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Abstract

We establish the existence of a unique stationary and ergodic solution for systems of stochastic
recurrence equations defined by stochastic self-maps on Polish metric spaces based on the fixed
point theorem of Matkowski. The results can be useful in cases where the stochastic Lipschitz co-
efficients implied by the currently used method either do not exist, or lead to the imposition of
unecessarily strong conditions for the derivation of the solution.
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1 Introduction

The present note concerns the establishment of the existence of a unique stationary and
ergodic solutionover the setof integral numbers for systemsof stochastic recurrenceequa-
tions defined by stochastic self-maps on Polish metric spaces and its representation as
a limit of relevant Picard iterates. It is essentially based on the fixed point theorem of
Matkowski (seeMatkowski [4]) and thereby extends current results dependingon the anal-
ogous use of the classical fixed point theorem of Banach (see Theorem 20 of Bougerol [1])
that are currently used heavily for the study of time series models defined by non-linear
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recursions (for a survey article see Diaconis and Freedman [3]). The results presented in
the following section could be useful in cases where the stochastic Lipschitz coefficients
implied by the currently used method either do not exist, or lead to the imposition of un-
ecessarily strong conditions for the derivation of the solution.

2 Existence and Uniqueness of Stationary and Ergodic Solution to
SRE’s

In what follows (Ω, ℱ, ℙ) is a complete probability space, (𝐸, 𝑑) is a Polish metric space,
ℬ𝐸 its Borel σ-algebra, Θ is an arbitrary non empty set, Φ𝑡,𝜃 ∶ Ω × 𝐸 → 𝐸, 𝑡 ∈ ℤ, 𝜃 ∈ Θ
are ℬ𝐸/ℱ⊗ℬ𝐸-measurable self maps on 𝐸, and 𝑔𝑡,𝜃 ∶ Ω × ℝ+ → ℝ+ are ℬℝ+

/ℱ⊗ℬℝ+
-

measurable self maps on ℝ+. The relevant supremum metric is denoted by 𝑑Θ.
eas→ de-

notes exponentially almost sure convergence (see paragraph 2.5 in Straumann [5]), →ℙa.s.
denotes ℙ a.s. convergence, and

as= almost sure equality w.r.t. ℙ. 𝔼 denotes integration
w.r.t. ℙ. If {𝑋1, 𝑋2, …} is a collection of random 𝐸-valued random elements defined on
Ω, then 𝜎𝑋𝑡

≡ 𝜎 (𝑋1, 𝑋2, …) denotes the 𝜎-algebra generated by that collection. Finally
for 𝑚 ∈ ℕ,

Φ(𝑚)
𝑡,𝜃 ≡ { id𝐸 , 𝑚 = 0

Φ𝑡,𝜃 ∘ Φ𝑡−1,𝜃 ∘ … ∘ Φ𝑡−𝑚+1,𝜃, 𝑚 > 0 .

The following theorem establishes the existence of a unique, up to indistinguishability,
stationary and ergodic solution to the stochastic recurrence system defined by 𝑥𝑡+1 =
Φ𝑡,𝜃 (𝑥𝑡), its continuity properties w.r.t. 𝜃, the form by which it approximates any other
solution as well as the issue of its invertibility. In part, it is essentially based on the fixed
point theorem of Matkowski (see Matkowski [4]) in the particular probabilistic setting of
a stochastic flow defined by stochastic recurrences. As such it generalizes the analogous
result used in the time series literature that is based on the Banach fixed point theorem
(see Theorem 20 of Bougerol [1] or equivalently Theorem 2.6.1 of Straumann [5]).

Theorem 1. Suppose that (Φ𝑡,𝜃)
𝑡∈ℤ

is stationary and ergodic for any 𝜃 ∈ Θ. Furthermore:

a. there exists a 𝑦 ∈ 𝐸 such that,

𝔼 [log+ 𝑑Θ (Φ0,𝜃 (𝑦) , 𝑦)] < +∞, ℙ almost surely, (1)

b. for any 𝑡 and 𝜃,ℙ almost surely, for any 𝑥, 𝑦 ∈ 𝐸,

𝑑 (Φ𝑡,𝜃 (𝑥) , Φ𝑡,𝜃 (𝑦)) ≤ 𝑔𝑡,𝜃 (𝑑 (𝑥, 𝑦)) , (2)

and,

c. for any 𝑡 ∈ ℤ and 𝜃 ∈ Θ, 𝑔𝑡,𝜃 isℙ a.s. increasing, and for any 𝑧 ∈ ℝ+,

∣𝑔(𝑚)
𝑡,𝜃 (𝑧)∣

Θ
eas→ 0 as𝑚 → ∞, (3)

while for at least one 𝑡 ∈ ℤ the convergence is locally uniform inℝ+.
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Then the SRE defined by
𝑥𝑡+1 = Φ𝑡,𝜃 (𝑥𝑡) , (4)

admits a stationary and ergodic solution (𝑌𝑡,𝜃)
𝑡∈ℤ

for any 𝜃 ∈ Θ that has the representation

𝑌𝑡+1,𝜃
as= lim

𝑚→∞
Φ(𝑚)

𝑡,𝜃 (𝑦) , (5)

and the convergence is uniformw.r.t. 𝜃. If(𝑌 ∗
𝑡,𝜃)

𝑡∈ℤ
denotes anyother stationary solution then

ℙ (𝑑 (𝑌𝑡,𝜃, 𝑌 ∗
𝑡,𝜃) = 0) = 1 for any 𝑡 and 𝜃. (6)

The randomelement𝑌𝑡+1,𝜃 ismeasurablew.r.t. 𝜎 (Φ𝑡,𝜃, Φ𝑡−1,𝜃, …) , 𝜃 ∈ Θ. IfΦ𝑡,𝜃 = Φ𝜃 (𝑋𝑡)
for some stationary and ergodic (𝑋𝑡)𝑡∈ℤ where 𝑋𝑡 assumes values in 𝐸, and Φ𝜃 ∶ 𝐸 → 𝐸
is ℬ𝐸/ℬ𝐸-measurable, then the random element 𝑌𝑡+1,𝜃 is measurable w.r.t. 𝜎𝑋𝑡

. If Θ is a
compact topological space, Φ𝑡,𝜃 (𝑦) is ℙ a.s. continuous w.r.t. 𝜃, then the random element
𝑌𝑡+1,𝜃 isℙa.s. continuousw.r.t. 𝜃. Finally, ifΘ is Polish, and(𝑌 ∗

𝑡,𝜃)
𝑡∈ℤ

denotes any solution, for

which 𝔼 [log+ 𝑑Θ (𝑦∗, 𝑌 ∗
𝑡,𝜃)] < +∞ and 𝔼 [log+ 𝑑Θ (𝑦∗, 𝑌𝑡,𝜃)] < +∞ for some 𝑡 ∈ ℤ and

𝑦∗ ∈ 𝐸, then
𝑑Θ (𝑌𝑡,𝜃, 𝑌 ∗

𝑡,𝜃) eas→ 0 as 𝑡 → ∞. (7)

Proof. Fix 𝑦 ∈ 𝐸. Suppose first that the ℙ a.s. limit in (5) exists. Then from the continuity
of the metric for any 𝜃

𝑑 ( lim
𝑚→∞

Φ(𝑚)
𝑡,𝜃 (𝑦) , Φ𝑡,𝜃 (𝑌𝑡)) = lim

𝑚→∞
𝑑 (Φ(𝑚)

𝑡,𝜃 (𝑦) , Φ𝑡,𝜃 (𝑌𝑡)) , ℙ a.s.,

and that due to (2), (4) and (5)

𝑑 (Φ(𝑚)
𝑡,𝜃 (𝑦) , Φ𝑡,𝜃 (𝑌𝑡)) ≤ 𝑔𝑡,𝜃 (𝑑 (Φ(𝑚−1)

𝑡−1,𝜃 (𝑦) , 𝑌𝑡)) , ℙ a.s.,

≤ 𝑔𝑡,𝜃 (𝑑 (Φ(𝑚−1)
𝑡−1,𝜃 (𝑦) , lim

𝑛→∞
Φ(𝑛)

𝑡−1,𝜃 (𝑦))) , ℙ a.s.,

= lim
𝑛→∞

𝑔𝑡,𝜃 (𝑑 (Φ(𝑚−1)
𝑡−1,𝜃 (𝑦) , Φ(𝑛)

𝑡−1,𝜃 (𝑦))) , ℙ a.s.,

and analogously

𝑔𝑡,𝜃 (𝑑 (Φ(𝑚−1)
𝑡−1,𝜃 (𝑦) , lim

𝑛→∞
Φ(𝑚)

𝑡−1,𝜃 (𝑦))) ≤ 𝑔(2)
𝑡,𝜃 (𝑑 (Φ(𝑚−2)

𝑡−2,𝜃 (𝑦) , Φ(𝑚−1)
𝑡−2,𝜃 (𝑦))) , ℙ a.s.,

≤ 𝑔(𝑚)
𝑡,𝜃 (𝑑 (Φ(0)

𝑡−𝑚,𝜃 (𝑦) , Φ𝑡−𝑚,𝜃 (𝑦))) , ℙ a.s.,

= 𝑔(𝑚)
𝑡,𝜃 (𝑑 (𝑦, Φ𝑡−𝑚,𝜃 (𝑦))) , ℙ a.s.

This along with (3) implies that 𝑑 (𝑌𝑡+1,𝜃, Φ𝑡,𝜃 (𝑌𝑡)) = 0, ℙ a.s., which implies that the
process (𝑌𝑡,𝜃)

𝑡∈ℤ
is a solution to (4). Furthermore if the limit exists then the stationarity,

ergodicity and the measurability w.r.t. 𝜎 (Φ𝑡,𝜃, Φ𝑡−1,𝜃, …) of 𝑌𝑡,𝜃 follows from Corollary
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2.1.3. of Straumann [5]whilemeasurabilityw.r.t. 𝜎𝑋𝑡
follows trivially. Due to completeness

the proof of the existence of the limit, reduces to the proof that (Φ(𝑚)
𝑡,𝜃 (𝑦))

𝑚∈ℕ
is a Cauchy

sequence for any 𝑡, 𝜃. Using the same reasoning as before we have that

lim
𝑚→∞

𝑑 (Φ(𝑚+1)
𝑡,𝜃 (𝑦) , Φ(𝑚)

𝑡,𝜃 (𝑦)) ≤ lim
𝑚→∞

𝑔𝑡,𝜃 (𝑑 (Φ(𝑚)
𝑡−1,𝜃 (𝑦) , Φ(𝑚−1)

𝑡,𝜃 (𝑦))) , ℙ a.s.,

≤ lim
𝑚→∞

𝑔(𝑚)
𝑡,𝜃 (𝑑 (Φ𝑡−𝑚,𝜃 (𝑦) , 𝑦)) , ℙ a.s.,

and the latter is due to monotonicity ℙ a.s. less than or equal

lim
𝑚→∞

𝑔(𝑚)
𝑡,𝜃 (𝑑Θ (Φ𝑡−𝑚,𝜃 (𝑦) , 𝑦)) .

Stationarity and (1) imply that 𝑑Θ (Φ𝑡−𝑚,𝜃 (𝑦) , 𝑦) < +∞ ℙ a.s. and then (3) implies that
the last limit is zero ℙ a.s. Hence the limit exists. For the uniqueness up to indistinguisha-
bility result in (6) suppose again without loss of generality that the locally uniform version
of (3) holds for 𝑡 = 0. Then

𝑑 (𝑌1,𝜃, 𝑌 ∗
1,𝜃) ≤ lim

𝑚→∞
𝑔(𝑚)

0,𝜃 (𝑑 (Φ−𝑚,𝜃 (𝑦) , 𝑌 ∗
1 )) , ℙ a.s.

The existence of the limit in (5) along with the locally uniform nature of (3) imply that the
left handside is ℙ almost surely zero which then implies that ℙ (𝑑 (𝑌1,𝜃, 𝑌 ∗

1,𝜃) = 0) = 1.
Stationarity andmeasurability of 𝑑 imply (6). The uniformity overΘ in (5) and the compact-
ness of Θ imply the continuity result. Now, let Θ be Polish and (𝑌 ∗

𝑡,𝜃)
𝑡∈ℤ

denote any other

solution of (4). Suppose without loss of generality that the log-moment conditions de-
scribed in the additional prerequisites of (7) are valid for 𝑡 = 0. In a completely analogous
manner to the previous we obtain that

lim
𝑡→∞

𝑑Θ (𝑌𝑡+1,𝜃, 𝑌 ∗
𝑡+1,𝜃) ≤ lim

𝑡→∞
∣𝑔(𝑡)

𝑡,𝜃∣
Θ

(𝑑Θ (𝑌0,𝜃, 𝑌 ∗
0,𝜃)) , ℙ a.s.

Due to the monotonicity of 𝑔𝑡,𝜃 this implies that

lim
𝑡→∞

𝑑Θ (𝑌𝑡+1,𝜃, 𝑌 ∗
𝑡+1,𝜃) ≤ lim

𝑡→∞
∣𝑔(𝑡)

𝑡,𝜃∣
Θ

(𝑑Θ (𝑦∗, 𝑌 ∗
0,𝜃) + 𝑑Θ (𝑌0,𝜃, 𝑦∗)) , ℙ a.s.,

and the log-moment conditions along with (3) imply (7).

The 𝑔𝑡,𝜃 is essentially a random ℙ a.s. comparison (or Matkowski) function and Φ𝑡,𝜃 is
analogously a randomℙa.s. Matkowski contraction (see for exampleCădariu andRadu [2]),
and the unique, in the sense of idistinguishibility, stationary and ergodic solution is charac-
terized as a ℙ a.s. limit of Picard iterations. This sollution is adapted to the
(𝜎 (Φ𝑡,𝜃, Φ𝑡−1,𝜃, …))

𝑡∈ℤ
filtration, and subsequently adapted to the “richer”

(𝜎 (Φ𝑡,𝜃, Φ𝑡−1,𝜃, … , 𝜃 ∈ Θ))
𝑡∈ℤ

filtration. When the recursion is constructedby the (𝑋𝑡)𝑡∈ℤ
process then the aforementioned solution is invertible, i.e. adapted to the (𝜎𝑋𝑡

)
𝑡∈ℤ

filtra-

tion. The continuity property w.r.t. 𝜃 of the solution characterization result in (5) can be
equivalently described as follows.
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Corollary 1. Suppose that Θ is a compact topological space. Then for any 𝜃, 𝜃𝑛 ∈ Θ, such
that 𝜃𝑛 → 𝜃 as 𝑛 → ∞, the unique stationary and ergodic solution characterized in (5) of
the recursion defined by 𝑥𝑡+1 = Φ𝑡,𝜃𝑛

(𝑥𝑡), ℙ a.s. converges to the analogous solution of the
recursion defined by 𝑥𝑡+1 = Φ𝑡,𝜃 (𝑥𝑡).

Finally, whenΘ is a Polish space, thenweobtain aneven stronger versionof theunique-
ness property, in the sense that any other solution of the recursion, converges exponen-
tially fast to the aforementioned one.

As mentioned above, the previous theorem admits as a particular case the standard
Banach type argument in which 𝑔𝑡,𝜃 (𝑧) = Λ𝑡,𝜃𝑧 and 𝔼 [supΘ ln Λ𝑡,𝜃] < 0. As such it
can be used to obtain weaker sufficient conditions in cases where the aforementioned
result yields Lipschitz coefficients that are inadequate or with properties that imply strong
restrictions.

For an easy example suppose that𝐸 = ℝ+,Θ = ℝ++, 𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦|, andΦ𝑡,𝜃 (𝑥) =
𝜃𝑋𝑡−1𝑥

1+𝜃𝑋𝑡−1𝑥 , where (𝑋𝑡)𝑡∈ℤ is a stationary and ergodic sequence of ℝ+-valued random vari-

ables. Then all the assertions of Theorem (1) hold with 𝑔𝑡,𝜃 (𝑟) = 𝜃𝑋𝑡−1𝑟
1+𝜃𝑋𝑡−1𝑟 , 𝑟 ∈ ℝ+.
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