, s (8) is the formal Edgeworth distribution the required equicontinuity in
[A4EEQ would follow from the continuity of E (K; (S, (6))) on © for i =
1,....8+ 1 and K; any i-linear real function on RY, while lemma M
provides with sufficient conditions for the validity of the eigenvalue con-
dition in [A.4EEQ. Furthermore continuity and compactness imply that
infgpco Amin (Ao (0)) , infgee Amin (2 (0)) > 0 where Apin (+) denotes the small-
est absolute eigenvalue.

The following theorem provides the first result of this section.

3For the definition of the general form of an Edgeworth distribution see equations (3.7)
and (3.8) of Magdalinos [10].
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Theorem 3.1 Under assumption [A.4 there exist an Edgeworth distribution
Uy (0) for which equation 1s valid, with polynomials that satisfy .EEQ.

Furthermore, if K is a m-linear real function on RP then

sup
0cO

K@M, 0)= | K ((n(@)")d¥,s (9)‘ o (n)

R4
In order to prove the theorem we will utilize the following auxiliary results.
Lemma AL.1 Suppose that S,, admits an Edgeworth expansion of order s —

2. Then for anyi < j:1,...q, pr,; (Sn) = (Sm,SmH, . .,Snj), admits an
analogous expansion of the same order.

Proof. The density of ¥,, ; () is of the form (1 + ZZ_ ;i (, (9)) Psy0) (T)-

For A a convex Borel set in R7~“tlwe have

P (pr,; (S, (0) € A) = P(S,(0) €pr;} (A))

/ (1+Z” 9) (2)dz + o0 (n~F
= -7 (x © x) dx o(n 2 )
Rx..xAx..R =1 n3 =)

/ ( Zl_ nz ) Prsyrav o ( )

where v = pr;;(z), v = (v,v*), I = (0,1dj_i11xj-i11,0), and 7} (v) =
qu » i (V,0%,0) o5y (v,0*) dv* and o (n’?z> is independent of A and 6.

Lemma AL.2 Suppose that S, (6) admits a locally uniform Edgeworth ex-
pansion of order s — 2 for which assumption [A.JEEQ holds. Then there
exists a constant C independent of 6 such that

zggp <||Sn @) > Cn'’? ”) = <n552>

_ 5—1 _ q. 1/2
Proof. Let C crra S 2@ H, (C) {x eR?: [z > Cln n}
Then
1/2 . s—2 1 7%
P (HSn 0)]] > Cln n) = /n(c) <1 + Zi_l Em (x, 9)) ) (z) dz+o (n )
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where the last term on the right is independent of . Now

/WC) (1 >0 n12 i(x, 9)) » () dz

s—2 1 1
< 1+ — >Y2(0) 2,6 ) (__ Q)d
om0 il (22 @20 oo (5 1)
< / (1+ZS Qisup}ﬂ'z 21/2 (0)2,9)‘) exp (_%H2H2> dz

=1 3 gco

Assumption [A.4EEQ (see also tha last part of [R.2)) implies that
Supgee |mi (512 () 2,0)| < Z,_ ¢; ||z]|" for some ﬁmtem andc;i=1,...,m

independent of #. The result follows from equation (A.8) in the proof of
Lemma 2 in Magdalinos [10]. =

Lemma AL.3 Let f, be as in assumption[A.JPOL and p = q. Then there
i+1
exists a function h, : © x RP — RP of the form h, (x,0) = ZS 2 Bin (0)(«"+1)

ni/2

where the B;, (0) have the same properties with A;, (0), h (fn (-,0),0) =
idge (*) + M, (-, 0) where M, (x,0) is polynomial in x ofﬁmte degree V0 € O,

and supyeg || M, (x,0)|| = o (n 2 ) Vy € RP.

Proof. Proceed inductively. Let s = 3, and therefore

A, (0) (%)

nl/2

fol(z,0)=Ag(0)z +
and choose By (0) = Ay" (0) and By, () (z,2) = —Ag" (0) Ay, (0) (45" (0) z, Ay" (0) ).
Obviously h,, is unique. Then due to the compactness of © the equicontinu-

ity of A;, (f) and the boundness away from zero of Ay (6) unifromly w.r.t. 0
the properties described in [A.4POL hold h,,. Furthemore

M (5.6) =~ 45" 0) Ay, (6) (. As, 0) ()
_% 7L (0) Ay, (0) (As, (0) (22) )
AT ) 41, 0) (4, 0) (57) A1, 0) (+7)

which due to the previous clearly is polynomial in x of fourth degree V8 € ©,
and supyce || M, (z,0)] = o (n%> Vx € RP. Then suppose that the result
holds for s = k. For s = k + 1 choose By () = Ay (), B, (0) = B;. (0) for
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i=1,...,k—2, where B} (0) is the i’ coefficient of the h, in the previous
step and identify By_1, (0) by

Bia, (0) (40 (0))") A, (0) (o)

_ -1
n(k—1)/2 - _AO (9) nk—1)/2
, i+1
1 A, (0)(2tt?
o 5, (0) (S 206
- ni/2

1

]

. \ 1
—Ag ' () My (2,0) mod (W)

where mod (=75 signifies that only terms of order O (%) are consid-
ered, while terms of lower order have been considered in the previous steps
and terms of higher order are placed in the M,,, while M is the relevant
remainder of the previous step. Notice that due to the properties of Ag (6)
the solution exists and is unique. The attributed properties follow by the
same reasoning as the ones for s =3. m

Remark R.3 In the notation of the proof of lemma[AL.3 the previous result
implies that for v € HS (C)

o (fa (,0).6) = 2+ 0 (n'7")
where the o <n%> is independent of x and 6.

We are now ready to prove the aforementioned theorem.
Proof of Theorem Assume first without loss of generality that p = ¢,
for if p < ¢, consider

s—1

AR G IS DA CI

=1

As, (0) (27)

Oq_p

where A} (0) (') = ( ) If f*(S,) admits a valid Edge-

worth expansion with the prescribed property, then so does f,, (.S,) by lemma
[AL.J] It suffices to prove that

sup | P (fo (Sn (0)) € A) — 0% (0) (A)| = o (nfsf)

0cO
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for an arbitrary Borel set A, due to the fact that any Normal distribution
attributes to the boundary of such a set zero measure, hence then [I4] would
follow from Theorem 2.11 (and the subsequent Remark) of Bhattacharya and
Rao [3]. Now

P(fn(Sn,0)€A) = P(S,€ f,'(A0))

5—2
i (2,0) Cs2
= 1+ A % z dz—i—o(n 2 )
/fnl(Aﬂ) ( ; /2 ) 50 (2)

uniformly over A € B, and 6. Then notice that

27 (2,0)
1+ — Osyoy (2) dz
/fgl A9 ( Zl /2 ) (6)

]

i(2,0) s
- /fn L(A,0)nHs (C <1+ZW”52 > (Z)dz+0<n 2>

where the last term is independent of 6 due to the fact that

s—2

i (2,0)
L+ ‘ Osyoy (2) dz
/f" H(A0)NHA(C) ( Z ni/? ) £(0)

=1

s—2
|Ti (2,6)] L
= /Hn(c> (1 " Z Tz | P20 (2)dz =0 <n > )

=1

as in the proof of lemma Now notice that due to [A.4POL and the
compactness of O, if z € f, 1 (4,0)NHS (C) then f, (z,0) € Aand ||f,, (2)] <
C*In'/? n for some C* independent of §. Hence, substituting for u = f,, (z, 0)

we have that due to remark [R.3[ z = h, (u,0) + o (n_%> where the last

term does not depend on 6 or z, when z € HE (C*). Hence

s—2
T (270)
1+ —— ] z)dz
/fnl(Aﬂ)ﬂH%(C)( Zl ni/? ) =0 (%)
2 i (o (1,0)

n(u, 0 +0<n*%>,9>
- /AOHC(C*) 1+z; /2 F

(2

s—2
T s—2
= 1+ E i (u)du—l—o(n’T)
/Ach c*) ( nz/Q > KO

s—

=1
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©5:(0) (hn(u,G)Jro(n T))
where K (6) = Ao (0) V (0) Ay (0), & (u,0) = det(Ao(9)+o(n‘%)> and the

7;s are obtained by expanding and holding terms of the relevant order. Due
to assumptions [A.4] and the definition of B;, () (x't1)s, the s are

equicontinuous in 6 Yu € R?P and the terms in o n="5" ) are independent of

6. Finally notice that since by an argument analogous to that of the proof
of lemma [A].2

S— 2
—|— (u) du

< /HC< Z W) Ko (1) du

where the last term is independent of 6, we obtain that

-2

P(fn(Sn0) € 4) / ( Z nl/z ) PK(0) (u) du+ o (n‘%)

=1
uniformly over ©. For the second part of the theorem notice that

s—2

K ((f (2.0))") (1 53 ”ﬁj;”) ooy () d2

i=1

RP

= [ Ko <1+ ] ”i£§;9>>¢2<9><z>dz

n =1

+ / o K ((fn(2,0)) (1 +Z mnz/; )soz(m (z)dz

and again due to an analogous argument as in the proof of lemma[ATL.2] the
fact that K is multilinear and the form of f,, in assumption [A.4POL, the

last integral is o (n_%z) which is independent of #. Now exactly as in the

previous part for u = f, (z,0)

/H%(C) ((n(2,9)) ( Z nz/2 ) s (2) dz

_ /H%(C*)K(um) 1+§m(h”(“’9);02(”_2)’9)  (u,0) du

i=1
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and the result follows exactly as the previous one, by simply noticing that
(some of) the remainders will also depend on K (u™) which is nevertheless
polynomial. m

The final result of this section, is partially a consequence of the previ-
ous theorem, and can be of convenience for the establishment of valid locally
uniform Edgeworth expansions for estimators that asymptotically satisfy suf-
ficiently smooth first order conditions with sufficiently high probability.

Theorem 3.2 Suppose that:
-POLFOC M,, () satisfies Opu1 = 3125 1z 3000 Cij, (0) <Mn ), S, (0)1#17]')_}_

R, (0) with probability 1 — o (n_%> independent of 0 where Cjj, : © X
RY™ — RP s (i + 1)-linear Y0 € ©, Coo, (8),Coy, () are independent of n

and have rank p V0 € ©, C;;, are equicontinuous on ©, V't
-LUE S, (0) admits a locally uniform Edgeworth expansion that satisfies as-

sumption [A. ) EEQ),
-UAT supyeq P (HMn 0)] > C'In*/? n) =0 (n’%> for some C' > 0 inde-
pendent of 0,

-USR supyeg P (|| Rn (8)]| > 7,) = 0 (n_%z> for some real sequence vy, =
0 (n’%z> independent of 6.

Then M, (6) admits a locally uniform Edgeworth expansion that satisfies as-
sumption [A. 4 EEQ.

In order to prove this we need the following result.

Lemma 3.3 Suppose that S,, (6) admits a locally uniform Edgeworth expan-
sion that satisfies[AJEEQ and that U, (0) is such that

sup P (U, (0) = S, (0) + R (8)) =1 — 0 (n_352>

0cO

where R, satisfies condition[3.4USR. Then U, (0) admits the same locally
uniform Edgeworth expansion.

Proof of Lemma Let a = 2==. Notice first that

A4)
Un 0 GAU (0) = Sn () + B (0)) + P (Un () # Sn (0) + Ry ()
Ry (0

)€ AR )] < 7) + P (1Ra (B)] > 7,) + 0 (")
S, (0) € A— %+o(— )

IN

IN
T U
"
/\QAA
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where all the remainders in the previous display are independent of 6. Now,
as S, (0) admits a locally uniform Edgeworth expansion, we have that for an
arbitrary Borel set A

s—2

P(S,(0)e A—~,) = /A_M (1+Z%> gpz(g)(z)dero(n—%)

=1

s—2
i (279) _s=2
= 1+ . ® g(z)dz+o<n 2)
/(Awniqmwm ( 2 ni/? ) "

=1

where i, is a ¢ x 1 vector of 1’s, A — v,,i, denotes translation by —v,,, and
the last term is independent of § and A (see also the begining of the proof of
theorem and H¢ (C') was defined in the proof of lemma Now by a
change of variables we have that for large enough n

2 (2,0)
1+ —— | s (2) dz
/AQ(H%(CH%%)( 2 ) )

=1
s—2 .
i (2 = Vnlg: 0) .
= 1+ Z. Psio) (2 = Yuiq) dz
/Ammz(cmnm ( Zl ni/? ) !

Expanding terms using the mean value theorem, holding terms of the
relevant order due to the fact that [A.4EEQ we obtain that

Ps0) (2 = Tnlg) = Px) (2) + 1) (2 = Viig) (VaigE ™ (0)ig — inX71 (0) 2)

) L 0mi (2 — 5%y, 0
Wi(z_f)/nzlbe) = 7Ti(279>_7nlq ( 9z . )

where v, 7" lie between 0y, 87”5(5’9) is also polynomial in z, and there

exists some C* > (' such that consequently

5—2 .
i (2 — Yplq: 0) .
1+ i sy (2 = Ypiq) dz
/140(H3(0)+»yn) ( ; ni/2 (9) q

s—2
Uy (Zv 0)
= 1+ A © (2)dz + R} (0)
/Am(H%(C)Hn) ( 121 n'/? ) o0
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where

R, ()

|Vl
Z/Am H (C nl/2\/a

s—2

[Vl
n / Dol 12, 0)
Z AN(HE (C) 4y, T2

=1

XPs0) (2 — i) dz
s—2

7l? ‘

DY
; A(HE () 4y) T2 va
x|

+ / o
ANHS (C)+7,)

XPs50) (2 — Ynig) dz

aﬂ-i (Z - 71*1*7' 79)
G : ' Px(0) (2)d=

IN

nin ST (0) ig — i ST (0) 2|

om; (2 7n ig,0) ”

nin S (0) i — i S ! ZH‘PE(@) z—ﬁliq) dz

4! (0) q—igZ_l (H)ZH

which is less than or equal to

s—2
[Vl
2V
i=1 /E*AH(H%(E*IICHE*%) ni/?
i (X(0) 2 — X (0) 75 *ig, 0
| omi (20 2 = 2 (0) iy )‘So(z)dz
0z
s—2
. / Ol 1 (5.6 2,0)
S ANHE (I 10)+5,) T
y | 1N (0) iy — 1271 (0) 2| (2 — B2 (9) Viig) dz
$—92 * %k
BSTR  E
im1 /I ANH (=1 0) 45 ,) T 0z

X ||7;i;E’1 (0)iq — 1, »12(9 zH © (z — %72 (p) ’y;';iq) dz

s — i, 57 (0) 2|

o

)
EFAN(HE (12 1C)+2*,,)
X (2 — »-Y2(p) Viig) dz
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>* the diagonal matrix with elements consisting of the inverse of A\, =
infgeo v/ Amin2 (0) and notice that on H¢ (|| X% C) + X*v,,

¢ (2 = Z72(0) v5iy)
= ¢ (2)exp (S (0) 75iq) exp ((v5) 127" (6) i)

< p(z)exp ()% <C <1n1/2 n) Vo T+ (7;)2>>

furthermore due to the properties of ¥ (f) and the fact that the m; and
their derivatives are polynomials there exist positive constants independent

of z and ¢ such that [7; (¥ (0) z,0)] < > 7., ¢ )7, || 2Oz 2 s i f) H <

0z
@ (HzW + \'y;|j>, hence we obtain that

Jj=1 w
R (0))
5—2
qf |’yn| * j *|J
< ST [ v (1 i) e s
i=1 J He (C*)
5—2
qi |’7 | j
+ . / cis ol 35 <m|+|rz|\>
1212321 s o) M2

*ZZ A, *Zfb a (¢ (11 + it
<o il 4 D esn (55 (0 () 4 0°) ) o o)

' / o VA (il + e (Ai* (¢ () 7 + w;z)?)) o (=) dz

for some large enough C* and each of these terms is o (n’%) and inde-

pendent of 6 due to the properties of 7, and equation (A.8) in the proof of
Lemma 2 in Magdalinos [10] that implies

/ o e =1 (10 (n75))
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for C* large enough and any j. Finally

i
1+ % (2)dz
/Aﬂ(H%(C)+’Yn < Z n’/Q ) oo

=1

— T, Z 5—2
— 1 i1% d ( —*)
/A< +izl i )goz(g) (2)dz+o(n 2

where the last term is independent of 6 due to the fact that

771, Z,
1+ Psyp) (2) dz
/Anma( Oy 4,)° ( Z n'/? ) @
7T Z 9 s—2
< / 1+ — e(z)dz:0<n_2>

and the last term is independent of 6, due to the properties of 7, and equation
(A.8) in the proof of Lemma 2 in Magdalinos [10]. m
Proof of Theorem [3.2l We first show that

M, (0) = 3 5 A (0) (5.0 ) +Qu (0)

with probability 1—o <n’%2> independent of § with unique A;, (6) satisfying
assumption POL and @, (0) satisfying condition .USR. We proceed
-2

inductively. When s = 3, we have that with probability 1 — o (n_sT>
independent of 6

M, (0) = —Cg, (0) Cor, (9) S, (0)

_#Coon (0) Cao, (0) (S0 (0)°)

L Col () Ca, (0) (—Cixt (6) Con, (6) S, (0) . S0 (6))

nl/2

+Qn (0)
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Coo, (0) Rn (0)

this defines uniquely Ay, (6), and A;, (6) which have the required properties
due to analogous properties of Cjj, (6). Furthermore due to the conditions
structuring the theorem, lemma and the compactness of © it is easy to

see that there exists a sequence v/ = o (n_%> such that condition .USR

holds for @, (€). Suppose now that this holds for s = k, then for s = k + 1
we obtain that A;, (6) = A; (0) for i = 0,...,k — 2, where A} () denotes
the analogous term of the previous induction step and Ag_1) (6) is uniquely
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determined by the O (m) terms of the following expression

: j

k-3 . k=3 Ar (0) (S, ()" o
_ 1 i+1 in itl—

_C()Oln (9) Z nz’/Q Zj:(] CZ]n (0) Z 7(7[1/2 ) 7Sn (9) I

=1

=0

1 _ i+1 B ; il
750, O Ci (0) ((=Cin, (6) Con, (6) S, (9))” 5 ()"

—Coo,, (0) @5, (6)
where QF (0) denotes the remainder of the previous induction step. Again

A(x-1), has the required properties due to analogous properties of Cyj, ().
Furthermore (),, is determined by the o (W) terms of

: J
=R oz, () (.07

_ 1 i+1 in il

_0001 (9) Z ni/2 Zj:ﬂ OZ]n (9) Z 7(7/Z/Z ) 7Sn (9) e

=1 ]

=0
: j
, k=2 A* () (S, ()" ‘
1 -~ 1+1 in itl—
— =7 Coo, (0) __ Cisn () > gm ) S (0)7
=0

—Coo,, (0) @5, (6)

(the largest order of which is O (W)) and again due to the conditions
structuring the theorem, lemma and the compactness of © it is easy

to see that there exists a sequence v/, = o n_%> such that condition
3.2lUSR holds for @, (¢). In the light of lemma [3.3] the result would follow
if Y02 —=A;, (0) (Sn (9)”1) admits an analogous Edgeworth expansion.
This in turn follows by Theorem [3.1] which applies due to the properties of

the A;, (0) established previously and due to condition 3.2]LUE. =
We will make repeated use of this result in the following section.

4 Example

In this section we present a simple example that utilizes the previous results in
order to establish the validity of several M-type (mainly GMM and indirect)
estimators in the context of a GARCH (1, 1) model.
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Assumption A.5 Consider the set of stationary ergodic and covariance sta-
tionary processes defined by the recursion

y; = eh;
h]’ = 61 (1 — 92 — (93) + (92232-71 + 03) hj,1

where the (¢;) are iid, with Egy = 0, Ee2 = 1, E|eo|*** < +oo the dis-

tribution of £y admits a positive continuous density and 6 = (01,05,03)" €

e = [Qw,ﬁw} X [ﬂavﬁa} X [Qﬁ,ﬁﬁ} where Ny Mo Mg > 0 and for any 6 € O,
s+1

FE (92 ’50‘2 + 93) - < 1.

This assumption implies that F (h;’fJrl (9)) exists and is independent of j
and thereby due to Theorem 3.1 of Bougerol [4] that the recursion defines
almost surely unique stationary and ergodic processes represented by

y2 =201 (1~ 05 — 0s) (1 2 Tl (02551 + 93)>

r=0
For any 0 € x let X; () = ( yj2 y}‘ Z/JQ-Z/JZA 3/32'1/]2'72 )l-

Proposition 1 Under assumption[A.5 S, (6) admits a locally uniform Edge-
worth expansion of order s — 2 over ©, with U, s () the formal Edgeworth
distribution. Moreover the polynomials of the density of WV, s (6) satisfy as-

sumption [A. ) EEQ.

Proof. First notice that a dominated convergence argument along with the
s+1

condition E (6, leo|® + 05) " <1 and the monotonicity of h w.r.t.  in[A.5]

imply that F (ygn (49)) exists and is continuous on © forany m = 1,...,2s+2.

Therefore supye, E || X0 (8)]|*"" < +oo establishing .M. This also implies
that if the formal Edgeworth expansion is valid, the polynomials of its density,
which are equicontinuous functions of these moments and the covariance
matrix would satisfy assumption [A.4EEQ. For the establishment of validity

we have that for A; = (92€? + 03), Q,, = (1 4 E:”L:—Ol H;:o Aj,p,1>, w =
01 (1 — 6y — 03)

Ely; —weiQn| = 01(02+05) (65 +03)"
< Wy (T +75) (T +75)"
Analogously, for any 0 < k* <m

2 2
hjh,j_k* —w QQO_k* = w Bj,m,k:*
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where

k*
Bjm e = Z Hp OAJ k*—p—1 T b an OAJ —p—1

r=m—k*

and therefore due to the inequality of Cauchy-Schwarch, which is applicable
due to the moment existence conditions described before, we have that

= wE(; Ly Z HpoAJ k—pl)‘l'WE(y k*ak*ZHpOAJpl>

r=m—k*

[e.9] o0

1/2
< wEY () BV (hg) ( >y I OE< jetrp1 T Ay k*_p_))

r=m—k* r*=m—k*

1/2
+WE1/4( )E1/4 h4 (Z Z EHp 0 Aj—p- IH o Aj- p*—1>

r=mr*=m

Now
B (Moo Arepr Tl o Areprn) = (B (29) + 034 20,007 (0 4y mester ) -mintee
hence the previous expected value is less than or equal to

WEYA (8) BV (1) /(05 1 03)

o0 r oo 1/2
03F (8) + 03 + 20405 "
X < E <( 91+02 E (92"‘93)

r=m—k* r*=m—k*

+wEY (e5) EY* (hg) /(0 + 05)

00 r 0o 1/2
QSE (53) + 9% + 29263 *
X <Z (( 0y + 04 r;n((%‘i‘e?»)

r=m

which in turn is less than or equal to

< 7, /A ( ) sup /4 (h4) (ﬁa +ﬁﬂ)
0cO - Mmax

m—k*
(\/72E (eb) + 7 + 27,75 )
+ (TRE (e8) + 7 + 2,75
27, (5) supgee E'* (hg) \/ (7o +75) m
< . (/72 (c8) + 75 + 27715
(/B () + T+ 2am5) VT T
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. . 02E(ed)+62+260203 . . .
where 7,.. is the maximum of (955 ((’9)2 +933) ) on © which exists and is less

than 1 due to the compactness of © the continuity of this function and the
fact that it is less than 1 for any # € ©. Finally, for 0 < m < k* and any
k* > 0 we have that

hjhj_k* — CUQQm

= Whj—k* (Z H;:O Aj_p+1> ‘f‘ W2Qm (Z H;:O Aj—k*—p+1>
r=m r=0

and therefore

w2e2e2
E‘yjyj ke T W EE g Qm|

WE(J e Pk ZH JP+1)>

+°E < &5k Lm (Z H;:O Aj—k*—p—i-l))
r=0

1/2
wEY () B (hg) (Z ZEHp 0 Ajp- 1H* —o Aj- p*—1>

r=mr¥*=m

+wEY* (e5) EV* (hg) EY? (k)

E1/4 EY4 (hA (ﬁa+ﬁﬂ)
(0) sup B (o) 4 |7~

IN

IN

IN

(/B () + 7 + 27,775)

SUDyco E1/? (hQ)

1 m
ﬁ <\/77a (e6) + 75 + 2%775)

+ m
7,EY4 ( )glelg E/4 (h4) H 7la 77775 (\/ (ed) + 775 + 277(1776)
max

SUPgco EY? (hQ)

k*
1- max

x| 1+

IA

1+

These imply that assumption [A.22WD holds. Now 882 - equals

h; when m =0

{ ewly 2 Th=o -1y (0262_,_y +05) when m >0 (15)
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4

% equals
85? q

252h2 when m = 0

{ 205we’h; (ZT me1 11—o 1) (022, 4 + 93)> when m > 0 (16)

and for any k* > 0, # equals

—m

( 2 _
i _phjhj_p- when m =0

w€?€2-_k*¢92 <Z$im_1 Hr:{m—l} (928? p—1 + 63)) hjfk* when 0 < m < k*
€J2'hjhj,k* + Cd{f 63 k*e (Er k*—1 Hr k1) (925?_]0_1 + 93)) h]’,k* when m = k*

r— {m 1} 2
w2ej€ g hh] e Lt IHT (m—1} (902€2j_p_1+93)9 when m > k*
Ty Y ke . ( 265 pr—p—1 T+ 3)

SN

\

(17)
hence
o2 n, when 7 =0
o a_y; S Rl (i7 +—)j] hen j > 0
€0 TatTs U 775 wihen j
4
B |%
De’

21, (147, +73) when j =0
247, E (£5) suPgeo EV? (hi) S TV when 7 > 0

(l_nmax)M
where M = (n2E (f) + n + 2%%),

8y y] k*

E
‘ O=h

(

Supgeo & (h0€2k h_ *) whenj =0
wly BV (£§) suppee Y4 (h4) \F when 0 < j < k*
supgeo E (hjhj—k) + nwaEM (€5) suPgeo BV (h4) \/Q when j = £

J ]+ . N
n2m, B4 (8) suppee EY* (hd) (‘ﬁL) when j > k

IN

V@

\

where Q@ = M (1 — (7, +73) ) (1 — 7)max)- Notice that these do not necessar-
ily imply assumption[A.2lEL but are sufficient for the verification of equation

11} The form of imply condition [A.2JCPD. Finally notice that

imply
ZOO 5 _ h +Z°° 200 (18)
=0 9~ " j=1 7 9e2
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0o 8y 4 ;
ZFO 85; = 2e2hy + 2 Z hjg (19)

oh
S

o0 Oh; 8h 1
307 e (Gt + 5t )

U L = &2 hohoy + ihho + e

ho 20
=0 Oeg (20)

and

o Oyy? oh oh
Z L 52_2h0h_2+5§h2h0+63521821h 1+ 388 ;h(21)

=0  QOed
00 Oh; 8h _
2.2 2
+Zj,1 €565 o ((’9 2hj_s 82‘% hj>

and that the right hand sides of [I§20] are series of polynomial functions
of (¢%), hence are linearly dependent iff there exist A\;, i = 1,...,4 that are
independent of j such that the relevant linear combinations of the coefficients
of the terms of the same monomials are zero for every j. A simple inspection
reveals that this is impossible for P almost all (¢?) and for all # € ©. This
in turn implies that the determinant of the matrix

> 8y]2. ay;l 8y1 y] 1 8y] yy 2 i=1 4
2 :j:0 8512i 66?1_ 851 le A

with distinct [; where 0 = [; for some 7 is different from zero for all § € ©.
This along with the continuity of these four terms on © the continuity of the
determinant and the compactness of © imply that condition [A.2]NDD holds.
Finally lemma [2.6) and theorem [2.] yield the result. m

Let
0y (1 —(02+65)0
bw):(el, U= Ot )Py)
1— 20,05 — 62

and for some compact B D b(0) define

/
702 + 03)

2

where y2 = %Z;‘L:1 yJZ', ﬁz ==
O0n € in 1 | b(9>||2
n arglgélcgl 2 Pn
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It is easy to see that due to the joint measurability, continuity and boundness
from below of the criteria, ¢, and 6, exist (see for example Theorem 2.13
of Molchanov [I1]). 6, essentially corresponds to the definition of the first
of the indirect estimators in Gourieroux et. al. [9]. For any compact 0’ C
Int (©) we obtain the following proposition.

Proposition 2 Under assumption[A.5 \/n (¢, — b(0)) and v/n (0, — 0) ad-
mit locally uniform Edgeworth expansions of order s — 2 over ©', the polyno-
mials of the density of which satisfy assumption[A. 4 EEQ.

Proof. Notice first that with probability 1 —o (n_%) that does not locally

—

. /
depend on 0, ¢, = <y2, 015 %) since due to proposition [l and the fact

_ /
that f (z) = < T3] “_mz) is continuous hence <y2,pA1, Q) € b(0) with

Xz
1, mg—w%’ To—T7 2

probability 1 — o (n_%> that does not locally depend on #. Hence due to

_ —~\/
theorem (3.3 the first result would follow if \/n (<y2, 015 %) -b (0)) admits
a locally uniform Edgeworth expansion of order s—2 over © (in the notation
_ —~\/
of the theorem S, = \/n ((y{ﬁl’ %) - b(@)) and R, is zero). A Taylor

expansion of f-which is independent of #- around E (X, (#)) of order s — 1
implies that (.5, is as in proposition

vi (7.7 2;) ~(0)) = 0 D (B (X 0) (5, (6) 4R, 0)

i=0 ni/2

where

Ry (0) = ﬁ (DEDF (R (8)) (S (8))" = DUV (B (X0 (6))) (Sa (6)")

R} (0) lies between - > -1 X (0) and E (X, (¢)) with probability 1—o (n*%>
that does not depend on 6. Due to the continuity of D~ f on some compact

neighborhood of E (X (6)) we have that

1B O ISa ()"

n(s—2)/2

152 ()]} <

Hence the definition of R;} (6), along with proposition [1} lemma [AL.2] and '
theorem 3.3)imply that the result will hold if Y35 ~L> DD f (B (X, (6))) (S, (6))""
admits the relevant Edgeworth expansion. But this holds due to the fact that
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Df (E (X, (f))) has rank 3 for any 6 hence assumption [A.3|POL is satisfied,
while assumption [A.3EEQ is satisfied due to proposition [I, hence theorem
3.1 is applicable. For the second case initially observe that due to the first

part, for some O* = [ﬂ:vﬁ:} X [Qz,ﬁ’&] X [ﬂ;,ﬁg] where 0 <n* <n .7, >
7,, for m = w, a, 8, such that Int (©) D ©* D ©’

sup P (p, (6) € O (60,8) = 1= o (n~ ")
0€0(00,5)

and it is easy to see that % has full rank for any 6 in O (6y,0"), hence
with probability 1 —o <n’%> that does not locally depend on 6, 6,, satisfies
v, = b(0,). The mean value theorem along with the constant full rank and

continuity of % on © imply that for some ¢ > 0 independent of

swp P (Vi — 01 < evnlg, —b(B)]) =1~ o (n~F)

0cO(60,0)

which along with the result of the first part and lemma imply that for
some C* > 0 independent of

sup P<\/ﬁH9n—9|| > C*ln1/2n> :0<n’%> (22)

0€0(00,0)

A Taylor expansion of b(#,,) around b (#) of order s — 1 implies that (S, is
as in proposition

Oser = Vit (o, = b(6) + Vi Y~ DO (0) (Vi (6~ 6)™ + Ru (0

where

1

Bo(6) = =57 (DU (67) (Vi (6, = 0))"™" = DUDb(6) (v (6, = 9)) ")

0" lies between 6,, and # with probability 1—o (n_?Q) that does not depend

on . Due to the continuity of D®~Yb on some compact neighborhood of 4

we have that .

104 = 0] Ivn (6. = O)I°
n(—2)/2
Hence the definition of 8, along with proposition , equation , and theo-
rem [3.3] imply that the result will hold if condition POLFOC holds since in
this case theorem [3.2] is applicable. But this holds due to the constant full
rank of the Jacobian of b. m

For the final part of this section we utilize the following assumption.

12 ()] <
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Assumption A.6 s> 5 and g ~ N (0,1).

Remember that ¢, and 60, depend on X; which in turn depends on 6.
When needed this dependence will be expicitely denoted. Define

1 2
* in=llo. —E )
¥ € argmin o len (¢ ()]

and
0" Eargm1n—||9 —E(0,(6 ))H

These correspond to the definition of the second of the indirect estimators in
Gourieroux et. al. [9]. The boundness of B and © imply that the relevant
expectations exist for any ¢. The P almost everywhere continuity of X;
w.r.t. ¢ along with the definitions of ¢,, and 6,, and the boundness of B and
© ensure via the dominated convergence theorem that the expectations are
also continuous and this along with joint measurability and the boundness
from below of the criteria imply again the existence of ¢} and 6. Similarly
to the previous case we obtain the following proposition.

Proposition 3 Suppose that \/n (¢, —b(0)) and /n (0, — 0) admit locally
uniform Edgeworth expansions of order s — 2 over ©' the polynomials of the
densities of which satisfy assumptz’on.EEQ and holds. Theny/n (¢ — 6)
and /n (0, — 0) admit locally uniform Edgeworth expansions of order s — 3
over ©" for any compact ©" C ©’.

For the proof of the previous proposition we use the following auxiliary
results. In the following lemma m,, (#) denotes a generic random element
admitting values in a bounded subset of some Euclidean space.

Lemma 4.1 Suppose that \/nm,, () admits a locally uniform Edgeworth ex-
pansion of order s —2 over ©', the polynomials of the density of which satisfy
assumption [AJEEQ. Then /n(my, (0) — Em, (0)) admits a locally uni-
form Edgeworth expansion of order s — 3 over O (6y,9), the polynomials of
the density of which satisfy assumption [A.4 EEQ.

Proof. Due to Lemma 3.1 of Arvanitis and Demos [I] we have that

VnEgm, — / (1 + Z 7;(151 ) ) V(o) (2)dz
Vi, =3 M' o ()

i=1 nl/2

sup
gcer

= sup
0co’
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where (1 + 3070 ”;Lf/f ) ©y(9) (2) denotes the density of the Edgeworth dis-

tribution of proposition |2 truncated up to the O (n_%) order, i.e. of the

(obviously) valid locally uniform Edgeworth expansion of order s — 3, given
the one 1n L ki (2,0) = o (2,0) and Z,, = Jo ki (2,0) oy (2) dz.
Using the fact that the m;’s satisfy assumptlon @ EEQ it is easy to see that
so do the Z,, (k; (z,0)). Now for an arbitrary Borel set A

P (v/n(my, (0) — Em,, (9)) € A)
— <\/_mn ye A+ ZS = nz/j .0)) +O(n_523>>

s=3 7, (z 3 I—:/(zz D 4o (n‘sgg) ,9)
_ / 1+
ANHE (C)

ni/2

i=1
s=3 1, s— s
) <Z+Z nZ/Q )) +0(n_23>) dz+0(n_73>

where H¢ (C*) analogously to the relevant term in the proof of theorem
Expanding and holding terms of relevant order, by noticing that the m; are
polynomial in z, and that the o (n_%) are independent of # we obtain the

needed result. m
The second auxiliary result is the only one making use of assumption [A.6]

Lemma 4.2 Suppose that \/n (¢, —b(0)) and /n (0,, — 0) admit locally uni-
form Edgeworth expansions of order s—2 over © the polynomials of the den-
sities of which satisfy assumption[A.JJEEQ and holds. Then E (¢, (0))
and E (6,,(0)) are two times differentiable on ©' and for any 8 € ©' and

1/2

any sequence 0, # 0 wzth values in ©' such that |0, — 0| < CR = for
C >0,i=12 H 09' - H ) where M, (0) = E(p,(0)),
Mgn (9) =F (9 (Q)) K1 Kg ldRS

80’ ’

Proof. Consider first the case of E (¢, (6)). Let o (go) the smallest sub
o-algebra of F w.r.t. the gg,e_1,... are measurable. We have that

E (¢, (0)) = E(E (¢, (0) /o (c0)))

Now notice that

B ) fo () = [ o, N )nrl[
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and the differentiability result would follow via the dominated convergence
theorem if

 (sup 1, 0] and £ (sup 17, )]

0ce’

are finite where s, (6) = > " (52. — 1) _1 _0h;(0) H, () =" (5? _ 1) 1 9%h(0)

j=1\%j R;(0) 99 j=1 h;(0) 900"
n Oh;(0) Oh;(0) — T7 .

5o (263 - 1) g 4O 00 5 (0) = Ls, (6), H, (0) = LH,, (). First no-

tice that h; (0) >

(1 — N, — ﬁﬂ) = ¢, and due to the fact that

Oh;—1(0)
001

Ohj—1 (0)
004

Ohj—1 (0)
863

= (1—0;—03) + (0257_, +05)

= —01+¢e7 b1 (0) + (0255, + 03)

= —61 + hj,l (9) + (928?71 + 93)

hence

Sy )
Oh; (0)
0

E (sup
0ce’

1 n
< Y BV 1 B s

!/
and for 0* = (77, n*,n* ) it is easy to see that
N 10 Mg

2 2

ahj (0) < 400

o, (9")
060

06

<5

FE sup
9ce’

Furthermore, since

0*h; (0)
003
0%h; (9)
06?2

2
: 22)?)( - 893(0) + (a4 )
0*h; (0)
96100, I
9*h; (0)
90,005 a0,

Ohy1 (6)
00,

Oh_ (6)
062

+ei + (0225, + 05)

9h;_, (6)
003
Oh;_1 (6
+ (92*3]2'_1 +0s) —aélééZ)
0%h; (9)
00,003

+ (0282 + 93)

7—1

41



we have that

n 1 0%h; (0)
E 2 _ J
<5§5 2. & =V 55y 2000 D
1 2 h; (0%)]?
_ E1/2 2 _ 1 E1/2 gI\7)
- 2 EP -1 o000 || =T
and
n 1
E 22— 1
(525 Zj:l (2¢5 -1) 02 (9) ae ae’ H)
1 n 1/2 6.2 2 51/2 ahj (9 )
Next notice that for any 6 in © any ¢ = 1,...,3, and any sequence 0,, as
described above we have that
OE (¢, (0,))  0b(0)
00, a0,
PE (¢, (07)) E (¢, (0,) — E(p, (0)) 0b(0)
< 2 —” 0, —0 n n —
S 28D a0 o H 19 =61l + H 6, —0, 90,

Then lemma 2.3 of Arvanitis and Demos [1] implies that due to the behavior
of 6, the last term on the right hand side of the last display is o (1). Hence

PE(p,(07) || _ vn .
96,00 = o\ ey ) The previous

along with an application of the Cauchy-Schwarz and the triangle inequalities
imply that for any ¢

the result would follow if supg«cgn H

sup

ae ae’ H

0ce’
< sup BV g, (6) — 6]
0co’
: (SUP E'? |5y () 51, (6) = EH, (0)|” + sup EV?||H, (6) — EH, (9)||2)
0coe’ 0ce’

Furthermore, due to assumed Edgeworth approximation for \/n (¢, () —0),
and the fact that s > 5 lemma 3.1 of Arvanitis and Demos [I] along with

theorem [3.1] imply that sup,ce EV/2||(0, —b(O)|]> = O (\%) Hence the
result would follow if

sup E |5, (0) 3, (0) + B, ()" = o ()

0O’ Inn
_— 2 n
sup B |71, (6) = EA 0)]" = o (57)
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From the proof of Lemma A.1 of Corradi and Inglesias [5], we can prove that
Vn(Sk(0) — E (S (0))), where S¥ contains stacked the elements of 5,, and

H,, admits a locally uniform Edgeworth expansion of order s — 4 over ©' by
establishing the conditions [A.2)M-WD and [A.3|EL-CPD through the provi-
sion of bounds independent of 6 using the compactness of © and condition
[A.3INDD using the result of the referenced proof, the P almost everywhere
continuity of the elements of S’ (f) on ©’, the continuity of det and the com-
pactness of ©'. Then the remark immediately after the proof of lemma 3.1
of Arvanitis and Demos [I] implies that

sup B |75, (0) 5, (0) + EH,, (0)||" = 0O(1)

sup £ [, 6) - B, 0 = 0(+)
6co’ n

which establish the needed bounds. The result about E (6, (0)) is derived
analogously. m

We are now ready to prove the main proposition.
Proof. Notice first that uniform consistency of ¢, to b(f) along with the
boundeness of © imply by uniform integrability that

sup | Eng, — b ()] = o (1) (23)

hence for any € > 0
swp(mﬂ%—E%wﬂ—wwwwwM>Q

0*cO 0cO
s—2

< sup P(ljp, —=b(0")|+o(l) >¢) =0 <n_7>
0*cO

due to the analogous consistency of ¢,,. Hence

up P (45, € O(67.5)10) = 1 — o (nF)
0*cO

for any € > 0. Then from lemma [4.2] and the proofs of lemma [2] and lemma
2.4 of Arvanitis and Demos [I] we obtain that

sup P (\/ﬁ|g0; — 6| > Cn'/? n) =0 <n’%) (24)

0*co"

for some appropriate C' > 0. Now by recursive examination it is easy to
see that Ehy' (0) is s times continuously differentiable for any 6 in ©” for
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all m = 1,...,s + 1. This along the analogous differentiability of f in the
proof of proposition [2] imply that the 7; there are also s times continuously
differentiable for any # in ©” for any z € R. Then dominated convergence
implies the same for 7, (k; (2,0)) for all i = 1,...,s + 2. Then lemma 2.3
of Arvanitis and Demos [I] implies that for any stochastic sequence 6, for
which

SupP( n 571—9‘ > Cln1/2n>

9o
then

sup P (|[v71 (Bg, ¢ = Bopn) = An (8)]| > 7,) = 0 (0 %)

0ce”

where

s
j:

w5 o LTS ()

n2 (j+1)!

and v, = o(n™%) 1ndependent of #. This along with lemma imply that
8Ee05(<pn)
0

converges to % for any 0 in ©” with probablhty 1—o (n %)

ae'
independent of ¢, hence with the same probability ¢}, satisfies ¢, = E_«,.

Hence with probability 1 — o <n_%2) independent of 0, ¢’ satisfies

0= Vn(p, — Eppp) + Au (0) + Ru (0)

and the result follows from [24] proposition .1} lemma and theorem
The case of ¢ follows in complete analogy to the previous by sim-
ply replacing in the previous proof any invocation to f with b~ (p) =

163/ (1-202—05)) (1-¢3)  —(1-2p205+03) +/ (1= (22 —25) )(1@3)) and of b

1 2(p2—p3) ’ 2(p2—¢3)
with the identity. m

Remark R.4 Notice that 0; can be shown to be locally uniformly second
order unbiased (i.e. supgegr |Eol}, — 0| = 0 (n™')) something that is not the
case for 0,, or ¢, even though the three estimators posess the same second
order MSE uniformly over ©" (see Arvanitis and Demos [1] Corollary 2 and
Lemma 3.6).

5 Conclusions

We have established sufficient conditions for the existence of localy uniform
Edgeworth expansions under weak dependence and/or smooth transforma-
tions. These extend analogous pointwise results in the relevant literature
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and can be applied for the establishment of high order asymptotic properties
of estimators arising in the context of eligible stochastic processes. Special
cases are M-estimators defined by the expectation of auxiliary ones. In these
cases the results enable the polynomial approximation of the equations that
are asymptoticaly satisfied by the estimators without the use of higher or-
der derivatives, something that avoids the establishment of issues such as
their rates of convergence. The interest on these estimators lies on the fact
that under appropriate conditions they can possess desirable higher order
properties. A question for future research concerns the issue of establishing
Edgeworth type expansions (see Magdalinos [10]) when 6 lies in the boundary
of the parameter space.
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