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Abstract

Wederive the limit theory of the Gaussian QMLE in the non-stationary GARCH(1,1)
modelwhen the squared innovationprocess lies in thedomain of attractionof a stable
law. Analogously to the stationary case, when the stability parameter lies in (1, 2], we
find regularly varying rates and stable limits for the QMLE of the ARCH and GARCH
parameters.
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1 Introduction

We derive the limit theory of the Gaussian QMLE in the non-stationary GARCH(1,1) model
when the squared innovation process lies in the domain of attraction (DoA) of a 𝑝-stable
law for 𝑝 ∈ (1, 2]. Our interest stems from the empirical fact that distributions of financial
asset returns exhibit fat tail behavior. This renders plausible the consideration of heavy-
tailed distributions for the innovation process of GARCH-type models in financial applica-
tions. In the stationary versions of such cases,

√𝑛-consistency and possibly asymptotic
normality can break down for the Gaussian QMLE (see for example Hall and Yao (2003);
MikoschandStraumann (2006); Arvanitis andLouka (2017)). Hence thequestionofwhether
this holds under non-stationarity arises naturally, and can be important for the determina-
tion of the asymptotic validity of inferential procedures based on the QMLE.

For the non-stationaryGARCH(1,1), when the innovations fourthmoments exist (hence
𝑝 = 2), Jensen and Rahbek (2004a) and Francq and Zakoïan (2012) establish standard limit
theories for the ARCH and GARCH parameters QMLE. In the non-stationary ARCH(1) case
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Arvanitis and Louka (2016), extend Jensen andRahbek (2004b) by allowing𝑝 ∈ (1, 2]. They
derive aMartingale Limit Theorem (MLT) for an appropriatemartingale transform, and use
it to establish slower than

√𝑛-rates and stableweak limits for the estimator of theARCHpa-
rameter. In the GARCH(1,1) case this is not applicable since it requires a.s. convergence for
the tranform’s scalling process. Similarly, the MLT of Mikosch and Straumann (2006) is not
immediately applicable since it requiresmixing, while it is in any case not very informable
on the form of the rate and the parameters of the limiting distribution.

In order to tackle those difficulties we partially extend the MLT in Arvanitis and Louka
(2017) by allowing the approximation of the scalling process by a stationary and ergodic
sequence. Hence we obtain as a byproduct an MLT for martingale transforms with non-
stationary scalling sequences and stable limits (see the Supplement). Using the relevant
approximation results of Francq and Zakoïan (2012), we apply this to the non-stationary
GARCH(1,1) case for 𝑝 ∈ (1, 2], and thus derive regularly varying rates and (multivariate)
stable limits for the QMLE of the ARCH and GARCH parameters. In the following section,
we present our framework, derive and comment the results. We concludewith someques-
tions for further research.

2 Framework and Results

The GARCH(1, 1) process is defined by

{ 𝑦𝑡 = 𝜎𝑡𝑧𝑡
𝜎2

𝑡 = 𝜔0 + 𝛼0𝑦2
𝑡−1 + 𝛽0𝜎2

𝑡−1
, 𝑡 ∈ ℕ⋆ (1)

with initial value 𝜎2
0 ≥ 0, a.s., where 𝜔0 > 0, 𝛼0 > 0, 𝛽0 ≥ 0, and (𝑧𝑡)𝑡∈ℕ is an iid sequence

with𝔼 [𝑧1] = 0,𝔼 [𝑧2
1] = 1 andℙ [𝑧2

1 = 1] < 1. Given (𝑦𝑡)𝑡=0,…,𝑛 from (1), we are interested
in the limit theory of the Gaussian QMLE in the scope of the assumption framework that
follows. The estimator, say 𝜃𝑛, of 𝜃0 = (𝜔0, 𝛼0, 𝛽0)′ minimizes 𝑐𝑛(𝜃) = 1𝑛 ∑𝑛

𝑡=1 ℓ𝑡(𝜃), with
respect to 𝜃 ≡ (𝜔, 𝛼, 𝛽)′ on Θ, which is a compact subset of (0, ∞)3, and 𝜃0 ∈ Θ. There,
ℓ𝑡(𝜃) = 𝑦2

𝑡
ℎ𝑡(𝜃) + log ℎ𝑡(𝜃) and ℎ𝑡(𝜃) = 𝜔 + 𝛼𝑦2

𝑡−1 + 𝛽ℎ𝑡−1(𝜃), with arbitrary ℎ0 ≥ 0, a.s. In
what follows all limits are considered as𝑛 → +∞,⇝ denotes convergence in distribution,
and ‖⋅‖𝛿 denotes the 𝐿𝛿 norm.

Let𝑆𝑝(𝑠, 𝑐, 𝛾)be the (univariate) stable distributionwith parameters 𝑝, 𝑠, 𝑐, 𝛾 denoting
stability, skewness, scale and location respectively (see Ibragimov (1971)). When 𝑝 = 2,
then 𝑠 = 0 and𝑆2(0, 𝑐, 𝛾) = 𝑁(𝛾, 𝑐). In what follows, multivariate stable distributions can
be characterized by collections of univariate ones via appropriate projections (see Arjun
K. Gupta (1994)).

Assumption 1. The distribution of 𝑧2
1 − 1 lies in the DoA of some 𝑆𝑝(1, 𝑐, 0)with 𝑝 ∈ (1, 2].

Notice that since the support of 𝑧2
1 − 1 is a subset of [−1, +∞), Assumption 1 di-

rectly implies that 𝑠 = 1 for the attractor when 𝑝 < 2 (see Ibragimov (1971) for the
relation of 𝑠 with the tails of the attracted distribution). Furthermore, the assumption is
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equivalent to that (see Ibragimov (1971); Aaronson and Denker (1998)) the partial sums
of (𝑧2

𝑡 − 1)𝑡∈ℕ when appropriately translated, and scaled by 1
𝑛1/𝛼𝑟1/𝛼

𝑛
, converge in distri-

bution to 𝑆𝑝(1, 𝑐, 0). (𝑟𝑛)𝑛∈ℕ forms a slowly varying sequence (see Bingham et al. (1989))
defined by

(𝑛𝑟𝑛)−1/𝑝 = inf {𝑥 > 0 ∶ ℙ (𝑧2
1 − 1 > 𝑥−1) = 1/𝑛} .

When (and only when) 𝑝 < 2, or 𝑝 = 2 and 𝑟𝑛 diverges, then 𝔼 [𝑧4
1] = +∞. Hence this

generalizes the usual assumption that 𝔼 [𝑧4
1] < +∞, which corresponds to 𝑝 = 2 and

𝑟𝑛 → 𝔼 [𝑧4
1] − 1. Furthermore, since 𝔼 [𝑧2

1] < +∞, when 𝑝 = 1 then 𝑟𝑛 → +∞.

Assumption 2. (𝐀) 𝜃0 and 𝑧1 satisfy

Λ𝜃0
≡ 𝔼 [log (𝑍1)] ≥ 0. (2)

When(2)holdswithequality, (𝐁)Θ is such that𝛽 < ∥𝑍−1
1 ∥−1

𝛿 for some𝛿 > 1 , (𝐂)𝔼 [∣log (𝑧2
1)∣] <

+∞, and,

𝔼 ⎡⎢
⎣

1
1 + ∑𝑛−1

𝑖=1 ∏𝑖
𝑗=1 𝑍𝑗

⎤⎥
⎦

= 𝑜 ( 1
𝑛1/𝑎𝑟1/𝛼

𝑛
) , (3)

where𝑍𝑡 = 𝛼0𝑧2
𝑡 + 𝛽0, 𝑡 = 1, … , 𝑛 − 1.

Assumption (2).(𝐀) is equivalent to non-stationarity (see Nelson (1990)). When Λ𝜃0
>

0, 𝜎2
𝑛 diverges a.s. to infinity and when Λ𝜃0

= 0 this holds in probability (see Francq
and Zakoïan (2012)). In the latter case, (𝐁)-(𝐂) are adaptations of analogous assump-
tions in Francq and Zakoïan (2012) to the current framework. Notice that (3) is true when
𝔼 [|log (𝑍1)|2] < +∞ (see again Francq and Zakoïan (2012)), which in conjunction with
Assumption (1) holds for example when the support of 𝑧2

1 is bounded away from zero.
Our main result follows.

Theorem1. For theprocessdefined in (1), letAssumptions1and2.(𝐀)holdandℙ (𝑧1 = 0) =
0. IfΛ𝜃0

> 0, (𝛼𝑛 − 𝛼0, 𝛽𝑛 − 𝛽0)𝑇 converges a.s. to zero. Moreover, if 𝜃0 ∈ Θ∘,

𝑛𝑝−1
𝑝 𝑟− 1𝑝

𝑛 (𝛼𝑛 − 𝛼0, 𝛽𝑛 − 𝛽0)𝑇 ⇝ 𝐽−1
𝜃0

𝑧𝜃0
. (4)

Here,

𝐽𝜃0
= (

1
𝛼2

0

𝜇1
𝛼0𝛽0(1−𝜇1)

𝜇1
𝛼0𝛽0(1−𝜇1)

(1+𝜇1)𝜇2
𝛽2

0(1−𝜇1)(1−𝜇2)
) ,

with 𝜇𝑖 ≡ 𝔼(𝛽0/𝑍1)𝑖, 𝑖 = 1, 2, 𝑧𝜃0
follows a bivariate 𝑝-stable distribution characterized by

𝜆𝑇 𝑧𝜃0
∼ 𝑆𝑝 (𝑠𝜆, 𝑐𝜆, 0) , for any 𝜆 ∈ ℝ2-{0} ,

where 𝑠𝜆 ≡ 𝔼[∣𝜆𝑇 𝑈1∣𝑝 sgn(𝜆𝑇 𝑈1)]
𝔼[|𝜆𝑇 𝑈1|𝑝] , and 𝑐𝜆 ≡ 𝑐𝔼 [∣𝜆𝑇 𝑈1∣𝑝].

If Λ𝜃0
= 0, and Assumption 2.(𝐁) holds, (𝛼𝑛 − 𝛼0, 𝛽𝑛 − 𝛽0)′ converges to zero in proba-

bility. If moreover, 𝜃0 ∈ Θ∘, and Assumption 2.(𝐂) holds, (4) also holds.
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For the above, consistency follows exactly as in Francq and Zakoïan (2012). For the lim-
itingbehavior of the relevant part of the score at 𝜃0 notice that it has the formof themartin-
gale transform ∑𝑛

𝑡=1 (𝑧2
𝑡 − 1) 𝜎−2

𝑡 ℎ′
𝑡 (𝜃0), where ℎ′

𝑡 is the gradient of ℎ𝑡 w.r.t. 𝜃⋆ ≡ (𝛼, 𝛽).
Given the approximation results of Francq and Zakoïan (2012) and Jensen and Rahbek

(2004a) for the scallingprocess (𝜎−2
𝑡 ℎ′

𝑡 (𝜃0))𝑡∈ℕ by(( 1𝛼0
,∑∞

𝑗=1 𝛽𝑗−1
0 ∏𝑗

𝑘=1
1

𝑍𝑡−𝑘
)

𝑇
)

𝑡∈ℕ
, this

conforms to the MLT for martingale transforms we derive in the Supplement using the
“Principle of Conditioning” of Jakubowski (1986). The remaining steps are handled as in
Francq and Zakoïan (2012) under the evident modifications for the rates (see the Supple-
ment).

As in Francq and Zakoïan (2012) the estimator for 𝜔0 is inconsistent due to lack of
asymptotic identification, something that is idiosyncratic to non-stationarity. The results
would remain the same if the likelihood was maximized w.r.t. 𝜃⋆ for arbitrary initial values
𝜔, ℎ0 when Λ𝜃0

> 0, and for the true ones 𝜔0, 𝜎2
0 when Λ𝜃0

= 0. Then Assumption (2).(𝐂)
could be avoided, exactly as in Jensen and Rahbek (2004a).

The regularly varying rate is 𝑛𝑝−1
𝑝 𝑟− 1𝑝

𝑛 which is slower than the usual
√𝑛 whenever

𝑝 < 2, or 𝑝 = 2 and 𝑟𝑛 diverges. The limiting distribution is bivariate stable with stability
parameter 𝑝 and spectral measure (see Mikosch and Straumann (2006)) characterized by
linear transformations. The limitingmarginals are 𝑝-stable as linear combinations of the bi-
variate 𝑝-stable distribution of 𝑧𝜃0

. The marginals of 𝑧𝜃0
have symmetry parameters equal

to 1 due to positivity. For example the first element of 𝑧𝜃0
follows the

𝑆𝑝 (1, 𝑐
𝛼𝑝

0, , 0) .

When 𝑝 = 2 and 𝑟𝑛 converges (necessarily to 𝔼 [𝑧4
1] − 1) we recover the results of Jensen

and Rahbek (2004a); Francq and Zakoïan (2012), i.e.
√𝑛 rate and 𝑁 (0, 𝐽−1

𝜃0
) limit. How-

ever, we still obtain asymptotic normality, when 𝑝 = 2 and 𝑟𝑛 diverges. For example if√
2𝑧1 ∼ 𝑡4 then simple calculations show that

√ 𝑛
log 𝑛 (𝛼𝑛 − 𝛼0, 𝛽𝑛 − 𝛽0)𝑇 ⇝ 𝑁 (0, 3

2𝐽−1
𝜃0

) .

The results of Theorem 1 can be extended to 𝑝 = 1 as long as the condition 𝔼 [𝑧2
1] = 1 is

retained. This casewould involve a diverging translating sequence for the partial sums and
a bivariate 1-stable limiting distribution with non-zero location (in the spirit of Arvanitis
and Louka (2016, 2017). We do not engage to such derivations for economy of space.

Notice that we obtain the same rates, and weak limits with the same stability param-
eters as in the stationary case (see Arvanitis and Louka (2017)), yet with different spectral
measures due to the differing limiting behavior of the scalling sequence (𝜎−2

𝑡 ℎ′
𝑡 (𝜃0))𝑡∈ℕ

between the stationary and the non-stationary frameworks.
Compared to the 𝔼 [𝑧4

1] < +∞ case, the results above can render non-robust, inferen-
tial procedures based on the QMLEwhen those are designed via the standard limit theory.
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However there exist exampleswhere this is not true. As an illustration consider the hypoth-
esis structure of weak stationarity

𝐇0 ∶ 𝛼0 + 𝛽0 < 1 against 𝐇1 ∶ 𝛼0 + 𝛽0 ≥ 1 ,

with statistic

𝑇𝑛 ≡
√𝑛 (𝛼𝑛 + 𝛽𝑛 − 1)

√√√√
⎷

( 1𝑛 ∑𝑛
𝑡=1

𝑦4
𝑡

ℎ2
𝑡 (𝜃𝑛) − 1) ⎛⎜

⎝

0
1
1

⎞⎟
⎠

𝑇

[ 1𝑛 ∑𝑛
𝑡=1 ( 1

ℎ2
𝑡 (𝜃𝑛)ℎ

′
𝑡 (𝜃𝑛) [ℎ′

𝑡 (𝜃𝑛)]𝑇 )]
−1 ⎛⎜

⎝

0
1
1

⎞⎟
⎠

,

and rejection region 𝑅𝑎 ≡ {𝑇𝑛 > Φ (1 − 𝑎)}, for 𝑎 ∈ (0, 1), where now ℎ′
𝑡 denotes the

gradient of ℎ𝑡 w.r.t. 𝜃. Notice that under the alternative there may exist 𝜃0 corresponding
to Λ𝜃0

≥ 0. Under the relevant framework, and if, Assumption 1 holds for 𝑝 = 2, 𝔼 [𝑧4
1]

slowly diverges to infinity, and 𝜃0 ∈ Θ∘, using the results above, the ones in Arvanitis and
Louka (2017) or Hall and Yao (2003), Theorem 2.3 of Francq and Zakoïan (2012) and the
Generalized LLN (Theorem2) in Section VII.7 of Feller (1971), it can be shown that𝑇𝑛 is self-
normalized under the null, and the procedure above is asymptotically exact and (whenever
𝛼0 + 𝛽0 > 1) consistent. Using Francq and Zakoïan (2012), this means that it is robust in all
cases where 𝑝 = 2. This is not true when 𝑝 < 2, whence it is possible that modifications
of 𝑇𝑛 can be used in the spirit of Arvanitis and Louka (2016) and rejection regions based
on parametric bootstrap in the spirit of Hall and Yao (2003) in order to obtain asymptotic
exactness and consistency.

3 Further Research

In a recent note in Economics Letters, Pedersen and Rahbek (2016) study the limit theory
of theMLE for the non stationary GARCH(1,1) when 𝑧1 ∼ 𝑡𝑣0

, 𝑣0 > 2. They derive√𝑛 rates

and asymptotic normality for the estimator of (𝛼0, 𝛽0, 𝑣0)𝑇 . Notice that this conforms to
Assumption 1 for 𝑝 = 𝑣0

2 . Hence when 2 < 𝑣0 ≤ 4, the MLE has faster rate and is relatively
asymptotically efficient compared to the Gaussian QMLE. However when 1 holds, yet 𝑧1
is not 𝑡-distributed the student-t QMLEmay be inconsistent (see Berkes et al. (2004)). One
possible line of future research concerns the study of the existence of an indirect estimator,
that combines the use of the Gaussian and student-t QMLE, and has standard limit theory
in the framework of Assumption 1 and in the spirit of Fan et al. (2014).

Finally, an obvious issue of further research concerns the derivation of the limit the-
ory of the Gaussian QMLE in the non-stationary versions of other models of conditional
heteroskedasticity.
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sity of Economics and Business, in the framework of ”Research Funding at AUEB for Excel-
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