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Abstract

In this paper we are concerned with the issue of the existence of
locally uniform Edgeworth expansions for the distributions of random
vectors. Our motivation resides on the fact that this could enable
subsequent uniform approximations of analogous moments and their
derivatives. We derive su¢ cient conditions either in the case of sto-
chastic processes exhibiting weak dependence, or in the case of smooth
transformations of such expansions. The combination of the results
can lead to the establishment of high order asymptotic properties for
estimators of interest.
KEYWORDS: Locally uniform Edgeworth expansion, formal Edge-

worth distribution, weak dependence, smooth transformations, mo-
ment approximations, GMM estimators, Indirect estimators, GARCH
model.
JEL: C10, C13

1 Introduction
In this paper we are concerned with the issue of the approximation of the
distributions of a sequence of random vectors by sequences of Edgeworth dis-
tributions uniformly with respect to a compact valued Euclidean parameter.
Our motivation resides on the fact that this could enable subsequent uniform
approximations of analogous moments and their derivatives with respect to
the aforementioned parameter. This in turn can facilitate the extraction
of higher order asymptotic properties of estimators that are de�ned by the
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use of such moments. A prominent example is the indirect estimator de-
�ned by Gourieroux et al. [9] (abbreviated as GMR2 estimator in Arvanitis
and Demos [1], de�nition D.3.) as a minimizer of a criterion involving the
expectation of an auxiliary estimator.
We will hereafter refer to the aforementioned approximation as a locally

uniform Edgeworth expansion of the involved random vectors. We notice
that analogous expansions have been studied by Bhattacharya and Ghosh
[2] (see Theorem 3) in the i.i.d. case and Durbin [6] for the case where the
random vectors are of the form of

p
n times an arithmetic mean.

In what follows we will provide su¢ cient conditions for the existence of
such an approximation in two cases. The �rst concerns the one where the
random vectors are of the form of

p
n times an arithmetic mean, the elements

of which are members of a stochastic process exhibiting weak dependence, in
the spirit of Gotze and Hipp [8]. There, the authros validate the pointwise
(w.r.t. the parameter) formal Edgeworth expansions. We essentially follow
their line of reasoning, whereby by strengthening their conditions we estab-
lish the result ensuring that the relevant remainders are independent of the
parameter. In the second case we assume that a locally uniform Edgeworth
expansion is valid, and given a sequence of smooth transformations for the
random vector at hand, we provide su¢ cient conditions for an analogous ex-
pansion to exist for the transformed random vector. In this case our line of
reasoning is close to the one in Skovgaard [13], but compared to this paper
we utilize additional conditions concerning the dependence of the transfor-
mations on the parameter. Obviously the two cases can be combined for the
establishment of valid locally uniform Edgeworth expansions in composite
cases.
The structure of the paper is as follows. In the next two sections we are

concerned with the aforementioned cases repsectively. In the fourth section
we provide a simple example concerning a GARCH model involving estima-
tors for the asymptotic analysis of which we utilize all the previous results.
In the �nal section we conclude.

2 Valid Locally Uniform Formal Edgeworth Expansions
Under Weak Dependence

In the following we denote with � a compact subset of Rp (w.r.t. the usual
topology). The following assumption de�nes the form of the eligible stochas-
tic processes for the results that follow.
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Assumption A.1 Let ("j) be a sequence of iid random variables, g : RN �
� ! R and h : Rp � � ! Rk be Borel (jointly) measurable functions and
suppose that h has uniformly equicontinuous (w.r.t. �) �rst order derivative
w.r.t. (Zj; : : : ; Zj+p�1). De�ne for j 2 Z, � 2 �

Zj : = g ("j�i : i � 0; �) (1)

Xj : = h (Zj; : : : ; Zj+p�1; �)

where sup�2�E kDZh (Zi; : : : ; Zi+p�1; �)k � K for some constant K > 0.

We supress the dependence of Zj and Xj on � for notational simplicity.
Now, let Sn (�) = 1p

n

Pn
i=1 (Xi (�)� EX1 (�)), for r = 0; : : : ; s let �r;n (t) be

the cumulants of tTSn of order r, i.e.

�r;n (t) =
dr

dxr
logE exp

�
ixtTSn

�����
x=0

Obviously �r;n depend on �. Let 	n;s (t) be the formal Edgeworth measure
of Sn of order s � 2, s � 3, de�ned by its characteristic function b	n;s (t) =
exp

�
�2;s
�
+

s�2X
r=1

n�r=2 ePr;n (t), where the functions ePr;n (t), r = 1; 2; ::: satisfy
the formal identity

exp

 
�2;n +

1X
r=3

1

r!
� r�2n(r�2)=2�r;n (t)

!
= exp

�
�2;s
�
+

1X
r=1

� r ePr;n (t)
and Bc the collection of convex Borel set of Rk.

Question Given A.1, under what conditions

sup
�2�

sup
A2Bc

jP (Sn (�) 2 A)�	n;s (�) (A)j = o
�
n
s�2
2

�
(2)

The next assumption provides with su¢ cient conditions so that the previous
question is well-posed and has an a¢ rmative answer. It essentialy corre-
sponds to a uniform extension of the analogous conditions (2)-(4) in Gotze
and Hipp [8]. The proof of su¢ ciency folows naturally the line of proof of
Theorem 1.1 of Gotze and Hipp [8], by establishing that due to A.2 the terms
appearing in the relevant bounds are independent of �.

Assumption A.2 Let the following conditions hold:
-M (Existence of Moments)

sup
�2�

E kX1ks+1 � �s+1
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-WD (Weak Dependence) There exist constants K < 1 and � > 0 inde-
pendent of � such that for m � 1,

E kg ("j : j � 0; �)� g ("0; : : : ; "m; 0; : : : ; �)k � K exp (��m)

-SM (Smoothness) There exist � > 0 independent of � and r > 0 such
that for arbitrary large �xed � > 1 and all n > m > ��1 and t 2 Rk with
n� > ktk > �,

E
��E �exp �p�1t0 (X0 + : : :+X2m)

�
="j : jj �mj � r

��� � exp (��)
The next theorem provides the required result.

Theorem 2.1 If assumptions A.1 and A.2 are valid then 2 holds.

Auxiliary Lemmas For the proof of the previous theorem we will need the fol-
lowing auxiliary results. First, we denote with Dj+p�1�m;j+p+1 the �-algebra
generated by ("j+p�1�m; : : : ; "j+p+1) which is obviously independent of � and
satis�es conditions (2.4) and (2.6) of [7] for any m;n; p due to the de�nition
of ("j) in assumption A.1. The �rst auxiliary result is the uniform extension
of Lemma 2.1 of [8].

Lemma 2.2 Under assumptions A.1, A.2.M and A.2.WD there exist a con-
stant K1 independent of � and a (for any � 2 �) Dj+p�1�m;j+p+1-measurable
random element X�

j such that

sup
�2�

E


Xj �X�

j



 � K1 exp

�
�� s

3 (s+ 1)
m

�
(3)

Furthermore under A.1 and A.2 then

inf
�2�

lim inf
n
inf
ktk=�

var (t0Sn (�)) > 0 (4)

Remark R.1 It is easy to see that 4 implies that inf�2� lim infn �minn (�) > 0
where �minn (�) denotes the minimum eigenvalue of var (Sn (�)) implying that
they are uniformly positive de�nite. Suppose the contrary, i.e. there exists
x 6= 0k for which inf�2� lim infn x0 var (Sn (�))x = 0. Then let z = a

kxkx and

0 = kxk2
a2
inf�2� lim infn var (z

0Sn (�)) which is impossible due to 4.

Proof of Lemma 2.2. Let g0 be the composition of h (�; �) and g (�; �)
such that Xj = g0 ("j+p�l : l � 0; �). For m > p� 1 let

X 0
j (�) := g0 ("j+p�1; : : : ; "j�m+p�1; 0; : : : ; �)
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De�ne the obviously Dj+p�1�m;j+p+1-measurable random element X�
j (�)

X�
j (�) = X 0

j (�) I

�

X 0
j (�)



 � a
1

s+1
m

�
;

where am = exp
�
�m
3

�
. Further, let Bm be the set of sequences of "j such

that
sup
�2�

kDZh (Zj; : : : ; Zj+p�1; �)k � Kam

and

sup
�2�

kZj+v � g ("j+v; : : : ; "j+v�m; 0; : : : ; �)k � K exp
h�m
3
� � (m� v)

i
:

By the assumption of uniform equicontinuity, there exist m0 such that for
m � m0 and "j, j 2 Z, in Bm, sup�2� kDZhk � K exp

�
�m
3

�
on the segment

connecting the Z vectors of the in�nite and truncated (at m) sequence of "j
for any � 2 �. Now,

E


Xj �X�

j




� E kXjk 1kXjk>a1=(s+1)m

+ E


X�

j



 1kXjk>a1=(s+1)m
+ E



Xj �X�
j



 1kXjk�a1=(s+1)m

� 2E kXjks+1 a�s=(s+1)m + E


Xj �X�

j



 1kXjk�a1=(s+1)m

since kXjk > a
1=(s+1)
m , kXjk < kXjks+1 a�s=(s+1)m and P

�
kXjk > a

1=(s+1)
m

�
�

E kXjks+1 a�(s+1)=(s+1)m due to Markov�s inequality. Also

E


Xj �X�

j



 1kXjk�a1=(s+1)m
= E



Xj �X�
j



 1kXjk�a1=(s+1)m
1Bm+E



Xj �X�
j



 1kXjk�a1=(s+1)m
1Bcm

and

Bc
m �

�
(") : sup

�2�
kDh (Zj; : : : ; Zj+p�1; �)k > Kam

�
[f(") : kZt+p � g ("j+p; : : : ; "j+p�m; 0; : : : ; �)k > Kam exp (�a (m� p))g

Due to 1 and the fact that � > 0 we have that for any m

P

��
(") : sup

�2�
kDh (Xj; : : : ; Xj+p)k > Kam

��
= 0

and that due to A.2.WD and the inequality of Markov

P (kZt+p � g ("j+p; : : : ; "j+p�m; 0; : : : ; �)k > Kam exp (�� (m� p)))

� E kZt+p � g ("j+p; : : : ; "j+p�m; 0; : : : ; �)k
Kam exp (�a (m� p))

� K exp (��m)
Kam exp (�� (m� p))

= exp (��p) a�
s+1
s+1

m
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Hence
P (Bc

m) � exp (��p) a
� s+1
s+1

m

and therefore

E


Xj �X�

j



 1kXjk�a1=(s+1)m
1Bcm � 2 exp (��p) a

1=(s+1)
m a

� s+1
s+1

m = 2 exp (��p) a�
s

s+1
m

Finally due to the Mean Value Theorem and the fact that 1kXjk�a1=(s+1)m
1Bm =

1 means that 1kX0
jk�a1=(s+1)m

= 1

E


Xj �X�

j



 1kXjk�a1=(s+1)m
1Bm

� KamE









Zj � g ("j; : : : ; "j�m; 0; : : : ; �)

...
Zj+p�1 � g ("j+p; : : : ; "j+p�m; 0; : : : ; �)








 1Bm
� CKampK

Xp

i=1
exp (i�) exp (��m) amP (Bm) = C�a�1m

for C� = pCK2 exp(p�)�exp(�)
exp(�)�1 P (Bm) > 0 and independent of �. Hence

E


Xj �X�

j




� 2E kXjks+1 a

� s
s+1

m + 2 exp (��p) a�
s

s+1
m + C�a�1m

= K1a
� s
s+1

m ;

where K1 =

�
2E kXjks+1 + 2 exp (��p) + C�a

� 1
s+1

m

�
independent of �.

Now let 
 = s�1
2s
and Cs;� = 1

1�exp(�2
)

q
1�exp(�2�)

2
and

q = r+1+
j
1

�
log
�
K1�

s+3Cs;�E
1
s kX1ks+1

�k
, where bxc denotes the integral

part of x. Notice that all constants, 
, Cs;� and q, are independent of �. For
n � 2q let Dj denote the �-algebra generated by "l, l � jq+p�1, and de�ne

�j = n1=2t0 [E (SnjDj)� E (SnjDj�1)] :

Writing n = Lq+N with N < q, the following variance decomposition holds:

var (t0Sn) = n�1
LX
j=1

E�2
j + E [t0 (Sn � E (Snj"l; l � n+ p� 1�N))]

2
:

Since Xv; v � jq; are Dj-measurable for any � 2 �, we obtain

�j = t0

"
jq�1X

v=jq�q+1
(Xv � E (XvjFj�1)) +

nX
v=jq

(E (XvjFj)� E (XvjFj�1))
#

+ Vj +Rj

6



De�ne "v;M = ("v+p�1; "v+p�2; : : : ; "Mq+p�1; 0; : : :) for v � Mq and "v =
("v+p�l : l � 1). We have that

E1=2�2
j � E1=2V 2

j � E1=2R2j

and emloying Holder�s inequality

E1=2R2j � C�2K (1� exp (��
))�1 exp (��
q) ;

where C = E1=s jt0X1js+1 independent of �. By de�nition of q we get

ER2j �
1

2
(1� exp (�2�
))

independent of �. On the other hand the inequality x2=2 � 2 sin2 (x=2) =
1� cos (x) together with

var (Z) =
1

2
E (Z � Z�)2 � 1� jE exp (iZ)j2

for any r.v. Z and an independent copy, say Z�, as well as condition A.2.SM
with ktk = � we get

EV 2
j � 1� exp (�2�)

which concludes the proof of equation 4, as all bounds are independent of �.

Hence, the following corollary.

Corollary 2.3 Under assumption A.2 conditions (2.2)-(2.6) of Gotze and
Hipp [7] hold with constants independent of �.

Proof of Corollary 2.3. By assumption A.2 conditions (2.2), (2.4), (2.5)
and (2.6) of Gotze and Hipp [7] obviously hold with constants independent
of �. Condition of (2.3) of Gotze and Hipp [7] follows from lemma 2.2.
Now we need to show how the uniform versions of conditions (2.2)-(2.6)

of Gotze and Hipp [7] imply intermediate results that lead to the proof of
therem 2.1. Again these are uniform extensions of the analogous results in
Gotze and Hipp [7]. We shall employ the following notation. De�ne

T (x) =

(
x if kxk � n�

xn�

kxk 
�
kxkn��

�
otherwise

where  2 C1 (0;1) independent of �, satisfying

 (r) = r if r � 1
 is increasing

 (r) = 2 if r � 2:
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For j = 1; :::; n let Yj = T (Xj) and Z�j = Yj � E (Zj). De�ne S�n =

n�1=2 (Z�1 + :::+ Z�n) and Hn (t) = E exp
�
itTS�n

�
. Notice that ePr;n, Yj, Z�j ,

S�n and Hn depend on �.
Let

EtU = EU exp
�
itTS�n

�
=Hn (t)

and de�ne the cumulant of order p

�t
�
aT1 S

�
n; :::; a

T
p S

�
n

�
=

@

@"1
:::

@

@"p

����
"1=:::="p=0

lnHn (t+ "1a1 + ::+ "pap) ;

where a1; :::; ap 2 Rk. Write

�t

0@aTS�n; :::; aTS�n| {z }
j�times

; bTS�n; :::; b
TS�n| {z }

l�times

1A = �t
�
aTS�jn ; b

TS�ln
�
;

the Taylor expansion of lnHn (t) can be written

lnHn (t) =
sX
r=2

1

r!
�0
�
itTS�rn

�
+Rs+1 (t) where (5)

Rs+1 (t) =
1

s!

Z 1

0

(1� �)s ��t
�
itTS�(s+1)n

�
d�

Lemma 2.4 Under assumption A.2 lemma (3.33) of Gotze and Hipp [7]
holds with constant c independent of �, i.e. for every t with ktk < cn", we
have that���D�

�
Hn (t)� b	n;s (t)����

� c (r; d; s; j�j)
�
1 + �s+1

� �
1 + ktk3(s�1)+j�j

�
exp

�
�c (d) ktk2

�
n�(s�2)=2�"

Proof of Lemma 2.4. From Lemma (3.28) of Gotze and Hipp [7] we have
that for 2 � r � s���0 �aT1 S�n; :::; aTr S�n��� � c (r; d; s)n�(r�2)=2�

r=(s+1)
s+1 ka1k ::: kark

where c� depents on r and d but not on �. Now for ktk � cn" we have that�����D�

sX
r=3

�0
�
itTS�rn

�
r!

����� =
8<:

1 for s � j�j
n�(j�j�2)=2 for 3 � j�j < s

n�1=2 ktk3�j�j for j�j < 3
:
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Now using equation 5 we get

� = D�

 
Hn (t)� exp

"
sX
r=3

�0
�
itTS�rn

�
r!

#!

=
X

�1+�2=�

c�1�2D
�1 exp

"
sX
r=3

�0
�
itTS�rn

�
r!

#
D�2 (exp [Rs+1 (t)]� 1) :

Now from Lemma (3.20) of Gotze and Hipp [7] we have that���� @l@"l
����
"=0

Rs+1 (t+ "a)

���� � c (r; d)
�
1 + �s+1

�
n�

s�2
2
�"�
�
1 + �n (t)

s+1+l
� �
1 + ktks+1

�
where 0 < "� < 1, for every t satisfying

�n (t) =
�
v(n)m (t) + exp

�
�c (d)n"�=2

��
=Hn (t) <1; ktk � "�n�"

���+1=2

(6)
where a 2 Rk with kak < 1 and

v(n)m (t) = sup
n���E exp�S(p)I ���� : p � m; jIj � r

o
where l such that s+1 � r � s+1+l, S(p)I = in�1=2tT

P� Zj and
P� extends

over all 1 � j � n such that jj � j1j > mr. Hence we get that

j�j � c (r)
�
1 + ktkj�j

�
ktks+1

�
1 + �s+1

�
n�(s�1)=2�"

�
exp

�
�c ktk2

� �
1 + �n (t)

j�j
�

Now for complex ai 2 Ck with kIm aik < � from Lemma (3.30) of Gotze and
Hipp [7] we have that���0 �aT1 S�n; :::; aTr S�n�� �0

�
aT1 Sn; :::; a

T
r Sn

��� (7)

� c (r)n�(s�2)=2�"
��
�
r=(s+1)
s+1 ka1k ::: kark ; for 1 � r � s and 0 < "�� < 1

Hence we have that

exp

 
sX
r=2

�0

�
i

r!
tTS�rn

�!
= exp

�
o
�
n�(s�1)=2+"

�� ktk
�� �b	n;s (t) +Rs (t)

�
= b	n;s (t) + eRs (t)

where

Rs (t) � c (r; d; s)n�(s�1)=2
�
1 + �s+1

� �
ktks+1 + ktk3(s�1)

�
exp

�
�c2 kRe tk2 + c3�

2
�
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Since b	n;s (t) and eRs (t) are analytic in t, the Cauchy�s inequalities can be
employed to estimate the derivatives D� eRs (t) as

max
n��� eRs (t)��� : kzj � tjk = �; z 2 Ck; j = 1; :::; k

o
��j�j

Noting that due to A.2 and remark R.1
���b	n;s (t)��� � c exp

�
�c kRe (t)k2

�
, for

some c > 0 independent of �, kIm (t)k � � and kRe (t)k � cn"
��
we get���D� eRs (t)��� � c (r; d; s)n�(s�2)=2�"

��
�
1 + ktk3(s�1)

�
exp

�
�c ktk2

�
for every t 2 Rk with ktk � cn"

��
. Hence���D�

�
Hn (t)� b	n;s (t)����

� c (r; d; s)
�
1 + �s+1

� �
1 + ktk3(s�1)+j�j

��
1 + �n (t)

j�j+1
�
exp

�
�c ktk2

�
n�(s�2)=2�"

Now for �n (t) in equation 6, let Tl = n�1=2
Pl

p=1 Zjp , for 1 � l � n for
any sequence j1 � j2 � ::: � jl and de�ne H (Tl; t) = E exp

�
itTTl

�
. Now

equation 5, Lemma (3.20) and Lemma (3.28) of Gotze and Hipp [7] can be
employed together to prove that for 1 � l � n and � = 0:

H (Tl; t) = exp

�
�1
2
�0
�
tTT 2l + cn�3=2�" ktk3 l�l;3 (t)

��
where

j�l;3 (t)j � sup
�����exp (�cn") +H

�
T
(p)
I;l ; t

��
=H (Tl; t)

���3 : jIj � 3; 0 � p � m;Tl

�
where T (p)I;l = in�1=2tT

P� Zj where
P� extends over all 1 � j � l such that

jj � j1j > pm for every j1 2 I � f1; 2; :::; lg. Notice that here "; c and m are
independent of l, 1 � l � n. The claim is that

sup
�
j�l;3 (t)j : ktk � n"

	
� 2 for l = 1; 2; :::; n (8)

provided that n is su¢ ciently large (depending on s; k; d; �s+1) but not on
�. For l = 1 the above inequality holds trivially. Suppose that it is true for
1 � l � r. Assuming that it does not hold for l = r + 1, i.e. there exists a
t0, such that for kt0k � n" and j�r+1;3 (t0)j = 2, we have that

2 � sup
I;p

����exp ��cn2"�+H
�
T
(p)
I;r+1; t0

��
=H (Tr+1; t0)

���3
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Substituting out H
�
T
(p)
I;r+1; t0

�
and H (Tr+1; t0) and employing j�r+1;3 (t0)j =

2, we get that, for large n,

2 � sup
I;r

����exp ��cn2"�+ exp �12�0 �tTT 2r+1�� 12�0 �tTT (p)2r+1

�
� 4cn�3=2�" (r + 1) ktk3

�����3
(9)

Since����0 �tTT 2r+1�� �0

�
tTT

(p)2
r+1

���� � c2 ktk2E



Tr+1 � T

(p)
r+1







Tr+1 � T
(p)
r+1





� c ktk2mn�1=2 � n"�1=2; " <

1

2
:

However, for large n, this contradicts equation 9, proving that equation 8 is
true for l = r + 1 and completing its proof. Hence,

j�n (t)j � 2(s+j�j)=3 for every ktk � n"

completing the proof of inequality of the Lemma. Furthermore, notice that
all the employed constants depend on s, the order of the cumulants r, d, and
the order of the derivative � and in any case are independent of �.

Lemma 2.5 Under the assumptions of the previous Lemma, Lemma (3.3)
of Gotze and Hipp [7] holds with constant c and o

�
n
s�2+�

2

�
independent of

�, i.e. for f : Rk ! R such that jf (x)j � M (1 + kxks0) for every x 2 Rk
and M independent of �. Then for � > 0

sup
�2�

����Ef (Sn)� Z fd	n;s

����
� c

�
k; s; �s+1

�
M sup

j�j�k+1+s0
sup
�2�

Z ���D�
h�
Hn (t)� b	n;s (t)� bK �n��t� exp �itT en�i��� dt

+c
�
k; s; �s+1

�
sup
�2�

!
�
g : n��

�
+ o

�
n�

s�2+�
2

�
where

� > 0; g (x) = f (x) = (1 + kxks0) ;

!
�
g : n��

�
=

Z
sup

�
jg (x+ y)� g (x)j : kyk � n��

	
��n (dx) ;

�n = var (Sn)

and bK is a continuous function with compact support independent of �.
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Proof of Lemma 2.5. Following the proof in Gotze and Hipp [7], de�ne
S
=
n = n�1=2

Pn
1 Yj and letting " > 0, to be de�ned later, de�ne

A =

�
sup
�2�

kSnk � n"
�
; B =

�
sup
�2�



S=n

 � n"
�
:

Then employing that (x+ y)n � 2n (xn + yn), n, x, y > 0 we get

sup
�2�

E


Sn � S=n



s0
� c (s)

�
sup
�2�

E kSnks0 1Ac + sup
�2�

E


S=n

s0 1Bc + n"s0 sup

�2�
P
�
Sn 6= S=n

	�
:

Furthermore, due to equation 7 we have that there exists 0 < � independent
of �, such that

sup
�2�

E kSnks0 1Ac

� c
�
s; �s+1

�
o
�
n�(s�2+�)=2

�
+ 2n"s0 sup

�2�
P
�
Sn 6= S=n

	
+ sup

�2�
E kSnks0 1Bc

and consequently,

E


Sn � S=n



s0
� c

�
s; �s+1

��
sup
�2�

E


S=n

s0 1Bc + n"s0 sup

�2�
P
�
Sn 6= S=n

	�
+ o

�
n�(s�2+�)=2

�
:

Now Lemma 2.4 imply that for arbitrary positive integer r we have that

sup�2� supnE



S=n


r <1 and consequently for " such that

0 < " < (s+ 1) �s+1 � (s� 2) =2

-hence independent of �-we get that

E


Sn � S=n



s0 � c
�
s; �s+1

�
o
�
n�(s�2)=2

�
:

This along with the de�nition of f imply that��Ef (Sn)� Ef
�
S=n
��� � c

�
s; �s+1

�
o
�
n�(s�2)=2

�
:

Notice that for

en = O
�
n1=2n�s�s+1

�
= o

�
n�(s�2+�)=2

�
12



which is independent of � and

sup
�2�

����Z f (�; en) d	n;s �
Z
fd	n;s

���� = o
�
n�(s�2+�)=2

�
:

Now from Lemma 11.6 in Bhattacharya and Rao [3], by applying the Sweeting
Smoothing Inequality (Lemma 5 of [14]) and by noting that this inequality
involves constants that depend solely on the properties of g and therefore are
independent of � along with a similar choice of bK we get the result.
We are now ready to prove theorem 2.1.

Proof of Theorem 2.1. Consider the functions f and g as de�ned in
Lemma 2.4. Then, from Lemma 2.4 and Lemma 2.5 and for � = (s� 2 + �) =2
we obtain that����Ef (Sn)� Z fd	n;s

���� � c
�
k; s; �s+1

�
sup
�2�

!
�
g : n�(s�2+�)=2

�
+c
�
k; s; �s+1

�
Mo

�
n�

s�2+�
2

�
Now for f (x) = 1C (x) (1 + kxks0),1 where C 2 BC , and 1C (x) is its indicator
function we have that

sup
y�n�k

j1C (x+ y)� 1C (x)j � 1(@C)n�k (x)

for large enough n (where @ is the boundary operator and the superscript
�n�k denotes the analogous enlargement), hence

sup
�2�

!
�
g : n�(s�2+�)=2

�
= sup

�2�

Z
sup
y

�
jg (x+ y)� g (x)j : kyk � n�(s�2+�)=2

	
��n (dx)

� sup
�2�

Z
1
(@C)n

�(s�2+�)=2 (x) ��n (dx) = sup
�2�

Z
1
�
�1=2
n (@C)n

�(s�2+�)=2 (x) � (dx)

and due to remark R.1 for �� the diagonal matrix with elements consisting

of the inverse of inf�2� lim infn
q
�minn (�), due to the fact that @ and enlarge-

ment commutes with ��, the linear transformation of a convex set is convex
the we have that the last term is less than or equal toZ

1
(@(��C))n

�(s�2+�)=2 (x) � (dx) = o
�
n�(s�2)=2

�
due to Corollary 3.2 of Bhattacharya and Rao [3].

1Notice that in this case M = 1 and therefore independent of the choice of C.
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2.1 Sufficient Conditions For Smoothness
In this paragraph we provide uniform versions of conditions 2.3.(i)-(iii) of
Gotze and Hipp [8] and prove that they imply assumption A.2.SM in the
case that Xj in assumption A.1 is represented as

Xj = g ("j�i : i 2 Z; �) ; j 2 Z (10)

(obviously g in the current representation could be the composition of h (�; �)
with g (�; �) in the language of assumption A.1). Again the proof of su¢ -
ciency traces the arguments in the proof of Lemma 2.3 of Gotze and Hipp
[8], establishing that the analogous bounds can be chosen independent of �.
Again we employ the auxiliary notation of the aforementioned paper as well
as extend to uniform versions the auxiliary results. Hence, for j 2 Z and
y 2 RZ, x 2 R let (y; x)j be the sequence with coordinates8<:

yi; i < j
x; i = j
yi�1 i > j:

Consider the following assumption.

Assumption A.3 Let the following conditions hold:
-EL (Exponential small Locally Lipschitz) There exist K < 1, � > 0
and � > 0, not depending on �, such that for j 2 Z and x1 2 R, x2 2
O (x1; �),2

sup
�2�

E



g �("; x1)j ; ��� g

�
("; x2)

j ; �
�


 � K jx1 � x2j exp (�� jjj)

-CPD (Almost sure continuity of partial derivatives) For j 2 Z there
exists Gj � R, P (Gj) = 1 independent of �, such that for all x0 2 Gj , �,
� > 0 there exists � > 0 independent of � satisfying

P

(
y 2 RZ : 8x 2 R; jx� x0j < �; @

@"0
Xj exists at the point (y; x)

j and

sup�2�

��� @@"0Xj

�
(y; x)j ; �

�
� @

@"0
Xj

�
(y; x0)

j ; �
���� � �

)
� 1��

-NDD (Nondegenerate derivatives on a set of positive probability)
For some distinct l1; :::lk � 0 independent of �,

inf
�2�

det

 1X
j=0

@

@"l�
Xj : � = 1; :::; k

!
6= 0

on a set of positive P -probability independent of �.
2Notice that this is weaker than the condition 2.3.(i) in page 2073 of Gotze and Hipp

[8].

14



The required result is the following.

Lemma 2.6 Under 10, assumption A.3 and if "j admits a positive continu-
ous density, then assumption A.2.SM holds for the sequence (Xj), j 2 Z.

For its proof, we shall need the following lemma which is the uniform
extension of lemma 2.2 of Gotze and Hipp [8].

Lemma 2.7 Let Or � Rk denote an open ball with radius r and let F :
Rk��! Rk denote a measurable function that is injective and continuously
di¤erentiable function on Or w.r.t. the �rst argument for any � 2 �, such
that for constants � > 0 and M < 1 that do not depend on � and for all
x 2 O,

� �
��detF = (x; �)�� �M and



F = (x; �)

 �M:

where F = denotes the aforementioned derivative. Let h denote a density on
Rk satisfying h (x) � �, x 2 Or, and �x � > 0. Then there exists � < 1
depending only on �, �, M and r such that for t 2 Rk with ktk � �,

sup
�2�

����Z exp
�
itTF (x; �)

�
h (x) dx

���� � � (k; �;M; r) :

Proof of Lemma 2.7. By a change of variables we have thatZ
Or
exp

�
itTF (x; �)

�
h (x) dx =

Z
F�(Or)

exp
�
itTu

� h
�
F�1� (u)

���detF = �F�1� (u) ; �
���du:

with F� (Or) = F (Or; �) and F�1� (u) = F�1 (u; �). Now for x 2 O we have
that inf�2�

h(x)

jdetF =(x;�)j �
�
M
and therefore�����

Z
F�(Or)

exp
�
itTu

� h
�
F�1� (u)

���detF = �F�1� (u) ; �
��� � �

M

!
du

����� �
Z
Or
h (x) dx�

Z
F�(Or)

�

M
du:

Fix 1 � j � k and u1; :::; uj�1; uj+1; :::; uk. Then fuj : (u1; :::; uk) 2 F� (Or)g
is an interval with endpoints, say, a (�) < b (�) and�����
Z b(�)

a(�)

exp
�
itTu

�
duj

����� =
�����exp

"
i

kX
m6=j

tmum

#
1

itj
(exp [itjb (�)]� exp [itj (�)])

����� � 2

jtjj
:

Let A (�) = f(u1; :::; uj�1; uj+1; :::; uk) : 9uj 2 R : (u1; :::; uk) 2 F� (Or)g. We
have ����Z

F�(Or)
exp

�
itTu

�
du

���� � 2

jtjj

Z
A(�)

du1:::duj�1duj+1:::duk:
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Since now A (�) is the projection of F� (Or) onto Rk�1 and F� (Or) is con-
tained in a ball of radius Mr, we get that����Z

F�(Or)
exp

�
itTu

�
du

���� � 2

jtjj
(2Mr)k�1 :

Since 1 � j � k was arbitrary, we can �nd � > 0 depending on k, �, M and
r only such that for t 2 Rk and ktk � �,����Z

F�(Or)
exp

�
itTu

�
du

���� � 1

2

Z
F�(Or)

dx:

Hence for these t,����Z exp
�
itTF (x; �)

�
h (x) dx

����
�

Z
Ocr
h (x) dx+

Z
Or
h (x) dx� �

M

Z
F�(Or)

dx+
�

2M

Z
F�(Or)

dx

= 1� �

2M

Z
F�(Or)

dx � 1� �2

2M

Z
Or
dx = 1� �2

2M

�k=2rk

�
�
k
2
+ 1
� = � (k; �;M; r) :

Now for ktk < �, the multivariate version of theorem 1 in Petrov [12], page 10,
yields that for any characteristic function f (t), t 2 Rk, with jf (t)j � c < 1
for ktk � �,

jf (t)j � 1� 1� c2

8�2
ktk2 = � (c; �) for ktk < �

proving the assertion.
We are now ready to prove lemma 13.

Proof of Lemma 2.6. By assumption A.3.NDD we can �nd a number
� > 0 and a set A of sequences y 2 RZ, independent of �, with P (A) > 0
such that for y 2 A the partial derivatives @

@"0
Xj, j 2 Z, are de�ned at y,

and

inf
�2�

det

�����
 1X
j=0

@

@"l�
Xj : � = 1; :::; k

!����� � �:

Let kBk = sup fkBxk : kxk � 1g for any k�k matrix B and let c (k) denote
a universal constant satisfying

jdetB1 � detB2j � c (k)
�
kB1kk�1 + kB2kk�1

�
kB1 �B2k
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for arbitrary k � k matrices B1 and B2. From assumption A.3.EL we get
that

sup
�2�

1X
j=0

E

�



 @

@"0
Xj (y)





 1A (y)� (11)

� sup
�2�

1X
j=0

E

 
sup

y�02O(y0;�);y�0 6=y0

kXj (: : : ; y
�
0; : : :)�Xj (: : : ; y0; : : :)k
jy�0 � y0j

1A (y)

!

� sup
�2�

E (1A (y))K
1X
j=0

exp (�� jjj)

<
2K

1� exp (��) (12)

It follows that there exists a measurable subset A= � A , independent of �,
with P

�
A=
�
> 0 and m0 > 0 such that for y 2 A=,

sup
�2�







1X

j=m0+1

@

@"l�
Xj (y) : � = 1; :::; k






 � �

4C (k;K; �)

where C (k;K; �) = 2C (k) (2K= (1� exp [��]))k. Further estimating the
di¤erence of determinants for all y 2 A= we get

sup
�2�

�����det
 

m0X
j=0

@

@"l�
Xj (y) : � = 1; :::; k

!����� � 3�

4
: (13)

For y 2 RZ and x = (x1; :::; xk) let (y; x) be the sequence, such that for
� = 1; :::; k, x� is inserted at place l� and all other places are �lled with the
components of y :

(y; x)j =

�
xj; if j 2 fl1; :::; lkg ;

yj�i; if i = 1; :::; k and li�1 < j < li+1:

Here l0 = �1 and lk+1 = +1. For x 2 Rk let

A (x) =
�
y 2 RZ : (y; x) 2 A

	
:

Since P (A) > 0, we can �nd x(0) 2 Gl1� :::�Glk such that P
�
A
�
x(0)
��
> 0.

Assumption A.3.CPD implies that for � > 0 there exists a small ball B � Rk
containing x(0) ans a set A== � A= with P

�
A==
�
> 0 such that for y 2 A==
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and x 2 B and for � = 1; :::; k and j = 0; :::;m0, @
@�l�

Xj exists at (y; x) for
all � 2 � and

sup
�2�





 @

@"l�
Xj

��
y; x(0)

�
; �
�
� @

@"l�
Xj ((y; x) ; �)





 � �:

Choosing appropriately small �, we obtain (estimating the change of deter-
minants) from this and equation 13, x 2 B and y 2 A==,

inf
�2�

�����det
 

m0X
j=0

@

@"l�
Xj ((y; x) ; �) : � = 1; :::; k

!����� � �

2
:

This implies that for m � m0 and x 2 B, y 2 A== we have by equation ??
again estimating the change of determinants

inf
�2�

�����det
 

mX
j=0

@

@"l�
Xj ((y; x) ; �) : � = 1; :::; k

!����� � �

4
:

By lemma 2.7 we get that for � > 0 there exists � < 1 depending only on �, �
and B (not on m and �) such that for m > m0 and all y 2 A== and ktk � �,

sup
�2�

�����
Z
B

exp
�
itT (X0 + :::+Xm)

� kY
�=1

h ("l� ) d"l1 :::d"lk

����� � � (�; �; B)

where b is the radius of the ball B. Now the left-hand side is an upper bound
for ��E �exp �itT (X0 + :::+Xm)

�
j"j : jj �mj � r

���
where r = max (l1; :::; lk). This implies

E
��E �exp �itT (X0 + :::+Xm)

�
j"j : jj �mj � r

��� � 1�P �A==�+�P �A==� ;
which proves the lemma.

3 Sequences of Smooth Transformations of Valid Locally
Uniform Edgeworth Expansions

We are now considering the question of whether appropriately smooth trans-
formations of sequences of random elements-with distributions that admit
locally uniform Edgeworth expansions as the one described in 2-admit anal-
ogous expansions. In this paragraph we follow the line of reasoning of Skov-
gaard [13]. We suppose that (Sn (�)) is a sequence of random elements not
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nesessarily of the form described immediately after assumption A.1. Further-
more the distribution of Sn (�) admits a locally uniform Edgeworth expansion
of order s� 2, i.e. there exists some �0 and " > 0 for which equation 2 holds
with 	n;s (�) an Edgeworth distribution (not necessarily the formal one).3

Question Let fn : Rq ! Rp. Find su¢ cient conditions for the validity of

sup
�2�

sup
A2B�c

��P (fn (Sn (�)) 2 A)�	�n;s (�) (A)�� = o
�
n�

s�2
2

�
(14)

where 	�n;s (�) is an Edgeworth distribution of order s� 1 (s � 3) on Rp and
B�
c is the collections of the convex Borel subsets of Rp.

In the example of the following section we will utilize the forthcoming
answer to this in order to establish locally uniform Edgeworth expansions of
statistical functions of interest. We �rst make the following assumption.

Assumption A.4 Let the following conditions hold:

-POL fn (x; �) =
Ps�2

i=0

Ain (�)(xi+1)
ni=2

where Ain : � � Rq
i+1 ! Rp is (i+ 1)-

linear 8� 2 �, xi =

0@x; :::; x| {z }
i�times

1A, A0n (�) = A0 (�), rankA0 (�) = p 8� 2 �,

Ain equicontinuous on �, 8xi+1.
-EEQ The ith polynomial, say, �i (z; �) of 	n;s (�) is equicontinuous on �
8z 2 Rq, for i = 1; : : : ; s� 2, and if � (�) denotes the variance matrix in the
density of 	n;s (�) then it is continuous on � and positive de�nite.

Remark R.2 Obviously assumption A.4.POL implies that p � q while if
	n;s (�) is the formal Edgeworth distribution the required equicontinuity in
A.4.EEQ would follow from the continuity of E (Ki (Sn (�))) on � for i =
1; : : : ; s + 1 and Ki any i-linear real function on Rq

i
, while lemma 2.2.4

provides with su¢ cient conditions for the validity of the eigenvalue con-
dition in A.4.EEQ. Furthermore continuity and compactness imply that
inf�2� �min (A0 (�)) ; inf�2� �min (� (�)) > 0 where �min (�) denotes the small-
est absolute eigenvalue.

The following theorem provides the �rst result of this section.

3For the de�nition of the general form of an Edgeworth distribution see equations (3.7)
and (3.8) of Magdalinos [10].
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Theorem 3.1 Under assumption A.4 there exist an Edgeworth distribution
	�n;s (�) for which equation 14 is valid, with polynomials that satisfy A.4.EEQ.
Furthermore, if K is a m-linear real function on Rp then

sup
�2�

����Z
Rp
K (xm) d	�n;s (�)�

Z
Rq
K ((fn (x))

m) d	n;s (�)

���� = o
�
n
s�2
2

�
In order to prove the theorem we will utilize the following auxiliary results.

Lemma AL.1 Suppose that Sn admits an Edgeworth expansion of order s�
2. Then for any i < j : 1; : : : q, pri;j (Sn) +

�
Sni ; Sni+1 ; : : : ; Snj

�0
admits an

analogous expansion of the same order.

Proof. The density of	n;s (�) is of the form
�
1 +

Xs�2

i=1

1

n
i
2
�i (x; �)

�
'�(�) (x).

For A a convex Borel set in Rj�i+1we have

P
�
pri;j (Sn (�)) 2 A

�
= P

�
Sn (�) 2 pr�1i;j (A)

�
=

Z
R�:::�A�:::R

�
1 +

Xs�2

i=1

1

n
i
2

�i (x; �)

�
'�(�) (x) dx+ o

�
n�

s�2
2

�
=

Z
A

�
1 +

Xs�2

i=1

1

n
i
2

��i (v; �)

�
'I�(�)I0dv + o

�
n�

s�2
2

�
where v = pri;j (x), x = (v; v�), I = (0; Idj�i+1�j�i+1; 0), and ��i (v) =R
Rq�p �i (v; v

�; �)'�(�) (v; v
�) dv� and o

�
n�

s�2
2

�
is independent of A and �.

Lemma AL.2 Suppose that Sn (�) admits a locally uniform Edgeworth ex-
pansion of order s � 2 for which assumption A.4.EEQ holds. Then there
exists a constant C independent of � such that

sup
�2�

P
�
kSn (�)k > C ln1=2 n

�
= o

�
n
s�2
2

�
Proof. Let C =

p
s�1

sup�2�k��1=2(�)k , Hn (C) =
n
x 2 Rq : kxk > C ln1=2 n

o
.

Then

P
�
kSn (�)k > C ln1=2 n

�
=

Z
Hn(C)

�
1 +

Xs�2

i=1

1

n
i
2

�i (x; �)

�
'�(�) (x) dx+o

�
n�

s�2
2

�
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where the last term on the right is independent of �. Now����Z
Hn(C)

�
1 +

Xs�2

i=1

1

n
i
2

�i (x; �)

�
'�(�) (x) dx

����
�

Z
��1=2(�)Hn(C)

�
1 +

Xs�2

i=1

1

n
i
2

sup
�2�

���i ��1=2 (�) z; ����� exp��1
2
kzk2

�
dz

�
Z
Hn(1)

�
1 +

Xs�2

i=1

1

n
i
2

sup
�2�

���i ��1=2 (�) z; ����� exp��1
2
kzk2

�
dz

Assumption A.4.EEQ (see also tha last part of R.2) implies that
sup�2�

���i ��1=2 (�) z; ���� �Xm

i=1
ci kzki for some �nitem and ci i = 1; : : : ;m

independent of �. The result follows from equation (A.8) in the proof of
Lemma 2 in Magdalinos [10].

Lemma AL.3 Let fn be as in assumption A.4.POL and p = q. Then there

exists a function hn : �� Rp ! Rp of the form hn (x; �) =
Ps�2

i=0

Bin (�)(xi+1)
ni=2

where the Bin (�) have the same properties with Ain (�), hn (fn (�; �) ; �) =
idRp (�)+Mn (�; �) where Mn (x; �) is polynomial in x of �nite degree 8� 2 �,
and sup�2� kMn (x; �)k = o

�
n
s�2
2

�
8y 2 Rp.

Proof. Proceed inductively. Let s = 3, and therefore

fn (x; �) = A0 (�)x+
A1n (�) (x

2)

n1=2

and chooseB0 (�) = A�10 (�) andB1n (�) (x; x) = �A�10 (�)A1n (�)
�
A�10 (�)x;A�10 (�)x

�
.

Obviously hn is unique. Then due to the compactness of � the equicontinu-
ity of Ain (�) and the boundness away from zero of A0 (�) unifromly w.r.t. �
the properties described in A.4.POL hold hn. Furthemore

Mn (x; �) = � 1
n
A�10 (�)A1n (�)

�
x;A1n (�)

�
x2
��

� 1
n
A�10 (�)A1n (�)

�
A1n (�)

�
x2
�
; x
�

� 1

n3=2
A�10 (�)A1n (�)

�
A1n (�)

�
x2
�
; A1n (�)

�
x2
��

which due to the previous clearly is polynomial in x of fourth degree 8� 2 �,
and sup�2� kMn (x; �)k = o

�
n
1
2

�
8x 2 Rp. Then suppose that the result

holds for s = k. For s = k + 1 choose B0 (�) = A�10 (�), Bin (�) = B�
in (�) for
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i = 1; : : : ; k � 2, where B�
in (�) is the i

th coe¢ cient of the hn in the previous
step and identify Bk�1n (�) by

Bk�1n (�)
�
(A0 (�)x)

k
�

n(k�1)=2
= �A�10 (�)

Ak�1n (�)
�
xk
�

n(k�1)=2

�
k�2X
i=1

B�
in (�)

�Pk�1
i=0

Ain (�)(xi+1)
ni=2

�i+1
ni=2

�A�10 (�)M�
n (x; �) mod

�
1

nk�1=2

�
where mod

�
1

nk�1=2

�
signi�es that only terms of order O

�
1

nk�1=2

�
are consid-

ered, while terms of lower order have been considered in the previous steps
and terms of higher order are placed in the Mn, while M�

n is the relevant
remainder of the previous step. Notice that due to the properties of A0 (�)
the solution exists and is unique. The attributed properties follow by the
same reasoning as the ones for s = 3.

Remark R.3 In the notation of the proof of lemma AL.2 the previous result
implies that for x 2 Hc

n (C)

hn (fn (x; �) ; �) = x+ o
�
n
s�2
2

�
where the o

�
n
s�2
2

�
is independent of x and �.

We are now ready to prove the aforementioned theorem.
Proof of Theorem 3.1. Assume �rst without loss of generality that p = q,
for if p < q, consider

f �n (�; x) =

�
A0 (�) 0
0 Iq�p

�
+

s�1X
i=1

1

ni=2
A�in (�)

�
xi+1

�
where A�in (�) (x

i+1) =

�
Ain (�) (x

i+1)
0q�p

�
. If f �n (Sn) admits a valid Edge-

worth expansion with the prescribed property, then so does fn (Sn) by lemma
AL.1. It su¢ ces to prove that

sup
�2�

��P (fn (Sn (�)) 2 A)�	�n;s (�) (A)�� = o
�
n�

s�2
2

�
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for an arbitrary Borel set A, due to the fact that any Normal distribution
attributes to the boundary of such a set zero measure, hence then 14 would
follow from Theorem 2.11 (and the subsequent Remark) of Bhattacharya and
Rao [3]. Now

P (fn (Sn; �) 2 A) = P
�
Sn 2 f�1n (A; �)

�
=

Z
f�1n (A;�)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz + o

�
n�

s�2
2

�
uniformly over A 2 BRp and �. Then notice thatZ

f�1n (A;�)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
f�1n (A;�)\Hc

n(C)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz + o

�
n�

s�2
2

�
where the last term is independent of � due to the fact that�����

Z
f�1n (A;�)\Hn(C)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

�����
�

Z
Hn(C)

 
1 +

s�2X
i=1

j�i (z; �)j
ni=2

!
'�(�) (z) dz = o

�
n�

s�2
2

�
as in the proof of lemma AL.2. Now notice that due to A.4.POL and the
compactness of �, if z 2 f�1n (A; �)\Hc

n (C) then fn (z; �) 2 A and kfn (z)k <
C� ln1=2 n for some C� independent of �. Hence, substituting for u = fn (z; �)

we have that due to remark R.3 z = hn (u; �) + o
�
n�

s�2
2

�
where the last

term does not depend on � or z, when z 2 Hc
n (C

�). HenceZ
f�1n (A;�)\Hc

n(C)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
A\Hc

n(C
�)

0@1 + s�2X
i=1

�i

�
hn (u; �) + o

�
n�

s�2
2

�
; �
�

ni=2

1A� (u; �) du

=

Z
A\Hc

n(C
�)

 
1 +

s�2X
i=1

��i (u; �)

ni=2

!
'K(�) (u) du+ o

�
n�

s�2
2

�
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where K (�) = A0 (�)V (�)A0 (�), � (u; �) =
'�(�)

�
hn(u;�)+o

�
n�

s�2
2

��
det
�
A0(�)+O

�
n�

1
2

�� and the

��i s are obtained by expanding and holding terms of the relevant order. Due
to assumptions A.4, A.4 and the de�nition of Bin (�) (x

i+1) s, the ��i s are

equicontinuous in � 8u 2 Rp and the terms in o
�
n�

s�2
2

�
are independent of

�. Finally notice that since by an argument analogous to that of the proof
of lemma AL.2�����

Z
A\Hn(C�)

 
1 +

s�2X
i=1

��i (u; �)

ni=2

!
'K(�) (u) du

�����
�

�����
Z
Hn(C�)

 
1 +

s�2X
i=1

��i (u; �)

ni=2

!
'K(�) (u) du

����� = o
�
n�

s�2
2

�
where the last term is independent of �, we obtain that

P (fn (Sn; �) 2 A) =
Z
A

 
1 +

s�2X
i=1

��i (u; �)

ni=2

!
'K(�) (u) du+ o

�
n�

s�2
2

�
uniformly over �. For the second part of the theorem notice thatZ

Rp
K ((fn (z; �))

m)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
Hc
n(C)

K ((fn (z; �))
m)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

+

Z
Hn(C)

K ((fn (z; �))
m)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

and again due to an analogous argument as in the proof of lemma AL.2, the
fact that K is multilinear and the form of fn in assumption A.4.POL, the
last integral is o

�
n�

s�2
2

�
which is independent of �. Now exactly as in the

previous part for u = fn (z; �)Z
Hc
n(C)

K ((fn (z; �))
m)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
Hc
n(C

�)

K (um)

0@1 + s�2X
i=1

�i

�
hn (u; �) + o

�
n�

s�2
2

�
; �
�

ni=2

1A� (u; �) du
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and the result follows exactly as the previous one, by simply noticing that
(some of) the remainders will also depend on K (um) which is nevertheless
polynomial.
The �nal result of this section, is partially a consequence of the previ-

ous theorem, and can be of convenience for the establishment of valid locally
uniform Edgeworth expansions for estimators that asymptotically satisfy suf-
�ciently smooth �rst order conditions with su¢ ciently high probability.

Theorem 3.2 Suppose that:
-POLFOCMn (�) satis�es 0p�1 =

Ps�2
i=0

1
ni=2

Pi+1
j=0Cijn (�)

�
Mn (�)

j ; Sn (�)
i+1�j

�
+

Rn (�) with probability 1 � o
�
n�

s�2
2

�
independent of � where Cijn : � �

Rqi+1 ! Rp is (i+ 1)-linear 8� 2 �, C00n (�) ; C01n (�) are independent of n
and have rank p 8� 2 �, Cijn are equicontinuous on �, 8xi+1,
-LUE Sn (�) admits a locally uniform Edgeworth expansion that satis�es as-
sumption A.4.EEQ,
-UAT sup�2� P

�
kMn (�)k > C ln1=2 n

�
= o

�
n�

s�2
2

�
for some C > 0 inde-

pendent of �,
-USR sup�2� P (kRn (�)k > 
n) = o

�
n�

s�2
2

�
for some real sequence 
n =

o
�
n�

s�2
2

�
independent of �.

Then Mn (�) admits a locally uniform Edgeworth expansion that satis�es as-
sumption A.4.EEQ.

In order to prove this we need the following result.

Lemma 3.3 Suppose that Sn (�) admits a locally uniform Edgeworth expan-
sion that satis�es A.4.EEQ and that Un (�) is such that

sup
�2�

P (Un (�) = Sn (�) +Rn (�)) = 1� o
�
n�

s�2
2

�
where Rn satis�es condition 3.2.USR. Then Un (�) admits the same locally
uniform Edgeworth expansion.

Proof of Lemma 3.3. Let a = s�2
2
. Notice �rst that

P (Un (�) 2 A)
� P (Un (�) 2 A;Un (�) = Sn (�) +Rn (�)) + P (Un (�) 6= Sn (�) +Rn (�))

� P (Sn (�) +Rn (�) 2 A; kRn (�)k � 
n) + P (kRn (�)k > 
n) + o
�
n�

s�2
2

�
= P (Sn (�) 2 A� 
n) + o

�
n�

s�2
2

�
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where all the remainders in the previous display are independent of �. Now,
as Sn (�) admits a locally uniform Edgeworth expansion, we have that for an
arbitrary Borel set A

P (Sn (�) 2 A� 
n) =

Z
A�
niq

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz + o

�
n�

s�2
2

�
=

Z
(A�
niq)\Hc

n(C)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz + o

�
n�

s�2
2

�
where iq is a q � 1 vector of 1�s, A� 
niq denotes translation by �
niq, and
the last term is independent of � and A (see also the begining of the proof of
theorem 3.1) and Hc

n (C) was de�ned in the proof of lemma AL.2. Now by a
change of variables we have that for large enough nZ

A\(Hc
n(C)+
niq)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
A\(Hc

n(C)+
niq)

 
1 +

s�2X
i=1

�i (z � 
niq; �)

ni=2

!
'�(�) (z � 
niq) dz

. Expanding terms using the mean value theorem, holding terms of the
relevant order due to the fact that A.4.EEQ we obtain that

'�(�) (z � 
niq) = '�(�) (z) + 
n'�(�) (z � 
�niq)
�

�ni

0
q�

�1 (�) iq � i0q�
�1 (�) z

�
�i (z � 
niq; �) = �i (z; �)� 
ni

0
q

@�i (z � 
�n
�iq; �)

@z

where 
�n; 

�
n
� lie between 0q�1,

@�i(z;�)
@z

is also polynomial in z, and there
exists some C� > C such that consequentlyZ

A\(Hc
n(C)+
n)

 
1 +

s�2X
i=1

�i (z � 
niq; �)

ni=2

!
'�(�) (z � 
niq) dz

=

Z
A\(Hc

n(C)+
n)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz +R�n (�)
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where

R�n (�)

�
s�2X
i=1

Z
A\(Hc

n(C)+
n)

j
nj
ni=2

p
q

����@�i (z � 
�n
�iq; �)

@z

����'�(�) (z) dz
+

s�2X
i=1

Z
A\(Hc

n(C)+
n)

j
nj
ni=2

j�i (z; �)j



�ni0q��1 (�) iq � i0q�

�1 (�) z




�'�(�) (z � 
�niq) dz

+

s�2X
i=1

Z
A\(Hc

n(C)+
n)

j
nj
2

ni=2
p
q





@�i (z � 
�n
�iq; �)

@z






�



�ni0q��1 (�) iq � i0q�

�1 (�) z


'�(�) (z � 
�niq) dz

+

Z
A\(Hc

n(C)+
n)

j
nj
p
q



�ni0q��1 (�) iq � i0q�

�1 (�) z




�'�(�) (z � 
�niq) dz

which is less than or equal to

s�2X
i=1

Z
��A\(Hc

n(k��kC)+��
n)

j
nj
ni=2

p
q

�
����@�i (� (�) z � � (�) 
�n�iq; �)@z

����' (z) dz
+

s�2X
i=1

Z
��A\(Hc

n(k��kC)+��
n)

j
nj
ni=2

j�i (� (�) z; �)j

�



�ni0q��1 (�) iq � i0q�

�1 (�) z


' �z � ��1=2 (�) 
�niq� dz

+

s�2X
i=1

Z
��A\(Hc

n(k��kC)+��
n)

j
nj
2

ni=2
p
q





@�i (� (�) z � � (�) 
�n�iq; �)@z






�



�ni0q��1 (�) iq � i0q�

�1=2 (�) z


' �z � ��1=2 (�) 
�niq� dz

+

Z
��A\(Hc

n(k��kC)+��
n)
j
nj

p
q



�ni0q��1 (�) iq � i0q�

�1 (�) z




�'
�
z � ��1=2 (�) 
�niq

�
dz
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�� the diagonal matrix with elements consisting of the inverse of �� =
inf�2�

p
�min� (�) and notice that on Hc

n (k��kC) + ��
n

'
�
z � ��1=2 (�) 
�niq

�
= ' (z) exp

�
z0��1=2 (�) 
�niq

�
exp

�
(
�n)

2 i0q�
�1 (�) iq

�
� ' (z) exp

�
q

��

�
C
�
ln1=2 n

�

�n + (


�
n)
2
��

furthermore due to the properties of � (�) and the fact that the �i and
their derivatives are polynomials there exist positive constants independent
of z and � such that j�i (� (�) z; �)j �

Pqi
j=1 cij kzk

j,



@�i(�(�)z��(�)
�n�iq ;�)@z




 �Pq�i
j=1 c

�
ij

�
kzkj + j
�nj

j
�
, hence we obtain that

jR�n (�)j

�
s�2X
i=1

Xq�i

j=1

Z
Hc
n(C

�)

j
nj
ni=2

p
q
�
c�ij

�
kzkj + j
�nj

j
��

' (z) dz

+
s�2X
i=1

Xqi

j=1

Z
Hc
n(C

�)

j
nj
ni=2

cij kzkj
q

�2�
(j
�nj+ kzk)

� exp
�
q

��

�
C
�
ln1=2 n

�

�n + (


�
n)
2
��

' (z) dz

+
s�2X
i=1

Xq�i

j=1

Z
Hc
n(C

�)

j
nj
2

ni=2
p
q
�
c�ij

�
kzkj + j
�nj

j
��

� q

�2�
(j
�nj+ kzk) exp

�
q

��

�
C
�
ln1=2 n

�

�n + (


�
n)
2
��

' (z) dz

+

Z
Hc
n(C

�)

j
nj
p
q
q

�2�
(j
�nj+ kzk) exp

�
q

��

�
C
�
ln1=2 n

�

�n + (


�
n)
2
��

' (z) dz

for some large enough C� and each of these terms is o
�
n�

s�2
2

�
and inde-

pendent of � due to the properties of 
n and equation (A.8) in the proof of
Lemma 2 in Magdalinos [10] that impliesZ

Hc
n(C

�)

kzkj ' (z) dz = Kj

�
1� o

�
n�

s�2
2

��
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for C� large enough and any j. FinallyZ
A\(Hc

n(C)+
n)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

=

Z
A

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz + o

�
n�

s�2
2

�
where the last term is independent of � due to the fact thatZ

A\(Hc
n(C)+
n)

c

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz

�
Z
Hn(C)

 
1 +

s�2X
i=1

�i (z; �)

ni=2

!
'�(�) (z) dz = o

�
n�

s�2
2

�
and the last term is independent of �, due to the properties of 
n and equation
(A.8) in the proof of Lemma 2 in Magdalinos [10].
Proof of Theorem 3.2. We �rst show that

Mn (�) =
s�2X
i=0

1

ni=2
Ain (�)

�
Sn (�)

i+1
�
+Qn (�)

with probability 1�o
�
n�

s�2
2

�
independent of � with unique Ain (�) satisfying

assumption A.4.POL and Qn (�) satisfying condition 3.2.USR. We proceed

inductively. When s = 3, we have that with probability 1 � o
�
n�

s�2
2

�
independent of �

Mn (�) = �C�100n (�)C01n (�)Sn (�)

� 1

n1=2
C�100n (�)C10n (�)

�
Sn (�)

2�
� 1

n1=2
C�100n (�)C11n (�)

�
�C�100n (�)C01n (�)Sn (�) ; Sn (�)

�
+Qn (�)
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where

Qn (�) =
1

n
C�100n (�)C11n (�)

�
C�100n (�)C10n (�)

�
Sn (�)

2� ; Sn (�)�
+
1

n
C�100n (�)C11n (�)

�
C�100n (�)C11n (�) (Mn (�) ; Sn (�)) ; Sn (�)

�
+
1

n
C�100n (�)C11n (�)

�
C�100n (�)C12n (�)

�
Mn (�)

2� ; Sn (�)�
� 1
n
C�100n (�)C12n (�)

�
C�100n (�)C01n (�)Sn (�) ; C

�1
00n (�)C10n (�)

�
Sn (�)

2��
� 1
n
C�100n (�)C12n (�)

�
C�100n (�)C10n (�)

�
Sn (�)

2� ; C�100n (�)C01n (�)Sn (�)�
� 1
n
C�100n (�)C12n

�
C�100n (�)C01n (�)Sn (�) ; C

�1
00n (�)C11n (�) (Mn (�) ; Sn (�))

�
� 1
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�
C�100n (�)C11n (�) (Mn (�) ; Sn (�)) ; C

�1
00n (�)C01n (�)Sn (�)

�
� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C01n (�)Sn (�) ; C

�1
00n (�)C12n (�)

�
Mn (�)

2��
� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C12n (�)

�
Mn (�)

2� ; C�100n (�)C01n (�)Sn (�)�
� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C10n (�)

�
Sn (�)

2� ; C�100n (�)C11n (�) (Mn (�) ; Sn (�))
�

� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C11n (�) (Mn (�) ; Sn (�)) ; C

�1
00n (�)C10n (�)

�
Sn (�)

2��
� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C10n (�)

�
Sn (�)

2� ; C�100n (�)C12n (�) �Mn (�)
2��

� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C12n (�)

�
Mn (�)

2� ; C�100n (�)C10n (�) �Sn (�)2��
� 1

n3=2
C�100n (�)C12n (�)

�
C�100n (�)C11n (�) (Mn (�) ; Sn (�)) ; C

�1
00n (�)C12n (�)

�
Mn (�)

2��
� 1

n3=2
C�100n (�)C12n (�)

�
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�
Mn (�)

2� ; C�100n (�)C11n (�) (Mn (�) ; Sn (�))
�

�C�100n (�)Rn (�)

this de�nes uniquely A0n (�), and A1n (�) which have the required properties
due to analogous properties of Cijn (�). Furthermore due to the conditions
structuring the theorem, lemma AL.2 and the compactness of � it is easy to
see that there exists a sequence 
0n = o

�
n�

s�2
2

�
such that condition 3.2.USR

holds for Qn (�). Suppose now that this holds for s = k, then for s = k + 1
we obtain that Ain (�) = A�in (�) for i = 0; : : : ; k � 2, where A�in (�) denotes
the analogous term of the previous induction step and A(k�1)n (�) is uniquely
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determined by the O
�

1
n(k�2)=2

�
terms of the following expression

�C�100n (�)
k�3X
i=1

1

ni=2

Xi+1

j=0
Cijn (�)

0B@
0@k�3X

i=0

A�in (�)
�
Sn (�)

i+1
�

ni=2

1Aj

; Sn (�)
i+1�j

1CA
� 1

n(k�2)=2
C�100n (�)

Xi+1

j=0
Cijn (�)

��
�C�100n (�)C01n (�)Sn (�)

�j
; Sn (�)

i+1�j
�

�C�100n (�)Q
�
n (�)

where Q�n (�) denotes the remainder of the previous induction step. Again
A(k�1)n has the required properties due to analogous properties of Cijn (�).
Furthermore Qn is determined by the o

�
1

n(k�2)=2

�
terms of

�C�100n (�)
k�3X
i=1

1

ni=2

Xi+1

j=0
Cijn (�)

0B@
0@k�3X

i=0

A�in (�)
�
Sn (�)

i+1
�

ni=2

1Aj

; Sn (�)
i+1�j

1CA
� 1

n(k�2)=2
C�100n (�)

Xi+1

j=0
Cijn (�)

0B@
0@k�2X

i=0

A�in (�)
�
Sn (�)

i+1
�

ni=2

1Aj

; Sn (�)
i+1�j

1CA
�C�100n (�)Q

�
n (�)

(the largest order of which is O
�

1
n(k�1)=2

�
) and again due to the conditions

structuring the theorem, lemma AL.2 and the compactness of � it is easy
to see that there exists a sequence 
0n = o

�
n�

s�2
2

�
such that condition

3.2.USR holds for Qn (�). In the light of lemma 3.3 the result would follow

if
Ps�2

i=0
1
ni=2

Ain (�)
�
Sn (�)

i+1
�
admits an analogous Edgeworth expansion.

This in turn follows by Theorem 3.1, which applies due to the properties of
the Ain (�) established previously and due to condition 3.2.LUE.
We will make repeated use of this result in the following section.

4 Example
In this section we present a simple example that utilizes the previous results in
order to establish the validity of several M-type (mainly GMM and indirect)
estimators in the context of a GARCH (1; 1) model.
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Assumption A.5 Consider the set of stationary ergodic and covariance sta-
tionary processes de�ned by the recursion

y2j = "2jhj

hj = �1 (1� �2 � �3) +
�
�2z

2
j�1 + �3

�
hj�1

where the ("j) are iid, with E"0 = 0, E"20 = 1, E j"0j2s+2 < +1 the dis-
tribution of "0 admits a positive continuous density and � = (�1; �2; �3)

0 2
� =

h
�
!
; �!

i
�
h
�
�
; ��

i
�
h
�
�
; ��

i
where �

!
; �
�
; �
�
> 0 and for any � 2 �,

E
�
�2 j"0j2 + �3

�s+1
< 1.

This assumption implies that E
�
hs+1j (�)

�
exists and is independent of j

and thereby due to Theorem 3.1 of Bougerol [4] that the recursion de�nes
almost surely unique stationary and ergodic processes represented by

y2j = "2j�1 (1� �2 � �3)

 
1 +

1X
r=0

Qr
p=0

�
�2"

2
j�p�1 + �3

�!

For any � 2 � let Xj (�) =
�
y2j y4j y2j y

2
j�1 y2j y

2
j�2

�0
.

Proposition 1 Under assumption A.5 Sn (�) admits a locally uniform Edge-
worth expansion of order s � 2 over �, with 	n;s (�) the formal Edgeworth
distribution. Moreover the polynomials of the density of 	n;s (�) satisfy as-
sumption A.4.EEQ.

Proof. First notice that a dominated convergence argument along with the
condition E

�
�2 j"0j2 + �3

�s+1
< 1 and the monotonicity of h w.r.t. � in A.5,

imply that E
�
ymj (�)

�
exists and is continuous on � for anym = 1; : : : ; 2s+2.

Therefore sup�2�E kX0 (�)ks+1 < +1 establishing A.2.M. This also implies
that if the formal Edgeworth expansion is valid, the polynomials of its density,
which are equicontinuous functions of these moments and the covariance
matrix would satisfy assumption A.4.EEQ. For the establishment of validity
we have that for Aj =

�
�2"

2
j + �3

�
, 
m =

�
1 +

Pm�1
r=0

Qr
p=0Aj�p�1

�
, ! =

�1 (1� �2 � �3)

E
��y2j � !"2j
m

�� = �1 (�2 + �3) (�2 + �3)
m

� �!
�
�� + ��

� �
�� + ��

�m
Analogously, for any 0 � k� < m

hjhj�k� � !2
m
m�k� = !2Bj;m;k�
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where

Bj;m;k� =
hj
!

1X
r=m�k�

Qr
p=0Aj�k��p�1 +

hj�k�

!

1X
r=m

Qr
p=0Aj�p�1

and therefore due to the inequality of Cauchy-Schwarch, which is applicable
due to the moment existence conditions described before, we have that

E
��y2j y2j�k� � !2"2j"

2
j�k�
m
m�k�

��
= !E

 
"2j�k�hj

1X
r=m�k�

Qr
p=0Aj�k��p�1

!
+ !E

 
"2j�k�hj�k�

1X
r=m

Qr
p=0Aj�p�1

!

� !E1=4
�
"80
�
E1=4

�
h40
� 1X

r=m�k�

1X
r�=m�k�

Qr
p=0E

�
Aj�k��p�1

Qr�

p�=0Aj�k��p��1

�!1=2

+!E1=4
�
"80
�
E1=4

�
h40
� 1X

r=m

1X
r�=m

E
Qr
p=0Aj�p�1

Qr�

p�=0Aj�p��1

!1=2
Now

E
�Qr

p=0Aj�p�1
Qr�

p�=0Aj�p��1

�
=
�
�22E

�
"40
�
+ �23 + 2�2�3

�min(r;r�)
(�2 + �3)

max(r;r�)�min(r;r�)+1

hence the previous expected value is less than or equal to

!E1=4
�
"80
�
E1=4

�
h40
�p

(�2 + �3)

�
 1X
r=m�k�

 �
�22E ("

4
0) + �23 + 2�2�3
�1 + �2

�r 1X
r�=m�k�

(�2 + �3)
r�

!!1=2
+!E1=4

�
"80
�
E1=4

�
h40
�p

(�2 + �3)

�
 1X
r=m

 �
�22E ("

4
0) + �23 + 2�2�3
�2 + �3

�r 1X
r�=m

(�2 + �3)
r�

!!1=2
which in turn is less than or equal to

� �!E
1=4
�
"80
�
sup
�2�

E1=4
�
h40
�s��� + ��

�
1� �max

�

0@ �q
�2�E ("

4
0) + �2� + 2����

�m�k�
+
�q

�2�E ("
4
0) + �2� + 2����

�m
1A

�
2�!E

1=4 ("80) sup�2�E
1=4 (h40)

q�
�� + ��

�
�q

�2�E ("
4
0) + �2� + 2����

�k� p
1� �max

�q
�2�E ("

4
0) + �2� + 2����

�m
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where �max is the maximum of
(�22E("40)+�23+2�2�3)

(�2+�3)
on � which exists and is less

than 1 due to the compactness of � the continuity of this function and the
fact that it is less than 1 for any � 2 �. Finally, for 0 < m < k� and any
k� > 0 we have that

hjhj�k� � !2
m

= !hj�k�

 1X
r=m

Qr
p=0Aj�p+1

!
+ !2
m

 1X
r=0

Qr
p=0Aj�k��p+1

!
and therefore

E
��y2j y2j�k� � !2"2j"

2
j�k�
m

��
� !E

 
"2j�k�hj�k�

 1X
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Qr
p=0Aj�p+1

!!

+!2E
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 1X
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Qr
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� !E1=4
�
"80
�
E1=4

�
h40
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1X
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E
Qr
p=0Aj�p�1

Qr�

p�=0Aj�p��1
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+!E1=4

�
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�
E1=4

�
h40
�
E1=2

�
h20
�

� �!E
1=4
�
"80
�
sup
�2�

E1=4
�
h40
�s��� + ��

�
1� �max

�q
�2�E ("

4
0) + �2� + 2����

�m

�

0BB@1 + sup�2�E
1=2 (h20)r

1��max
(��+��)

�q
�2�E ("

4
0) + �2� + 2����

�m
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� �!E
1=4
�
"80
�
sup
�2�

E1=4
�
h40
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�
1� �max

�q
�2�E ("

4
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1=2 (h20)r
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�2�E ("

4
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1CCCA

These imply that assumption A.2.WD holds. Now
@y2j
@"2j�m

equals�
hj when m = 0

"2j!�2
P1

r=m�1
Qr�fm�1g
p=0

�
�2"

2
j�p�1 + �3

�
when m > 0

(15)
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@y4j
@"2j�m

equals(
2"2jh

2
j when m = 0

2�2!"
4
jhj

�P1
r=m�1

Qr�fm�1g
p=0

�
�2"

2
j�p�1 + �3

��
when m > 0

(16)

and for any k� > 0,
@y2j y

2
j�k�

@"2j�m
equals8>>>>>>><>>>>>>>:

"2j�k�hjhj�k� when m = 0

!"2j"
2
j�k��2

�P1
r=m�1

Qr�fm�1g
p=0

�
�2"

2
j�p�1 + �3

��
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"2jhjhj�k� + !"2j"
2
j�k��2

�P1
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Qr�fk��1g
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�
�2"

2
j�p�1 + �3

��
hj�k� when m = k�

!2"2j"
2
j�k��2

 
hj�k�
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�
�2"

2
j�p�1 + �3

�
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r=m+k��1

Qr�fm�1g
p=0

�
�2"

2
j�k��p�1 + �3

� ! when m > k�

(17)
hence

E

����@y2j@"20

���� �
(

�! when j = 0
�!��
��+��

�
�� + ��

�j
when j > 0

E

����@y4j@"20

����
�

(
2�!

�
1 + �� + ��

�
when j = 0

2���!E ("
4
0) sup�2�E

1=2
�
h2j
�q ��+��

(1��max)M
M j when j > 0

where M =
�
�2�E ("

4
0) + �2� + 2����

�
,

E

����@y2j y2j�k�@"20

����
�

8>>>>><>>>>>:

sup�2�E
�
h0"

2
�k�h�k�

�
when j = 0

!�2E
1=4 ("80) sup�2�E

1=4 (h40)
p
M

j

p
Q
when 0 < j < k�

sup�2�E (hjhj�k�) + �2!��E
1=4 ("80) sup�2�E

1=4 (h40)
p
M

j

p
Q
when j = k�

�2!��E
1=4 ("80) sup�2�E

1=4 (h40)

�p
M

j
+
p
M

j+k�

p
Q

�
when j > k�

where Q =M
�
1�

�
�� + ��

��
(1� �max). Notice that these do not necessar-

ily imply assumption A.2.EL but are su¢ cient for the veri�cation of equation
11. The form of 15-17 imply condition A.2.CPD. Finally notice that 15-17
imply X1

j=0

@y2j
@"20

= h0 +
X1

j=1
"2j
@hj
@"20

(18)
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X1

j=0

@y4j
@"20

= 2"20h0 + 2
X1

j=1
"4jhj

@hj
@"20

(19)

X1

j=0

@y2j y
2
j�1

@"20
= "2�1h0h�1 + "21h1h0 + "21"

2
0

@h1
@"20

h0 (20)

+
X1

j=1
"2j"

2
j�1

�
@hj
@"20

hj�1 +
@hj�1
@"20

hj

�
andX1

j=0

@y2j y
2
j�2

@"20
= "2�2h0h�2 + "22h2h0 + "21"

2
�1
@h1
@"20

h�1 + "22"
2
0

@h2
@"20

h0(21)

+
X1

j=1
"2j"

2
j�2

�
@hj
@"20

hj�2 +
@hj�2
@"20

hj

�
and that the right hand sides of 18-20 are series of polynomial functions
of ("2), hence are linearly dependent i� there exist �i, i = 1; : : : ; 4 that are
independent of j such that the relevant linear combinations of the coe¢ cients
of the terms of the same monomials are zero for every j. A simple inspection
reveals that this is impossible for P almost all ("2) and for all � 2 �. This
in turn implies that the determinant of the matrixX1

j=0

�
@y2j
@"2li

@y4j
@"2li

@y2j y
2
j�1

@"2li

@y2j y
2
j�2

@"2li
, i = 1; : : : ; 4

�
with distinct li where 0 = li for some i is di¤erent from zero for all � 2 �.
This along with the continuity of these four terms on � the continuity of the
determinant and the compactness of � imply that condition A.2.NDD holds.
Finally lemma 2.6 and theorem 2.1 yield the result.
Let

b (�) =

�
�1;

�2 (1� (�2 + �3) �3)

1� 2�2�3 � �23
; �2 + �3

�0
and for some compact B � b (�) de�ne

'n 2 argmin
'2B

1

2





�y2; b�1; b�2b�1
�0
� '





2

where y2 = 1
n

Pn
j=1 y

2
j , b�i = 1

n

Pn
j=1(y2t y2t�i)�(y2)

2

1
n

Pn
j=1(y4t )�(y2)

2 . Furthermore de�ne

�n 2 argmin
�2�

1

2
k'n � b (�)k2
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It is easy to see that due to the joint measurability, continuity and boundness
from below of the criteria, 'n and �n exist (see for example Theorem 2.13
of Molchanov [11]). �n essentially corresponds to the de�nition of the �rst
of the indirect estimators in Gourieroux et. al. [9]. For any compact �0 �
Int (�) we obtain the following proposition.

Proposition 2 Under assumption A.5
p
n ('n � b (�)) and

p
n (�n � �) ad-

mit locally uniform Edgeworth expansions of order s� 2 over �0, the polyno-
mials of the density of which satisfy assumption A.4.EEQ.

Proof. Notice �rst that with probability 1�o
�
n�

s�2
2

�
that does not locally

depend on �, 'n =
�
y2; b�1; c�2c�1�0 since due to proposition 1 and the fact

that f (x) =
�
x1;

x3�x21
x2�x21

;
x4�x21
x2�x21

�
is continuous hence

�
y2; b�1; c�2c�1�0 2 b (�) with

probability 1 � o
�
n�

s�2
2

�
that does not locally depend on �. Hence due to

theorem 3.3 the �rst result would follow if
p
n

��
y2; b�1; c�2c�1�0 � b (�)

�
admits

a locally uniform Edgeworth expansion of order s�2 over �0 (in the notation

of the theorem Sn =
p
n

��
y2; b�1; c�2c�1�0 � b (�)

�
and Rn is zero). A Taylor

expansion of f -which is independent of �- around E (X0 (�)) of order s � 1
implies that (Sn is as in proposition 1)

p
n

��
y2; b�1; b�2b�1

�0
� b (�)

�
=
Xs�2

i=0

1

ni=2
D(i+1)f (E (X0 (�))) (Sn (�))

i+1+Rn (�)

where

Rn (�) =
1

n(s�2)=2
�
D(s�1)f

�
R+n (�)

�
(Sn (�))

s�1 �D(s�1)f (E (X0 (�))) (Sn (�))
s�1�

R+n (�) lies between
1
n

Pn
j=1Xj (�) andE (X0 (�)) with probability 1�o

�
n�

s�2
2

�
that does not depend on �. Due to the continuity ofD(s�1)f on some compact
neighborhood of E (X0 (�)) we have that

kRn (�)k �
kR+n (�)k kSn (�)k

s�1

n(s�2)=2

Hence the de�nition of R+n (�), along with proposition 1, lemma AL.2, and
theorem 3.3 imply that the result will hold if

Ps�2
i=0

1
ni=2

D(i+1)f (E (X0 (�))) (Sn (�))
i+1

admits the relevant Edgeworth expansion. But this holds due to the fact that
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Df (E (X0 (�))) has rank 3 for any � hence assumption A.3.POL is satis�ed,
while assumption A.3.EEQ is satis�ed due to proposition 1, hence theorem
3.1 is applicable. For the second case initially observe that due to the �rst
part, for some �� =

h
��
!
; ��!

i
�
h
��
�
; ���

i
�
h
��
�
; ���

i
where 0 < ��

m
< �

m
; ��m >

�m for m = !; �; �, such that Int (�) � �� � �0

sup
�2O(�0;�)

P
�
'n (�) 2 O (�0; ��)

�
= 1� o

�
n�

s�2
2

�
and it is easy to see that @b

@�0 has full rank for any � in O (�0; �
�), hence

with probability 1�o
�
n�

s�2
2

�
that does not locally depend on �, �n satis�es

'n = b (�n). The mean value theorem along with the constant full rank and
continuity of @b

@�0 on �
0 imply that for some c > 0 independent of �

sup
�2O(�0;�)

P
�p

n k�n � �k � c
p
n k'n � b (�)k

�
= 1� o

�
n�

s�2
2

�
which along with the result of the �rst part and lemma AL.2 imply that for
some C� > 0 independent of �

sup
�2O(�0;�)

P
�p

n k�n � �k > C� ln1=2 n
�
= o

�
n�

s�2
2

�
(22)

A Taylor expansion of b (�n) around b (�) of order s � 1 implies that (Sn is
as in proposition 1)

03�1 =
p
n ('n � b (�)) +

p
n
Xs�2

i=0

1

ni=2
D(i+1)b (�)

�p
n (�n � �)

�i+1
+Rn (�)

where

Rn (�) =
1

n(s�2)=2

�
D(s�1)b

�
�+n
� �p

n (�n � �)
�s�1 �D(s�1)b (�)

�p
n (�n � �)

�s�1�
�+n lies between �n and � with probability 1�o

�
n�

s�2
2

�
that does not depend

on �. Due to the continuity of D(s�1)b on some compact neighborhood of �
we have that

kRn (�)k �


�+n � �



 kpn (�n � �)ks�1

n(s�2)=2

Hence the de�nition of �+n , along with proposition 2, equation 22, and theo-
rem 3.3 imply that the result will hold if condition POLFOC holds since in
this case theorem 3.2 is applicable. But this holds due to the constant full
rank of the Jacobian of b.
For the �nal part of this section we utilize the following assumption.
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Assumption A.6 s � 5 and "0 s N (0; 1).

Remember that 'n and �n depend on Xi which in turn depends on �.
When needed this dependence will be expicitely denoted. De�ne

'�n 2 argmin
�2�

1

2
k'n � E ('n (�))k

2

and
��n 2 argmin

�2�

1

2
k�n � E (�n (�))k2

These correspond to the de�nition of the second of the indirect estimators in
Gourieroux et. al. [9]. The boundness of B and � imply that the relevant
expectations exist for any �. The P almost everywhere continuity of Xi

w.r.t. � along with the de�nitions of 'n and �n and the boundness of B and
� ensure via the dominated convergence theorem that the expectations are
also continuous and this along with joint measurability and the boundness
from below of the criteria imply again the existence of '�n and �

�
n. Similarly

to the previous case we obtain the following proposition.

Proposition 3 Suppose that
p
n ('n � b (�)) and

p
n (�n � �) admit locally

uniform Edgeworth expansions of order s� 2 over �0 the polynomials of the
densities of which satisfy assumption A.4.EEQ and A.6 holds. Then

p
n ('�n � �)

and
p
n (��n � �) admit locally uniform Edgeworth expansions of order s � 3

over �00 for any compact �00 � �0.

For the proof of the previous proposition we use the following auxiliary
results. In the following lemma mn (�) denotes a generic random element
admitting values in a bounded subset of some Euclidean space.

Lemma 4.1 Suppose that
p
nmn (�) admits a locally uniform Edgeworth ex-

pansion of order s�2 over �0, the polynomials of the density of which satisfy
assumption A.4.EEQ. Then

p
n (mn (�)� Emn (�)) admits a locally uni-

form Edgeworth expansion of order s � 3 over O (�0; �), the polynomials of
the density of which satisfy assumption A.4.EEQ.

Proof. Due to Lemma 3.1 of Arvanitis and Demos [1] we have that

sup
�2�0

�����pnE�mn �
Z
R
z

 
1 +

s�3X
i=1

�i (z; �)

n(i+1)=2

!
'V (�) (z) dz

�����
= sup

�2�0

����pnE�mn �
Xs�3

i=1

I
V
(ki (z; �))

ni=2

���� = o
�
n�

s�3
2

�
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where
�
1 +

Ps�3
i=1

�i(z;�)

ni=2

�
'V (�) (z) denotes the density of the Edgeworth dis-

tribution of proposition 2 truncated up to the O
�
n�

s�3
2

�
order, i.e. of the

(obviously) valid locally uniform Edgeworth expansion of order s� 3, given
the one in 2, ki (z; �) = z�i (z; �) and IV (ki (z; �)) =

R
R ki (z; �)'V (�) (z) dz.

Using the fact that the �i�s satisfy assumption A.4.EEQ it is easy to see that
so do the I

V
(ki (z; �)). Now for an arbitrary Borel set A

P
�p

n (mn (�)� Emn (�)) 2 A
�

= P

�p
nmn (�) 2 A+

Xs�3

i=1

I
V
(ki (z; �))

ni=2
+ o

�
n�

s�3
2

��

=

Z
A\Hc

n(C)

0@1 + s�3X
i=1

�i

�
z +

Ps�3
i=1

I
V
(ki(z;�))

ni=2
+ o

�
n�

s�3
2

�
; �
�

ni=2

1A
�'V (�)

�
z +

Xs�3

i=1

I
V
(ki (z; �))

ni=2
+ o

�
n�

s�3
2

��
dz + o

�
n�

s�3
2

�
where Hc

n (C
�) analogously to the relevant term in the proof of theorem 3.1.

Expanding and holding terms of relevant order, by noticing that the �i are
polynomial in z, and that the o

�
n�

s�2
2

�
are independent of � we obtain the

needed result.
The second auxiliary result is the only one making use of assumption A.6.

Lemma 4.2 Suppose that
p
n ('n � b (�)) and

p
n (�n � �) admit locally uni-

form Edgeworth expansions of order s�2 over �0 the polynomials of the den-
sities of which satisfy assumption A.4.EEQ and A.6 holds. Then E ('n (�))
and E (�n (�)) are two times di¤erentiable on �0 and for any � 2 �0 and
any sequence �n 6= � with values in �0 such that k�n � �k � C ln1=2 n

n1=2
for

C > 0, i = 1; 2



@Min (�n)

@�0 �Ki (�)



 = o (1) where M1n (�) = E ('n (�)),

M2n (�) = E (�n (�)), K1 =
@b
@�0 , K2 = idR3.

Proof. Consider �rst the case of E ('n (�)). Let � ("0) the smallest sub
�-algebra of F w.r.t. the "0 ; "�1; : : : are measurable. We have that

E ('n (�)) = E (E ('n (�) =� ("0)))

Now notice that

E ('n (�) =� ("0)) =

Z
Rn
'n

1q
(2�)n

Qn
j=1 hi (�)

exp

�
�1
2

Xn

i=1

y2j (�)

hj (�)

�
dz
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and the di¤erentiability result would follow via the dominated convergence
theorem if

E

�
sup
�2�0

ksn (�)k
�
and E

�
sup
�2�0

kHn (�)k
�

are �nite where sn (�) +
Pn

j=1

�
"2j � 1

�
1

hj(�)

@hj(�)

@�
,Hn (�) +
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�
"2j � 1

�
1

hj(�)

@2hj(�)

@�@�0 �Pn
j=1

�
2"2j � 1

�
1

h2j (�)

@hj(�)

@�

@hj(�)

@�0 , sn (�) =
1
n
sn (�), Hn (�) =

1
n
Hn (�). First no-

tice that hj (�) � �
!

�
1� �� � ��

�
+ c� and due to the fact that
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2
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2
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�
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2
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hence
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�
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and for �� =

�
��!; �

�
�
; ��
�

�0
it is easy to see that
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Furthermore, since
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we have that
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and
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4 < +1
Next notice that for any � in �0 any i = 1; : : : ; 3, and any sequence �n as
described above we have that



@E ('n (�n))@�i

� @b (�)

@�i
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@2E ('n (��))@�i@�
0
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Then lemma 2.3 of Arvanitis and Demos [1] implies that due to the behavior
of �n the last term on the right hand side of the last display is o (1). Hence

the result would follow if sup��2�00



@2E('n(��))@�i@�

0




 = o
� p

n

ln1=2 n

�
. The previous

along with an application of the Cauchy-Schwarz and the triangle inequalities
imply that for any i

sup
�2�0





@2E ('n (�))@�i@�
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�
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E1=2 kHn (�)� EHn (�)k2
�

Furthermore, due to assumed Edgeworth approximation for
p
n ('n (�)� �),

and the fact that s � 5 lemma 3.1 of Arvanitis and Demos [1] along with

theorem 3.1 imply that sup�2�0 E
1=2 k('n � b (�))k2 = O

�
1p
n

�
. Hence the

result would follow if

sup
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From the proof of Lemma A.1 of Corradi and Inglesias [5], we can prove thatp
n (S�n (�)� E (S�n (�))), where S

�
n contains stacked the elements of sn and

Hn admits a locally uniform Edgeworth expansion of order s� 4 over �0 by
establishing the conditions A.2.M-WD and A.3.EL-CPD through the provi-
sion of bounds independent of � using the compactness of �0 and condition
A.3.NDD using the result of the referenced proof, the P almost everywhere
continuity of the elements of S�n (�) on �

0, the continuity of det and the com-
pactness of �0. Then the remark immediately after the proof of lemma 3.1
of Arvanitis and Demos [1] implies that

sup
�2�0

E


nsn (�) s0n (�) + EHn (�)



2 = O (1)

sup
�2�0

E


Hn (�)� EHn (�)



2 = O

�
1

n

�
which establish the needed bounds. The result about E (�n (�)) is derived
analogously.
We are now ready to prove the main proposition.

Proof. Notice �rst that uniform consistency of 'n to b (�) along with the
boundeness of � imply by uniform integrability that

sup
�2�

jE�'n � b (�)j = o (1) (23)

hence for any " > 0

sup
��2�
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�
sup
�2�
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��2�
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2

�
due to the analogous consistency of 'n. Hence

sup
��2�

P ('�n 2 O (��; ") \�) = 1� o
�
n�

s�2
2

�
for any " > 0. Then from lemma 4.2 and the proofs of lemma 2 and lemma
2.4 of Arvanitis and Demos [1] we obtain that

sup
��2�00

P
�p

n j'�n � �j > C ln1=2 n
�
= o

�
n�

s�2
2

�
(24)

for some appropriate C > 0. Now by recursive examination it is easy to
see that Ehm0 (�) is s times continuously di¤erentiable for any � in �

00 for

43



all m = 1; : : : ; s + 1. This along the analogous di¤erentiability of f in the
proof of proposition 2 imply that the �i there are also s times continuously
di¤erentiable for any � in �00 for any z 2 R. Then dominated convergence
implies the same for I

V
(ki (z; �)) for all i = 1; : : : ; s + 2. Then lemma 2.3

of Arvanitis and Demos [1] implies that for any stochastic sequence e�n for
which

sup
�2�00

P
�p

n
���e�n � �

��� > C ln1=2 n
�

then

sup
�2�00
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�
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n
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= o
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2

�
where
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��p
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and 
n = o (n�a) independent of �. This along with lemma 4.2 imply that
@E'n('

�
n)

@�
converges to @b(�)

@�0 for any � in �00 with probability 1 � o
�
n�

s�2
2

�
independent of �, hence with the same probability '�n satis�es 'n = E'�n'n.

Hence with probability 1� o
�
n�

s�2
2

�
independent of �, '�n satis�es

0 =
p
n ('n � E�'

�
n) + An (�) +Rn (�)

and the result follows from 24, proposition 4.1, lemma AL.2 and theorem
3.2. The case of ��n follows in complete analogy to the previous by sim-
ply replacing in the previous proof any invocation to f with b�1 (') =�
'1;

1�'23�
q
(1�(2'2�'3)2)(1�'23)
2('2�'3)

;
�(1�2'2'3+'23)+

q
(1�(2'2�'3)2)(1�'23)

2('2�'3)

�
and of b

with the identity.

Remark R.4 Notice that ��n can be shown to be locally uniformly second
order unbiased (i.e. sup�2�00 kE���n � �k = o (n�1)) something that is not the
case for �n or '�n, even though the three estimators posess the same second
order MSE uniformly over �00 (see Arvanitis and Demos [1] Corollary 2 and
Lemma 3.6).

5 Conclusions
We have established su¢ cient conditions for the existence of localy uniform
Edgeworth expansions under weak dependence and/or smooth transforma-
tions. These extend analogous pointwise results in the relevant literature
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and can be applied for the establishment of high order asymptotic properties
of estimators arising in the context of eligible stochastic processes. Special
cases are M-estimators de�ned by the expectation of auxiliary ones. In these
cases the results enable the polynomial approximation of the equations that
are asymptoticaly satis�ed by the estimators without the use of higher or-
der derivatives, something that avoids the establishment of issues such as
their rates of convergence. The interest on these estimators lies on the fact
that under appropriate conditions they can possess desirable higher order
properties. A question for future research concerns the issue of establishing
Edgeworth type expansions (see Magdalinos [10]) when � lies in the boundary
of the parameter space.
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