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Abstract

We develop non-parametric tests for prospect stochastic dominance Ef iciency (PSDE) and
Markowitz stochastic dominance ef iciency (MSDE) using block bootstrap resampling. Under
the appropriate conditionswe show that they are asymptotically conservative and consistent.
We employ Monte Carlo experiments to assess the inite sample size and power of the tests.
We use the tests to empirically establish whether the value-weighted market portfolio is the
best choice of every individual with preferences exhibiting certain patterns of local attitudes
towards risk. Our results indicate that we cannot reject the hypothesis of prospect stochastic
dominance ef iciency for the market portfolio. This is supportive of the claim that the par-
ticular portfolio can be rationalized as the optimal choice for any S-shaped utility function.
Instead,we reject thehypothesis forMarkowitz stochastic dominance,which could imply that
there exist reverse S-shaped utility functions that do not rationalize the market portfolio.

Keywords: Nonparametric test, prospect stochastic dominance ef iciency,Markowitz stochas-
tic dominance ef iciency, simplical complex, extremal point, Linear Programming, Mixed In-
teger Programming, Block Bootstrap, Consistency.

JEL Classi ication: C12, C13, C15, C44, D81, G11.

1 Introduction

Traditionally, in the context of portfolio theory, investors are assumed to act as non
satiable and risk averse agents and thus their preferences are representedby increas-
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1 Introduction 2

ing and globally concave utility functions. For this reason, most of the criteria used
to statistically verify the ef iciency of a given portfolio (see, among others, Gibbons,
Ross, and Shenken [15]) are based on the second stochastic dominance rule, see, e.g.,
the papers by Kroll and Levy [20] and Levy [23], and the excellent monograph on
the theory of stochastic dominance by Levy [24]. In the related literature, several
nonparametric tests have been proposed for irst, second, and higher order stochas-
tic dominance, see, inter alia, McFadden [31], Barret and Donald [2], Scaillet and
Topaloglou [40] and Linton, Maasoumi, andWhang [27], Linton, Post andWang [28],
Linton, Song, and Whang [29], and Donald and Hsu [8]. Recently, Gonzalo and Olmo
[16] propose nonparametric consistent tests of conditional stochastic dominance of
arbitrary order in a dynamic setting.

In constrast to the global risk aversion framework, Friedman and Savage [14]
claim that the strictly concave functions may not be able to explain why investors
buy insurance and/or lottery tickets. To address their concern, Markowitz [30] pro-
poses a utility function that has convex and concave regions in both the positive and
negative parts. In particular, he suggests that individuals are risk averse for losses
and risk seeking for gains as long as the outcomes are not very extreme. A class of
utility functions that partially1 represents this kind of behavior is the one of reverse
S-shaped (utility or value) functions.

Kahneman and Tversky [19] propose utilities that are concave for gains and con-
vex for losses, yielding S-shaped functions w.r.t. a benchmark point. Their theory
was further developed by Tversky and Kahneman [42] to cumulative prospect the-
ory in order to be consistent with irst-order stochastic dominance. Prospect theory
recently gained much popularity among economists, and there is a stream of papers
that build economic models based on it. There have beenmany empirical and exper-
imental attempts to test prospect theory.

Accordingly, empirical evidence suggests that investors do not always act as risk
averters. Instead, under certain circumstances they behave in a muchmore complex
fashion exhibiting characteristics of both risk loving and risk-averting. Furthermore,
they seem to evaluate wealth changes of assets w.r.t. to benchmark cases rather than
inal wealth positions. They behave differently on gains and losses, and one can say
that they are more sensitive to losses than to gains (loss aversion). In addition, there
are cases where the relevant utility (or value) function could be either concave for
gains and convex for losses or convex for gains and concave for losses. Moreover,
they seem to transform the objective probability measures to subjective ones using
transformations that potentially increase the probabilities of negligible (and possi-
bly averted) events, which in some cases share similar analytical characteristics to
the aforementioned utility functions. Examples of risk orderings that (partially) re-
lect such indings are the dominance rules of behavioral inance (see Friedman and
Savage [14], Baucells and Heukamp [3], Edwards [11], and the references therein).

Inspired by previous work, Levy and Levy [25] formulate the notions of prospect
stochastic dominance (PSD) and Markowitz stochastic dominance (MSD). According
to their de inition, portfolio A prospect stochastically dominates portfolio B iff the
expected utility of the return of A is greater than or equal to the expected utility of
the return of B for any utility function in the set of increasing, convex on the neg-

1 i.e. when the possibility of further changes of the risk attitude on extreme events is ignored.
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ative part and concave on the positive part real functions (termed as S-shaped (at
zero) utility functions). PSD ef iciency is then the case when one considers greatest
elementsw.r.t. this ordering. Analogously, portfolio AMarkowitz stochastically dom-
inates portfolio B iff the expected utility of the return of A is greater than or equal to
the expected utility of the return of B for any utility function in the set of increasing,
concave on the negative part and convex on the positive part real functions (termed
as reverse S-shaped (at zero) utility functions). Again, the notion of MSD ef iciency
follows naturally from the notion of greatest elements w.r.t. the particular ordering.
Notice that PSD ef iciency and MSD ef iciency are not mutually exclusive (see for ex-
ample the Monte Carlo section below).

The question that arises concerns the empirical analysis of the investors behavior
towards risk. In practice, many institutional investors hold portfolios that mimic the
behaviour of themarket portfolio. They invest in Exchange-Traded Funds (ETFs) and
mutual funds. These funds track stocks, commodities and bonds, or value-weighted
equity indices which strongly resemble the market portfolio. Moreover, many actual
funds, including total market index funds which are based on the Wilshire 5000 in-
dex, are very highly correlated with the market portfolio. Thus, it is interesting to
investigate whether this behavior can be rationalized by preference relations inside
the aforementioned classes of utility functions.

In view of the above, the main contribution of this paper is to develop consistent
tests for prospect stochastic dominance (PSD) and Markowitz stochastic dominance
(MSD) ef iciency. Weaim to establish statisticallywhether a givenportfolio is the best
choice of any individual within each of the aforementioned classes of preferences.
We construct the test statistics using the preference free representations of those
notions by Levy and Levy [25]. Under appropriate conditions we show that the tests
are asymptotically conservative and consistent.

We use the tests to empirically establish whether a value-weighted market port-
folio can be considered as ef icient according to prospect and Markowitz stochastic
dominance criteria when confronted to diversi ication principles made of risky as-
sets. For this purpose, we use proxies of the individual assets in the investment uni-
verse. Thus, for the individual risky assets, we use benchmark portfolios formed on
size, BE/ME, Momentum, and industry portfolios. These portfolios have been at the
center of the asset pricing literature over the past two decades (see for example Post
[36], Kuosmanen [22], Post and Levy [38], Post and Kopa [37], Gonzalo and Olmo
[16] among others in the stochastic dominance framework). The size portfolios are
of particular interest because empirical research, startingwith Banz [2], suggest that
small-cap stocks earn a return premium that de ies rational explanation. Moreover,
book-to-market based sorts are the basis for the factor model examined in Fama and
French [12]. Additionally, academics and practitioners show strong interest in Mo-
mentumportfolios. Empirical evidence indicates that common stocks exhibit high re-
turns on a period of 3-12 months will overperform on subsequent periods. This mo-
mentum phenomenon is an important challenge for the concept of market ef iciency.
Finally, industry sorted portfolios have posed a particularly challenging feature from
the perspective of systematic risk measurement (see Fama and French [13]). To fo-
cus on the role of preferences and beliefs, we largely adhere to the assumptions of a
single-period, portfolio-oriented model of a competitive capital market.
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Given the above, the second contribution of the paper is the statistical inding that
the value weighted market portfolio is Prospect stochastic dominance ef icient com-
pared to all possible sets of portfolios based on asset size, book to market value, Mo-
mentum and industry. This result is not true, though, for Markowitz stochastic dom-
inance ef iciency. Those results essentially indicate, decision errors apart, that the
market portfolio is prefered to portfolio’s formed inside the aforementioned classes
of assets, by any investor with the s-shaped attitude towards riks, but also that there
exist reverse s-shaped attitudes towards risk that do not rationalize such a choice.

As far as the relevant statistical literature is concerned, Prospect and Markowitz
stochastic dominance ef iciency criteria havenot beenextensivelly statistically tested,
despite their appeal with experimental observations. This is the case, even though
this research ield seems particularly well suited for statistical analysis, given the
availability of large datasets of historical returns.

Linton et al. [27] design a testing procedure for PSD ef iciency assuming bounded
supports and a inite number of prospects. In contrast, we construct procedures for
PSD orMSD ef iciency, while allowing for general supports and any (and thereby pos-
sibly uncountable) number of prospects.

Post and Levy [38] test for weaker versions of the aforementioned notions of
stochastic dominance. More speci ically, they allow for a portfolio A to be prospect
(Markowitz) stochastically dominant to B iff there exists an S-shaped
(reverse S-shaped) utility function that rationalizes the optimal choice of A over B.
It is easy to see that changing the condition from any utility to the existence of one
utility that rationalizes the relevant choice, they weaken the PSD andMSD notions of
ef iciency as de ined in Levy and Levy [25] and discussed above. Then, they propose
a non parametric test based on a test statistic constructed from irst order conditions
of utility maximization. They derive asymptotic critical values by an asymptotic nor-
mality argument in an iid framework.

In contrast, irst, we use the stronger versions of PSD and MSD ef iciency of Levy
and Levy [25]. We do somotivated by the possibillity that an investor (e.g. a inancial
institution) being uncertain of the exact form of her utility function may ind useful
to have a test of whether a given portfolio can be considered as an optimal choice
for any given S-shaped (reverse S-shaped) utility function. Second, we test for global
optimality rather than using irst-order conditions, something that introduces a con-
siderable increase in the complexity of thenumerical procedures required, compared
to the linear programming ones used in the aforementioned paper. Third, we allow
for dynamic time-series patterns (rather than serial iid-ness).

Our work is in the spirit of Scaillet and Topaloglou [40] who develop consistent
tests for stochastic dominance ef iciency at any order for time-dependent data (see
also Linton, Post and Wang [28]). They are in turn inspired by the consistent proce-
dures developed by Barrett and Donald [2] and extended by Horvath, Kokoszka, and
Zitikis [18] to accommodate for non-compact support.

The paper is organized as follows. In section 2, we de ine prospect andMarkowitz
stochastic dominance relations and ef iciency. We provide characterizations of ef-
iciency by properties of suprema of appropriate functionals. We then use those
characterizations to describe the relevant statistical hypotheses. In section 3, we ob-
tain the test statistics as the appropriately scaled empirical analogs of the aforemen-
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tioned suprema. Under a relevant assumption framework, in contrast to Scaillet and
Topaloglou [40], we obtain the limit theories of the employed statistics under the null
hypotheses. Furthermore, we derive useful properties of associated limit distribu-
tions. In section 4, we design the testing procedures based on approximations of the
asymptotic p-values by a block bootstrapmethod, andwe derive relevant asymptotic
properties such as consistency. In section 5, we performMonte Carlo experiments to
evaluate the inite sample size and power of the tests allowing for optimization er-
rors in the framework of conditional heteroskedasticity. In section 6, we provide the
empirical illustration. We give some concluding remarks and provide some hints for
further research in section 7. We discuss the computational aspects of mathematical
programming formulations corresponding to the test statistics, and we give all the
proofs in the Appendix.

2 Prospect and Markowitz Stochastic Dominance, Ef iciency
and Statistical Hypotheses

We work in the framework of a complete probability space (Ω,F ,P). Suppose that
F is the cdf of a probability distribution onRn, which is the law of the random vector
Y0 de ined on Ω. Given this, G(z, λ, F ) denotes

´
Rn I {λ′u ≤ z}dF (u), i.e. the cdf of

the linear transformation Y0 → λ′Y0 for λ ∈ Λ =
{
λ ∈ Rn

+ : 1′λ = 1
}
. In our con-

text, F represents the joint distribution of n basis asset returns and G(z, λ, F ) the
distribution of the returns of the linear portfolio constructed from the basis assets
with weights given by the vector λ. L denotes a non-empty closed subset of Λ, that
represents a set of feasible portfolios, while τ is a distinguished member of L that is
to be tested for the relevant notions of ef iciency w.r.t. the members of L.

Consider, for arbitrary λ ∈ Λ,

J (z1, z2, λ, F ) :=

ˆ z2

z1

G (u, λ, F ) du,

where z1, z2 assume their values in the extended real line and z1 ≤ z2. When z1 = −∞
and z2 is inite, J (z1, z2, λ;F ) is inite if E

[
(λ′Y0)−

]
exists as a real number. Anal-

ogously, when z1 is inite and z2 = +∞ , it is easy to see that J (z1,+∞, τ, F ) −
J (z1,+∞, λ, F ) is inite if E

[
(λ′Y0)+

]
exists as a real number. Given this, and via

the use of the preference free representations of prospect and Markowitz stochas-
tic dominance ef iciency of Levy and Levy [25], we have the following de initions,
characterizing the two notions of stochastic dominance and the relevant notions of
ef iciency that we are occupied with.
De inition 1. τ weakly Prospect Stochastically Dominates λ, written as τ ≽P λ, iff

p1 (z, λ, τ, F ) := J (z, 0, τ, F )− J (z, 0, λ, F ) ≤ 0, ∀z ∈ R−,

and
p2 (z, λ, τ, F ) := J (0, z, τ, F )− J (0, z, λ, F ) ≤ 0, ∀z ∈ R++.

Strict dominance, written as τ ≻P λ occurs iff there exists some z ∈ R for which the
relevant inequality is strict. Moreover, τ is Prospect Stochastic Dominance Ef icient
(PSD-ef icient) w.r.t. L, iff τ ≽P λ, ∀λ ∈ L.
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Equivalence (3) of Levy and Levy [25] means that τ is PSD-ef icient iff it is the
optimal choice for any preference order in the class of s-shaped utility functions.

De inition 2. Suppose that E [∥Y0∥] < +∞. τ weakly Markowitz Stochastically Dom-
inates λ, written as τ ≽M λ, iff

m1 (z, λ, τ, F ) := J (−∞, z, τ, F )− J (−∞, z, λ, F ) ≤ 0, ∀z ∈ R−,

and

m2 (z, λ, τ, F ) := J (z,+∞, τ, F )− J (z,+∞, λ, F ) ≤ 0, ∀z ∈ R++.

Strict dominance, written as τ ≻M λ occurs iff there exists some z ∈ R for which the
relevant inequality is strict. Moreover, τ isMarkowitz Stochastic Dominance Ef icient
(MSD-ef icient) w.r.t. L, iff τ ≽M λ, ∀λ ∈ L.

Similarly to the previous case, equivalence (4) of Levy and Levy [25] means that
τ is MSD-ef icient iff it is the optimal choice for any preference order in the class of
reverse s-shaped utility functions.

In both the previous de initions ef iciency does not hold iff there exists some ele-
ment ofL different that τ , that either strictly dominates, or is incomparable to τ w.r.t.
the analogous relation. This then implies that the τ can be equivalent to some (possi-
bly all) the portfolios in the reference set. Consider the following extreme examples.
Suppose that L is only comprised by two equivalent (w.r.t. some of the considered
preorders) portfolios. Then both are accordingly ef icient. Suppose analogously that
L is only comprised by two portfolios which now are incomparable. Then neither is
accordingly ef icient.
The followingproposition in each case characterizes ef iciency via theuse of suprema
of appropriate functionals.

Proposition 1. τ is PSD-Ef icient w.r.t. L iff,

p (τ, F ) := sup
λ∈L

max
i=1,2

sup
z∈Ai

pi (z, λ, τ, F ) = 0,

where A1 = R−, A2 = R++. τ is not PSD-ef icient w.r.t. L iff p (τ, F ) > 0.
Furthermore,τ is MSD-Ef icient w.r.t. L iff,

m (τ, F ) := sup
λ∈L

max
i=1,2

sup
z∈Ai

mi (z, λ, τ, F ) = 0.

τ is not MSD-ef icient w.r.t. L iffm (τ, F ) > 0.

The results above cannot usually be directly employed for the characterization
of τ since F is in most cases unknown. However, given the availability of statistical
information onF , it is possible to be utilized for the construction of analogous testing
procedures. Hence, in the context of the aforementioned framework and in the light
of the previous lemma, the relevant hypotheses structures can be expressed as:

H(P )
0 : p (τ, F ) = 0,

H(P )
1 : p (τ, F ) > 0,
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for PSD-ef iciency, and as:
H(M)

0 : m (τ, F ) = 0,

H(M)
1 : m (τ, F ) > 0,

for MSD-ef iciency.
Notice here, that if any other portfolio in L is ”suspect” of ef iciency, the following
testing procedures can be also performed by considering the latter as a benchmark
portfolio in place of τ . For example if τ, τ ′ ∈ L are tested for, say PSD ef iciency, and
in both cases the null is not rejected, then, and given the previous comments on the
notion of ef iciency, one can conclude in the relevant signi icance level that τ, τ ′ are
also equivalent w.r.t. the PSD ordering.

3 Assumption Framework, Test Statistics, and Null Limit
Theories

We employ Proposition 1 in order to construct statistical tests for the hypotheses
structures above. In order to proceed, we extend our framework as follows. We as-
sume the existence of a strictly stationary process (Yt)t∈Z taking values in Rn. The
sample is the random element (Yt)t=1,...,T . In our context a sample value represents
a time series of observed returns of the n inancial basis assets. F is the cdf of Y0 and
F̂T the empirical cdf associated with the random element (Yt)t=1,...,T . I {·} denotes
the relevant indicator function.

We now present the test statistics for PSD and MSD ef iciency. Those are ob-
tained as the appropriately scaled2 empirical analogues of the functionals appearing
in Proposition 1. They are

pT := p
(
τ,
√
T F̂T

)
,

for PSD, and
mT := m

(
τ,
√
T F̂T

)
.

for MSD ef iciency.
The commutativity of the supλ∈L and the maxi=1,2 operators, and the integration by
parts formula imply that pT andmT can be equivalently expressed as:

pT = max
i=1,2

sup
λ∈L

sup
z∈Ai

(−1)i√
T

T∑
t=1

v (z, λ, τ, Yt) , (1)

and
mT = max

i=1,2
sup
λ∈L

sup
z∈Ai

1√
T

T∑
t=1

qi (z, λ, τ, Yt) , (2)

where

qi (z, λ, τ, Yt) :=

{
K (z, λ, τ, Yt) , i = 1[
(λ′Yt)+ − (τ ′Yt)+ − v (z, λ, τ, Y )

]
, i = 2

,

2 The
√
T scaling is justi ied by the assumption framework that follows.
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and v (z, λ, τ, Y ) := K (z, λ, τ, Y )−K (0, λ, τ, Y ), andK (z, λ, τ, Y ) := (z − τ ′Y )+ −
(z − λ′Y )+.

The underlying optimizations are usually analytically intractable and thereby we
resort to numerical techniques for the evaluation of the statistics. We provide details
about numerical implementations of the optimization procedures in the Appendix.
We proceed with the description of an assumption framework that will enable the
derivation of the asymptotic distributions of pT and mT under the respective null
hypotheses, which will obviously facilitate the design of the analogous testing pro-
cedures. The irst assumption concerns probabilistic properties of the random ele-
ments involved.

Assumption1. F is absolutely continuousw.r.t. the Lebesguemeasure onRnwith con-
vex support, and for some 0 < δ, E

[
∥Y0∥2+δ

]
< +∞. (Yt)t∈Z is a-mixing with mixing

coef icients aT = O(T−a) for some a > 1 + 2
η
, 0 < η < 2, as T → ∞. Furthermore,

V = E
[
(Y0 − E (Y0)) (Y0 − E (Y0))

′
]
+ 2

∞∑
t=1

E
[
(Y0 − E (Y0)) (Yt − E (Yt))

′
]

is positive de inite.

The mixing part of the previous assumption is readily implied by concepts such
as geometric ergodicity which holds for many stationary models used in the context
of inancial econometrics. Prominent examples are the strictly stationary versions
of ARMA or GARCH and stochastic volatility type of models. Counter-examples are
stationary models that exhibit long memory, etc (see inter alia, Doukhan [10] for
the relevant rigorous de inition and further examples). Along with themoment exis-
tence condition it facilitates the validity of limiting arguments about partial sums of
mixing processes as well as ”continuity” arguments of particular transformations of
the latter (see the proof of Lemma 2 in the Appendix). The moment existence con-
dition is usually established by analogous restrictions onmoments of the innovation
processes appearing as building blocks in the aforementioned examples along with
parameter restrictions. The positive de initeness of the ”long run” covariancematrix
above facilitates the extraction of properties of the cdf of appropriate limiting ran-
dom variables at zero (see the third part of Proposition 2 below), and it is thereby
connected to properties of asymptotic rejection regions for the testing procedures to
be established below. For instance, if (Yt)t∈Z is a vector martingale difference pro-
cess, this part of the assumption can be veri ied if the elements of Y0 are linearly
independent random variables.

The second assumption concerns topological properties of the ”portfolio param-
eter space” L.

Assumption 2. L is a simplicial complex comprised of a inite number of simplices of
Λ =

{
λ ∈ Rn

+ : 1′λ = 1
}
.

The assumed structure of L allows for it to be non-convex and possibly discon-
nected while it is obviously compact. It enables the establishment of the limit theory
of the procedures to be de ined in relation ton⋆, i.e., the number of the extremepoints
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ofL,3while its structure as a simplicial complex facilitates our numerical formulation,
and it implies that the inclusion of τ in L is application-wise non-restrictive, since it
allows for it to be an isolated point. Notice also that our de inition of L is compatible
with portfolio spaces further restricted by several kinds of market frictions, liquid-
ity constraints and/or any other form of economic, legal, etc restrictions as long as
Assumption 2 is satis ied. Typically we have that L = Λ but this set up allows for
example for the realistic cases where, the portfolio space is comprised by a inite, yet
possibly quite large number of portfolios due to divisibility issues. Notice inally that
the basis assets are not restricted to be individual securities. Abstractly those can be
de ined as the most extreme feasible combinations of the individual securities. This
for example essentially allows for short selling, since some of the basis assets could
in turn be portfolios constructed via short selling.

In the following proposition, we obtain the relevant limit theories, aswell as some
properties of the limit distributions that will be useful for the design of the statistical
procedures below and the establishment of their asymptotic properties. We denote
with⇝ convergence in distribution as T → ∞.
Proposition 2. Suppose that Assumption 1 holds.

1. Then,

p
(
τ,
√
T
(
F̂T − F

))
⇝ p⋆∞ := sup

λ∈L
max
i=1,2

sup
z∈Ai

pi (z, λ, τ,GF ) , (3)

where GF is a centered Gaussian process with covariance kernel given by
Cov(GF (x),GF (y)) =

∑
t∈Z Cov (I {Y0 ≤ x} , I {Yt ≤ y}) and almost surely uni-

formly continuous sample paths de ined on Rn (see Theorem 7.3 of Rio [39]),
where ≤ denotes the pointwise order on Rn.
If furthermoreH(P )

0 is true, then

pT ⇝ p∞ := max
i=1,2

sup
(λ,z)∈Γ(P )

i

pi (z, λ, τ,GF ) , (4)

where

Γ
(P )
i := {(λ, z) , λ ∈ L, z ∈ Ai : pi (z, λ, τ, F ) = 0} , i = 1, 2.

2. Also,

m
(
τ,
√
T
(
F̂T − F

))
⇝ m⋆

∞ := sup
λ∈L

max
i=1,2

sup
z∈Ai

mi (z, λ, τ,GF ) , (5)

and, if furthermoreH(M)
0 is true, then

mT ⇝ m∞ := max
i=1,2

sup
(λ,z)∈Γ(M)

i

mi (z, λ, κ,GF ) , (6)

where

Γ
(M)
i := {(λ, z) , λ ∈ L, z ∈ Ai : mi (z, λ, τ, F ) = 0} , i = 1, 2.

3 Notice that n⋆ > 1 since in the opposite case L = {τ} in which case this distinguished element is
ef icient w.r.t. any notion of stochastic dominance.
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3. Suppose furthermore that Assumption 2 holds. If τ is not an extreme point of L
then the laws of p⋆∞ andm⋆

∞ are absolutely continuous w.r.t. the Lebesgue mea-
sure onR. If τ is an extreme point ofL then the laws of p⋆∞ andm⋆

∞ are absolutely
continuous when restricted to (0,+∞), and each one may have an atom at zero
of probability less than or equal to 1

n⋆ , where n⋆ is the number of extreme points
of L.

Remark 1. The limiting random variables have the form of suprema of Gaussian pro-
cessesw.r.t. subsets of the relevant ”parameter spaces”. First notice thatpi (z, λ, τ,GF )
andmi (z, λ, τ,GF ) can for any i = 1, 2 be equivalently expressed as appropriate Rie-
mann integrals of GλF (u) − GτF (u), where for any λ ∈ L, GλF is a zero mean Gaus-
sian process with covariance kernel∑t∈Z Cov

(
I
{
λ

′
Y0 ≤ x

}
, I
{
λ

′
Yt ≤ y

})
. Those

integrals are well de ined zero mean Gaussian processes due to the fact that

Var
ˆ +∞

0

GλF (u) du =

ˆ +∞

0

∑
t∈Z

Cov
(
I
{
λ

′
Y0 ≤ u

}
, I
{
λ

′
Yt ≤ u

})
du

≤ 2
∞∑
t=0

√
aT

ˆ +∞

0

√
1−G (u, λ, F )du < +∞,

while

Var
ˆ 0

−∞
GλF (u) du =

ˆ 0

−∞

∑
t∈Z

Cov
(
I
{
λ

′
Y0 ≤ u

}
, I
{
λ

′
Yt ≤ u

})
du

≤ 2
∞∑
t=0

√
aT

ˆ 0

−∞

√
G (u, λ, F )du < +∞,

where the irst inequalities in each of the previous displays follow from inequality
1.12b in Rio [39], and the second ones follow from Assumption 1 (see also p. 196 of
Horvath et al. [18]).
Remark 2. Γ(P )

i ̸= ∅ (Γ(M)
i ̸= ∅), since {τ} × Ai ⊆ Γ

(P )
i ({τ} × Ai ⊆ Γ

(M)
i ), and that

due to Assumption 1 and the Dominated Convergence Theorem they are closed, for
all i = 1, 2. In the prospect case, and if the support of F is bounded, then for any
λ ∈ L : E (λ′Y0)s(i) = E (τ ′Y0)s(i) , ∃z ∈ Ai : (λ, z) ∈ Γ

(P )
i ,4 for all i = 1, 2, where

s (i) =

{
−, i = 1

+, i = 2
. In the Markowitz case, if the support of F is bounded, we obtain

the stronger result that for any λ ∈ L, ∃z ∈ Ai : (λ, z) ∈ Γ
(M)
i , for all i = 1, 2.

Remark 3. It is easy to see that p∞ ≤ p⋆∞ and m∞ ≤ m⋆
∞. When Γ

(P )
i = {τ} × Ai

for all i = 1, 2, then the distribution of p∞, is degenerate at zero, while when Γ
(M)
i =

{τ} × Ai, for all i = 1, 2, then the distribution ofm∞, is degenerate at zero.
4 for example, since the support is bounded, it can be covered by some hypercube of the form

[zl, zu]
n where zl can be chosen as negative. Obviously (λ, zl) ∈ Γ

(P )
1 , for any λ that satis ies the

restriction above for i = 1.
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Remark 4. The laws of p⋆∞ andm⋆
∞ are absolutely continuous, at leastwhen restricted

to the interior of the respective supports. This, via the connectedness of the supports,
implies the continuity of the relevant quantile functions at any α < n⋆−1

n⋆ . Notice that
in the non trivial cases (i.e. when n⋆ > 1) this condition is satis ied when α ≤ 1

2

which is obviously a slack restriction.
In what follows, and in order to avoid the possibility of asymptotic degeneracy,

we employ p⋆∞ andm⋆
∞ respectively, for the facilitation of the decision process. Obvi-

ously, the laws of p⋆∞ andm⋆
∞ are usually analytically intractable since they are max-

ima of complicated Gaussian processes depending on the usually unknown F and
the the dependence structure of (Yt)t∈Z. Hence, for the design of feasible testing pro-
cedures they must be approximated. This is accomplished by bootstrap resampling
and numerical optimization and it is explained in the following section.

4 Consistent Testing Procedures Based on Block Bootstrap

As mentioned above, the laws of p⋆∞ and m⋆
∞ generally depend on the usually un-

known covariance kernels of the limiting Gaussian processes. Hence, we cannot use
numerical techiniques in order to provide with the relevant rejection regions once
and for all, without further strong parametric assumptions.

In this section, in order to avoid such assumptions, we consider approximations
based on block bootstrap resampling techniques that manage to incorporate the as-
sumed dependence. Those are based on arguments by which data are divided into
blocks and those, rather than individual data, are resampled in order to mimic the
time dependent structure of the original data.5 Let bT , lT denote integers such that
T = bT lT . bT denotes the number of blocks and lT the block size. The following
assumption concerns the choice of lT and it is consistent to the relevant choice ap-
pearing in Theorem 2.2 of Peligrad [34].

Assumption 3. For some 0 < q < 1
3
and some 0 < h < 1

3
− q, lT satis ies T h ≪ lT ≪

T (
1
3
−q), as T → ∞.

We consider only the case of non-overlapping blocks. This is due to the fact that
the bias reducting centering of the relevant statistics would imply further serious
numerical burden.6 In any case, and due to the fact that we are only concerned with
irst order asymptotic properties, it would be easy to see that the overlapping case
would also have those properties. In what follows, let (Y ⋆

t )t=1,...,T denote a bootstrap
sample in the context of the non-overlapping blocks methodology, and let F̂ ⋆

T denote
its empirical distribution. Denote by P⋆

T the relevant probability distribution that
represents the law of (Y ⋆

t )t=1,...,T conditional on (Yt)t=1,...,T . Let

p⋆T := p
(
τ,
√
T
(
F̂ ⋆
T − F̂T

))
5 i.e. the relevant empirical measure on the powerset of the sample is essentially used.
6 At least for the second test, the recenteringmakes the test statistics verydif icult to compute, since

the optimization forMarkowitz stochastic dominance involves a large number of binary variables (see
the section on the numerical implementation).
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and
m⋆

T := m
(
τ,
√
T
(
F̂ ⋆
T − F̂T

))
.

For α ∈ (0, 1), consider the following decision rules:

1. Let ρ⋆T,P := P⋆
T (p⋆T > pT ) and

reject H(P )
0 iff ρ⋆T,P < α. (7)

2. Let ρ⋆T,M := P⋆
T (m⋆

T > mT ) and

reject H(M)
0 iff ρ⋆T,M < α. (8)

The following result establishes asymptotic properties of the decision rules
above.

Proposition 3. Suppose that Assumptions 1, 2 and 3 hold. Suppose that 0 < α < n⋆−1
n⋆

when τ is an extreme point of L and that α ∈ (0, 1) when it is not. Then the tests
based on decision rules (7) and (8), respectively, are asymptotically conservative and
consistent.

The restriction on the choice of the signi icance level is of negligible practical impor-
tance since the usual choices ofα nessesarily satisfy it asmentioned before. Further-
more, the tests are in any case consistent.

The p-values appearing in (7)-(8) are usually analytically intractable. They are in
both cases approximated by an empirical frequency argument based on several boot-
strap samples. More speci ically, given R ≥ 1 bootstrap samples{(

Y ⋆
t,r

)
t=1,...,T

}
r=1,...,R

, approximations of the aforementioned p-values are provided
by

ρ̂⋆T,j (α) =
1

R

R∑
r=1

I{k⋆
T,r (j) > kT (j)},

where j = P,M , k⋆
T,r (j) =

p
(
τ,
√
T
(
F̂ ⋆
T,r − F̂T

))
, j = P

m
(
τ,
√
T
(
F̂ ⋆
T,r − F̂T

))
, j = M

, for r = 1, · · · , R,

and kT (j) =

{
pT , j = P

mT , j = M
(see also Davidson and MacKinnon, [6, 7]). The asymp-

totic theory used for the proof of the proposition above, along with an application
of the relevant to Assumption 1 LLN imply also the stated above asymptotic prop-
erties of those procedures as R → ∞, and then T → ∞. Obviously, the value of R
is expected to affect higher order (and/or ixed sample) properties of the resulting
procedures.

In the caseof asymptotic non-degeneracy (utilizing, amongothers, Theorem3.5.1.i
of Politis et al. [35] and the results in Proposition 2), it is easy to construct analo-
gous testing procedures based on subsampling that would be asymptotically exact
and consistent, in the spirit of Linton, et al. [27]. Furthermore, in this context, it
would also be possible to form testing procedures based on a block bootstrap design
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without the recentering that appears in the de inition of p⋆T andm⋆
T . Using the proof

methodology of Proposition 2, it could be possible that such procedures would also
be asymptotically exact if the null hypothesis is strengthened so as to hold also in
some weak neighborhood of F . Consistency would also hold if the bootstrap sample
size would diverge to in inity at a slower rate than T .7

We do not currently engage into such considerations due to the following rea-
sons. First, except for cases such as the ones described in Remark 2, and since F is
unknown, non-degeneracy cannot be easily established. Second, partial Monte Carlo
evidence for the subsampling procedures shows inite sample properties that cru-
cially depend on the subsample choice and seem inferior to the analogous proper-
ties of the tests de ined above (for the latter see the following section). Third, even if
the block bootstrap procedures without recentering have the aforementioned prop-
erties, those seem to result from much stronger forms of the null hypotheses, while
it could be possible that the restriction of the boostrap sample size for consistency
implies analogously poor inite sample properties.

5 Monte Carlo study

In this section we design a set of Monte Carlo experiments to evaluate the size and
power of the proposed tests in inite samples, in the context of the aforementioned
numerical approximation of the test statistics and the p-values, as well as w.r.t. the
choice of the block size for which the assumption framework provides only asymp-
totic guidance.

We do so in a framework of conditional heteroskedasticity that is partially con-
sistent with empirical indings on returns of inancial data that are similar to the
empirical application that follows. The (Yt)t∈Z process is constructed as a vector
GARCH(1,1) process that also contains an appropriately transformed element. Un-
der the relevant restrictions, this allows for both temporal as well as cross sectional
dependence between the random variables that constitute the vector process. In the
following paragraph we describe the process, formulate L, and by deriving relevant
results, we establish ef icient and non-ef icient portfolios w.r.t to both criteria. We
engage to the experiment and then present the results in the inal paragraph of this
section.

5.1 GARCH Type Processes and Ef iciency Considerations

Suppose that

zt
iid∼ N (0, 1) , t ∈ Z.

7 In the case of asymptotic degeneracy, it can be proven that, similarly to the relevant results of
Linton, Maasoumi and Whang [27], such procedures are also asymptotically conservative.
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Furthermore for all t ∈ Z, for i = 1, 2, 3, ωj, aj, βj ∈ R++, such that
E
[
(ajz

2
0 + βi)

1+ϵ
]
< 1 for some ϵ > 0, µi ∈ R+ de ine

yjt = µj + zth
1/2
jt

,
hit = ωj +

(
ajz

2
t−1 + βj

)
hit−1 ,

while for j = 4 and v1, v2 ∈ R de ine

y4t = v1h
1/2
3t (zt)+ + v2h

1/2
3t (zt)− .

Let Yt = (y1t , y2t , y3t , y4t)
′. The construction of y4t in comparison to the other ele-

ments, and the consideration of L below, facilitates the veri ication of the relevant
dominance conditions. Corollary 1 and Theorem 8 of Lindner [26], the de inition of
strongmixing alongwith themeasurability of (·)+, (·)− and their independence from
t, the existence of moments of order 2 + δ for all the univariate processes involved,
imply that Assumption 1, except for the part of it about the Vmatrix, holds for (Yt).
Furthermore, notice that by a linear independence argument, V can be shown to be
positive de inite, if for instance aj ̸= aj⋆ and βj ̸= βj⋆ when j ̸= j⋆ and v1 ̸= v1. Notice
that the fact that all the involved processes are constructed by the same innovations,
allows the modeling of contemporaneous dependence between the elements of the
vector process, without further complicating the form of the conditional variances
recursions. Furthermore, trivial calculations show that Cov

(
yit , yit−k

)
= 0 for all

non zero k and i ̸= 4, while this is not true for i = 4. Let τ = (0, 0, 1, 0), τ ⋆=(0, 0, 0, 1)
and L = {(λ, 1− λ, 0, 0) , λ ∈ [0, 1] , τ, τ ⋆}. For this choice of L,8 Assumption 2 also
holds, while we can easily specify portfolios for which the relevant null hypotheses
are valid.

In this respect, the irst proposition establishes that τ ⋆ is a portfolio that is both
Markowitz and prospect ef icientw.r.t. Lwhen the structuring coef icients are appro-
priately chosen so that the negative part of τ ⋆ has smaller variance and the positive
part of τ ⋆ has larger variance when compared to the other portfolios in L.

Proposition 4. If µi = 0 for i = 1, 2, 3, |v1| >
√

max{ωi,ai,βi , i=1,2,3}
min{ωi,ai,βi , i=1,2,3} and

|v2| <
√

min{ωi,ai,βi , i=1,2,3}
max{ωi,ai,βi , i=1,2,3} then τ ⋆ is both PSD and MSD-ef icient w.r.t. L.

The following proposition establishes the inne iciency of τ w.r.t. L for both rela-
tions. Notice that an analogous result is directly obtainedby the previous proposition
in a more restricted setting.

Proposition 5. If µi = 0 for i = 1, 3, ω1 < ω3, a1 < a3 and β1 < β3 then τ is neither
PSD, nor MSD-inef icient w.r.t. L.

5.2 Scenarios, Computational Issues and Results

Scenarios We use as DGPs instances of the GARCH processes described above, by
choosing the parameters according to Propositions 4 and 5, to approximate the ixed

8 L is obviously disconnected.
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T size andpower. ForB = 300wegenerate independent across b = 1, . . . , B samples(
Y

(b)
t

)
t=1,...,T

for several values of T . For each b, we use the non-overlapping block
bootstrap methodology described above to evaluate ρ̂⋆(b)T,j (α) , j = P,M and decide
according to decision rules 7 and 8 respectively, by choosing α = 0.05, and several
values of R and lT . We approximate the ixed T size by
αB,T,j := 1

B

∑B
b=1 I{ρ̂

⋆(b)
T,j (0.05) < 0.05} when the DGP is such that H(j)

0 holds and
the ixed T power by 1 − βB,T,j := 1

B

∑B
b=1 I{ρ̂

⋆(b)
T,j (0.05) < 0.05} when the DGP is

such thatH(j)
1 holds for j = P,M .

Size Evaluation Scenario-Parameters Selection: To approximate the ixedT size,
we test for PSE and MSD ef iciency of portfolio τ ∗ by setting µi = 0 for i = 1, 2, 3,
ω1 = 0.5, ω2 = 0.5, and ω3 = 0.5, a1 = 0.4, a2 = 0.45, and a3 = 0.5 and β1 =
0.5, β2 = 0.45, β3 = 0.4, v1 = 1.5 and v2 = 0.5. In this case, we have that |v1| >√

max{ωi,ai,βi , i=1,2,3}
min{ωi,ai,βi , i=1,2,3} and |v2| <

√
min{ωi,ai,βi , i=1,2,3}
max{ωi,ai,βi , i=1,2,3} .

Power evaluation Scenario-Parameters Selection: To approximate the ixed T
power, we test for PSE and MSD ef iciency of portfolio τ by setting µi = 0 for i =
1, 2, 3, ω1 = 0.5, ω2 = 0.5, and ω3 = 0.8, a1 = 0.3, a2 = 0.4, and a3 = 0.45 and
β1 = 0.3, β2 = 0.4, β3 = 0.45, v1 = 2 and v2 = 0.2. In this case, we have that ω1 < ω3,
a1 < a3 and β1 < β3.

Computational Issues We numerically solve all the optimization problems, ac-
cording to the formulations presented in the Appendix, using the General Algebraic
Modeling System (GAMS), which is a high-level modeling system for mathematical
programming and optimization. This language calls special solvers (GUROBI in our
case) that are specialized in linear and mixed integer programs. GUROBI uses the
branch and bound technique to solve the MIP program. The Matlab code (where the
simulations run) calls the speci ic GAMS program, which calls the GUROBI solver to
solve each optimization. The optimizations are performedon a number of computers
(with i7 processors, 3.2 GHz Power, 16Gb of RAM). We note the almost exponential
increase in solution time with the increasing number of observations.

The computational time, which involves linear aswell asMIP problems, varies for
both PSD and MSD models from 10 minutes in case 1 (linear models) to 30 hours in
case 3 (MIP models).

Results We present our Monte Carlo results in Table 1. Given the non-informative
nature of Assumption 3 on the choice of lT for ixed T , for the casewhere T = 500, we
investigate caseswhere lT ranges from 4 to 12 by a step size of 4, choicesmotivated by
the suggestions of Hall, Horowitz, and Jing [17], who suggest as optimal block sizes
multiples of T 1/3, T 1/4, and T 1/5. Our experiments show that the choice of the block
size according to the previous, does not seem to dramatically alter the performance
of our methodology even for moderately smaller and larger values of T . We also in-
vestigate the sensitivity of the tests to the choice of the number of bootstrap samples
and sample size by allowing for (R, T ) = (100, 200) , (300, 500) , (500, 1000). The tests
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seem to perform well in every case. For example, for lT = 10, R = 300, T = 500,
we get αB,T,P = 0.048 and αB,T,M = 0.039 for the Markowitz stochastic dominance
ef iciency test in the irst scenario of parameters selection and 1 − βB,T,P = 0.942,
and 1− βB,T,M = 0.938 in the second scenario.

Tab. 1: Monte Carlo Results
Block size lT : 4 8 10 12
Case 1: R=100 T=200
Size Scenario:
αB,T,P 3.1% 3.8% 4.7% 3.6%
αB,T,M 4.2% 6.3% 3.5% 3.7%
Power Scenario:
1− βB,T,P 93.2% 92.7% 92.6% 94.1%
1− βB,T,M 96.3% 93.5% 92.8% 92.9%
Case 2: R=300 T=500
Size Scenario:
αB,T,P 3.9% 4.2% 4.8% 5.5%
αB,T,M 3.5% 5.9% 3.9% 4.7%
Power Scenario:
1− βB,T,P 93.4% 92.9% 94.2% 97.6%
1− βB,T,M 92.9% 94.0% 93.8% 92.8%
Case 3: R=500 T=1000
Size Scenario:
αB,T,P 4.6% 4.1% 5.5% 5.1%
αB,T,M 4.7% 4.3% 3.9% 5.2%
Power Scenario:
1− βB,T,P 96.1% 95.7% 96.4% 95.9%
1− βB,T,M 96.6% 95.1% 94.3% 94.2%

6 Empirical application

In the empirical application, we test for the aforementioned notions of ef iciency of
the market portfolio relative to the space of all possible portfolios that can be con-
structed upon a set of basis assets excluding the market portfolio. More speci ically,
we use as basis assets either several instances of the Fama and French (FF) bench-
mark portfolios, a set of Momentum portfolios, or a set of industry portfolios as de-
scribed below, along with the market portfolio. If the number of basis assets equals
n, then L is essentially the union of the relevant n − 2 subsimplex of the standard
n − 1 simplex with {(0, · · · , 1)}, where the latter signi ies the market portfolio. The
FF benchmark portfolios formed onmarket capitalization (size) and book-to-market
equity ratio (BE/ME) (Fama and French [12]). To check whether our results are spe-
ci ic to the BE/ME shorted portfolios, we use three different datasets of the Fama and
French (FF) benchmark portfolios. We also use the 10 Momentum portfolios, which
contain the returns for 10 prior-return portfolios. Finally, we use the 49 industry
portfolios from the USmarket (Fama and French 1997). The assignment of the NYSE,
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AMEX, and NASDAQ stocks into industry portfolios are based on their four-digit SIC
code. The industry portfolio returns are valueweighted, i.e. based on themarket cap-
italisation. All these portfolios have been at the center of the asset pricing literature
over the past two decades.

• The FF Benchmark portfolios: They are constructed at the end of each June,
and correspond to the intersections of portfolios formed on size (market eq-
uity, ME) and portfolios formed on the ratio of book equity to market equity
(BE/ME). ME is the stock price times the number of shares, while BE is the
book value of shareholders equity, plus balance sheet deferred taxes and in-
vestment tax credit (if available), minus the book value of preferred stocks. The
size breakpoint for year t is the median NYSE market equity at the end of June
of year t. BE/ME for June of year t is the book equity for the last iscal year end
in t − 1 divided by ME for December of t − 1. Firms with negative BE are not
included in any portfolio. Also, only irms with ordinary common equity (as
classi ied by CRSP) are included in the tests. We use three different data sets:

– The 6 FF Benchmark portfolios: They are constructed as the intersections
of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed
on the ratio of book equity to market equity (BE/ME).

– The 25 FF Benchmark portfolios: They are constructed as the intersec-
tions of 5 portfolios formed on size (market equity, ME) and 5 portfolios
formed on the ratio of book equity to market equity (BE/ME).

– The 100 FF Benchmark portfolios: They are constructed as the intersec-
tions of 10 portfolios formedon size (market equity, ME) and10portfolios
formed on the ratio of book equity to market equity (BE/ME).

• The 10 Momentum portfolios: They are constructed monthly using NYSE
prior (2-12) returndecile breakpoints. The portfolios includeNYSE, AMEX, and
NASDAQ stockswith prior return data. To be included in a portfolio formonth t
(formed at the end ofmonth t-1), a stockmust have a price for the end ofmonth
t-13 and a good return for t-2.

• The 49 Industry portfolios: They are constructed by assigning each NYSE,
AMEX, and NASDAQ stock to an industry portfolio at the end of June of year t
based on its four-digit SIC code at that time. The Compustat SIC codes are used
for the iscal year ending in calendar year t-1. Whenever Compustat SIC codes
are not available, the CRSP SIC codes for June of year t are used. The industries
are de ined with the goal of having amanageable number of distinct industries
that cover all NYSE, AMEX, and NASDAQ stocks.

For each dataset we use data on monthly excess returns (month-end to month-end)
from January 1930 toDecember 2012 (996monthly observations) obtained from the
data library on the homepage of Kenneth French
(http://mba.turc.dartmouth.edu/pages/faculty/ken.french). The test portfolio is the
Fama and French market portfolio, which is the value-weighted average of all non-
inancial common stocks listed on NYSE, AMEX, and Nasdaq, and covered by CRSP
and COMPUSTAT.
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Table 2 presents some sample characteristics of theMarket portfolio and the 6 FF
portfolios9 covering the period from January 1930 to December 2012 (996 monthly
observations) that are used in the test statistics.

Descriptive Statistics (January 1930 to December 2012)
No. Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Market Portfolio 0.604 5.413 0.237 7.593 -29.98 37.77

1 1.016 7.825 1.026 7.270 -32.32 65.63
2 1.288 7.139 1.310 11.660 -31.10 64.12
3 1.493 8.367 2.175 18.810 -33.06 85.24
4 0.847 5.308 -0.023 2.231 -28.08 32.55
5 0.936 5.823 1.303 14.227 -28.01 51.52
6 1.161 7.327 1.547 14.926 -35.45 68.25

Tab. 2: Descriptive statistics of monthly returns in % from January 1930 to December
2012 (996 monthly observations) for the Fama and French market portfolio
and the six Fama and French benchmark portfolios formed on size and book-
to-market equity ratio. Portfolio 1 has low BE/ME and small size, portfolio 2
has medium BE/ME and small Size, portfolio 3 has high BE/ME and small size,
..., portfolio 6 has high BE/ME and large size.

As we can see from Table 2, the sample skewness and kurtosis provide evidence
against marginal normality. If this is true and the investor utility function is not
quadratic, then preference relation of any such investor cannot be represented by
the variance-covariance matrix of these portfolios. At this point, it is perhaps inter-
esting to note that Scaillet and Topaloglou [40] show that the Fama and French mar-
ket portfolio is notmean-variance ef icient, compared to the 6 benchmark portfolios.
Thismotivates us to testwhether themarket portfolio is ef icientwhendifferent pref-
erences are taken into account.

6.1 Results of the stochastic dominance ef iciency tests

We ind a signi icant autocorrelation of order one at a 5% signi icance level in some
benchmark portfolios, while ARCH effects are also present at a 5% signi icance level.
This indicates that a block bootstrap approach should be favored over a standard
i.i.d. bootstrap approach. Furthermore, estimation of GARCH type models provide
evidence in favor of the mixing and moment conditions appearing in our assump-
tion framework. Indeed, both for the market portfolio as well as for each bench-
mark portfolio i, the estimates of the sum of the GARCH and the ARCH coef icients
are less than 1. We choose a block size of 10 observations following the suggestions
of Hall, Horowitz, and Jing [17], who show that optimal block sizes are multiple of
T 1/3, where in our case, T = 996. The p-values are approximated as shown before.

9 Analogous statistical characteristics are also available for the other datasets.
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• The FF Benchmark portfolios:

– The 6 FF Benchmark portfolios: For the prospect stochastic dominance
ef iciency, we cannot reject the hypothesis that the market portfolio is ef-
icient. The p-value, p̃ = 0.743, is way above the signi icance level of 5%.
We divide the full period into two sub-periods, the irst one from January
1930 to June 1971, a total of 498 monthly observations, and the second
one from July 1971 to December 2012, 498 monthly observations. We
test for prospect stochastic dominance of themarket portfolio to each sub-
period. We ind that the p-value for the irst sub-period is p̃1 = 0.654 and
the p-value for the second sub-period is p̃2 = 0.687.
On the other hand, we ind that the MSD criterion cannot be accepted at
the aforementioned signi icance level. The p-value, p̃ = 0.043 is below the
signi icance level of 5%. Additionally, the p-value, p̃1 = 0.061, for the irst
sub-period and the p-value, p̃2 = 0.029, for the second sub-period indicate
that the market portfolio is not Markowitz stochastic dominance ef icient
in each sub-period as well as in the full period.

– The 25 FF Benchmark portfolios: As before, for the prospect stochastic
dominance ef iciency, we cannot reject the hypothesis that the market
portfolio is ef icient. The p-value, p̃ = 0.564, is way above the signi icance
level of 5%. We ind that the p-value for the irst sub-period is p̃1 = 0.729
and the p-value for the second sub-period is p̃2 = 0.483.
We additionally ind that the MSD criterion cannot be accepted. The p-
value, p̃ = 0.034, is below the signi icance level of 5%. Additionally, the
p-value, p̃1 = 0.047, for the irst sub-period and the p-value, p̃2 = 0.051, for
the second sub-period indicate that themarket portfolio is not Markowitz
stochastic dominance ef icient in each sub-period as well as in the full pe-
riod.

– The 100 FFBenchmark portfolios: Again, for the prospect stochastic dom-
inance ef iciency, we cannot reject the hypothesis that the market portfo-
lio is ef icient. The p-value, p̃ = 0.479, is above the signi icance level of
5%. We ind that the p-value for the irst sub-period is p̃1 = 0.384 and the
p-value for the second sub-period is p̃2 = 0.516.
As before, we ind that theMSD criterion cannot be accepted. The p-value,
p̃ = 0.030, is below the signi icance level of 5%. Additionally, the p-value
p̃1 = 0.049 for the irst sub-period and the p-value p̃2 = 0.028 for the
second.

• The 10Momentumportfolios: We cannot reject the hypothesis that themar-
ket portfolio is prospect stochastic dominance ef icient. The p-value is p̃ =
0.387. We ind that the p-value for the irst sub-period is p̃1 = 0.416 and the
p-value for the second sub-period is p̃2 = 0.465.
The hypothesis that the market portfolio is MSD ef icient is rejected. The p-
value is p̃ = 0.049, which is below the signi icance level of 5%. Additionally,
the p-value p̃1 = 0.057 for the irst sub-period and p-value p̃2 = 0.028 for the
second sub-period.
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• The49 Industryportfolios: Thehypothesis that themarketportfolio is prospect
stochastic dominance ef icient is not rejected. The p-value is p̃ = 0.519. We ind
that the p-value for the irst sub-period is p̃1 = 0.623 and the p-value for the sec-
ond sub-period is p̃2 = 0.414.
Finally, we ind that the MSD criterion is rejected. The p-value is p̃ = 0.054,
which is below the signi icance level of 5%. Additionally, the p-value p̃1 = 0.039
for the irst sub-period and p-value p̃2 = 0.040 for the second sub-period.

The results provide evidence in favorof the claim that themarketportfolio is prospect
stochastic dominance ef icient. If this holds, it implies that any S-shaped utility func-
tion rationalizes the market portfolio as an optimal choice. If investors are risk seek-
ing for losses and risk averse for gains, then they will pay a premium for stocks that
have low downside risk in bear markets and high upside potential in bull markets.
Prospect type investors will have an ”abnormal” demand for assets that offer sys-
tematic downside protection (due to loss aversion and the overweighting of small
probabilities of large losses) or systematic upside potential (due to loss aversion and
the overweighting of small probabilities of large gains).

Prospect theory also involves the concept of probability transformations that over-
weight small probabilities of large gains and losses, and underweight large and inter-
mediate probabilities of small and intermediate gains and losses (Tversky and Kah-
neman [42]). The prospect stochastic dominance ef iciency of the market portfolio
we found here is not affected by transformations that are increasing and convex over
losses and increasing and concave over gains, i.e. S-shaped transformations. More-
over, if themarket portfolio is non dominatedw.r.t. PSD, then it is also non dominated
w.r.t. the weaker condition given by Baucells and Heukamp [3].

On the other hand, in all cases our implementation does not provide support for
the Markowitz stochastic dominance ef iciency of the market portfolio. If this holds,
it does not necessarily imply that no reverse S-shaped utility function can rationalize
the market portfolio, but only the existence of at least one such function that fails to
do so.

6.2 Rolling window analysis

We carry out an additional analysis to validate the prospect stochastic dominance
ef iciency of the market portfolio and the stability of the model results. It is possi-
ble that the ef iciency of the market portfolio as a weighted average varies over time
due to changes in the weights constructing it from the universe of assets. 10 Fur-
thermore the temporal extend of our sample could imply the non validity of the sta-
tionarity assumption due to possible structural changes in the DGP. To account for
the above, we perform a rolling window analysis, using a window width of 20 years.
The test statistic is calculated separately for 63 overlapping 20-year periods (January
1930-December 1949), (January 1931-December 1951),...,(January 1993-December
2012). The time series in this case is smaller (240 monthly observations) so that a
maintained assumption of stationarity is more credible.

10 It is also possible that the degree of ef iciency may change over time, as pointed by Post [36].



7 Concluding Remarks 21

Figure 1 shows the corresponding p-values for the prospect stochastic dominance
ef iciency test (upper graph) and for the Markowitz stochastic dominance ef iciency
test (lower graph) using the 6 FF benchmark portfolios. We observe that the mar-
ket portfolio is prospect stochastic dominance ef icient in the total sample period.
The prospect stochastic dominance ef iciency is not rejected on any subsample. The
p-values are always greater than 22% and in some cases they reach the 74%. This
result is in accordance to that prospect stochastic dominance ef iciency that was not
rejected in the previous subsection, for the full period. On the other hand, we ob-
serve that the Markowitz stochastic dominance ef iciency is rejected on 51 out of 63
subsamples. The p-values aremost of the cases lower than 5%. This result is in accor-
dance with the rejection of the Markowitz stochastic dominance ef iciency that was
found in the previous subsection. If this is true, it implies that for those subsamples
there exist portfolios constructed from the set of the six benchmark portfolios that
dominates the market portfolio w.r.t. at least one reverse S-shaped utility function.

Figure2exhibits the p-values for theprospect (upper graph) and for theMarkowitz
stochastic dominance ef iciency test (lower graph) using the 10 Momentum portfo-
lios. We observe again that themarket portfolio is prospect stochastic dominance ef-
icient in the total sample period. The prospect stochastic dominance ef iciency is not
rejected on any subsample. The p-values are always greater than 30%, and in some
cases they reach the 70%. This result is in consonance to that prospect stochastic
dominance ef iciency that was not rejected in the previous subsection. On the other
hand, we observe that the Markowitz stochastic dominance ef iciency is rejected on
48 out of 63 subsamples. The p-values are most of the cases lower than 5%. This
result is in accordance with the rejection of the Markowitz stochastic dominance ef-
iciency and implies that for those subsamples there exist portfolios constructed from
the set of the 10 Momentum portfolios that dominates the market portfolio w.r.t. at
least one reverse S-shaped utility function.

Finally, Figure 3 shows the corresponding p-values for the prospect (upper graph)
and for the Markowitz stochastic dominance ef iciency test (lower graph) using the
49 Industry portfolios. We observe once again that the market portfolio is prospect
stochastic dominance ef icient in the total sample period. The prospect stochastic
dominance ef iciency is not rejected on any subsample. The p-values are always
greater than 25%, and in some cases they reach the 70%. On the other hand, we
observe that the Markowitz stochastic dominance ef iciency is rejected on 49 out of
63 subsamples. The p-values are most of the cases lower than 5%. This result im-
plies that for those subsamples there exist portfolios constructed from the set of the
49 Industry portfolios that dominates the market portfolio w.r.t. at least one reverse
S-shaped utility function.

7 Concluding Remarks

In this paperwedevelop consistent statistical tests forprospect andMarkowitz stochas-
tic dominance ef iciency for time-dependent data. We use a block bootstrap formula-
tion to achieve valid asymptotic inference in a setting of temporal dependence. Mixed
integer and linear programming are used to facilitate the computational aspects of
the procedures.
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To illustrate the potential of the proposed test statistics, we test whether the two
stochastic dominance ef iciency criteria rationalize theFamaandFrenchmarketport-
folio over three different data sets of Fama and French benchmark portfolios con-
structed as the intersections of ME portfolios and BE/ME portfolios, as well as over
49 Industry portfolios. The results support the claim that the market portfolio is
prospect stochastic dominance ef icient. In contrast, they are not in favor of the claim
that themarket portfolio isMarkowitz stochastic dominance ef icient, indicating that
theremight exist utility functionswith global risk aversion for losses and risk seeking
over gains that cannot rationalize the market portfolio as optimal.

The theoretical interpretation of the aforementioned empirical results is a quite
interesting question. For example, they seem consistent with inancial equilibria in-
volving a generic representative investorwith risk aversion for gains and risk seeking
for losses. However, such interpretations should also take into account theoretical
results such as the ones concerning the possibility of non-existence of equilibria in
inancial markets with prospect theory preferences-see for example De Giorgi, Hens,
and Rieger [9].

The tests could possibly be used as initial steps for the statistical decoupling of
the form of the utility or value function to the transformation of the probability mea-
sures that characterize many theories of choice under uncertainty. For example, non
rejection of theMSD ef iciency could support the validity of cumulative prospect the-
ory when the curvature of the S-shaped utility is dominated by the reverse S-shaped
probability transformation (see Post and Levy [38]) as this theory suggests. The con-
struction of inferential procedures that statistically disentangle the two could be of
importance.

The methodology used could be also relevant for the construction of tests of ef i-
ciency w.r.t. notions of stochastic dominance that are representable by utility func-
tions with more complex behavior (e.g., attitudes towards risks may exhibit addi-
tional changes on extreme events).

In any case, we delegate the above considerations to future research. We hope
that our results provide a stimulus for further theoretical and empirical examination
of decision under prospect andMarkowitz type preferences, aswell as that this study
contributes to the further proliferation of the SD methodology.
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APPENDIX

Numerical Implementation

We describe a procedure applicable for the computation of pT and mT . This essen-
tially works by reductions to equivalent (w.r.t. optimization) problems one for each
statistic. Those are essentially based on Lemma 1 that appears below. A completely
analogous procedure is used for the approximation of the statistics evaluated at the
bootstrap samples, but it is by construction more tediously describable and thereby
omitted to economize on space.

We also assume that L is convex in order to facilitate the presentation. The for-
mulation is easily generalized to the cases covered by Assumption 2 since in its most
general form the parameter space is a inite union of simplices.

In what follows we denote with Yp the set {τ ′Yt : τ
′Yt > 0} and with Yn the com-

plement {Yt, t = 1, . . . , T} − Yp along with zero.

Prospect Positive Part

supz∈R++
supλ∈L p2

(
z, λ, τ,

√
TFT

)
equals

sup
z∈R++

sup
λ∈L

1√
T

T∑
t=1

{[
(z − τ ′Yt)+ − (−τ ′Yt)+

]
−
[
(z − λ′Yt)+ − (−λ′Yt)+

]}
,

and due to Lemma 1, for r ∈ Yp we have that

1√
T

T∑
t=1

[
(r − τ ′Yt)+ − (−τ ′Yt)+

]
+ sup

λ∈L
− 1√

T

T∑
t=1

[
(r − λ′Yt)+ − (−λ′Yt)+

]
=

1√
T

T∑
t=1

[
(r − τ ′Yt)+ − (−τ ′Yt)+

]
+sup

λ∈L
− 1√

T

T∑
t=1

[
(r − λ′Yt)+ I {λ′Yt > 0}+ rI {λ′Yt ≤ 0}

]
.

The last expression in the previous display equals

1√
T

T∑
t=1

[(r − τ ′Yt) I {0 < τ ′Yt ≤ r}+ rI {τ ′Yt ≤ 0}]

− inf
λ∈L

1√
T

T∑
t=1

[(r − λ′Yt) I {0 < λ′Yt ≤ r}+ rI {λ′Yt ≤ 0}] .

Since
[(r − λ′Yt) I {0 < λ′Yt ≤ r}+ rI {λ′Yt ≤ 0}]

= min (r − λ′Yt, r) I {λ′Yt ≤ r} ,

p2

(
z2, λ, τ,

√
TFT

)
becomes

1√
T

T∑
t=1

min (r − τ ′Yt, r) 1{τ ′Yt≤r} − inf
λ∈L

1√
T

T∑
t=1

min (r − λ′Yt, r) 1{λ′Yt≤r}.
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Hence, we need to solve the optimization problem

inf
λ∈L

1√
T

T∑
t=1

min (r − λ′Yt, r) 1{λ′Yt≤r}.

We represent the previous by the following MIP program:

min
λ∈L

1√
T

T∑
t=1

(Xt + cbt) (9)

s.t. M(Ft − 1) ≤ r − λ′Yt ≤ MFt ∀ t ∈ T, (10)
−M(1− Ft) ≤ Lt − (r − λ′Yt) ≤ M(Ft − 1) ∀ t ∈ T, (11)
−MFt ≤ Lt ≤ MFt ∀ t ∈ T, (12)
Xt = Ltbt + r(1− bt) ∀ t ∈ T, (13)
Lt − r +Mbt > 0 ∀ t ∈ T, (14)
λ′1 = 1, (15)
λ ≥ 0, (16)
Ft, bt ∈ {0, 1} ∀ t ∈ T, . (17)

where 1 is a vector of ones, c ∈ R andM is a large real number.
Xt which is a linearization of the min(r − λ′Yt, r) function. We use a binary vari-

able Ft, which, according to the inequalities (10), equals 1 for each t ∈ T for which
r ≥ λ′Yt, and 0 otherwise. Then, the following two sets of inequalities, (11) and (12),
ensure that the variable Lt equals r − λ′Yt for each t ∈ T for which this difference is
positive, and 0 otherwise. Constraints (13) and (14) ensure that Xt takes the mini-
mumvalue betweenLt and r. To get that to happen, we use a binary variable bt which
is equal to 1 if Lt is lower than r, or 0 otherwise.

Prospect Negative Part

supz∈R−
supλ∈L p1

(
z1, λ, τ,

√
TFT

)
equals

sup
z∈R−

sup
λ∈L

1√
T

T∑
t=1

{[
(−τ ′Yt)+ − (z − τ ′Yt)+

]
−
[
(−λ′Yt)+ − (z − λ′Yt)+

]}
,

and due to Lemma 1, for r ∈ Yn we have that

1√
T

T∑
t=1

[
(−τ ′Yt)+ − (z − τ ′Yt)+

]
+ sup

λ∈L
− 1√

T

T∑
t=1

[
(−λ′Yt)+ − (z − λ′Yt)+

]

=
1√
T

T∑
t=1

[
(−τ ′Yt)+ − (z − τ ′Yt)+

]
+sup

λ∈L

1√
T

T∑
t=1

[(
λ′Yt + (r − λ′Yt)+

)
I {λ′Yt ≤ 0}

]
.



7 Concluding Remarks 25

The last expression in the previous display equals

1√
T

T∑
t=1

[τ ′YtI {τ ′Yt < r}+ rI {r ≤ τ ′Yt ≤ 0}]

+ sup
λ∈L

1√
T

T∑
t=1

[λ′YtI {λ′Yt < r}+ rI {r ≤ λ′Yt ≤ 0}] .

Since

[λ′YtI {λ′Yt < r}+ rI {r ≤ λ′Yt ≤ 0}]
= min (λ′Yt, r) I {λ′Yt ≤ 0} ,

p1

(
z1, λ, τ,

√
TFT

)
becomes

1√
T

T∑
t=1

min (τ ′Yt, r) 1{τ ′Yt≤0} + sup
λ∈L

1√
T

T∑
t=1

min (λ′Yt, r) 1{λ′Yt≤0}.

Hence, we need to solve the optimization problem

sup
λ∈L

1√
T

T∑
t=1

min (λ′Yt, r) 1{λ′Yt≤0}.

We represent the previous by the MIP program:

max
λ∈L

1√
T

T∑
t=1

(Xt − cbt) (18)

s.t. M(Ft − 1) ≤ −λ′Yt ≤ MFt ∀ t ∈ T, (19)
−M(1− Ft) ≤ Lt − λ′Yt ≤ M(Ft − 1) ∀ t ∈ T, (20)
−MFt ≤ Lt ≤ MFt ∀ t ∈ T, (21)
Xt = Ltbt + r(1− bt) ∀ t ∈ T, (22)
Lt − r +Mbt > 0 ∀ t ∈ T, (23)
λ′1 = 1, (24)
λ ≥ 0, (25)
Ft, bt ∈ {0, 1} ∀ t ∈ T, (26)

(27)

where 1, c,M as before.
Analogously, Xt is a linearization of the min(λ′Yt, r) function. We use a binary

variable Ft, which, according to Inequalities (19) equals 1 for each t ∈ T for which
λ′Yt ≤ 0, and 0 otherwise. Then, the following two sets of inequalities, (20) and (21),
ensure that the variable Lt equals λ′Yt for each t ∈ T for which this is negative, and
0 otherwise. Constraints (22) ensure that Xt takes the minimum value between Lt

and r. To get that to happen, we use a binary variable bt which is equal to 1 if Lt is
lower than r, or 0 otherwise.
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Markowitz Positive Part

supz∈R++
supλ∈Lm2

(
z, λ, τ,

√
TFT

)
equals

sup
λ∈L

1√
T

T∑
t=1

{
(λ′Yt)+ − (−λ′Yt)+ + (z − λ′Yt)+

}
− 1√

T

T∑
t=1

{
(τ ′Yt)+ − (−τ ′Yt)+ + (z − τ ′Yt)+

}
,

and due to Proposition 1, for r ∈ Yp the latter equals

sup
λ∈L

1√
T

T∑
t=1

{
(λ′Yt)+ − (−λ′Yt)+ + (r − λ′Yt)+

}
− 1√

T

T∑
t=1

{
(τ ′Yt)+ − (−τ ′Yt)+ + (r − τ ′Yt)+

}
.

The previous becomes

sup
λ∈L

1√
T

T∑
t=1

{(λ′Yt) I {λ′Yt > r}+ rI {λ′Yt ≤ r}}− 1√
T

T∑
t=1

{(τ ′Yt) I {τ ′Yt > r}+ rI {τ ′Yt ≤ r}} .

Since

{(λ′Yt) I {λ′Yt > r}+ rI {λ′Yt ≤ r}}
= max (λ′Yt, r) = r − (r − λ′Yt)− ,

m2

(
z2, λ, τ,

√
TFT

)
becomes

sup
λ∈L

1√
T

T∑
t=1

max (λ′Yt, r)−
1√
T

T∑
t=1

max (τ ′Yt, r)

Hence, we need to solve the optimization problem

sup
λ∈L

1√
T

T∑
t=1

max (λ′Yt, r) .

We represent it by the following MIP program:

max
λ∈L

1√
T

T∑
t=1

(Xt − cbt)

s.t. Xt = λ′Ytbt + r(1− bt) ∀ t ∈ T, (28)
r − λ′Yt +Mbt > 0 ∀ t ∈ T, (29)
λ′1 = 1, (30)
λ ≥ 0, (31)
bt ∈ {0, 1} ∀ t ∈ T. (32)

where 1, c,M as before.
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In the above formulation Xt is a linearization of the max(λ′Yt, r) function. The
irst two constraints, (28) and (29)) ensure that Xt takes the maximum value be-
tween λ′Yt and r. To get that to happen, we use a binary variable bt which is equal to
1 if λ′Yt is higher than r, or 1 otherwise.

Due to the dependence ofLt on λ the smaller problems depend also on the binary
variable. Hence each one of them is a Mixed Integer program. It usually takes signif-
icantly multiple time for the solution of each such a problem compared to the linear
ones.

Finally, notice that in every case the practical implementation of any test usingR
bootstrap samples involves 2(R+1) internal numerical optimizations andR+1 trivial
ones. Hence, the usual trade off between possibly desirable higher order properties
and numerical burden is obviously present in our considerations.

Markowitz Negative Part

As previously mentioned, the numerical approximation of
supz∈R− supλ∈L m1

(
z1, λ, τ,

√
TFT

)
can be also reduced to the solution of a inite

number of linear programming problems via the use of an analogous formulation
as above or via the results for the mathematical implementation of the SSD test in
Scaillet and Topaloglou [40]. Given Lemma 1 the formulation used is the following:

max
z≥0,λ∈L

1√
T

T∑
t=1

(Lt −Wt)

s.t. Wt ≥ r − λ′Yt, ∀t ∈ Tn

Lt = (r − τ ′Y )+, ∀t ∈ Tn

λ′1 = 1,

λi ≥ 0, ∀i,
Wt ≥ 0, ∀t ∈ Tn. (33)

Auxiliary Lemmata

Inwhat follows p⇝denotes (conditional)weak convergence inprobability (see among
others Paragraph 3.6.1 of van der Vaart and Wellner [44]).

Lemma 1. supz∈R− p1

(
z, λ, τ,

√
TFT

)
= p1

(
r, λ, τ,

√
TFT

)
for some r ∈ Yn (resp.

supz∈R− m1

(
z, λ, τ,

√
TFT

)
= m1

(
r, λ, τ,

√
TFT

)
for some r ∈ Yn). Analogously,

supz∈R++
p2

(
z, λ, τ,

√
TFT

)
= p2

(
r, λ, τ,

√
TFT

)
for some r ∈ Yp

(resp. supz∈R++
m2

(
z, λ, τ,

√
TFT

)
= m2

(
r, λ, τ,

√
TFT

)
for some r ∈ Yp).

Proof. Consider supz∈R++
p2

(
z, λ, τ,

√
TFT

)
and assume that Yp is increasingly or-

dered. If z such that ri ≤ z ≤ ri+1, i = 1, · · ·Tp − 1, Tp := |Yp| ,
T∑
t=1

(z − τ ′Yt)+ is
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constant. Furthermore, themaximumvalue of−
T∑
t=1

(z − λ′Yt)+ is reached for z = ri.

Analogous considerations are easily obtained when z < r1 or z > rTp . Hence, we can
restrict z to belong to the set Yp. All other cases are analogously obtained.

Lemma 2. Under Assumption 1 , p1

(
z1, λ, τ,

√
T (FT − F )

)
p2

(
z2, λ, τ,

√
T (FT − F )

) ⇝ (
p1 (z1, λ, τ,GF )
p2 (z2, λ, τ,GF )

)
and  m1

(
z1, λ, τ,

√
T (FT − F )

)
m2

(
z2, λ, τ,

√
T (FT − F )

) ⇝ (
m1 (z1, λ, τ,GF )
m2 (z2, λ, τ,GF )

)
as randomelementswith values on the space ofR2-valuedbounded functions onL× R−×
R++ equiped with the sup-norm. The limiting processes have continuous sample paths.

Proof. Let θ := (λ, z1, z2) ∈ Θ := L× R− × R++, ρ any non zero element of R2,
and consider P (θ, · ) := ρ1p1 (z1, λ, τ, · ) + ρ2p2 (z1, λ, τ, · ). Notice that Theorem 7.3
of Rio [39], due to Assumption 1, implies that

√
T (FT − F ) ⇝ GF . This implies

that
√
T (FT − F ) also weakly hypo-converges to GF (see for example Knight [21]).

Both are upper semi-continuous (usc) P a.s. and the space of usc functions with the
topology of epiconvergence can be metrized as complete and separable (see again
Knight [21]). Due to separability and the Skorokhod Representation Theorem (see
for example Theorem 1 in Cortissoz [5]) there exists a suitable probability space
and random elements with values in the aforementioned function space such that
f ∗
T

d
=

√
T (FT − F ), f ∗ d

= GF , and f ∗
T → f ∗ a.s.. Let J := span {f ∗

T , f
∗, T = 1, 2, · · · }

equipped with the metrizable topology of weak convergence.11 Consider P (· , · ) re-
stricted to J with values in the linear space of stochastic processes, equipped with
the topology of convergence in distribution, with values in the space of bounded real
functions de ined on Θ equipped with the sup-norm. From Assumption 1, Corollary
4.1, and Theorem 7.3 of Rio [39] we also have that

sup
θ∈Θ

sup
T

E
[(

P
(
θ,
√
T (FT − F )

))2]
+ sup

θ∈Θ
E
[
(P (θ,GF ))

2] < +∞.

The latter inequality along with Theorem 6.5.2 in Narici and Beckenstein [33], the
metrization of convergence in distribution by the bounded Lipschitz metric (see for
example p. 73, van der Vaart [43])which is bounded fromabove by supθ E

[
(x− y)2

]
,

for x, y members of the aforementioned space of processes, imply that P (· , · ) as re-
stricted above is continuous. Hence the CMT implies thatP (θ, f ∗

T )⇝ P (θ, f ∗)which
means that P

(
θ,
√
T (FT − F )

)
⇝ P (θ,GF ). This and the Cramer-Wold Theorem

imply theneeded result. The inal assertion follows fromthat supθ∈Θ E
[
(P (θ,GF ))

2] <
+∞, the discussion in Example 1.5.10 of van der Vaart andWellner [44], and the con-
tinuity of E

[
(P (θ,GF ))

2]w.r.t. θ. The second result is completely analogous.
11 Here span denotes the closure w.r.t. the particular topology of the linear span.
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Proofs of Main Results

Proof of Proposition 1. For the part concerning PSD-ef iciencywehave that: i. If τ ≽P

L then, from De inition 1 we have that for any λ,
supz≤0 p1 (z, λ, τ, F ) ≤ 0 and supz>0 p2 (z, λ, τ, F ) ≤ 0. This implies that

max
i=1,2

sup
z∈Ai

pi (z, λ, τ, F ) ≤ 0,

which in turn implies that p (τ, F ) ≤ 0. The required equality follows from that,

p (τ, F ) ≥ p2 (z, τ, τ, F ) = 0.

If τ ⪰̸P L then there exists some λ⋆, some i and subsequently some z⋆ ∈ Ai, such that
pi (z

⋆, λ⋆, τ, F ) > 0. This directly implies that p (τ, F ) > 0. ii. If p (τ, F ) = 0 then for
any λ ∈ L we get that maxi=1,2 supz∈Ai

pi (z, λ, τ, F ) ≤ 0. Hence, pi (z, λ, τ, F ) ≤ 0,
for every z ∈ Ai, i = 1, 2. If p (τ, F ) > 0 then there exists some λ⋆, some i and subse-
quently some z⋆ ∈ Ai, such that pi (z⋆, λ⋆, τ, F ) > 0which then implies that τ ⪰̸P L .
The part concerning MSD-ef iciency follows analogously.
Proof of Proposition 2. The results in 3 and 5 follow from Lemma 2 and the CMT. The

results in Lemma 2 imply that

 p1

(
z1, λ, τ,

√
T (FT − F )

)
p2

(
z2, λ, τ,

√
T (FT − F )

) weakly converges to(
p1 (z1, λ, τ,GF )
p2 (z2, λ, τ,GF )

)
w.r.t. to the product topology of hypo-convergence on the prod-

uct of the relevant spaces of usc real valued functions (see e.g. Knight [21] for the
dual notion of epi-convergence). This product space is metrizable as complete and
separable (see again Knight [21]). Hence, Skorokhod representations are applicable
(as above, see for example Theorem1 in Cortissoz [5]) and thereby there exists an en-
hanced probability space and processes(

P1,T (θ1)
P2,T (θ2)

)
d
=

 p1

(
z1, λ, τ,

√
T (FT − F )

)
p2

(
z2, λ, τ,

√
T (FT − F )

) ,
(

P1 (θ1)
P2 (θ2)

)
d
=

(
p1 (z1, λ, τ,GF )
p2 (z2, λ, τ,GF )

)
,

de ined on it such that
(

P1,T

P2,T

)
→
(

P1

P2

)
almost surely, w.r.t. to the product topol-

ogy of hypo-convergence, where d
=denotes equality in distribution, and θi = (λ, zi) ∈

L× Ai, i = 1, 2. Notice that p1

(
z1, λ, τ,

√
TFT

)
p2

(
z2, λ, τ,

√
TFT

)  d
= KT (θ1, θ2) :=

(
P1,T (θ1)
P2,T (θ2)

)
+
√
T

(
p1 (z1, λ, τ, F )
p2 (z2, λ, τ, F )

)
,

and that under H(P )
0 , almost surely, for any θi = (λ, zi) ∈ L × Ai, i = 1, 2 and any

θT,i → θi, due to that Γ(P )
i is closed (see Remark 2), for any i = 1, 2,

lim sup
T→∞

(
P i,T (θT,i) +

√
Tpi (zT,i, λT , τ, F )

)
≤


Pi (θi) , θi ∈ Γ

(P )
i , θT,i∈T ⋆Γ

(P )
i

Pi (θi) , θi ∈ Γ
(P )
i , θT,i /∈ Γ

(P )
i

−∞, θi /∈ Γ
(P )
i , θT,i /∈ Γ

(P )
i

,
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where ∈T ⋆ denotes ”eventually belongs”, and,

lim inf
T→∞

(
P i,T (θi) +

√
Tpi (zi, λ, τ, F )

)
=

{
Pi (θi) , θi ∈ Γ

(P )
i ,

−∞, θi /∈ Γ
(P )
i ,

,

hence,
(

P 1,T (θ1)
P 2,T (θ2)

)
+

√
T

(
p1 (z1, λ, τ, F )
p2 (z2, λ, τ, F )

)
almost surely converges w.r.t. to the

product topology of hypo-convergence to the limit K (θ1, θ2) =

(
K1 (θ1)
K2 (θ2)

)
, with

Ki (θi) =

{
Pi (θi) , θi ∈ Γ

(P )
i

−∞, θi /∈ Γ
(P )
i

, due to the (dual version of) Proposition 3.2 (ch. 5, p.

337)ofMolchanov [32]. Furthermore, since almost surely supT∈N,θi∈L×Ai
P i,T (θT,i) <

+∞, and due to the form ofH(P )
0 , we have that

lim sup
T→∞

sup
θi∈L×Ai

(
P i,T (θi) +

√
Tpi (zi, λ, τ, F )

)
≤ sup

θi∈L×Ai

Pi (θi)

= sup
θi∈L×Ai

Ki (θi) = sup
θi∈Γ

(P )
i

Pi (θi) ,

and thereby due to (the dual version of) Theorem 3.4 (ch. 5, p. 338) of Molchanov
[32], and the CMT

max
i

sup
θi∈L×Ai

(
P i,T (θi) +

√
Tpi (zi, λ, τ, F )

)
→ max

i
sup

θi∈Γ
(P )
i

Pi (θi) , almost surely,

and 4 follows. 6 follows analogously. For the third part, we have that for any λ ∈ L
and any T ,

max
i=1,2

sup
z∈Ai

mi

(
z, λ, τ,

√
T
(
F̂T − F

))
≥

1

2

ˆ 0

−∞

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du

+
1

2

ˆ +∞

0

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du

≥ 1

2

(
1√
T

T∑
t=1

[(
(λ′Yt)− − E (λ′Y0)−

)
−
(
(τ ′Yt)− − E (τ ′Y0)−

)])

+
1

2

(
1√
T

T∑
t=1

[(
(λ′Yt)+ − E (λ′Y0)+

)
−
(
(τ ′Yt)− − E (τ ′Y0)−

)])

=
1

2
(λ− τ)′

1√
T

T∑
t=1

[Yt − E (Y0)]⇝
1

2
(λ− τ)′ Z,

where Z ∼ N (0n×1,V), and the latter limiting argument follows from Assumption
1 and the CLT for strongly mixing stationary sequences (e.g. see Theorem 4.2 in Rio
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[39]). Hence from themonotonicity of the supremumand the PortmanteauTheorem,
we have that

P (m⋆
∞ ≥ 0) ≥ lim sup

T→∞
P
(
m
(
τ,
√
T
(
F̂T − F

))
≥ 0
)

≥ lim sup
T→∞

P

(
1

2
sup
λ∈L

(
(λ− τ)′

1√
T

T∑
t=1

[Yt − E (Y0)]

)
≥ 0

)
= 1,

since τ ∈ L and thereby the support of the law ofm⋆
∞ is [0,+∞), and then Corollary

4.4.2.(i)-(ii) of Bogachev [4] implies that the law restricted to (0,+∞) is absolutely
continuous with a possible atom at zero. Furthermore, using 5 and the previous con-
vergence we have that

P (m⋆
∞ = 0) ≤ P

(
1

2
sup
λ∈L

(
(λ− τ)′ Z

)
= 0

)
.

Due to the non-degeneracy of V the latter probability equals exactly the probability
that theminimum of the random vectorZ occurs at a coordinate that corresponds to
the intersection of the set of the extreme points of L with {τ}. If this is non empty,
and by using Theorem 2 in chapter 3 (p. 37) of Sidak et al. [41] by (in their notation)
letting p be the density of the n-variate standard normal distribution it is easy to see
that P

(
1
2
supλ∈L

(
(λ− τ)′ Z

)
= 0
)
= 1

n⋆ . Moreover, for any λ ∈ L , any T , and any
zp > 0,

max
i=1,2

sup
z∈Ai

pi

(
z, λ, τ,

√
T
(
F̂T − F

))
≥

1

2

ˆ 0

−zp

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du

+
1

2

ˆ zp

0

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du,

and thereby letting zp → ∞, we obtain

max
i=1,2

sup
z∈Ai

pi

(
z, λ, τ,

√
T
(
F̂T − F

))
≥

1

2

ˆ 0

−∞

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du

+
1

2

ˆ +∞

0

[
G
(
u, τ,

√
T
(
F̂T − F

))
−G

(
u, τ,

√
T
(
F̂T − F

))]
du,

and the result about p⋆∞ follows in exactly the samemanner as the one aboutm⋆
∞.

Proof of Proposition 3. The third part of Proposition 2 implies that cP (α) is well de-
ined byP (p⋆∞ > cP (α)) = α and strictly positive ifα satis ies the stated restrictions.
It also implies the continuity of the quantile function of the law of p⋆∞ at 1−αwhen α
satis ies the stated restrictions. Now, Assumptions 1, 3 and Theorem 2.3 of Peligrad
[34] imply that conditionally on the sample,

√
T
(
F̂ ⋆
T − F̂T

)
p⇝ G∗

F
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where G∗
F is an independent version of the Gaussian process in Proposition 2. Anal-

ogously to the proofs of Lemmata 2 and 2,

sup
λ∈L

max
i=1,2

sup
z∈Ai

pi

(
z, λ, τ,

√
T
(
F̂ ⋆
T − F̂T

))
p⇝ sup

λ∈L
max
i=1,2

sup
z∈Ai

pi (z, λ, τ,G∗
F ) .

Hence the 1−α quantile of the law of p⋆T converges in probability to the 1−α quantile
of the law of p⋆∞. This along with that underH(P )

0 , pT ⇝ p∞, along with that p∞ ≤ p⋆∞
and the fact that P

(
ρ⋆T,P < α

)
equals the probability that pT is greater than the 1−α

quantile of the law of p⋆T , establish the asymptotic conservatism for the test based on
decision rule (7).
IfH(P )

1 holds, then for arbitrary z⋆i ∈ Ai, i = 1, 2, and λ⋆ ∈ L, and due to the commu-
tativity of the supλ∈L and maxi=1,2 operators,

p
(
τ,
√
T F̂T

)
≥ max

i=1,2
pi

(
z⋆i , λ

⋆, τ,
√
T
(
F̂T − F

))
+
√
Tp (τ, F ) . (34)

For the rhs of 34 we have that due to Lemma 2 and the CMT

max
i=1,2

pi

(
z⋆i , λ

⋆, τ,
√
T
(
F̂T − F

))
⇝ max

i=1,2
pi (z

⋆
i , λ

⋆, τ,GF ) ,

and thereby p
(
τ,
√
T F̂T

)
is asymptotically non-tight. Given the previous considera-

tions on the asymptotic behavior of the 1− α quantile of the law of p⋆T we obtain the
result on consistency. The results about the test based on decision rule (8) follow
analogously.

Proof of Proposition 4. De ine Ft = σ {zt−1, zt−2, . . .} and notice that due to the de i-
nition of λ, the almost sure positivity of hit for all i and Jensen’s inequality,

min {h1t , h2t , h3t} ≤ vλt ≤ max {h1t , h2t , h3t} P a.s.,

where vλt
:= Var (λy1t + (1− λ) y2t/Ft) or vλt

:= h3t. De ine the auxiliary processes
by

h∗t = a∗
(
1 +

(
z2t−1 + 1

)
h∗t−1

)
,

h∗
t = a∗

(
1 +

(
z2t−1 + 1

)
h∗
t−1

)
,

for a∗ = min {ωi, ai, βi, i = 1, 2, 3}, a∗ = max {ωi, ai, βi, i = 1, 2, 3} and notice that

h∗t ≤ min {h1t , h2t , h3t} ≤ max {h1t , h2t , h3t} ≤ h∗
t , P a.s.

Hence, when v22a
∗ < a∗ then |v2|

√
h3t <

√
vλt P a.s. and when v21a∗ > a∗ then

|v1|
√
h3t >

√
vλt , P a.s. Furthermore, the distribution function of λ ̸= τ ⋆ equals

EΦ
(

x√
vλt

)
due to the law of iterated expectations. In an analogous manner it is easy

to see that the distribution function of τ ⋆ equals


E
[
Φ

(
x

|v2|
√

h3t

)]
, x ≤ 0

E
[
Φ

(
x

|v1|
√

h3t

)]
, x > 0

. The
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monotonicity of the integral along with the relevant property of Φ imply that both
distribution functions are strictly increasing. Hence for z ≤ 0we have that,

m1 (z, λ, τ
⋆, F ) =

ˆ z

−∞

(
E
[
Φ

(
x

√
vλt

)]
− E

[
Φ

(
x

|v2|
√

h3t

)])
dx > 0,

due to the previous and the fact that x assumes non positive values except for sets of
Lebesgue measure zero. Analogously, for any z > 0,

m2 (z, λ, τ
⋆, F ) =

ˆ +∞

z

(
E
[
Φ

(
x

√
vλt

)]
− E

[
Φ

(
x

|v1|
√

h3t

)])
dx > 0,

whichholdsdue to the fact thatx assumespositive values. The result onMSD-ef iciency
follows. The same arguments show that when z ≤ 0,

ˆ 0

z

(
E
[
Φ

(
x

√
vλt

)]
− E

[
Φ

(
x

|v2|
√
h3t

)])
dx > 0,

and when z > 0

ˆ z

0

(
E
[
Φ

(
x

√
vλt

)]
− E

[
Φ

(
x

|v1|
√

h3t

)])
dx > 0,

establishing PSD-ef iciency.

Proof of Proposition 5. Let λ = 1 whence h3t > v1 = h1t P a.s. Using analogous
arguments as before we have that for z ≤ 0,

m1 (z, λ, τ, F ) =

ˆ z

−∞

(
E

[
Φ

(
x√
h3t

)]
− E

[
Φ

(
x√
h1t

)])
dx > 0,

which implies that the irst part of De inition 2 is not valid. Analogously,

p2 (z, λ, τ, F ) =

ˆ 0

z

(
E

[
Φ

(
x√
h3t

)]
− E

[
Φ

(
x√
h1t

)])
dx > 0,

invalidating the irst part of De inition 1.
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Fig. 1: 6 FF portfolios: p-values for the prospect stochastic dominance ef iciency
test (upper graph) and for theMarkowitz stochastic dominance ef iciency test
(lower graph) using a rolling window of 20 years. The test statistic is calcu-
lated separately for 63 overlapping 20-year periods, (January 1930-December
1949), (January 1931-December 1951),...,(January 1993-December 2012).
The prospect stochastic dominance ef iciency is not rejected in any subperiod,
while the Markowitz stochastic dominance ef iciency is rejected in 51 out of
63 subperiods.
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Fig. 2: 10 Momentum portfolios: p-values for the prospect stochastic dominance
ef iciency test (upper graph) and for the Markowitz stochastic dominance
ef iciency test (lower graph) using a rolling window of 20 years. The test
statistic is calculated separately for 63 overlapping 20-year periods, (January
1930-December 1949), (January 1931-December 1951),...,(January 1993-
December 2012). Theprospect stochastic dominance ef iciency is not rejected
in any subperiod, while the Markowitz stochastic dominance ef iciency is re-
jected in 48 out of 63 subperiods.
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Fig. 3: 48 Industry portfolios: p-values for the prospect stochastic dominance ef-
iciency test (upper graph) and for the Markowitz stochastic dominance ef-
iciency test (lower graph) using a rolling window of 20 years. The test
statistic is calculated separately for 63 overlapping 20-year periods, (January
1930-December 1949), (January 1931-December 1951),...,(January 1993-
December 2012). Theprospect stochastic dominance ef iciency is not rejected
in any subperiod, while the Markowitz stochastic dominance ef iciency is re-
jected in 49 out of 63 subperiods.
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