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Abstract

We discuss how the mechanical response of investment decisions to rating changes,

so called ratings hardwiring, could affect asset prices. We address this issue within a

rational expectations framework, using an asset pricing model with asymmetrically

informed traders that specialize in different driving factors of asset payoffs and unin-

formed (noise) traders that mechanically link their supply of the asset to ratings. We

show that ratings hardwiring leads to predictable supply shocks that induce informed

traders to overreact to new information. That creates a channel through which fun-

damental and non-fundamental shocks are amplified, leading to less informative and

more volatile prices.
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1 Introduction

"We need to make sure that, as far as possible, we do not have a large pool of investors,

whether they are pension funds or others, who have built into their portfolio decisions

mechanical responses to changes in ratings, which you can see from time to time"

Sir Mervyn King, Governor of the Bank of England, appearing before the Treasury

Select Committee, January 17, 2012.

The use of credit ratings in financial markets extends beyond the mere updating of in-

vestor beliefs in making informed decisions. Credit ratings are used to facilitate monitoring

the risks of investments by regulated entities, such as SEC Rule 2a-7 that restricts money

market funds from investing in commercial paper below a rating threshold.1 Similar rules

apply to insurance companies and pension funds. Ratings have also been used extensively

in determining capital adequacy buffers for banks, insurance companies, broker-dealers and

other regulated entities (e.g. Basel II Capital Accord, EU Solvency II Directive, SEC Rule

15c3-1) and to set collateral requirements by central banks for the provision of liquidity to

the banking system. Many institutional investors are also forced by their own charter to

sell securities whose rating has crossed some critical threshold.

Building mechanical responses of investment decisions to ratings (so called ratings hard-

wiring) could materially impact on demand and supply of rated securities, affecting infor-

mation pooling and the signalling role of prices. That could be especially true when the

market for rated securities is dominated by investors that are subject to ratings-based rules

and regulatory restrictions.2 Ratings hardwiring could also result from inclusion of a secu-

rity in an index of highly rated securities (e.g. Barclays U.S. Corporate IG Index), leading

to a mechanical increase in demand by index-trucking funds, while dropping the security

from the index would lead to a mechanical increase in supply.

A number of policymakers and market participants, including the rating agencies them-

selves, have pointed to the fact that ratings hardwiring could destabilise markets, distort

information discovery and impede the efficient allocation of financial resources. Empiri-

cal evidence also suggests that the regulatory use of ratings has a material impact on the

market price of rated securities, which is distinct from the impact of information that is

conveyed into ratings.

Bongaerts et al. (2012) find evidence that multiple ratings by issuers in the corpo-

rate bond market are motivated by regulatory certification, i.e. a bond to become eligible

1A notable dichotomy is between investment grade (IG) and high yield (HY) credits, defined by the
BBB rating threshold in Standard & Poor’s ratings scale, or the Baa rating by Moody’s.

2On the basis of Federal Reserve Flow of Funds accounts, Campbell and Taksler (2003) calculate that
more than 50% of the market for corporate bonds in the U.S. is dominated by institutional investors that
face ratings-based restrictions.
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for investment by regulated institutions, and not by information production. They also

find evidence that regulatory certification has a very substantial price impact near the

investment/sub-investment grade threshold. Ashcraft et al. (2011) find evidence of exces-

sive correlation between prices of subprime mortgage-backed securities and their ratings in

the period leading up to the global financial crisis. Deb et al. (2011) offer a comprehen-

sive overview of the market for ratings and discuss possible financial stability and pricing

implications of the use of ratings by market participants. Kisgen and Strahan (2010) show

that the regulatory use of ratings has a material impact on a firm’s debt cost of capital,

which is distinct from the ratings impact due to their information content. There is also a

considerable volume of empirical work focusing on the price impact of rating changes.3

However, asset pricing implications that arise from ratings hardwiring have received

scant attention in theoretical literature, which focuses primarily on equilibrium bias in

produced and in reported ratings. Bolton et al. (2011) show that, in the presence of ratings

shopping by issuers, competition among rating agencies can reduce efficiency and inflate

reported ratings in equilibrium, especially in boom periods when there are more trusting

investors. That is consistent with Becker and Milbourn (2011), who provide evidence of

less informative ratings when competition in the ratings market increases.

Skreta and Veldkamp (2009) show that, in an issuer-initiated market for ratings, ratings

shopping may lead to bias in disclosed ratings of complex securities, even if the rating pro-

duced by each individual rating agency is an unbiased forecast. In contrast, simple assets

tend to receive similar ratings by agencies, which eliminates the possibility for ratings shop-

ping and bias in disclosed ratings disappears. That is consistent with empirical evidence

by Ashcraft et al. (2010), showing that rating standards for (complex) mortgage-backed

securities declined in the run up to the global financial crisis, while rating standards for

(simple) corporate bonds remained conservative. Mathis et al. (2009) show that reputation

considerations are not always sufficient to discipline a monopolist rating agency not to in-

flate the ratings of complex securities. Opp et al. (2012) show that rating standards could

deteriorate as a result of ratings-based regulations, if the regulatory benefit to investors

from holding highly rated securities exceeds an endogenous threshold. Such a threshold

depends on the cost of gathering and processing information by the rating agency. For

complex securities, whose evaluation is possibly costly, rating standards may be more lax

than for simple securities for which the cost of acquiring information is possibly lower.

In this paper we examine the potential impact of ratings hardwiring on the information

content and volatility of asset prices. We address this issue within a rational expectations

framework, considering a model for trading a simple asset in a market with informed and

uninformed agents. The asset is simple in the sense of Skreta and Veldkamp (2009) and

3Michaelides et al. (2012), Güntay and Hackbarth (2010), Hill and Faff (2010), Brooks et al. (2004),
Kliger and Sarig (2000), Ederington and Goh (1998), Hand et al. (1992), Holthausen and Leftwich (1986).
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Opp et al. (2012). Trading takes place intertemporally and a representative, non-strategic

rating agency produces a public rating that is an unbiased estimate of the asset payoff next

period.

In the model, informed traders specialize in different driving factors of asset payoffs.

Yet, they rationally anticipate changes in all factors that affect future income and capital

gains from holding the asset. There is also a residual class of uninformed (noise) traders

that do not independently assess the risky asset, but rely exclusively on ratings and increase

the supply of the asset when its rating falls, while reduce it when its rating increases. We

use such a mechanical response of the supply of the asset to changes in ratings as a proxy

for ratings hardwiring. In addition to ratings hardwiring, we assume that noise traders

also trade for non-fundamental (liquidity) purposes à la Grossman and Stiglitz (1980).4

The distinction between informed traders and uninformed investors that hardwire their

investments to ratings shares some parallels with the distinction between sophisticated and

trusting investor clienteles in Bolton et al. (2011). They argue that the coexistence of the

two types of agents may be due to different compensation schemes that lead to different

incentives to carry out due diligence, or regulatory and internal charter restrictions that

forces certain types of investors to hold assets with ratings only above a certain threshold. In

Boot et al. (2005) such investors are simply called institutional investors and in Hirshleifer

and Teoh (2003) investors of limited attention and processing power.

The analysis shows that hardwiring of investment decisions to ratings leads to less

informative and more volatile asset prices. Our results also show that such an effect becomes

more pronounced as traders’ risk aversion increases. In order to ensure comparability

of results for various levels of ratings hardwiring, we make sure that we do not induce

additional volatility in the supply of the asset due to noise trading. Consequently, the

extent of ratings hardwiring in the model translates into a proportion of noise-trading

volatility that is due to hardwiring.

Ratings hardwiring results in less informative and more volatile prices because the noisy

supply of the asset becomes correlated with fundamentals and, to a certain extent, pre-

dictable. As a result, informed traders react more aggressively to any item of information

that could potentially be relevant to their trading decisions, creating a channel through

which fundamental and non-fundamental shocks are amplified. More specifically, we show

that hardwiring induces a stronger price reaction to fundamental innovations compared to

the situation without hardwiring, overshooting even the hypothetical scenario with com-

plete information. Hardwiring also leads to a larger misinterpretation and overreaction by

traders to errors in their private information. The same effect obtains for any other non-

fundamental and non ratings-related shock in the model, indicating that informed traders

4We abstract from rating shopping incentives by issuers and reputation considerations by the rating
agency, focusing instead on pricing implications that arise from ratings hardwiring.
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become more prone to misinterpret any item of news as information about fundamentals.

That leads to prices becoming less informative and more volatile in equilibrium.

The analysis is in the line of literature initiated by Grossman and Stiglitz (1980) and

Hellwig (1980). In the context of a discrete-time asset pricing model of infinite horizon,

we consider a competitive asset market where asymmetrically informed traders place their

orders with a Walrasian auctioneer. Informed traders receive private signals and also use

the observed prices and ratings to infer as much as possible about the asset and then decide

by maximizing their expected CARA utility of next period’s wealth.

In such a market, we calculate noisy rational expectations equilibria (NREE) assuming

that the true state variables are never perfectly revealed neither to traders, nor to the rating

agency. In equilibrium, informed traders’ beliefs have to be consistent with the actual law

of motion that those beliefs generate. Thus, equilibrium in our model is calculated as a

fixed point in the mapping from informed traders’ perceived laws of motion to the actual

law of motion that those perceptions generate. In line with Bacchetta and van Wincoop

(2006) and Allen, Morris and Shin (2006), our modelling approach allows for higher order

beliefs to have a material impact on asset prices.5 However, in discrete-time models with

asymmetric information, agents’ rationality requires one to address the inferences that

agents make from observable variables, knowing that others act in a similar fashion. Thus,

higher order beliefs become hidden state variables and the dimension of the state vector,

associated with agents’ signal extraction problems, becomes unbounded.

We address the problem of infinite regress in expectations assuming that informed

traders make their forecasts by fitting first-order vector autoregressive moving average

(ARMA) models. As we know from Townsend (1983), Sargent (1991) and Hussman (1992),

the equilibrium in first-order ARMA models is consistent with higher order beliefs and

informed traders have no incentive to increase the order of either the AR or the MA

component in order to improve their forecasts. In other words, equilibrium forecast errors

are orthogonal to the Hilbert space that is generated by all past history of information.

The remainder of the paper is organised as follows: Section 2 presents the asset pricing

model with imperfectly informed traders and ratings hardwiring. Section 3 introduces the

complete information benchmark and our measure of price informativeness under incom-

plete information. Section 4 outlines the solution concept and NREE solution algorithm.

Section 5 presents the results, comparative statics and impulse response analysis. Section

6 concludes. Technical details and figures are included in the appendix.

5Higher order beliefs is a basic feature of asset pricing under asymmetric information and it refers to
the situation where opinions of other agents’ opinions, and higher order than that, may have a material

impact on asset prices. That is in line with Keynes’ (1936) famous metaphor that the market is similar
to a beauty contest, where an agent’s subjective payoff from choosing the prettiest face from a list of
contestants depends on how close her prediction were to the average opinion of other agents.
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2 The model

We consider a competitive market for a risky asset, with informed and uninformed traders.

The risky asset pays a dividend Dt in every period t, depending on the realisation of two

fundamental factors θ1t and θ2t and a transitory component ut

Dt = θ1t + θ2t + ut (1)

Factors θ1 and θ2 are orthogonal to each other and follow stationary autoregressive

AR(1) processes with persistence parameters ρ1 and ρ2.

θ1t = ρ1θ1t−1 + v1t , θ2t = ρ2θ2t−1 + v2t (2)

where, {ut}, {v1t} and {v2t} are i.i.d. normal with mean zero and variance σ2u, σ21v and
σ22v, respectively. Let also θ1 be more persistent than θ2, i.e. |ρ2| < |ρ1| < 1.
There is a continuum of informed traders of total measure one that are infinitely lived

and myopic in the sense that they only care about next period’s wealth. They have CARA

preferences over future wealth and trade conditionally on prices by submitting limit orders

with a Walrasian auctioneer. As a result, they can infer information from the current price,

at which their limit orders are settled.

In addition to prices, informed traders observe dividends and public ratings produced

by a rating agency for the risky asset. They also have special price discovery skills and

specialise in one fundamental factor by observing private information. Depending on the

type of private information that they observe, traders are divided into two classes j = 1, 2.

Proportion α of them belong to class 1 and proportion 1− α to class 2.6

There is also a residual set of uninformed traders, called noise traders, who trade both

for non-fundamental (liquidity) purposes and for reasons related to ratings hardwiring.

Non fundamental trading implies a random supply of the asset that is not forecastable.

On the other hand, hardwiring of investment decisions to ratings implies the supply partly

depends on ratings, becoming forecastable to a certain extent, as we discuss next.

2.1 Hardwiring investment decisions to ratings

Noise traders are represented by the random supply of the risky asset which may partly

depend on ratings. We think of a situation where a set of investors may be forced by law,

or by statute, to sell the asset if its rating fall below a certain threshold (e.g. investment

grade). By anticipating such a possible crossover, a high/low rating one period could

induce low/high supply of the asset. Similar effects could obtain as a result of analyst

6The information structure is given exogenously, without modelling explicitly the decision to acquire
private information, focusing on informed traders’ problem to filter information from observable variables.
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recommendations on overall buying and selling depending on price levels, or due to tracking

a benchmark index by certain types of investment funds.7 In those case, a positive or

negative recommendation, or the deletion of the asset from the benchmark index could

trigger noise trading, affecting the supply of the asset in the market.

Let the supply St be equal to the sum of a deterministic component that depends

(linearly) on the rating rt and a random component ς t due to non-fundamental trading

St = −ψrt + ςt (3)

where, hardwiring parameter ψ ≥ 0 implies that St correlates negatively with the asset

rating and {ς t} are i.i.d. normal with mean zero and variance σ2ς and orthogonal to all
other noise terms in the model.

From 3, the unconditional variance of the asset supply is σ2S = ψ2σ2r + σ2ς , where σ
2
r is

the unconditional variance of the rating process discussed in section 2.2. In order not to

induce additional volatility in the supply because of hardwiring and to ensure compara-

bility of results for various levels of hardwiring parameter ψ, we adjust the variance of ς t
appropriately. Thus, for any given level of the unconditional variance of the asset supply

σ2S, the variance of ςt is adjusted to be σ
2
ς = σ2S − ψ2σ2r, for |ψ| < σS

σr
.

2.2 Private information and public ratings

Traders of class 1 specialise in the high-persistence factor θ1t by observing signals s1t , while

class 2 specialise in the low-persistence factor θ2t by observing signals s2t

s1t = θ1t + η1t , s2t = θ2t + η2t (4)

where idiosyncratic noise terms {η1t} and {η2t} are i.i.d. normal, orthogonal to each other
and to all other noise terms in the model, with mean zero, variances σ21η and σ22η.

We consider an exogenous non-trading and non-strategic agent that plays the role of a

rating agency for the risky asset. In the model, the rating agency receives private noisy

information about the asset and with a lag of one period makes public the updated rating.

In this model, the rating reflects the best estimate of the fundamentals of the asset using

as information only the history of the private information of the agency, neglecting the

information reflected in the price and payoff of the asset.8

Let the rating rt be a summary statistic, namely an unbiased estimator of the sum of

7Malmendier and Shanthikumar (2007) provide evidence on hardwiring on prices.
8Yet we abstract from the incentive structure in the rating industry, reputation considerations and other

frictions that may impact on ratings and their information content.
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the two fundamental factors, conditional on the history of the agency’s private information9

rt = E [θ1t + θ2t | sr1s, sr2s, s < t] (5)

where sr1t and sr2t are signals about θ1t and θ2t, contaminated by idiosyncratic noise

sr1t = θ1t + e1t , sr2t = θ2t + e2t (6)

and {e1t} and {e2t} are i.i.d. normal with mean zero and variance σ21e and σ22e, orthogonal
to {ut}, {v1t}, {v2t}, {η1t} and {η2t}.

2.3 Trader forecasting rules

Given the linear specification of the model and the assumption that traders are myopic

and care only about next period’s wealth, Sargent (1991) and Hussman (1992) show that

ARMA (1,1) forecasting rules are optimal in the sense that informed agents would have no

incentive to increase the order of either the AR or the MA part to further improve their

forecasts. Therefore, we assume that informed traders’ perceptions about the law of motion

of their observable variables are assumed to be of the general ARMA(1,1) form

zjt+1 = Ajzjt + ζjt+1 +Cjζjt , j = 1, 2 (7)

where z0jt ≡
h
pt, Dt, rt, sjt

i
, ζjt+1 is the vector of conditional forecast errors and Aj,

Cj are matrices of ARMA coefficients.

Recasting 7 we get

xjt+1 = Bjxjt + vjt+1 , j = 1, 2 (8)

where xjt ≡
"
zjt

ζjt

#
is the vector of variables that informed traders observe in period t,

including their realised forecast errors ζjt, vjt+1 =

"
ζjt+1
ζjt+1

#
, Bj ≡

"
Aj Cj

04 04

#
and 04

is a 4× 4 matrix of zeros.
Informed traders use 8 to forecast xjt+1 on the basis of observable xjt

E [xjt+1 | xjt] = Bjxjt , j = 1, 2 (9)

9Alternatively, we could assume that the agency produces two public ratings: a long-term rating rLt =

E [θ1t | sr1s, s < t] about the persistent factor θ1, and a short-term rating rSt = E [θ2t | sr2s, s < t] about the
less persistent factor θ2.
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2.4 Preferences and trader optimisation

Informed traders decide every period how much to invest in the risky asset, or in a safe

bond. They reach their decisions by maximising their expected utility and inferring as

much as possible about the asset from information Ijt they have observed up to period

t. They choose their optimal demands qjt for the risky asset in order to maximise their

expected CARA utility over next period’s wealth wj
t+1

qjt = Argmax
q∗t

E
£
− exp

¡
−wj

t+1/φj
¢
| Ijt

¤
, j = 1, 2 (3a)

subject to

wj
t+1 = R

¡
wj
t − q∗t pt

¢
+ q∗t (pt+1 +Dt+1) (3b)

where R is the constant gross interest rate on the safe bond.

The above maximisation problem gives the following optimal demands

qjt = φj
E [pt+1 +Dt+1 | Ijt]−Rpt

V ar
£
ζpjt+1 + ζDjt+1

¤ , j = 1, 2 (11)

where, ζpjt+1 and ζDjt+1 are the conditional forecast errors for pt+1 and Dt+1, respectively,

that result from trader forecasting rules in 7.

2.5 Market clearing

We assume that traders’ optimal demands are aggregated by a central auctioneer. The

equilibrium price pt is set to satisfy the market-clearing condition

αq1t + (1− α) q2t = St (12)

where q1t and q2t are agents’ optimal demands for the risky asset, as given by 11, and St is

the supply of the risky asset, as given by 3.

Substituting 11 into 12, the price process pt becomes

pt = Λ−1
£
ασ22φ1E1 [·] + (1− α)σ21φ2E2 [·]− σ21σ

2
2St
¤

(13)

where Ej [·] ≡ E [pt+1 +Dt+1 | Ijt] , σ2j = V ar
£
ζpjt+1 + ζDjt+1

¤
, for j = 1, 2, and parameter

Λ is given by

Λ ≡ R
£
σ22αφ1 + σ21 (1− α)φ2

¤
(14)

Both, subjective beliefs Ej [·] and subjective measures of riskiness σ2j are determined in
equilibrium on the basis of investors’ perceived laws of motion, as discussed in section 2.3.

9



3 Information content of asset prices

In this section we introduce our measure of price informativeness that allows us to gauge

the impact of ratings hardwiring on the information content of asset prices. First we con-

sider prices under complete information, as a benchmark for comparison with our baseline

scenario of incomplete and asymmetric information.

3.1 Complete information benchmark

Suppose that informed traders observe perfectly, without idiosyncratic noise, the realisation

of fundamental factors each period, but they still remain uncertain about their future

realisations. Let also the net supply of the risky asset ςt be deterministic in every period

and equal ς. In that case, the price in every period becomes sufficient statistic with respect

to both fundamental factors and the model is characterised by common knowledge of θ1t
and θ2t. In that case, by solving 13 forward and by the law of iterated expectations, the

full information price p∗t becomes

p∗t = Et

" ∞X
i=1

R−1Dt+i

#
− σ2ς

(φ1 + φ2) (R− 1)
(15)

where σ2 is now the unconditional variance of p∗t +Dt.

From 1 and 15, and substituting forward θ1t and θ2t, the full information price can be

expressed in terms of the current realisation of fundamental factors

p∗t =
ρ1

R− ρ1
θ1t +

ρ2
R− ρ2

θ2t −
σ2ς

(φ1 + φ2) (R− 1)
(16)

3.2 Information content of prices under signal extraction

Signal extraction problems imply that the amount of information about θ1t and θ2t conveyed

in pt may be different from the complete information benchmark p∗t . The information con-

tent of prices is captured here by the expected squared difference of pt minus p∗t , conditional

on θ1t and θ2t

V = E
£
(pt − p∗t )

2
¯̄
θ1t , θ2t

¤
(17)

where, p∗t is given by 16 and pt is determined in equilibrium, as we discuss in section 4.

Equation 17 can be written as

V = V ar (pt| θ1t , θ2t) + [E (pt| θ1t , θ2t)− p∗t ]
2 (18)

Under incomplete and asymmetric information, the variable vector
h
pt θ1t θ2t

i
fol-

lows a multivariate normal distribution with (unconditional) mean μ and covariance matrix

10



Σ. Given that all processes in the model have no drift and their disturbance terms have

mean zero, it follows that μ
0
=
h
0 0 0

i
. Also the covariance matrix Σ is determined in

equilibrium, as we discuss in section 4. Let σ2p be the unconditional variance of pt , Σpθ the

vector of covariances of pt with
h
θ1t θ2t

i
and Σθθ the covariance matrix of

h
θ1t θ2t

i
.

Conditionally on θ1t and θ2t, projection theorem implies that the distribution of pt is normal

with

(pt| θ1t , θ2t) ∼ N

Ã
ΣpθΣ

−1
θθ

"
θ1t

θ2t

#
, σ2p −ΣpθΣ

−1
θθ Σ

0
pθ

!
(19)

Orthogonality of θ1t and θ2t implies the covariance matrix Σθθ is diagonal and from 18,

19 it follows

V = σ2p −
µ
σ2pθ1
σ2θ1

+
σ2pθ2
σ2θ2

¶
+

µ
σpθ1
σ2θ1

θ1 +
σpθ2
σ2θ2

θ2 − p∗t

¶2
(20)

or, by substituting p∗t from 16

V = σ2p −
µ
σ2pθ1
σ2θ1

+
σ2pθ2
σ2θ2

¶
+ (21)∙µ

σpθ1
σ2θ1
− ρ1

R− ρ1

¶
θ1 +

µ
σpθ2
σ2θ2
− ρ2

R− ρ2

¶
θ2 − Φ

¸2
where, Φ = σ2ς

(φ1+φ2)(R−1)
and σpθj is the covariance of price pt with θjt, j = 1, 2.

Given that V depends on the realisation of fundamental factors, as a measure of the

information content of prices we use its unconditional expectation

V = σ2p −
µ
σ2pθ1
σ2θ1

+
σ2pθ2
σ2θ2

¶
+

µ
σpθ1
σ2θ1
− ρ1

R− ρ1

¶2
σ2θ1 +

µ
σpθ2
σ2θ2
− ρ2

R− ρ2

¶2
σ2θ2 + Φ2 (22)

where, σ2θj , j = 1, 2, is the unconditional variance of θjt and is determined by.

Notice that σ2θj is exogenously determined by 2, i.e. σ
2
θj
=

σ2jv
1−ρ2j

, while the unconditional

variance of price σ2p and its covariance σpθj with θjt are determined in equilibrium, as we

discuss next.

4 Outline of solution concept

Informed traders are characterised by information sets Ijt = {ps, Ds, rs, s
j
s; s ≤ t}, j =

1, 2, which are records of data zjt of the form

z0jt =
h
pt, Dt, rt, sjt

i
(23)

The state vector zt that describes the market in period t includes all variables that are

collectively observed by traders, the two latent factors θ1t and θ2t, the random supply

11



ς t and the conditional forecast errors ζjt that depend on traders’ information sets and

forecasting rules.

z0t =
h
pt Dt rt s1t s2t θ1t θ2t ςt ζ1t ζ2t

i
(24)

Let also vector εt specify all noise terms in the model in period t

ε0t =
h
ut η1t η2t v1t v2t e1t−1 e2t−1 ςt

i
(25)

where, innovations ut, vjt, ς t, ηjt and ejt and are defined in 1, 2, 3, 4 and 6, respectively.

In every trading round t we consider the following timing of events and information:

1. Rating rt is publicly announced based on information up to t− 1.

2. Fundamentals are updated, traders observe private and public information and sub-

mit optimal demand schedules to a Walrasian auctioneer.

3. The rating agency receives information about the current level of fundamentals and,

once again, makes a rating in period t+ 1.

The sequence of events captures the natural lag between ratings and prices. That is,

innovations in θ1 and θ2 are reflected first into prices and then into ratings.10 Also, the

rating process in 5 is considered as an unbiased estimator of the sum of the two latent

factors θ1 and θ2. It can be expressed in a recursive form as follows, using a Kalman filter

representation.

Lemma 1 The rating process {rt} exhibits positive autocorrelation and is generated by

rt = λrt−1 + λ
£
Σ1s

r
1t−1 + Σ2s

r
2t−1

¤
(26)

for λ ≡ ρ1 (Σ1 + 1)
−1 = ρ2 (Σ2 + 1)

−1 and Σj is given by

Σj =
1

2

⎡⎣σ2jv
σ2je
−
¡
1− ρ2j

¢
+

s∙
σ2jv
σ2je
−
¡
1− ρ2j

¢¸2
+ 4

σ2jv
σ2je

⎤⎦ , j = 1, 2 (27)

Proof. See appendix.

We observe that the rating persistence λ depends on the precision of the agency’s signals

relative to fundamental innovations. Better quality signals — i.e. lower σjv
σje
— lead to a less

persistent ratings and vice versa.11

10Such a natural lag between ratings and prices is justified by the fact that traders submit demand curves
to the auctioneer, i.e. trading conditionally on prices, while the rating agency is not a trading party.
11That is a standard Kalman filter result, where better signal quality leads to higher weighting of new

information in the recursive updating.
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4.1 NREE definition

The fundamental requirement that a NREE must satisfy is that equilibrium prices have

to be consistent with the presumption that traders know the actual law of motion of the

asset market and choose their demands schedules accordingly. A competitive NREE for

our asset market is defined as follows:

Definition 1

1. Traders make conjectures about the law of motion of the variables they observe. Given

their information sets, traders use statistically optimal ARMA(1,1) models to forecast

their observable variables.

2. Given their ARMA(1,1) forecasting rules and information sets, traders choose their

optimal demand schedules so as to maximise their expected utilities.

3. Given traders’ optimal demands and the total supply of the risky asset, the market

clearing price results from a Walrasian auction.

4. Traders’ conjectures are correct, in the sense that ARMA(1,1,) forecasting rules are

a fixed point in the correspondence that maps them to the actual law of motion they

generate.

Following Sargent (1991) and Hussman (1992), a market equilibrium with ARMA(1,1)

forecasting rules is of full-order, meaning that traders would not be able to further improve

their forecasts on the basis of available information. Therefore, conditioning traders’ fore-

casts on an infinite history of data is equivalent to conditioning only on first-order lags and

information sets Ijt = {ps, Ds, rs, s
j
s; s ≤ t} can be restated Ijt =

©
pt, Dt, rt, s

j
t

ª
, j =

1, 2.

Trader forecasting rules are common knowledge in equilibrium. Therefore, conjecturing

a law of motion about observable variables is equivalent to assume that traders conjecture

an actual law of motion for the whole state vector zt.12 Thus, a market equilibrium here is

characterised by the coefficient matrix B ≡ [B1 B2] of traders’ forecasting rules, as defined
in 9. Let traders conjecture that zt evolves according to the following law of motion

zt = T (B) zt−1 + V (B) εt (28)

where, T (B), V (B) are coefficient matrices.

12That follows from uniqueness of equilibrium, as we discuss at the end of this section.
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Provided all eigenvalues of T (B) lie inside the unit circle, equation 28 determines a

unique covariance-stationary distribution for zt, whose moment matrixMz solves13

Mz = T (B)MzT (B)
0 + V (B)ΩV (B)0 (29)

where, B ≡ [B1 B2] and Ω is the (diagonal) covariance matrix of noise vector εt.

Matrix V (B)ΩV (B)0 is symmetric and, as a result, equation 29 defines a discrete-time

Lyapunov equation. With all eigenvalues of T (B) less than unity in modulus, there is

a unique symmetric matrix Mz that solves 29.14 Using appropriate selector matrices uj,

j = 1, 2, we derive fromMz the covariance matrixMxj of traders’ observable variables xjt,

as well as the covariance matrixMzxj of state vector zt with xjt

Mxj = ujMzu
0
j , j = 1, 2 (30)

Mzxj =Mzu
0
j , j = 1, 2 (31)

where, uj selects the subvector of observable variables xjt from zt.

Let us now consider the linear projection of vector xjt+1 on its previous realisation xjt

E [xjt+1 | xjt] = Sj (B)xjt , j = 1, 2 (32)

With covariance matrices Mxj and Mzxj in hand, we evaluate the matrix Sj (B) of

statistically optimal estimators in 32 as follows

Sj (B) = ujT (B)MzxjM
−1
xj

, j = 1, 2 (33)

Setting S (B) ≡ [S1 (B) S2 (B)], a rational expectations equilibrium is a fixed point

in the correspondence that maps trader perceptions — as characterised by the coefficient

matrix B — into statistically optimal projections S (B). In other words, an equilibrium is

characterised by a coefficient matrix B such that B = S (B).

Closing this section, we reiterate that trader conjectures about B are equivalent to

making conjectures about the actual law of motion 28 of state vector zt. Such an equivalence

stems from the fact that, for a given coefficient matrix B, equation 29 defines a unique

moment matrix Mz for zt, which in turn defines matrices T (B) and V (B) of the actual

coefficients. In other words, there is a one-to-one relationship between conjectures about

coefficient matrix B and matrices T (B), V (B). In section 7.2 we discuss in detail the

fixed-point solution algorithm and evaluation of matrices T (B) and V (B).

13All eigenvalues of matrix T (B) lie inside the unit circle because both fundamental factors and noise
terms in the model are stationary and, in addition, prices in 13 are linear in the lagged state vector, as we
discuss in section 7.2 in the Appendix.
14From standard theory, there is a unique symmetric matrix Mz (B) that solves 29 i.f.f. no eigenvalue

of T (B) is the reciprocal of any other eigenvalue of T (B). This is, i.f.f. eig [T (B)] eig [T (B)]0 − 1 6= 0.
Given that all eigenvalues of T (B) lie inside the unit circle, none of them can be the reciprocal of another
eigenvalue of T (B).
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5 Results

In this section we present equilibrium results about the price impact of ratings hardwiring,

using numerical methods. The analysis is centered around the calculation of our measure

V of price (non-)informativeness in equation 22. That is, the unconditional expectation of

the squared difference of the equilibrium price pt from its full information level p∗t .

We also consider price informativeness vis à vis price volatility. In equilibrium, an

increase in price volatility would not imply a cost if at the same time prices would become

more informative, given noisy exogenous supply shocks. However, if combined with lower

price informativeness, an increase in price volatility could be considered as a cost and, in

that sense, excessive.

We gauge the impact of ratings hardwiring on asset prices by conducting comparative

statics analysis of hardwiring parameter ψ and level of CARA. We also conduct impulse

response analysis of prices to various shocks in the model. For all other parameters in

the model, we consider the following parameterization, which is assumed to be common

knowledge. The results are without lost of generality and hold for a wide range of parame-

terisations that we considered.

Gross interest rate R = 1.02

Persistence of fundamentals ρ1 = 0.8; ρ2 = 0.4

Informed trader proportions a = 0.5

Variance of fundamental innovations σ21v = 0.1;σ
2
2v = 0.1

Variance of errors in traders’ signals σ21η = 1;σ
2
2η = 1

Variance of errors in rating agency’s signals σ21e = 0.1;σ
2
2e = 0.6

Variance of dividend innovations σ2u = 1

Random supply of the asset σ2ς = 0.01

As an illustration, the equilibrium ARMA(1,1) coefficients Bj = Sj (B), j = 1, 2, of

observables pt , Dt, rt, s
j
t , ζ

j
t under no ratings hardwiring and CARA = 2, are calculated

to be

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4508 0.0093 0.0133 1.2300 −0.4154 0.3108 1.2612 −1.0067
0.0000 0.4000 −0.0000 0.4000 0.0007 −0.2835 0.3473 −0.3110
0.0000 0.2080 0.3376 0.2545 0.0004 −0.1427 0.2001 −0.2025
−0.0000 −0.0000 −0.0000 0.8000 0.0004 0.0814 0.3368 −0.7033
0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000
0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000
0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000
0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5580 0.8120 0.0465 −0.8123 −0.4605 −0.4900 1.3148 0.8183

0.0000 0.8000 −0.0000 −0.4000 0.0253 −0.6845 0.3796 0.4225

0.0000 0.4624 0.3376 −0.2545 0.0147 −0.3975 0.2192 0.2652

0.0000 −0.0000 −0.0000 0.4000 −0.0022 0.0316 0.0038 −0.3616
−0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

−0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

−0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

−0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The last four rows of Bj give the coefficients in the projection of forecast errors ζ

j
t+1 on pt,

Dt, rt, s
j
t and ζjt . That these coefficients are zero is a necessary condition for ζ

j
t+1 to be

conditional vector i.i.d. normal with zero mean.

From the calculated moment matrixMz in equilibrium, we select the upper-left covari-

ance submatrixM for variables pt, Dt, rt, s1t , s
2
t , θ1t, θ2t and St

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.7476 1.0841 0.5166 0.7028 0.1004 0.5343 0.0856 −0.0908
1.0841 1.3968 0.1522 0.2778 0.1190 0.2778 0.1190 0.0000

0.5166 0.1522 0.1789 0.1408 0.0115 0.1408 0.0115 0.0000

0.7028 0.2778 0.1408 1.2778 0.0000 0.2778 0.0000 0.0000

0.1004 0.1190 0.0115 0.0000 1.1190 0.0000 0.1190 0.0000

0.5343 0.2778 0.1408 0.2778 0.0000 0.2778 0.0000 0.0000

0.0856 0.1190 0.0115 0.0000 0.1190 0.0000 0.1190 0.0000

−0.0908 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With covariance matrixM in hand, we can easily get our measure V = 2.4742 of price

(non-)informativeness in equation 22 and price volatility σp = 1.6576 under no ratings

hardwiring.

Assuming ratings hardwiring ψ = 0.03 and adjusting appropriately the random sup-

ply ςt to ensure comparability with the no-hardwiring case, the covariance matrix M for

variables pt, Dt, rt, s1t , s
2
t , θ1t, θ2t and St becomes

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.8896 1.5904 0.8511 1.0651 0.1425 0.8445 0.1235 −0.1617
1.5904 1.3968 0.1522 0.2778 0.1190 0.2778 0.1190 −0.0035
0.8511 0.1522 0.1789 0.1408 0.0115 0.1408 0.0115 −0.0038
1.0651 0.2778 0.1408 1.2778 0.0000 0.2778 0.0000 −0.0034
0.1425 0.1190 0.0115 0.0000 1.1190 0.0000 0.1190 −0.0001
0.8445 0.2778 0.1408 0.2778 0.0000 0.2778 0.0000 −0.0034
0.1235 0.1190 0.0115 0.0000 0.1190 0.0000 0.1190 −0.0001
−0.1617 −0.0035 −0.0038 −0.0034 −0.0001 −0.0034 −0.0001 0.0100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Evaluating our measure of price (non-)informativeness and volatility we get that ratings

hardwiring results in lower price informativeness (V = 4.3110) and higher price volatility
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(σp = 2.6248). This result is general and obtains for all alternative parameterisations that

we considered. Next we present comparative statics of price informativeness and volatility

with respect to different CARA coefficients and hardwiring parameter ψ.

5.1 Comparative statics

Rational agents in NREE models trade securities for two main reasons: (i) to share risk

when they are endowed with different quantities of the risky asset; (ii) to exploit information

when they have access to different information sources and possess different assessments of

asset payoffs. Risk sharing and price exploitation motives interact in equilibrium affecting

prices in various ways, depending on model parameters.

Risk aversion: Higher risk aversion increases the risk-sharing motive. That tends to

dominate the motive to exploit information, thus higher risk aversion leads to less infor-

mative prices. This result originates in Hellwig’s (1980) static model and reproduced here

by our multiperiod model, as shown in figure 1.

[Figures 1]

As far as price volatility is concerned, it depends both on the degree of price informa-

tiveness and serial correlation. On the one hand, prices may become more volatile simply

because they become more informative, i.e. more responsive to fundamental innovations.

On the other hand, the higher the serial correlation of prices the higher the unconditional

variance of the price process. Prices may be serially correlated because of serial correlation

in fundamentals, strong risk-sharing motives, filtering problems, or other externalities that

may induce investors to trade with less confidence on private information and place more

weight on publicly observed signals, such as prices.

[Figures 2]

Figure 2 reports the impact of risk aversion on price volatility. In line with Hellwig

(1980), figure 2 illustrates that, in a market with higher risk aversion, rational traders are

aware that risk sharing dominates information exploitation. As a result, prices become less

informative, which leads to less accurate forecasts. Given that the long-run (unconditional)

mean of the price process is common knowledge among traders, less accurate forecasts

induce traders to respondmore aggressively to temporary price deviations from the mean, in

anticipation of a subsequent mean reversion.15 Thus, prices are characterised in equilibrium

by stronger mean reversion and, therefore, higher serial correlation and volatility.

15In other words, the less accurate trader forecasts become, the price tends to become a focal point
that coordinates traders’ beliefs. As a result, long-run (unconditional) mean reversion of prices becomes
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Ratings hardwiring: Figure 1 and 2 show that the impact of risk aversion on the infor-

mation content and volatility of prices also depends on the degree of ratings hardwiring.

Other than the no-hardwiring case ψ = 0, we consider three alternative levels of hard-

wiring parameter ψ, i.e. 0.02, 0.03, 0.05. Given our basic parameterisation, those levels

correspond to proportions 8%, 13% and 21%, respectively, of noise-trading volatility be

attributable to ratings hardwiring.16 The higher the ratings hardwiring the more quickly

price informativeness falls and price volatility increases with risk aversion. Especially for

ψ = 0.05, even relatively low levels of risk aversion lead to prices becoming almost totally

uninformative, while price volatility explodes.

We also conduct comparative statics analysis of price informativeness and volatility

with respect to a wider range of hardwiring parameter ψ, taking values in [0, 0.12]. That

implies the proportion of noise-trading volatility attributable to ratings hardwiring takes

values in the range [0%, 51%]. For such comparative statics we set CARA=1.

[Figures 3]

Figures 3 illustrates the decrease in the information content of prices (V increases

exponentially) with respect to hardwiring parameter ψ. Despite the relative low level of

risk aversion, price informativeness almost disappears as the proportion of noise-trading

volatility attributable to ratings hardwiring approaches 51%, i.e. ψ approaches 0.12. For

higher levels of risk aversion, price informativeness disappears at lower values of ψ. Figure

4 also shows that price volatility increases with ratings hardwiring.

[Figures 4]

Hardwiring of trading decisions to ratings may lead to lower price informativeness and

higher price volatility because it leads to supply shocks to the asset become, to a certain ex-

tent, predictable and correlated with the fundamentals. As a result, informed traders tend

to react more aggressively to new information and hardwiring creates a channel through

which the shocks to fundamentals are amplified.

We verify this intuition by conducting impulse response analysis of prices to various

shocks in the model. In particular, we consider the price impact of fundamental innovations

v1t and v2t, trader signal errors η1t and η2t, rating agency signal errors e1t and e2t, random

supply shocks ςt and non-fundamental dividend shocks ut.

self-fulfilled at earlier trading rounds. This is consistent with the results of Allen, Morris and Shin (2006)
who solve a similar type of equilibrium but with three trading rounds, totally uninformative prices and a
public signal about fundamentals that acts as a focal point and skews agents beliefs towards it.
16That follows from the unconditional variance of noise-trading supply σ2S = ψ2σ2r + σ2ς . The variance

of the rating process σ2r = 0.1789 and noise-trading supply σ2S = 0.0100 correspond to the 3rd and 8th

diagonal element of M.
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5.2 Impulse response

Coefficient matrices T (B) and V (B) define the law of motion of state vector zt in 28 and

determine the impulse response of prices to various elements of the innovations vector εt.

Given that the first element of zt corresponds to price, its impulse response to a shock of

one standard deviation σi in the ith element of εt is given by the function

f (t) =
£
T (B)t−1 V (B)

¤(1,i)
σi (34)

where, superscript (1, i) refers to the ith element in the first row of the matrix in brackets.

Under complete information, prices reflect instantly the exact realisation of θ1 and θ2.

Therefore, fundamental shocks v1 and v2 would be the only elements of εt with a persistent

impact on prices. However, when traders face signal extraction problems, all elements

of εt, including non-fundamental innovations, may have a persistent price impact. That

is because, signal extraction problems inhibit traders from accurately identifying whether

changes in observable variables are due to fundamental, or non-fundamental shocks. As a

result, traders may misinterpret non-fundamental noise as being fundamental information

and that may last for sometime until they gradually filter out the actual realisation of past

fundamental shocks.

In addition, if the market is characterised by a degree of ratings hardwiring then,

shocks to the supply of the asset become correlated with the fundamentals and to a certain

extent predictable. In that case, traders might become overly sensitive to any element of

information about dividends and capital gains that are directly linked to supply shocks

through market clearing.

Figures 5-12 illustrate the price impact of a one standard deviation shock to fundamental

and non-fundamental factors, assuming CARA = 2. In addition to the no hardwiring case

ψ = 0, we also consider ψ = 0.02 and ψ = 0.03. Under complete information, the impulse

response of prices to fundamental shocks is shown with a dotted line.

The price impact of fundamentals shocks v1 and v2 is illustrated in figures 5 and 6. We

notice that hardwiring induces a stronger reaction of prices to fundamental innovations

compared to the case without hardwiring, overshooting even the complete information

benchmark. The price impact of trader signal errors is reported in figures 7 and 8. In that

case, hardwiring leads to larger misinterpretation and overreaction by traders to errors in

their private signals, compared to the situation without hardwiring. Notice that informed

traders are the only parties who observe their private signals. As a result, the induced

price overreaction to private signal errors is exclusively due to more aggressive trading by

informed traders, rather than stemming directly from noise trading.

Figures 9 and 10 show the impact of rating signal errors on prices. Also in this case,

the undue price impact of rating signal errors is higher with than without hardwiring.
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Figure 11 illustrates the impulse response of prices to the random supply ς of the risky

asset. Price overreaction to such a shock increases with the extent of ratings hardwiring.

As already mentioned, the variance of ς was properly adjusted for hardwiring to ensure

comparability with the no-hardwiring case. Finally, figure 12 shows how prices respond

to non-fundamental dividend shocks u. As with private signal errors, informed traders

are the only parties who consider dividends among their observables. Therefore, any price

overreaction to non-fundamental dividend shocks is exclusively due to trader overreaction

to the shocks and to no other reason.

6 Conclusions

The recent Dodd-Frank Act in the U.S. provides for the elimination of ratings-based rules

from financial regulatory. A growing volume of theoretical and empirical literature confirms

that such a regulatory initiative is warranted given that, in an issuer-initiated market for

ratings, the use of rating scores for regulatory purposes creates perverse incentives to issuers

and rating agencies, with possible destabilising effects for financial markets. In this paper,

we join those voices arguing for the detrimental implication of regulatory rules that promote

the hardwiring of investment decisions to ratings, yet from a different perspective.

We consider a competitive market for a risky asset under conditions of asymmetric

information. A non-strategic rating agency produces a public rating that is its best guess

about asset payoffs, based on its private information. Asymmetrically informed traders

rationally anticipate changes in the supply of the asset, which is due to a residual class

of (noise) traders that mechanically link their supply of the asset to ratings. We show

that ratings hardwiring leads to predictable supply shocks that induce informed traders

to overreact to new information. That creates a channel through which fundamental and

non-fundamental shocks are amplified, leading to less informative and more volatile prices.

The theoretical predictions of the model are consistent with empirical work regarding

the price impact of forced sales as a result of the mechanical response of portfolio decisions

to ratings. Ellul et al. (2011) argue that forced sales by insurance companies due to rating

downgradings lead to price deviations from fundamentals for a significant period of time

following the downgrading. They argue that such a persistent mispricing arises as a result

of non-competitive markets and the lack of a sufficient number of counterparties to absorb

large-scale sale volumes from insurance companies. In our model, such a mispricing could

arise even in a competitive asset market due to signal extraction problems by trading parties

that do not necessarily hardwire their investment decisions to ratings, but they rationally

anticipate the hardwired supply of the asset by others.

The model could be extended to consider a market for a risky asset where informed
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traders act strategically à la Kyle (1985) and Foster and Viswanathan (1996). That would

allow us to examine the effect of mechanical responses of investment decisions to ratings in

relation to asset market characteristics, such as market depth, and draw implications for

the order flow and bid-ask spreads.

Finally, the analysis has wider implications for the incorporation into investment deci-

sions of mechanical responses to public signals more broadly, not necessarily ratings. In

particular, hardwiring of certain investment decisions to ratings is related also to the effect

of analyst recommendations on overall buying and selling, similar to the evidence provided

by Malmendier and Shanthikumar (2007). However, analyst recommendations are in re-

lation to the current price, which is an endogenous variable in the model. That would

require modification of the model in order to associate noise trading with the endogenously

specified price and not with the asset’s rating that is exogenously specified. Yet, we leave

these interesting extensions of the model for future research.
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7 Appendix

7.1 Proof of Lemma 1

Let srjt−1be the vector of signals that the rating agency receives up to t − 1 about factor
θj, j = 1, 2. Given normality of θjt and signal vector srjt−1, the conditional distribution of

θjt, conditional on signal vector srjt−1, is also normal with conditional mean and variance

θjt|t−1 ≡ E
¡
θjt | srjt−1

¢
(35)

Σjt|t−1 ≡ V ar
¡
θjt | srjt−1

¢
(36)

Let us suppose that the conditional mean θjt|t−1 and variance Σjt|t−1 have been calculated

and with those in hand we are able to evaluate θjt+1|t and Σjt+1|t. From 6, the conditional

expectation of the signal received at t, conditional on the signal information up to t− 1, is
given by

E
¡
srjt | srjt−1

¢
= E

¡
θjt | srjt−1

¢
= θjt|t−1 (37)

and the forecast error srjt −E
¡
srjt | srjt−1

¢
becomes

srjt − E
¡
srjt | srjt−1

¢
=
¡
θjt − θjt|t−1

¢
+ ejt (38)

Since ejt are independent over time and orthogonal to θjt, they are also independent of

θjt|t−1. This implies that the conditional variance of the forecast error 38 is

V ar
£
srjt − E

¡
srjt | srjt−1

¢¤
= Σjt|t−1 + σ2je (39)

where σ2je ≡ V ar [ejt]. Similarly, the conditional covariance between the forecast errors

srjt −E
¡
srjt | srjt−1

¢
and θjt −E

¡
θjt | srjt−1

¢
is

Cov
£
srjt, θjt | srjt−1

¤
= E

£¡
θjt − θjt|t−1 + ejt

¢ ¡
θjt − θjt|t−1

¢¤
= Σjt|t−1 (40)

From 35, 36, 37, 39 and 40 we get the conditional joint distribution of signal srjt and

fundamental factor θjt, conditional on signal information srjt−1 up to period t− 1"
srjt | srjt−1
θjt | srjt−1

#
∼ N

Ã"
θjt|t−1

θjt|t−1

#
,

"
Σjt|t−1 + σ2je Σjt|t−1

Σjt|t−1 Σjt|t−1

#!
(41)

Let us now define θjt|t as the conditional expectation of factor θjt conditional on signal

vector srjt, namely, all signals s
r
j up to period t

θjt|t ≡ E
¡
θjt | srjt

¢
= E

¡
θjt | srjt

¯̄
srjt−1

¢
(42)
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The conditional expectation θjt|t and the conditional variance Σjt|t of the forecast error can

be evaluated by applying the projection theorem, using the join distribution in 41

θjt|t = θjt|t−1 + Σjt|t−1
¡
Σjt|t−1 + σ2je

¢−1 ¡
srjt − θjt|t−1

¢
(43)

Σjt|t = Σjt|t−1 − Σ2jt|t−1
¡
Σjt|t−1 + σ2je

¢−1
(44)

Moreover, from 2 and also the fact that vjt are orthogonal to every element of the signal

vector srjt, we get

θjt+1|t ≡ E
¡
θjt+1 | srjt

¢
= E

¡
ρjθjt + vjt | srjt

¢
(45)

= ρjθjt|t

Σjt+1|t ≡ V ar
¡
θjt+1 | srjt

¢
= V ar

¡
ρjθjt + vjt | srjt

¢
(46)

= ρ2jΣjt|t + σ2jv

Combining 43 with 45, and 44 with 46 we derive the following Kalman filter representation

that gives the one-period forecast θjt+1|t as a function of θjt|t−1

θjt+1|t = ρjθjt|t−1 + ρjΣjt|t−1
¡
Σjt|t−1 + σ2je

¢−1 ¡
srjt − θjt|t−1

¢
or

θjt+1|t = ρj

h
1− Σjt|t−1

¡
Σjt|t−1 + σ2je

¢−1i
θjt|t−1 + ρjΣjt|t−1

¡
Σjt|t−1 + σ2je

¢−1
srjt (47)

where Σjt+1|t solves

Σjt+1|t = ρ2jΣjt|t−1 − ρ2jΣ
2
jt|t−1

¡
Σjt|t−1 + σ2je

¢−1
+ σ2jv (48)

Given that
¯̄
ρj
¯̄
< 1, σ2

je
> 0 and σ2jv > 0, the conditional variance Σjt|t−1 converges to a

unique (positive) steady-state constant Σ∗ that solves17

Σ∗j = ρ2jΣ
∗
j

h
1− Σ∗j

¡
Σ∗j + σ2je

¢−1i
+ σ2jv (49)

It is easy to show that the solution to 49 is

Σ∗j =
1

2
σ2je

⎡⎣σ2jv
σ2je
−
¡
1− ρ2j

¢
+

s∙
σ2jv
σ2je
−
¡
1− ρ2j

¢¸2
+ 4

σ2jv
σ2je

⎤⎦ (50)

17See, for example, Hamilton (1994), Proposition 13.1, page 390.
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Independence between θ1 and θ2, sr1 and sr2 implies that the rating process rt is given by

rt = E
£
θ1,t + θ2,t | sr1,s, sr2,s, s < t

¤
= θ1,t|t−1 + θ2,t|t−1

or, from 47

rt = ρ1 (Σ1 + 1)
−1 θ1,t−1|t−2+ρ2 (Σ2 + 1)

−1 θ2,t−1|t−2+ρ1Σ1 (Σ1 + 1)
−1 sr1t+ρ2Σ2 (Σ2 + 1)

−1 sr2t
(51)

For ρ1 (Σ1 + 1)
−1 = ρ2 (Σ2 + 1)

−1, the rating process 51 simplifies as follows

rt = λrt−1 + λ
£
Σ1s

r
1t−1 + Σ2s

r
2t−1

¤
(52)

where, λ = ρj (Σj + 1)
−1 and Σj =

1
2

"
σ2jv
σ2je
−
¡
1− ρ2j

¢
+

rh
σ2jv
σ2je
−
¡
1− ρ2j

¢i2
+ 4

σ2jv
σ2je

#
, j =

1, 2.

Q.E.D.

7.2 Fixed-point solution algorithm

Following Hussman (1992), we outline here the main steps we need to follow in order to

calculate a linear REE equilibrium of our securities market. To derive such an equilibrium

we need to evaluate matrices T (B) and V (B) of the actual law of motion 28. We start by

choosing arbitrary values for their first row, which corresponds to the price process, and for

the conditional variances σ2j and coefficient matrices Bj, j = 1, 2. We also define selector

matrices e1, e2, u1, u2 that satisfy the following set of equations

z1t = e1zt x1t = u1zt

z2t = e2zt x2t = u2zt

rt = erzt ς t = esεt

(53)

Let also matrix c be such that pt+1 + Dt+1 = cxjt+1. Given 53, we can easily see that

E [pt+1 +Dt+1 | Ijt] = cBjujzt and the equilibrium price 13 can be restated as

pt = Λ−1
£
ασ22Nφ1cB1u1 + (1− α)σ21Nφ2cB2u2 −Mer

¤
zt − Λ−1σ21σ

2
2esεt (54)

Substituting zt from 28 into the price equation 54 we derive the following expression for

the price process

pt = dpzt−1 + ²pεt

where row matrices dp and ²p define the first row of T (B) and V (B), respectively, and

they are given by

dp ≡ Λ−1 [ασ22Nφ1cB1u1 + (1− α)σ21Nφ2cB2u2 −Mer]T (B)

²p ≡ Λ−1 [ασ22Nφ1cB1u1 + (1− α)σ21Nφ2cB2u2 −Mer]V (B)− Λ−1σ21σ
2
2es
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The second row of T (B) and V (B), which corresponds to the payoff process Dt, is implied

by 1, while the third row, which corresponds to the rating process, is implied by lemma 1.

The fourth and fifth row of T (B) and V (B), which correspond to investors’ private signals

sjt are implied by 4, and the sixth and seventh row by 2. Row eight of V (B) corresponds

to supply of the risky asset and is set equal toh
0 0 0 0 0 0 0 1

i
With respect to investors’ forecast errors ζjt we define selector matrices ezj such that

ζjt = ezjzt

From the actual law of motion 28, from investors’ perceptions 7 and from selector matrices

ezj and ej, the forecast errors ζjt can be written as

ζ1t = [e1T (B)−A1e1 −C1ez1] zt−1 + e1V (B) εt
ζ2t = [e2T (B)−A2e2 −C2ez2] zt−1 + e2V (B) εt

(55)

Equations in 55 define the following matrices dζ and eζ

dζ ≡
"
e1T (B)−A1e1 −C1ez1
e2T (B)−A2e2 −C2ez2

#

eζ ≡
"
e1V (B)

e2V (B)

#

Matrix dζ defines rows 9 to 16 of T (B), while matrix eζ defines rows 9 to 16 of V (B). It

is worth noting that in equations 55 selector matrices e1 and e2 select elements only from

the first five rows of matrices T (B) and V (B). However, the rows of matrices T (B) and

V (B) that are relevant to ζ1t are rows 9 to 12, while for ζ2t rows 13 to 16. Consequently,

e1 and e2 do not select any of the coefficients of matrices T (B) and V (B) that are relevant

to the evaluation of forecast errors ζ1t and ζ2t. Thus, there is no need to evaluate a fixed

point for the rows of T (B) and V (B) that correspond to investors’ forecast errors.
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Figure 1: Price (non-)informativeness
and risk aversion

Figure 2: Price volatility
and risk aversion
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Figure 3: Price (non-)informativeness
and ratings hardwiring

Figure 4: Price volatility
and ratings hardwiring
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Figure 5: Price impact of shock to
fundamental factor θ1

Figure 6: Price impact of shock to
fundamental factor θ2
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Figure 7: Price impact of trader
signal error about θ1

Figure 8: Price impact of trader
signal error about θ2
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Figure 9: Price impact of rating agency
signal error about θ1

Figure 10: Price impact of rating agency
signal error about θ2
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Figure 11: Price impact of random
supply shock

Figure 12: Price impact of
non-fundamental dividend shock
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