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Abstract

Indirect estimators usually emerge from two-step optimization proce-
dures. Each step in such a procedure may induce complexities in the
asymptotic theory of the estimator. In this note we provide with a simple
example in which the one defined by the inversion of the binding func-
tion has a "discontinuous" limit theory even in cases where the auxiliary
estimator does not. This example lives in the framework of estimation of
the MA (1) parameter. The "discontinuities" involve the dependence of
the rate of convergence on the parameter, the non continuity of the limit
distribution w.r.t. the parameter and the estimator’s non regularity.
KEYWORDS: Indirect estimator, binding function, indirect identifica-

tion, MA (1) process, multiplicative structure, martingale difference CLT,
CLT to stochastic integrals, sequence of local alternatives, rate of con-
vergence dependent on the parameter, discontinuous weak limits, non
regularity.

1 Introduction
Indirect estimators usually emerge from two-step optimization procedures. They
were formally introduced by Gourieroux, Monfort and Renault [4]. They are de-
fined as (potentially measurable selections of approximate) minimizers of criteria
(inversion criterion) that are functions of an auxiliary estimator (denoted by βn),
itself derived as an extremum estimator. The latter minimizes a criterion function
(auxiliary criterion), that reflects (part of) the structure of a possibly misspeci-
fied auxiliary model. The inversion criterion, depends on a function connecting
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the underlying statistical models and termed as the binding function. Minimiza-
tion of the inversion criterion, which usually has the form of a stochastic norm,
essentially inverts the binding function or some appropriate approximation.
Each step of any such procedure may induce complexities in the asymptotic

theory of the indirect estimator. In this note we provide with a simple example
in which the indirect estimator defined by the inversion of the binding function
has a rate of convergence that depends on the parameter and a "discontinuous"
limit theory due to the properties of the binding function, even in cases where
the auxiliary estimator does not. This example lives in the framework of esti-
mation of the MA (1) parameter when a set of AR (1) processes is considered
as the auxiliary and βn is simply the OLSE. We derive the relevant theory by
considering limits w.r.t. sequences of local alternatives to the parameter of inter-
est. In this respect we also manage to illustrate the dependence of limits on the
choice of these sequences. The "discontinuities" of the limit theory involve the
dependence of the convergence rate on the parameter, the non continuity of the
limit distribution w.r.t. the parameter,1 and the non regularity of the indirect
estimator at hand.2

In the following section we define the model and derive some initial weak
limits for useful sequences of random elements. We assume multiplicativity for
the structuring sequence of the MA (1) process. This enables a plethora of
specifications. By considering two illustrative cases we manage to obtain limits to
useful random elements that either follow the Normal distribution or are vectors
of stochastic integrals. In section three we define the auxiliary estimator and
derive its

√
n convergence to the binding function in each of these cases. In

both we obtain continuous weak limits to Normal distributions or to functions of
the aforementioned integrals and regularity.
The properties of the binding function imply that indirect identification is

possible only if the parameter space is a subset of any one of the two elements
of a particular covering of the real numbers. The intersection of these two is the
set {−1, 1} which constitutes the boundary of non-invertibility and additionally
in this framework, the boundary of indirect identification for the particular model.
In section four, we define the indirect estimator by considering as parameter space
any of the previous sets and derive its relevant weak limit3 w.r.t. local alterna-
tives for any element of the parameter space. These reveal the aforementioned

1This concept of continuity is considered w.r.t. the weak topology on the relevant set of
probability measures and the topology of the underlying parameter space (which in our case is
Euclidean).

2For a definition of regularity (restricted in cases where the rate of convergence is
√
n) see

van der Vaart [11], e.g. page 115.
3By abuse of terminology we refer to the weak limit of a sequence of random elements

instead to that of the sequence of the relevant distributions.
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discontinuities when the parameter of interest lies on (or appropriately converges
to an element of) the boundary of indirect identification.

2 The Model and Some Initial Limit Theory
Let (Ω,F , P ) denote a complete probability space and (Ft)t∈Z a filtration of
subalgebras. The symbol  denotes convergence in distribution under P . Con-
sider (zt)t∈Z a sequence of iid real valued random variables defined on Ω such
that Ez2

0 = 1. Let also (vt)t∈Z denote a sequence of random variables adopted
to (Ft)t∈Z. For an arbitrary real number θ define the MA (1) process ((yt)t∈Z)
by

yt = εt + θεt−1, (1)

εt = ztvt, t ∈ Z.

The multiplicative structure in the second equation of (1) encompasses a
variety of structuring sequences ((zt)t∈Z , (vt)t∈Z) for the MA (1) process. Each
of the following mutually exclusive assumptions describes potential properties
for these. They are solely used here as merely illustrative and obviously non
exhaustive cases. In both we will henceforth assume that Ez0 = 0 and that
zt is independent of Ft and Ft = σ (vt, vt−1, . . .) for any t ∈ Z. The first
assumption restricts the properties of (vt)t∈Z and requires the existence of certain
joint moments, so that the CLT for stationary, ergodic, finite variance martingale
difference sequences is applicable.

Assumption A.1 (vt)t∈Z is stationary and ergodic. Moreover σ
2 + E (v2

0) <
+∞, E

(
z2
−1v

2
−1v

2
0

)
< +∞, E

(
z2
−2v

2
−2v

2
0

)
< +∞ and E (|z−1z−2v−1v−2| v2

0) <
+∞.

This enables inter alia a plethora of conditionally heteroskedastic specifica-
tions for the white noise process (εt)t∈Z. For example v

2
t could be specified as

the conditional variance of any of the GARCH-type or stochastic volatility pro-
cesses for which the stationarity, ergodicity and the moment conditions hold.4

The second assumption allows for the use of CLT to stochastic integrals via the
characterization of the (vt)t∈Z sequence as a random walk "killed" before t = 1.
In this respect we allow the conditional (adapted to (Ft)t∈Z) volatility to be a
non stationary process.

4For a very simple (and restricted) example let v2t satisfy the GARCH (1, 1) recurrence
equation, Ez40 < +∞ and E

(
az20 + β

)2
< 1 where a denotes the ARCH and β the GARCH

parameter respectively.
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Assumption A.2 vt = 0 for all t ≤ 0. Moreover vt = vt−1 + ut for all t > 0
where the sequence (ut)t∈Z has zero means, and for r > 2 is Lr uniformly (w.r.t.
t) bounded and L2−NED of size −1

2
on an a-mixing process of size − r

r−2
. More-

over for Ut = (ut, ut−1, ut−2), 1
n
E (
∑n

t=1 U
′
tUt) → Ω which is positive definite.

Finally, zt is independent from vs for any t, s ≥ 0 and moreover E (|z0|p) < +∞
for some p > 2.

Given these the following lemma provides with well known results concerning
the weak limits of random elements that affect the asymptotic theory of the
estimators to be examined in the following sections.

Lemma 2.1 a. Under assumption A.1

1

n

∑n

t=1
ε2
t  σ2, and

1√
n

∑n

t=1

(
εtεt−1

εtεt−2

)
 N (02×1, V )

for the symmetric V =

(
E
(
z2
−1v

2
−1v

2
0

)
E (z−1z−2v−1v−2v

2
0)

· E
(
z2
−2v

2
−2v

2
0

) )
. b. Under

assumption A.2

A−1
n

∑n

t=1

 εtεt−1

εtεt−2

ε2
t

 

∫ 1

0
B1 (s)B2 (s) dB∗2 (s)∫ 1

0
B1 (s)B3 (s) dB∗3 (s)∫ 1

0
B2

1 (s) ds


where An = diag

(
n3/2, n3/2, n2

)
and B = (B1, B2, B3), B∗= (B∗1 , B

∗
2 , B

∗
3) de-

note mutually independent vector Brownian motions defined on [0, 1] with co-
variance matrices Ωs and id3×3 s respectively for any s ∈ [0, 1].

Proof. a. Under assumption A.1 (εt)t∈Z, (εtεt−1)t∈Z, (εtεt−2)t∈Z are sta-
tionary ergodic (see Proposition 2.1.1 of [10]). The first result follows from
Birkhoff’s LLN since Eε2

0 = σ2. Furthermore for any non zero (λ1, λ2) ∈ R2,
(λ1εtεt−1 + λ2εtεt−2)t∈Z is a stationary ergodic martingale difference sequence
with variance λ2

1E
(
z2
−1v

2
−1v

2
0

)
+ λ2

2E
(
z2
−2v

2
−2v

2
0

)
+ 2λ1λ2E (z−1z−2v−1v−2v

2
0).

Hence the homonymous CLT is applicable (see for example the more general
Theorem 24.3 of Davidson [3]). Then the result follows by the Cramer-Wold
device (see Theorem 25.5 of Davidson [3]). b. First notice that due to the
assumed behavior of (zt)t∈Z, assumption A.2 and Corollary 29.19 of Davidson
[3] we have for xn (s) + n−1/2

∑[ns]
t=1 (zt, ztzt−1, ztzt−2, Ut)

′, s ∈ [0, 1], that

4



x∗n  (B∗,B) in D ([0, 1] ,R6) where [·] denotes the integer part function.5
Let 〈·〉 denote quadratic variation and notice that A−1

n

∑[ns]
t=1 (εtεt−1, εtεt−2, ε

2
t )
′

can be expressed as∫ s

0

(
Nn (s)N1,n (s) dN∗1,n (s) , Nn (s)N2,n (s) dN∗2,n (s) , (Nn (s))2 d 〈N∗n〉 (s)

)′
forNn (s) =

∑[ns]
t=1

ut√
n
,Ni,n (s) =

∑[ns]
t=1

ut−i√
n
,N∗n (s) = z0√

n
+
∑[ns]

t=0
zt√
n
,N∗i,n (s) =

z0z−i√
n

+
∑[ns]

t=1
ztzt−i√

n
for i = 1, 2 which define semimartingales. Due to Theorem 1

of Protter [7] and the integration by parts formula for the Ito’s integral (see the
proof of Corollary (Integration by Parts) of Protter [7]) the processes NnN1,n,
NnN2,n, N2

n, 〈N∗n〉 and any linear combination of those and the previous are
also semimartingales. Consider µ, λ non zero elements of R3. The previous limit
result and the continuous mapping theorem imply that(

λ1NnN1,n + λ2NnN2,n + λ3 (Nn)2 , µ1N
∗
1,n + µ2N

∗
2,n + µ3 〈N∗n〉

)
 

(
λ1B1B2 + λ2B1B3 + λ3B

2
1 , µ1B

∗
2 + µ2B

∗
3 + µ3t

)
in D ([0, 1] ,R2). Furthermore for the process µ1N

∗
1,n+µ2N

∗
2,n+µ3 〈N∗n〉 we have

that

E sup
r≤s

∣∣µ1N
∗
1,n (r) + µ2N

∗
2,n (r) + µ3 〈N∗n〉 (r)

∣∣
≤ |µ1|E sup

r≤s

∣∣N∗1,n (r)
∣∣+ |µ2|E sup

r≤s

∣∣N∗2,n (r)
∣∣+ |µ3|E sup

r≤s
〈N∗n〉 (r) .

By noticing that due to the definition of (zt)t∈Z, and assumption A.2 the pro-
cesses N∗1,n,N

∗
2,n and N

∗
n are square integrable martingales and via remark 3.4 of

Ibragimov and Phillips [6] and Jensen’s inequality there exist constants indepen-
dent of n that bound from above each of the two first terms in the sum of the
right hand side of the previous display. For the last one we simply have

E sup
r≤s
〈N∗n〉 (r) = E sup

r≤s
n−1

∑[nr]

t=0
z2
t ≤ E sup

r≤s
n−1

∑n

t=0
z2
t ≤ 2.

This implies that

sup
n
E

∣∣∣∣sup
r≤s

∆
(
µ1N

∗
1,n (r) + µ2N

∗
2,n (r) + µ3 〈N∗n〉 (r)

)∣∣∣∣ < +∞

which in turn means that the uniform tightness condition in Proposition 3.2 (a)
of Jakubowski, Memin and Pages [5] follows for the integrator semimartingale

5Remember that D ([0, 1] ,Rm) denotes the set of cadlag functions [0, 1] → Rm equiped
with the Skorokhod topology. When m = 1 it is abbreviated as D ([0, 1]).
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sequence
(
µ1N

∗
1,n + µ2N

∗
2,n + µ3 〈N∗n〉

)
n∈N. Then Theorem 2.6 of Jakubowski,

Memin and Pages [5] implies that(
Hn, Sn,

∫ ·
0

HndSn

)
 
(
H,S,

∫ ·
0

HdS

)
in D ([0, 1] ,R3) where Hn = λ′Nn with Nn =

(
NnN1,n, NnN2,n, (Nn)2)′, Sn =

µ′Sn with Sn =
(
N∗1,n, N

∗
2,n, 〈N∗n〉

)
and H = λ′N with N = (B1B2, B1B3, B

2
1) ,

S = µ′S with S = (B∗2 , B
∗
3 , 〈B∗1〉). Then due to the fact that∫ ·

0

HndSn =

∫ ·
0

(λ⊗ µ)′ vec (NndS
′
n)

the Cramer-Wold theorem implies that
∫ ·

0
NndS

′
n  

∫ ·
0
NdS′ and the result

follows by the continuous mapping theorem.

3 Limit Theory for the Auxiliary Estimator under Local
Alternatives

Let (ηn)n∈N denote a real sequence for which ηn → +∞ and for any θ ∈ R
let θη,c = θ + c

ηn
for some c ∈ R. Let  

θη,c
denote weak convergence under

the sequence of measures induced by the stochastic process defined when θ is
replaced by θη,c in (1). Consider the first order sample autocorrelation statistic6

βn =

∑n
t=1 ytyt−1∑n
t=1 y

2
t−1

Notice that in the scope of assumption A.1 or A.2 due to lemma 2.1 βn is well
defined with P probability that converges to 1. βn represents the OLS estimator
in the scope of the statistical model comprised of the AR (1) processes recursively
built on the (εt)t∈Z sequence. Hence it corresponds to the auxiliary estimator
of any indirect inference procedure for the estimation of θ, based on the AR (1)
auxiliary model and the least squares criterion. In this paragraph we are interested
in the asymptotic behavior of βn under sequences of local alternatives given our
assumption framework. We readily obtain the following result establishing the
continuous limit theory for the auxiliary estimator. This also establishes that

6Since βn is a function of θ we use the notation βn (θ) → · or βn →
θ
· interchangeably

where → denotes the underlying limiting mode.
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under either assumption A.1 or assumption A.2 βn  
θη,c

b (θ) = θ
1+θ2

.7 The latter

is the binding function in this framework. Given our structure it corresponds to a
parametric representation of an underlying (multi-) function defined on the set of
the probability measures (statistical model) described by the MA (1) processes
and to the analogous set (auxiliary model) described by the AR (1) processes.

Lemma 3.1 In both the considered cases

√
n

(
βn −

θη,c

1 + θ2
η,c

)
 
θη,c

zθ

where: a. under assumption A.1

zθ v N (0, vθ)

and vθ =
(1−θ2+θ4)

2
E(z2−1v2−1v20)+θ2(1+θ2)

2
E(z2−2v2−2v20)+2θ(1−θ2+θ4)(1+θ2)E(z−1z−2v−1v−2v20)

(1+θ2)
2
σ2

,

and b. under assumption A.2

zθ =

(
1− θ2 + θ4

) ∫ 1

0
B1 (s)B2 (s) dB∗2 (s) + θ

(
1 + θ2

) ∫ 1

0
B1 (s)B3 (s) dB∗3 (s)(

1 + θ2
) ∫ 1

0
B2

1 (s) ds
.

Proof. First notice that trivial algebra shows that

βn −
θη,c

1 + θ2
η,c

=

(
1− θ2

η,c + θ4
η,c

)∑n
t=1 εtεt−1 +

(
θη,c + θ3

η,c

)∑n
t=1 εtεt−2 + cn(

1 + θ2
η,c

)∑n
t=1 ε

2
t + 2θη,c

∑n
t=1 εtεt−1 + c∗n

where

cn =
(
θη,c − 2θ2

η,c + θ3
η,c

)
(ε0ε−1 − εnεn−1)− θ3

η,c (ε−1 − εn−1)

and

c∗n = θ2
η,c (ε−1 + ε0 − εn−1 − εn) + (ε0 − εn) + 2θη,c (ε0ε−1 − εnεn−1) .

Due to lemma 2.1 and the definition of the (zt)t∈Z and θη,c it can be easily
deduced that kncn, k∗nc

∗
n  
θη,c

0 for kn = n−1/2, k∗n = n−1 in case a. and kn =

7Notice that this could not be the case under some deviations from our framework that
could be justified by the structure of multiplicativity. For example if assumption A.2 holds
yet zt = 1 P almost surely for all t (i.e. we deviate from the restriction that Ez0 = 0) then
Corollary 29.19 of Davidson [3], the continuous mapping theorem and the proof of lemma 3.1

would imply that βn  
θη,c

b (θ) +
(1−θ2+θ4)

∫ 1
0
B1(s)B2(s)ds+θ(1+θ2)

∫ 1
0
B1(s)B3(s)ds

(1+θ2)
∫ 1
0
B2
1(s)ds+2θ

∫ 1
0
B1(s)B2(s)ds

.
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n−3/2, k∗n = n−2 in case b. The results follow then from lemma 2.1, the definition
of θη,c and the continuous mapping theorem by noticing that k∗n

∑n
t=1 εtεt−1  0

in both cases.
Any indirect estimator based on this structure would be defined via some

approximation of the binding function.8 It can be easily seen that b is injective if
and only if it is restricted to (any non empty subset of) Θ1 = [−1, 1] or to (any
non empty subset of) Θ2 = (−∞,−1]∪[1,+∞). Hence indirect identification of
θ is possible if and only if the underlying parameter space satisfies this restriction.
In the final section we define the indirect estimator via βn and the binding function
and derive its limit theory by keeping in mind that the points −1 and 1 constitute
the boundary of indirect identification.

4 Limit Theory for the Indirect Estimator under Local Al-
ternatives

In what followsΘ denotes an arbitrary non empty connected subset ofR under the
restriction that if Θ∩Θ1 ⊃ {−1, 1} then Θ∩Θ2 ⊆ {−1, 1} and symmetrically if
Θ∩Θ2 ⊃ {−1, 1} then Θ∩Θ1 ⊆ {−1, 1}. This restriction obviously corresponds
to the indirect identification condition implied by the properties of the binding
function and enables the definition (avoiding the use of measurable selections)
and the possibility of consistency for the indirect estimator that we immediately
define. Given βn and Θ consider the so called GMR1 indirect estimator generally
defined by

θn ∈ arg min
Θ
‖βn − b (θ)‖ ,

where ‖·‖ is any (possibly stochastic) norm on R.9 The form of Θ and the
binding function implies that this optimization problem admits in any case a
unique solution. For the sake of simplicity and without much loss of generality
we will consider only the cases where Θ = Θ1 or Θ = Θ2 whence the estimator
is P almost surely given by

θn =


1−
√

1−4β2n
2βn

if Θ = Θ1 and βn ∈
[
−1

2
, 1

2

]
1+
√

1−4β2n
2βn

if Θ = Θ2 and βn ∈
[
−1

2
, 1

2

]
1 if βn >

1
2
and − 1 if βn < −1

2

. (2)

We are interested in the limit theory of θn. In what follows θη,c will be as in
the previous section. The fact that c can be an arbitrary real number and θ can

8Essentially it would be defined as a (possibly approximate) minimizer of some (possibly
stochastic) distance between the βn and the approximation to the binding function.

9Or a sequence of (possibly stochastic) norms that converge in probability to a norm on R.
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belong to the boundary of Θ enables the study of the asymptotic behavior of our
estimator when the statistical model is only asymptotically well specified. When
θ is not in the boundary of indirect identification then the limit theory of θn is
easily established via the delta method using first order approximations. This is
not possible in the cases that θ = 1 or −1 since the differentiability of b imply
that its Jacobian at these points is singular and this is precisely the source of the
resulting discontinuity of the limit theory of the GMR1 estimator as exhibited in
the following result. In any of the cases described, remember that zθ denotes the
random element in lemma 3.1 that either follows the normal distribution under
assumption A.1 or is of the form of a rational function w.r.t. to the stochastic
integrals appearing in lemma 2.1 under assumption A.2.

Lemma 4.1 In both the considered cases

rn (θn − θη,c)  
θη,c

xθ

where i. if θ ∈ Int Θ and Θ is either Θ1 or Θ2 then for all c ∈ R and (ηn)n∈N
such that ηn → +∞

rn =
√
n and xθ =

(
1 + θ2

)2

1 + θ2 zθ,

ii. if θ = −1 and Θ=Θ1 then for all c ∈ R and ηn = n1/4

rn = n1/4 and x−1 =

{
2
√
z−1 + 1

4
c2 if z−1 ≥ −1

4
c2

−c if z−1 < −1
4
c2

,

iii. if θ = 1 and Θ=Θ1 then for all c ∈ R and ηn = n1/4

rn = n1/4 and x1 =

{
−2
√
−z1 − 1

4
c2 if z1 ≤ 1

4
c2

−c if z1 >
1
4
c2

,

iv. if θ = −1 and Θ=Θ2 then for all c ∈ R and ηn = n1/4

rn = n1/4 and x−1 =

{
−2
√
−z−1 + 1

4
c2 if z−1 ≤ −1

4
c2

−c if z−1 >
1
4
c2

,

v. if θ = 1 and Θ=Θ2 then for all c ∈ R and ηn = n1/4

rn = n1/4 and x1 =

{
2
√
z1 − 1

4
c2 if z1 ≥ 1

4
c2

−c if z1 <
1
4
c2

,

and zθ is as in lemma 3.1.a under assumption A.1 or as in lemma 3.1.b under
assumption A.2.
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Proof. i. Initially notice that under either assumption A.1 or assumption A.1
for all θ, c ∈ R and for any admissible (ηn)n∈N and due to the fact that the

support of zθ is the real line, P
(∣∣∣βn − θη,c

1+θ2η,c

∣∣∣ > ε
)
→ 0 for all ε > 0. Due

to the previous we have that if θ ∈ Int Θ and Θ is either Θ1 or Θ2 and for all
c ∈ R and (ηn)n∈N due to the fact that the Jacobian of the binding function
evaluated at θη,c is eventually non singular, θn satisfies βn = b (θn) with P
probability converging to 1. The result follows from the mean value theorem
applied on the binding function w.r.t. θη,c, the previous remark and the fact
that the Jacobian is continuous. ii. Suppose that θ = −1 and Θ = Θ1 choose
some c ≥ 0 and let ηn = n1/2 or ηn such that n

1/2 = o (ηn). Let =d denote
distributional equivalence and →

a.s.
almost sure convergence under the relevant

probability measure. The Skorokhod representation (see for example Theorem
26.25 in Davidson [3]) via the embedding of (Ω,F , P ) to a "larger" probability
space (Ω,F , P ) ensures the existence of random variables β∗n, z

∗
θ defined on Ω∗,

such that β∗n =d βn (θη,c), z∗θ =d zθ in each of the cases of lemma 3.1 and for any
θ such that the weak limit results of that lemma hold as almost sure limits w.r.t.
β∗n and z

∗
θ . Define θ

∗
n using (2) and β

∗
n. Notice that θ

∗
n =d θn (θη,c). Again the

sequences defined by n1/4 (θ∗n − θη,c) and n1/4 (θn (θη,c)− θη,c) must have weak
limits that are distributionaly equivalent if any one of them converges. By a first
order Taylor expansion of b (θη,c) around −1 using the Lagrange remainder we
have that for θ̃η,c between θη,c and −1

b (θη,c) = −1

2
−
θ̃η,c

(
1 + θ̃

2

η,c

)(
3θ̃

2

η,c − 1
)

(
1 + θ̃

2

η,c

)4

c2

η2
n

= −1

2
− An

c2

η2
n

Due to the form of (2) and the previous expansion we have that

n1/4

(
θ∗n + 1− c

ηn

)
=


Kn + An

n1/4c2

η2nβn
− n1/4c

ηn
if β∗n ∈

[
−1

2
, 1

2

]
− cn1/4

ηn
if β∗n < −1

2

n1/4
(

2− c
ηn

)
if β∗n >

1
2

where

Kn =
n1/4 (β∗n − b (θη,c))−

√
n1/2

(
b (θη,c)− (β∗n)2)− A2

n
n1/2c4

η4n
− An n

1/2c2

η2n

βn
.

In both cases in lemma 3.1 the event
{
β∗n >

1
2

}
=
{√

n (β∗n − b (θη,c)) >
√
n
(

1 + c2

η2n

)}
converges to an event of zero probability. Analogously due to the definition of
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ηn the event
{
β∗n < −1

2

}
converges to

{
z∗−1 < − c2

4

}
under either assumption

A.1 or assumption A.2. In the same manner the{
β∗n ∈

[
−1

2
,
1

2

]}
=

{√
n (β∗n − b (θη,c)) ∈

[
An

n1/2c2

η2
n

,
√
n

(
1 +

c2

η2
n

)]}
converges to

{
z∗−1 ∈

[
− c2

4
,+∞

)}
. Hence due to lemma 3.1, the definition of

ηn, and by noticing that by the Delta method n
1/2

(
(β∗n)2 −

(
−1

2
− c

ηn

)2
)
→
a.s.

−z∗−1 we finally obtain that

n1/4 (θ∗n − θη,c) →
a.s.

x∗1 =

{
2
√
z∗−1 + 1

4
c2 if z∗−1 ≥ −1

4
c2

−c if z∗−1 < −1
4
c2

.

The other cases follow analogously and are omitted to conserve on space.
Analogous "discontinuities" have been reported in theMA literature for direct

estimators when θη,c converges to −1 or 1. A characteristic example is that of
the MLE when vt = σ > 0 for all t and z0 follows a standard Normal distribution
(see Shephard [9]). There the estimator is actually n-consistent something which
is in contrast to the present cases where convergence is becoming slower. This
is the result of the fact that when θ lies (or converges to an element of) the
boundary then the properties of the score process change discontinuously. This
is not the case in our framework. Here the results are attributed solely to the local
properties of the binding function around the boundary points. This behavior and
the corresponding discontinuity of the limit theory is also vaguely reminincent of
similar behaviors studied in economic theory (see for example Roberts [8]) where
appropriate sequences of economies may converge to non perfectly competitive
equilibria due to the behavior of the excess demand function around "critical"
points.
Notice now that the present choices of Θ correspond to the "largest" possible

covering of R that renders possible the estimation of the MA (1) parameter via
the use of any of each members, inside our framework. In this respect they
are the natural ones to reveal the "discontinuities" of the limit theory (i.e. the
dependence of the rate on θ, the discontinuity of the weak limits and the non
regularity) for our indirect estimator that essentially emerge on the boundary
of indirect identification due to the relevant properties of the binding function.
This fact would have been obscured if Θ would have been chosen for instance as
an open interval. Furthermore there are choices of Θ that would imply further
discontinuities that do not stem from this natural structure.10 Consider for
10Obviously such choices could be justified by the presence of information for the MA (1)

parameter that is external to the present (and more general) structure.
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example the case where Θ = [θ1, θ2] and θ1 < −1 or θ1 > 1. For θ = θ1, any c
and any admissible (ηn)n∈N we could obtain via the use of a similar methodology
to the one in Andrews [1] that

√
n (θn − θη,c)  

θη,c
zθ1 =

{
(1+θ21)

2

1+θ21
zθ1 if zθ1 ≥ 0

0 if zθ1 < 0

i.e. a limit defined as an appropriate projection of the limit appearing in
lemma 4.1.i. This is obviously a different kind of discontinuity (see for example
that the rate of convergence does not depend on this artificial boundary and that
the limit distribution does not depend on c) that is essentially imposed by the
choice of Θ and not the structure at hand.
Second, it is evident from the proof of the previous lemma that the form

of the result does not depend on the results of lemma 3.1. That is if we had
that qn (βn − b (θη,c))  

θη,c
zθ by a different set of assumptions for qn → +∞ not

depending on θ and zθ a random element not necessarily equal to the ones in
lemma 3.1, then it is easy to see that the results of lemma 4.1 would have the
same phrasing except for the replacement of rn with qn in case i. and with

√
qn

in all the remaining cases. As noted in a previous section the results of lemma
3.1 correspond simply to some illustrative cases described by our initial pair of
assumptions.
Third, a similar question about the limit theory of other indirect estimators

given the aforementioned structure could be of potential interest. The following
discussion explores two simple cases in which indirect estimators associated with
asymptotic bias correction in other frameworks are identified asGMR1 estimators
in this one. In the premises of either assumption A.1 or assumption A.2 consider11

β∗n =

{
βn if βn ∈ Θ1

−1
2
if βn < −1

2
or 1

2
if βn >

1
2

and

θ∗n = arg min
Θ

∥∥∥∥β∗n − b (θ)−
1βn≤−1/2√

n
E
(
1zθ∈[0,+∞)zθ

)
−

1βn≥1/2√
n
E
(
1zθ∈(−∞,0]zθ

)∥∥∥∥ .
θ∗n is the natural extension of the GMR2 (a) estimator considered in Arvanitis
and Demos [2] for a = 1

2
. Since 1βn≤−1/2 = 1 is equivalent to β∗n = −1

2
and

E
(
1zθ∈[0,+∞)zθ

)
≥ 0 and by the analogous reasoning for the

1βn≥1/2√
n
E
(
1zθ∈(−∞,0]zθ

)
11β∗n is obviously a restricted OLSE in the framework of the auxiliary model, corresponding

to the optimization of the least squares criterion on
[
− 12 ,

1
2

]
, something that is in accordance

with the present structure due to the fact that this interval equals b (R) = b (Θ1) = b (Θ2).
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term we obtain that in for Θ equal to either Θ1 or Θ2 θ
∗
n = GMR1, P almost

surely for any n, and thereby the previous analysis holds also for this estimator.12

For the second case a recursive version of the GMR2
(

1
2

)
indirect estimator

can be defined as θ∗∗n = arg minΘ ‖Λn‖ where

Λn =

{
θn − θ − 2

1βn≤−1/2
n1/4

E
(
1zθ∈[0,+∞)

√
zθ
)

+ 2
1βn≥1/2
n1/4

E
(
1z
θ
∈(−∞,0]

√
−zθ

)
if Θ = Θ1

θn − θ + 2
1βn≤−1/2
n1/4

E
(
1z
θ
∈(−∞,0]

√
−zθ

)
− 2

1βn≥1/2
n1/4

E
(
1z
θ
∈[0,+∞)

√
zθ
)
if Θ = Θ2

.

θ∗∗n is actually derived in a three step procedure where in the second step the
auxiliary statistical model concides with the MA (1) and the GMR1 estimator
derived in the second step is used as the auxiliary estimator for the final one.
Obviously due to the results in lemma 4.1 the binding function connecting the
last two steps of the procedure is the identity. Notice that when Θ = Θ1 then
for any n, θ∗∗n = GMR1, P almost surely whereas when Θ = Θ2 then eventually
for large enough n, θ∗∗n = GMR1, P almost surely. Hence in these cases lemma
4.1 also provides with the limit theory concerning θ∗n and θ

∗∗
n .

5 Conclusions
In the context of estimation of the MA (1) parameter we have examined a simple
example of an indirect estimator having a "discontinuous" limit theory even
in cases where the auxiliary estimator does not. The "discontinuities" involve
the dependence of the rates on the parameter, the non continuity of the limit
distribution w.r.t. the parameter and the dependence of the limit on the choice
of the sequence of local alternatives. These emerge at the boundary points
of indirect identification and are entirely attributed to the local behavior of the
binding function near those points. The dependence of the rates on the parameter
and of the limit distribution on the sequence of local alternatives do not manifest
in the limit theory when the parameter space is arbitrarily bounded outside the
boundary of indirect identification. These constitute of a simple manifestation
of the fact that the limit theory of indirect estimators can be quite interesting.

12As noted previously the definition of θ∗n can in some cases facilitate bias reduction.
Presently we are only considering it in a formal manner without being occupied with the
issue of uniform integrability for the auxiliary estimator. The definition can be readily ex-
tended even when the mean of the asymptotic distribution of the auxiliary estimator is not well
defined, by restricting the domains of integration appearing in the norm to arbitrary bounded
intervals.
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