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Abstract

This paper presents a new stochastic volatility model which allows for persis-
tent shifts in volatility of stock market returns, referred to as structural breaks.
These shifts are endogenously driven by large return shocks (innovations), re-
�ecting large pieces of market news. These shocks are identi�ed from the data
as being bigger than the values of two threshold parameters of the model: one
for the negative shocks and one for the positive shocks. The model can be
employed to investigate economic (or market) sources of volatility shifts, with-
out relying on exogenous information from the sample. In addition to this, it
has a number of interesting features which enables us to study the dynamic or
changing in magnitude e¤ects of large return shocks on future levels of market
volatility. The above properties of the model are shown based on a study for
the US stock market volatility. For this market, the model identi�es from the
data as large negative return shocks these which are smaller than -2.05% on
weekly basis, while as large positive return shocks those which are bigger than
2.33%.
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1 Introduction

There is recently considerable evidence indicating the existence of discrete-time and

persistent shifts in the conditional variance process of asset (stock) returns. These

shifts, referred to as structural breaks in the empirical �nance literature, are related

to large negative, or positive, stock market return shocks, which re�ect substantial

pieces of market news (see Diebold and Pauly (1987), Lamourex and Lastrapes (1990),

Tzavalis and Wickens (1995), Diebold and Inoue (2001), Andreou and Ghysels (2002),

Mikosch and Starica (2004), and Morana and Beltratti (2004), inter alia). There

are many economic reasons for which larger, in magnitude, return shocks can cause

persistent shifts in the level of market volatility, which can change over time. These

can be attributed to �nancial leverage e¤ects or feedback volatility (risk premium)

e¤ects (see, e.g., French et al (1987), Schwert(1990), Campbell and Hentschel (1992),

Bekaert and Wu (2000), or more recently, Mele (2007) and Ozdagli (2012)). If the

above shifts in volatility are not accounted for, they will overstate evidence of very

high persistence in volatility (see, e.g., Psaradakis and Tzavalis (1999) and, for a

survey, Andreou and Ghysels (2009)). As more recently noted by Malik (2011), a

smaller degree of persistency can dampen the feedback volatility e¤ects faster, and

thus positive (good) return shocks will result in signi�cant drops of volatility.1

The empirical literature mentioned above treats large stock market return shocks

as exogenous. To capture their e¤ects on volatility, it relies on the intervention-

dummy variable analysis of Box and Tiao (1975), based on exogenous information

from the sample to determine the time points that the breaks driven by large shocks

occur. Of course, more sophisticated multibreak testing procedures can be applied

to �nd out from the data the timing of the breaks, like those employed for breaks

in the mean of series (see, e.g., Bai and Perron (2003)). But, as in the intervention

1Campbell and Hentschel (1992) provide an analytic relashionships which show how the volatility
persistency parameter determines the volatility feedback e¤ects.
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analysis, these methods do not treat the break process as an endogenous process,

speci�ed as a part of volatility model, which is the focus of this paper. By doing this,

volatility models can allow for richer dynamics which can help to identify di¤erent

economic sources (or market events) of volatility shifts from the data and to study

the dynamic e¤ects of market return shocks on volatility functions. Separating the

impact of these return shocks on volatility from those of ordinary return shocks can

also have important implications for long-term portfolio management and hedging, as

it will bring more focus on controlling important sources of risks caused by long-term

shifts in volatility leaving aside its short-term ones. As shown by many studies based

on intervention analysis, these type of shifts in volatility or stock prices comovements

tend to be mainly driven by large market shocks (see Karolyi and Stulz (1996), or

Chen et al (2003)).

To overcome the above shortcomings of the intervention-dummy variable analysis

in studying the e¤ects of large stock market pieces of news on volatility, in this paper

we suggest a parametric model of breaks in volatility which are endogenously driven

by large stock return shocks. Depending on their sign, these shocks are identi�ed by

being larger (or smaller) than a positive (or negative) value of a threshold parameter,

which can be estimated from the data based on a search procedure. The di¤erent

sign of the values of the threshold parameters that our model considers will enable

us to investigate asymmetric e¤ects of large return shocks on volatility. To study the

dynamic e¤ects of these shocks on volatility, the paper estimates generalized impulse

response functions (GIRFs) of volatility with respect to these large shocks. These

functions will allow us to study the above dynamic e¤ects by integrating out any

possible future or history e¤ects of return shocks on volatility, which can a¤ect the

sample path of volatility. Another interesting feature of our model is that it allows for

shifts in volatility which are stochastic in both time and magnitude. The stochastic
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magnitude of volatility shifts considered by our model is consistent with evidence of

clustering of stock returns of di¤erent magnitude, over time. This also distinguishes

our model from other parametric threshold volatility models allowing for shifts in

the volatility function parameters of �xed magnitude, see, e.g., Glosten�s et al (1993)

threshold GARCH model. Note that the last model also assumes known values of

threshold parameters.

The econometric framework employed to build up our volatility model is that of

the discrete-time SV model with leverage e¤ects (see, e.g., Taylor (1986), Harvey et

al (1994), and Harvey and Shephard (1994), inter alia). This model is extended to

allow for a stochastic break process with the properties mentioned above. Since our

model is nonlinear, to estimate its parameters and retrieve from the data its state

variables, namely the stochastic volatility, the break process and a time-varying co-

e¢ cient capturing stochastic changes in the magnitude of breaks, we use a Bayesian

Markov Chain Monte Carlo (MCMC) method often employed in the literature to esti-

mate SV models with leverage e¤ects (see, e.g., Omori et al (2006)). This method has

been extended to estimate threshold parameters endogenously from the data, through

a grid search procedure. The paper shows that the above estimation procedure of the

state variables and parameters of the model leads to consistent estimates of them. To

evaluate the performance of this estimation procedure, the paper conducts a Monte

Carlo exercise.

Implementation of our model to investigate if level shifts in the volatility of the US

stock market aggregate return can be attributed to large stock market pieces of news

(shocks), re�ected in stock returns, leads to a number of interesting conclusions. First,

it shows that, indeed, shifts in volatility can be triggered by large stock market return

shocks. Most of these shifts are quite persistent and are due to negative large return

shocks, associated with �nancial crises. Our model identi�es as large negative return
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shocks these with values less than -2.05% of weekly returns, while as large positive

shocks those whose values are bigger than 2.33%. This asymmetry of the estimates of

the threshold parameters reveals that market participants consider as large negative

pieces of news return innovations of smaller magnitude than those corresponding

to positive pieces of news. It can explain shapes of news impact functions based

on implied values of volatility which are asymmetric towards large negative return

innovations, as is observed in practice (see, e.g., Engle and Ng (1993) or , more

recently, Ederington and Guan (2010)). Finally, the estimated GIRFs by the model

clearly indicate that large positive return shocks imply drops in future stock market

volatility, which are substantial. As those of large negative return shocks, which

increase volatility, these e¤ects are found to be quite persistent. This is in contrast

to ordinary (small) return shocks, which are found to be smaller and to die out very

fast.

The paper is organized as follows. Section 2 presents our model and discusses

some of its main features. Section 3 presents the estimation method of the model.

In Section 4, we report the results of a small Monte Carlo study, assessing the per-

formance of the estimation method of the model to provide accurate estimates of its

structural parameters and state variables. Section 5 presents the results of the em-

pirical application of the model to the US stock market data. Apart from estimating

the model, this section involves calculating its news impact and generalized impulse

response functions, analyzing the dynamic e¤ects of large return shocks on volatility.

Finally, Section 6 concludes the paper.
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2 Model speci�cation

Consider the following stochastic volatility model of a stock return series at time t,

rt:

rt � � = exp
�
ht
2

�
"t, t = 1; 2; :::; n (1)

with stochastic volatility process

ht+1 = bt+1 + �ht + �t (2)

and a break process, given as

bt+1 = bt + I(At)
t, (3)

where ht is the logarithm of the conditional variance of return rt, referred to as volatil-

ity, "t and �t are the stock return and volatility innovations, respectively, distributed

as �
"t
�t

�
� NID(0;�); with � =

�
1 ���
��� �2�

�
, (4)

where � is the correlation coe¢ cient between innovations "t and �t capturing leverage

e¤ects, and 
t is a time-varying coe¢ cient distributed as 
t � N
�
0; �2


�
.

Model (1)-(3) extends the standard stochastic volatility (SV) model with leverage

e¤ects to allow for discontinuous shifts in the level of volatility process ht of unknown

time. These shifts, which are modelled through process (3), are driven by large return

innovations "t, referred to as large return shocks (or news). They are identi�ed by

indicator function I (At) taking the value 1 if the event At= f"t > rR or "t > rLg

occurs, and zero otherwise, where
�
rL; rR

�
is a pair of threshold parameters which

can be estimated based on sample information.2 The events captured by set At can

be thought of as re�ecting large pieces of positive (or negative) stock market news

when "t > rR (or "t < rL ), a¤ecting stock market returns at time t. Since the breaks

2In the literature, these news are sometimes recognised as outliers in the level of series yt (see,
e.g., Huang (2007)).
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captured by the above SV model, de�ned by equations (1)-(3), are endogenously

driven by stock return innovations "t, this model will be henceforth denoted with the

acronym SVEB, which stands for stochastic volatility (SV) with endogenous breaks.

One interesting feature of the SVEB model is that the speci�cation of break

process bt+1, governing level shifts in volatility ht+1, allows for both the timing and

the magnitude of these shifts to be stochastic in nature. The timing of a possible

shift in ht+1 is controlled by innovations "t through indicator function I (At), while

its magnitude is determined by the time varying coe¢ cient 
t, which is a random

variable distributed as N
�
0; �2


�
. The stochastic nature of this coe¢ cient enables

for a more �exible approach of modelling cyclical shifts in volatility, relaxing the

assumption that these shifts are of constant magnitude over time. The last assump-

tion is made by existing threshold volatility models like that of Glosten et al (1993),

or its extensions suggested by So et al (2003), Asai and McAleer (2004) and Smith

(2009). Note that these threshold models have been introduced in the literature to

capture possible asymmetries in volatility function ht+1 (i.e., threshold e¤ects) which

can explain leverage e¤ects. The SVEB model can be thought of as an extension of

the stochastic permanent break model of Engle and Smith (1999) for the conditional

mean of economic series, as was extended by Kapetanios and Tzavalis (2010) to allow

for stochastic in magnitude shifts, to model structural breaks in volatility.

In addition to the above properties, the SVEB model has a number of other

interesting features, which can be proven very useful in practice. First, by allowing

the threshold parameters rL and rR to di¤er to each other, i.e. rL 6= rR, it can be

employed to unveil from the data values of stock return innovations that are considered

by market participants as large shocks. The threshold volatility models mentioned

above treat these values of rL and rR as known, and set them to zero, i.e. rL = rR = 0.

By allowing for di¤erent values of rL and rR both in terms of sign and magnitude,
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the SVEB model can capture asymmetries of stock market news on volatility function

beyond those implied by leverage e¤ects of standard stochastic volatility models. As

shown in the empirical section of the paper, these asymmetries can produce patterns

of stock market news impact functions (NIFs) which are more close to reality. Finally,

our model can be employed to study the dynamic e¤ects of large negative, or positive,

return shocks on the future path of volatility through generalized impulse response

functions (GIRFs), which are net of the e¤ects of possible future (or past) return

shocks on volatility. The latter can obscure the true e¤ects of large return shocks

on volatility function. The same can be done for ordinary return shocks, de�ned as

rR � "t � rL.

The SVEB model can nest di¤erent stochastic volatility models, which may be

employed in practice. When rL = rR = 0, the model reduces to a version of SV

model with time-varying coe¢ cient (TVC) e¤ects. This corresponds to the TVC

model introduced by Harvey (see Harvey (1989)) for the mean of economic or �nancial

series. This model assumes shifts in volatility at every period, which do not conform

with the notion of structural breaks observed in stock return volatility series. When

�2
 = 0, then volatility ht+1 is driven by ordinary shocks �t and thus, the SVEB

model reduces to the standard SV model with leverage e¤ects, often used in practice.

As it stands, the SVEB model can generate a non-stationary pattern for volatility

process ht+1, given that the variance of the process governing breaks bt+1 grows with

the time-interval of the data. If stationarity of volatility process ht+1 is a desirable

property or required by the data, then stationarity of break process bt+1 would be

required for this. There are a number of restrictions which can be imposed on bt+1

to make this process stationary (see Cogley and Sargent (2002)). A straightforward

one is the following:

bt+1 = �tbt + I(At)
t, (5)
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where

�t =

�
1 if I(jbtj < b)
0 otherwise.

(6)

This condition implies that bt+1 is bounded by b and, hence, it renders ht+1 stationary,

too.3 In the next theorem, we prove that restriction (5) implies strict stationarity of

ht+1 provided that j�j < 1.

Theorem 1 If j�j < 1 and condition (5) hold, then ht is strictly stationary.

The proof of the theorem is given in the Appendix.

3 Model Estimation

In this section we present the estimation procedure that we will employ to obtain

sample estimates of the parameters of the volatility function of the SVEB model,

collected in vector �= (�; ��; �
; �)0, and its state variables, collected in vector at =

(ht; bt; 
t)
0. To this end, we will rely on the Bayesian MCMC estimation method

suggested by Omori et al (2006). This method is extended to provide estimates of

threshold parameters rL and rR endogenously from the data, based on a grid search

procedure.

To implement the above estimation method, we will write the demeaned return

process yt = rt��, implied by equation (1), in terms of the following bivariate set of

observations: fdt; y�t g, where dt is the sign of yt, and y�t = log y2t , i.e.

yt = dt exp

�
y�t
2

�
, "�t = log "

2
t and y�t = log y

2
t = ht + "

�
t ,

where "�t is a transformed IID innovation process, which follows a log�21 distribu-

tion with one degree of freedom. This transformation of yt enables us to write the

observation and the state equations of the SVEB model as follows:
3Further restrictions could be placed on the process bt+1 so that, if the bound b is exceeded, the

process returns to some prespeci�ed level. We do not advocate a particular mechanism for making
the process bt+1 stationary. We simply wish to indicate that there exist speci�cations which give a
stationary bt+1 process. The exact speci�cation of the process may be left to the empirical researcher
depending on their priors on the particular issue at hand.
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y�t = ht + "
�
t (7)

and 24 ht+1bt+1

t+1

35 =
24 � 1 I (At)
0 1 I (At)
0 0 0

3524 htbt

t

35+
24 �t

0
wt+1

35 ; (8)

respectively, where wt+1 � NIID
�
0; �2


�
. The steps taken to estimate the SVEB

model given by observation and state equations (7) and (8), respectively, are presented

below. These initially assume that the vector of threshold parameters r =
�
rL; rR

�0
is

known.

The key feature of the MCMCmethod employed to estimate the SVEB model is to

express the joint density of "�t and �t as a mixture ofK = 10 normal distributions, with

latent mixture component indicators denoted as st 2 f1; 2; ::; 10g, for t = 1; 2; :::; n.

Conditioned on st, this method produces a model whose state space representation

is linear and Gaussian, and thus it enable us to sample the posterior distribution of

sn = fstgnt=1, and an = fatg
n
t=1, as well as that of the parameter vector � based on

the following MCMC scheme. This can be done by initializing vector sn and then

iterating the following steps to obtain posterior samples:

1. Draw an; �jy�n;dn; sn by

(a) drawing �jy�n;dn; sn

(b) drawing anjy�n;dn; sn; �

2. Draw snjy�n;dn; an; �,

until convergence is achieved. To derive the posterior distribution �jy�n;dn; sn based

on the above algorithm, we will assume a prior distribution of �, denoted as � (�), and

will calculate the likelihood g (y�nj �;dn; sn) based on the approximation of the bivari-

ate joint density f ("�t ; �tjdt) by the following mixture of K=10 normal distributions
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with mean mj, variance v2j , denoted as N
�
"�t ;mj; v

2
j

�
, for j = 1; 2; :::; K = 10:

f ("�t ; �tjdt) = f (�tj"�t ; dt) f ("�t )

'
10X
j=1

pjN
�
�t; dt��e

mj
2 (aj + bj ("

�
t �mj)) ; �

2
�
1� �2

��
N
�
"�t ;mj; v

2
j

�
,

(9)

where fpj; aj; bjg10j=1 constitutes the set of mixing parameters. These parameters are

chosen to make the approximation of the true density f ("�t ; �tjdt) as tight as possible.4

The approximating density given by (9) implies that the vector of innovations

("�t ; �t)
0 conditional on the mixture component indicator st = j and the sign dt,

converges asymptotically to the following random vector:��
"�t
�t

����� dt; st = j� L
=

�
mj + vjz1t

dt�� (aj + bjvjz1t) exp
�mj

2

�
+ �
p
1� �2z2t

�
; (10)

for j = 1; 2; :::; K=10, where z1t and z2t are two independent normally distributed

random variables with zero mean and unit variance, and " L
= " signi�es convergence in

distribution. This result implies that we can write the observation and state equations

of the SVEB model (see (7) and (8), respectively) in a conditionally Gaussian state

space form, and thus, use the Kalman �lter algorithm to compute the likelihood of

density g (y�nj �;dn; sn).5 In so doing, we will replace the innovations "t of set At by
4Optimal values of aj and bj ; as well as of pj and mj ; vj for j = 1; ::; 10; are reported by Omori

et al (2006).
5In particular, this representation of equations (7) and (8) of the SVEB model are given as follows:

y�t = e
0
tat +mj +G

0
tut

at+1 = Ttat +Wt +Htut,

where

at = [ht; bt; 
t]
0
; et = [1; 0; 0]

0
;

Tt =

24 � 1 I (At)
0 1 I (At)
0 0 0

35 ; Ht =

24 dt��1 exp
�mj

2

�
bjvjz1t ��

p
(1� �2) 0 0

0 0 0 0
0 0 0 �


35
Gt = [vj ; 0; 0; 0]

0
; Wt =

h
dt��� exp

�mj

2

�
aj ; 0; 0

i0
;

ut � NIID (0; I) ; "t = exp
�
�e

0
tat
2

�
yt
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their �ltered estimates, denoted as "tjt, implied by the estimates of volatility state

variable ht, denoted as htjt; which are received by the Kalman �lter, i.e.

"tjt = yt exp

�
�
htjt
2

�
. (11)

The large shocks of return process yt can be easily obtained from �ltered estimates

"tjt based on values of the vector of threshold parameters r =
�
rL; rR

�0
.

The above linear Gaussian state space form of the SVEB model allows us to

draw posterior samples from the density of anjy�n;dn; sn; � (step 1b of the MCMC

algorithm) with the help of a simulation smoother algorithm (see De Jong & Shep-

hard (1995)). For step 1a of the MCMC algorithm, we will draw samples from

the density � (�jy�n;dn; sn) / g (y�nj �;dn; sn)� (�) using the Metropolis-Hastings

algorithm with a proposal density based on the truncated Gaussian approxima-

tion of the posterior. To this end, we will �rst de�ne estimator �̂ which maxi-

mizes g (y�nj �;dn; sn)� (�). Then, we will generate a candidate �� from the following

truncated normal distribution: TNR

�
�̂;
�
�@2 log g(y�nj�;dn;sn)�(�)

@�@�0

���
�=�̂

��1�
; where R =

fj�j < 1; ��; �
 > 0; j�j < 1g, and we will accept this candidate with the Metropolis-

Hastings probability of move.6

Regarding the mixture indicator variable st (step 2 of the MCMC algorithm), we

will use the inverse transform method to sample from the following posterior:

� (snjy�n;dn; an; �) / Pr (st = j)N
�
y�t � ht;mj; v

2
j

�
N
�
ht+1 � �ht � bt � I (At) 
t; dt��e

mj
2 faj + bj (y�t � ht �mj)g ; �2�

�
1� �2

��
,

for all j.

Since the MCMC method presented above involves a small approximation error

due the sampling variability of sn, to control this we will reweight the samples of

6Another option is to transform the parameter vector � to support the R plane. In this case, we
do not need to use the truncated normal distribution as the proposal density.
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�
hkt ; b

k
t ; 


k
t ; �

k
	M
k=1

obtained through the MCMC iterations, denoted as k = 1; 2; :::;M ,

using the following weights:

w�k =
nY
t=1

f
�
"�kt ; �

k
t

�� dt; �k�
~f
�
"�kt ; �

k
t

�� dt; �k� ; for k = 1; 2; ::;M
where f (:) is the true density of ("�t ; �t)

0, ~f (:) is the approximation of f (:), given by

equation (9), "�kt = y
�
t � hkt and �kt = h

k
t+1 � bkt � I

�
Akt
�

kt � �khkt .

As in other threshold models with unknown values of threshold parameters (see,

e.g., Chan (1993)), to estimate r we will adopt a grid search procedure over a range

of possible values of it. According to this method, the parameter vector �, and the

marginal likelihood, denoted as lnm(yjr), are estimated at di¤erent values of r. Then,

the value of r that gives the maximum lnm(yjr) over this grid will be considered as

its optimum sample estimate. The estimates of � and state vector at corresponding to

this value of r will constitute the maximum likelihood estimates of the model. These

estimates will be consistent provided that vector r is also consistently estimated. The

consistency of r based on grid search estimation method can be proved following

analogous arguments to that of Kapetanios and Tzavalis (2010). Below, we present

a useful practical remark for the estimation of thresholds�vector r.

Remark 1: Since estimation of threshold parameters is problematic in small

samples in general (see, e.g., Kapetanios (2000)) and since this problem may be exac-

erbated by the rarity of breaks, the above grid search can be considerably simpli�ed if

we consider values of vector r which correspond to extreme quantiles of the normalized

error of (1), "t, such as its 97.5th or 99.0th percentiles.

In the above estimation procedure, to calculate marginal likelihood m(yjr) (or its

logarithmic value lnm(yjr)) at the estimate �� we will employ the auxiliary particle

�lter algorithm (see, e.g., Pitt and Shephard (1999) and Omori et al (2006)) to obtain

a value of the likelihood ordinate of the SVEB model, denoted as g(yj ��; r), and
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Chib�s and Jeliaskov (2001) method to calculate the posterior ordinate, � (��jy; r).7

The marginal likelihoodm(yjr) can be calculated from g(yj �; r) using Bayes�theorem,

i.e.

m (yjr) = g (yj��; r)� (��)
� (��jy; r) , (12)

where � (��j y; r) and � (��) are the posterior and prior ordinates, respectively. Note

that the above expression of marginal density m (yjr) holds for any vector �, but it

is generally considered as being more e¢ ciently estimated when it is calculated at a

high mass point like the estimate ��.

Apart from calculating marginal likelihood m(yjr), the auxiliary particle �lter

algorithm can be employed to provide forecasted and �ltered values of the state vector

at+1 based on information sets It = fyt; yt�1; :::y1g and It+1, respectively, denoted as

at+1jt and at+1jt+1. These can be employed to calculate goodness of �t or forecasting

performance measures of the SVEB model. These measures are also useful for model

comparison.

4 Monte Carlo Study

In this section, we carry out a small scale Monte Carlo study to investigate the

performance of the Bayesian MCMC method presented in the previous section to

estimate the parameters of the SVEB model and the vector of its state variables.

Since the main aim of our Monte Carlo exercise is to assess the performance of the

estimation method to �lter from the data estimates of the volatility variables ht and

bt, we concentrate on the estimation of the vector of state variables at = (ht; bt; 
t)
0

and the vector of parameters �, while we treat the threshold vector r = (rL; rR) as

known.
7This is a simulation based algorithm which has been suggested by Kitigawa (1996) for nonlinear

non-Gaussian state space models and it has been successfully applied to evaluate SV models by Berg
et al (2004).
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In our Monte Carlo experiments, we generate samples of size n = 1500 observa-

tions, according to model (1)-(3) considering the following values for its structural

parameters: � = 0:85, �� = 0:28, �
 = 0:05, � = �0:59. These values correspond

to the estimates of the parameters of the SVEB model reported in the empirical sec-

tion of our paper. To set initial values for state vector at, we assume that its initial

conditions are given as a0 = (�= (1� b0) ; b0; 0)0, where b0 = 0:10. For the vector of

threshold parameters, r, we consider the following values:
�
rL; rR

�
= (�1:96; 2:05).

These imply 38 negative and 30 positive large shocks for our sample.

In the MCMC method of sampling the posterior distributions, we draw 6000 sam-

ples discarding the initial 500 variates. As priors of the parameters of the SVEB

model, we use the following: �+1
2
� Beta (20; 1:5), 1

�2�
� Gamma (4:5; 0:15), 1

�2

�

Gamma (1:5; 0:005), � � U (�1; 1). These distributions are often used in the litera-

ture estimating SV models based on Bayesian methods (see, e.g., Kim et al (1997)).

In total, we perform M=10 experiments. In Table 1, we report average estimates

of the correlation coe¢ cients, denoted Corr(:; :), of the generated state variables ht

and bt with their smoothed estimates, denoted as htjn and btjn, respectively, over the

above set of experiments. The table also reports average estimates of the mean and

variance values of posterior distributions of the structural parameters of the SVEB

model.

To better see how closely the suggested Bayesian MCMC method can capture

shifts in state variables ht and bt, in Figure 1 we graphically present the smoothed

estimates of htjn and btjn against the generated values of them. The estimates of

htjn and btjn correspond to those with the highest value of correlation coe¢ cient

Corr(ht; htjn), among all experiments conducted. Together with the above graphs,

Figure 1 also presents a plot of a return process rt generated by our SVEB model.
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True value Mean Variance
� 0:85 0.8664 0.0067
�� 0:28 0.2832 0.0128
�
 0:05 0.0485 0.0010
� �0:59 -0.5803 0.13�10�2
b0 0:10 0.0224 2.15�10�4

Corr(ht; htjn) 0.9453 0.15�10�4
Corr(bt; btjn) 0.9638 0.17�10�4

Table 1: Monte Carlo results

The results of the table and �gure clearly indicate that the suggested Bayesian

MCMC method can very e¢ ciently estimate the parameters and state variables of

the SVEB model. The patterns of state variables ht and bt generated by the SVEB

model are cyclical and persistent, while their magnitude change considerably over

the sample. These features of ht and bt can explain clusters of volatility of asset

returns of di¤erent size over time, as that implied by the top plot of the �gure, which

graphically presents a typical return series implied by the SVEB model, and those

often observed in practice. See also our empirical analysis, in Section 5. As can be

con�rmed by Figure 1, this cyclical and stochastic pattern of volatility process ht can

be e¢ ciently captured by break process bt, which can be e¢ ciently estimated by our

suggested Bayesian procedure.

16



0 500 1000 1500
­20

0

20

200 400 600 800 1000 1200 1400

0

2

4

200 400 600 800 1000 1200 1400
0

0.2

0.4

Figure 1: Smoothed estimates of volatility and break processes htjn (see middle
plot) and btjn (see bottom plot), respectively, against their data generated values

and stock return rt (see top plot), implied by the SVEB model.

5 Are volatility shifts of the US stock market driven
by large shocks?

In this section, we estimate the SVEB model introduced in the previous sections

based on US stock market aggregate return to address the following questions: Are

shifts in volatility of the US stock market triggered by large return shocks? If yes,

what is the magnitude of these large shocks? Are the e¤ects of large return shocks on

the volatility of this market asymmetric? How long do they last? Do large positive

return shocks decrease, or increase, stock market�s future volatility?

17



The above questions have been of interest to many studies (see, e.g. Engle and Ng

(1993), Kane et al (2000) and Li et al (2005), or the related references mentioned in

the introduction). Our model can help to provide clear cut answers to these questions

since it can identify large negative, or positive, return shocks endogenously from the

data. To calculate the US stock market return, we are based on weekly data of the

S&P500 index covering the period from the 7th of January 1980 to the 29th of March

2010. Note that, during this period, many extraordinary events occurred in the US

stock market which may have caused shifts on its volatility function. Some of them

may be associated with �nancial crises in international stock markets. Examples of

such events include the US �nancial crises of years 1987 and 2008-2009, the Mexican

and Argentinian Crises of years 1994-1995, and the East Asian and Russian crises of

years 1997-1998.

Table 2 presents estimates of the SVEB model based on the Bayesian MCMC

estimation procedure suggested in Section 3. This is done for all possible combi-

nations of the following sets of threshold parameters rL and rR considered: rL =

f�1:65;�1:96;�2:05;�2:33g and rR = f1:65; 1:96; 2:05; 2:33g8. The above set of rL

and rR values correspond to negative and positive shock market events
�
"t
�t
< rL

�
and

�
"t
�t
> rR

�
, where �t = exp

�
ht
2

�
, with probabilities to occur 5%, 2.5%, 2% and

1%, respectively. The bottom line of the table presents estimates of the standard

SV model, which does not consider structural breaks. The priors of the parameters

of the SVEB model considered in the estimation procedure are the same to those

assumed by our Monte Carlo study. Analogous priors are used in the literature for

the estimation of the SV model. The logarithms of the marginal likelihood values

reported in the table, i.e. lnm(yjr), indicate that, among all possible combinations of

rL and rR considered, the SVEB model with threshold parameter values rL = �2:05
8Note that the estimates of the parameters and state variables of the SVEB model are based on

13000 draws from the posterior discarding the �rst 1000 and using only the half of them to avoid
any problem of serial correlation.
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and rR = 2:33 constitutes the best speci�cation of the data, as it gives the highest

value of logm(yjr). This model is also found to describe better the data than the SV

model. This can be also con�rmed by the values of log-likelihood ordinate ln g (yj�; r),

reported in the table.

rL rR � �� �
 � b0 ln g (yj�; r) lnm(yjr)
-1.65 1.65 0.7996 0.3000 0.0501 -0.62 0.3262 -3357.7 �103 -3369.5� 103

-1.65 1.96 0.8156 0.2970 0.0510 -0.616 0.3151 -3358.2 �103 -3368.7� 103

-1.65 2.05 0.8207 0.2966 0.0514 -0.6144 0.3080 -3360.5 �103 -3370.3� 103

-1.65 2.33 0.8286 0.299 0.0511 -.6019 0.2948 -3357.6 �103 -3366.0 �103
-1.96 1.65 0.8063 0.3055 0.0563 -0.6247 0.3042 -3356.1 �103 -3364.2� 103

-1.96 1.96 0.8312 0.2950 0.0575 -0.6025 0.3279 -3361.6 �103 -3367.9 �103
-1.96 2.05 0.8363 0.2902 0.0581 -0.6164 0.2745 -3359.4 �103 -3367.5 �103
-1.96 2.33 0.8683 0.2798 0.0504 -0.5855 0.2196 -3359.4 �103 -3365.5 �103
-2.05 1.65 0.8193 0.2966 0.0548 -0.6259 0.2829 -3357.6 �103 -3367.7� 103

-2.05 1.96 0.8428 0.2835 0.0572 -0.6174 0.2677 -3362.1 �103 -3370.2 �103
-2.05 2.05 0.8437 0.2875 0.0578 -0.6069 0.2600 -3362.5 �103 -3370.4 �103
-2.05 2.33 0.8772 0.2724 0.0506 -0.5837 0.2047 -3357.1 �103 -3363.1 �103
-2.33 1.65 0.8336 0.2876 0.0546 -0.6125 0.2672 -3366.63 �103 -3375.7 �103
-2.33 1.96 0.8568 0.2745 0.0600 -0.6121 0.2394 -3365.0 �103 -3372.4 �103
-2.33 2.05 0.8623 0.2725 0.0611 -0.6119 0.2290 -3360.0 �103 -3366.8� 103

-2.33 2.33 0.8989 0.2569 0.0518 -0.5703 0.1600 -3358.3 �103 -3364.0 �103
SV 0.9561 0.2230 -0.4911 0.062 -3359.1�103 -3363.3 �103

Table 2: Estimates of SVEB model for di¤erent values of r=(rL,rR)0

Table 3 reports more estimation results for the SVEB model with threshold pa-

rameters rL = �2:05 and rR = 2:33, while Figure 2 presents smoothed estimates

of the volatility and break processes htjn and btjn, respectively. These estimates are

plotted together with return series rt and ex-post �ltered estimates of return innova-

tions, calculated as "tjt = yt exp(�
htjt
2
), where htjt is obtained through the auxiliary

particle �lter method. This table also presents estimates of the standard SV model

and values of the correlation coe¢ cients between future levels of volatility ht+sjn, for

s = 1; 2; :::,4; 5 and return shocks "tjt, denoted Corr(ht+sjn,"tjt); retrieved by the esti-

mates of our SVEB model. This is done for negative large and positive large return

shocks, as well for ordinary return shocks, de�ned �2:05 � "tjt � 2:33. Such co-
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e¢ cients are frequently used in the literature to examine the dynamic relationship

between future levels of volatility and current return shocks (see, e.g., Low (2004)

and Denis et al. (2006), Malik (2011)).

In addition to posterior means of the parameters of the model, note that Table 3

reports posterior standard deviations of the structural parameters and the ine¢ ciency

factor (IF), for the estimates of both the SVEB and SV models. The ine¢ ciency

factor is de�ned as 1 +
P1

s=1 �s, where �s is the sample autocorrelation at lag s. It

is calculated from the sampled values of the parameters and it shows how well the

Markov chain mixes. The values of IF reported in the table are very small, which

means that the MCMC mixes very well. Thus, the structural parameters estimated

by the Bayesian method can be thought of as being very accurately estimated. This

can be also con�rmed by the very small values of the standard deviations reported in

the table, for all structural parameters of the SVEB model estimated.

Estimates of the SVEB model ( rL= �2:05 and rR = 2:33)
� �� �
 � b0

Mean 0.88 0.273 0.051 -0.584 0.205
Std. Dev. 0.001 0.002 0.0003 0.007 0.006
IF 1.254 8.307 13.679 7.638 1.254
Corr(ht+� jn,"tjt) � = 1 � = 2 � = 3 � = 4 � = 5
"tjt< �2:05 -0.40 -0.28 -0.34 -0.28 -0.38
"tjt> 2:33 -0.02 -0.09 -0.0009 -0.11 -0.02
�2:05 � "tjt� 2:33 -0.21 -0.17 -0.16 -0.14 -0.12

Estimates of the SV model (�2
= 0)
� �� �
 � b0

Mean 0.95 0.223 -0.491 0.062
Std. Dev. 0.002 0.001 0.006 3.27�10�4
IF 1.795 4.104 2.866 1.795

Table 3: Estimates of the SVEB and SV models

A number of interesting conclusions can be drawn from the results of Tables 2-

3 and Figure 2. First, the estimates of threshold parameters of the SVEB model

which are found to better describe the data are rL=�2:05% and rR = 2:33% on
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weekly return basis, which indicate that there are signi�cant asymmetries between

the large negative and positive return shocks. These asymmetries mean that market

participants consider as large negative pieces of news return innovations of smaller

magnitude than those corresponding to positive pieces of news. This result implies

that level shifts in volatility can be triggered by negative return innovations which

are smaller in magnitude than positive return shocks. Obviously, this should not be

taken as a surprise. It can be attributed to stock market participants�attitude to give

more weight to negative return news than positive due to their risk aversion behavior.

The e¤ects of the above asymmetries of threshold parameters rLand rR on volatility

function can be seen more clearly in a next section, which presents estimates of the

impact news function of the SVEB model compared to those implied by the standard

SV model.

Second, the allowance for a break process bt in the volatility function results in a

drop of the autoregressive coe¢ cient � from 0.95 to 0.88. However, the estimate of � is

still quite high, which implies that the e¤ects of return shocks on future volatility will

last for a substantial number of periods ahead. However, the correlation coe¢ cients

between ht+� jn and "tjt, for � = 1; 2; :::5, reported in the table, are small. For the

positive large return shocks, they are almost equal to zero. The latter is consistent

with evidence in the literature based also on implied measures of volatility (see, e.g.,

Fleming et al (1995), Denis et al (2006), Malik (2011)). It may be attributed to

the fact that correlation coe¢ cients Corr(ht+� jn,"tjt) constitute crude measures of the

dynamic relationship between ht+� jn and "tjt, which are not net of future (or lasting

past) e¤ects of di¤erent sign large or ordinary return shocks "tjt on future levels of

volatility ht+� jn: Thus, to obtain a clear cut picture of the dynamics e¤ects of "tjt

on ht+� jn, in Section 5 we will present the generalized impulse response functions of

ht+� jn with respect to "tjt, based on the estimates of our SVEB model.
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Regarding the estimates of correlation coe¢ cient �, which captures leverage e¤ects

of stock return innovations on volatility, and variance �2
, which allows for di¤erent

over time magnitude e¤ects of large return shocks on volatility, the results of Tables 2-

3 reveal that the estimates of these parameters are robust across the di¤erent values

of the vector of threshold parameters r=(rL,rR) considered. The robust estimate

of �2
 across the di¤erent values of r assumed emphasizes the existence of shifts in

volatility of stochastic magnitude over time. The slightly higher estimate of � found

by the SVEB model, compared to that estimated by the standard SV model, can

be attributed to the ability of this model to generate leverage e¤ects through two

di¤erent sources: the relationship between innovations �t and "t, and the level shifts

in volatility caused by the large return shocks, as was discussed before. The latter

can amplify leverage e¤ects through the state variable 
t, and thus can explain higher

values of coe¢ cient �.

Finally, turning into the discussion of the results of Figure 2, one can conclude by

inspecting the plots of this �gure, that the estimates of volatility htjn predicted by the

SVEB model exhibit persistent and non-linear shifts over time. These shifts clearly

have di¤erent magnitude over time. As was expected, they can be captured by those

implied by the break process bt.9 The values of return series rt and the estimates of

return shocks "tjt, presented at the bottom of the �gure, indicate that some of the

most important changing points of the observed cyclical shifts of both btjn and htjn are

closely related to sequences of large return shocks associated with �nancial market

crises, like those of US stock markets of years 1987 and 2008-2009, and the Mexican

and Argentinian crises of years 1994-1995 followed by those of East-Asian and Russian

of years 1997-1998. These crises seem to cause persistent and upward sloping shifts in

volatility. Finally, comparison of the estimated break process btjn with return series rt

9Note that, as was expected, these plots of htjn and btjn are consistent with those generated by
our Monte Carlo analysis (see, e.g. Figure 1).

22



reveals that the SVEB model can indeed capture shifts of volatility of di¤erent size,

observed over time.
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Figure 2: Smoothed estimates of processes ht (top plot) and bt (middle plot); and
�ltered estimates of "t (denoted "tjt (bottom plot)), for the S&P500

5.1 Evaluating the forecasting performance of the SVEBmodel

To further assess the ability of the SVEB model to �t satisfactorily the data compared

to the SV or other parametric volatility models, in this section we conduct an in-

sample forecasting exercise for the one-period ahead volatility ht+1. Our forecasting

exercise is focused on examining if t-time conditional estimates of volatility at time
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t, de�ned as ht+1jt � E (ht+1jIt), can successfully forecast the logarithm of squared

demeaned return log y2t+1, which is an observed variable as shown by observation

equation (7).

Table 4 presents the results of the above exercise. In particular, the table reports

values of the mean square error (MSE) of ht+1jt to forecast log y2t+1 implied by equation

(7), as well as estimates for this equation (see the table) based on the following linear

regression:

log y2t+1 = a+ bht+1jt + ut, (13)

where ut = (log ("2t ) � (�1:27)) and E(log ("2t )) =-1.27. The intercept and slope

estimates of this forecasting regression can be used to test if they correspond to their

theoretical values implied by (7), given as a = �1:27 and b = 1:0 (see, e.g., Pagan

and Schwert (1990)). If this is true, then the SVEB model can be thought of as

providing level and slope forecasts of the logarithm of squared demean return log y2t+1

which are in the right direction. Since regressor ht+1jt is generated by the estimates

of the volatility models, the estimates of coe¢ cients a and b are obtained based on

the generalized method of moments (GMM), using as instruments lagged values of

log y2t+1. Apart from the SVEB and SV models, Table 4 also reports values of the

MSE, and the intercept and slope coe¢ cients of the regression of log y2t+1 on ht+1jt for

the following volatility models: the EGARCH(1,1) and GJR-GARCH(1,1) estimated

using the same set of data. These models share some common features with the SVEB

model, as they consider the impact of stock return innovations on volatility function.
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MSE a b �2u F(p-value)
SVEB 4.93 -1.20 0.99 4.94 0.48

(0.17) (0.12)
SV 4.96 -1.10 0.96 4.96 0.11

(0.16) (0.11)
EGARCH(1,1) 4.96 -1.34 1.03 4.96 0.44

(0.19) (0.12)
GJR-GARCH(1,1) 4.96 -1.38 1.03 4.97 0.44

(0.19) (0.13)
Instruments: log y2t , log y

2
t�1, log y

2
t�2 and log y

2
t�3

Table 4: Volatility forecasts

Notes: The table reports MSE values of ht+1jt to forecast log y2t+1implied by observation

equation (7), for di¤erent volatility models. It also provides GMM estimates of a linear

regression model of (7) and carries out a joint test (F-type) of joint hypothesis a= �1:27

and b= 1:0. The p-value of this test is reported in the table.

The results of Table 4 clearly indicate that the SVEB model improves considerably

the forecasting performance of the standard SV model, which does not allow for

breaks. In terms of the values of MSE or the estimates of variance of the error term

of forecasting regression (13), �2u, reported in the table, this model is also found to

outperform the three other parametric volatility models considered. Further support

to the SVEB model compared to the other volatility models can be taken from the

estimates of the forecasting regression coe¢ cients a and b reported in the table. The

probability values (p-values) of the joint hypothesis test: a = �1:27 and b = 1:0

reported in the table indicate that we can not reject this hypothesis. The probability

of rejecting this hypothesis and, thus, making type I error is higher for the SVEB

model, than the other volatility models.
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5.2 Estimates of the news impact function implied by the
SVEB model

In this section, we estimate the news impact function (NIF) implied by the SVEB

model, based on the sample estimates of this model reported in Table 3. This func-

tion captures the reaction of the expected value of volatility one-period ahead, de�ned

as ��t+1jt = ln
�
�t+1jt=�tjt�1

�
where �t+1jt = exp

�
ht+1jt
2

�
, to stock return innovation

forecasts, de�ned as "tjt�1 =
yt

�tjt�1
. Is is often used in the literature as a model speci-

�cation criterion to assess if volatility models can explain the asymmetric responses

of volatility changes ��t+1jt observed in practice, based, for instance, on implied by

option market prices (e.g.,VIX) measures of volatility, with respect to positive and

negative values of "tjt�1. As is shown in the literature (see, e.g., Engle and Ng(1993),

Kane et al (2005) and Li et al (2005)), large negative values of "tjt�1 have a greater

impact on ��t+1jt than their corresponding positive values. In particular, the e¤ects

of "tjt�1 on ��t+1jt is described by a monotonic and negative relationship which is

more asymmetric at its end points, corresponding to large negative or positive return

shocks.10 This relationship is analogous to that between expected volatility changes

��t+1jt and values of stock return rt (see Ederington and Guan (2010)).

Table 5 and Figure 3 present estimates of NIFs implied by the SVEB and SV

models, for di¤erent sub-intervals of return innovations "tjt�1. In Tables 5 and Figure

4, we present estimates of the above NIFs with respect to di¤erent sub-intervals of

return values rt. This table and �gure also include estimates of NIFs based on market

measures of volatility given by VIX, de�ned �V IXt+1 = ln (V IXt+1=V IXt).11 These

will be compared to the NIFs implied by the SVEB and SV models to see which

10Note that parametric volatility models like GARCH, GJR-EGARCH, EGARCH can not produce
INFs with the monotonic mentioned above (see, e.g., Yu (2005), Ederington and Guan (2010)). In
particular, GARCH, EGARCH and GJR-GARCH models imply a V-shaped INF, which is against
the almost linear INFs reported in the empirical literature, based on realised or implied values of
volatility.
11The term V IXt+1 designates implied volatility for the month beginning on day t+1 and running

through day t+ 21 calculated from option prices on day t (see Ederington and Guan (2010)).
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of these two volatility models can better explain observed shapes of NIFs. Note

that, since VIX is a four-weeks measure of volatility, the expected volatility changes

presented in Table 6 and Figure 4 are estimated as ��t+4jt = ln
�
�t+4jt=�t+3jt�1

�
,

where �t+4jt = 1
4

P4
i=1 �t+ijt.

The results of Tables 4-5 and Figures 3-4 clearly indicate that the SVEB model

can produce shapes of NIFs which correspond to those observed in reality, based on

the VIX values. These are negative and monotonic, and they become asymmetric

towards their end points. Compared to the SV, the SVEB model can produce NIFs

with higher in magnitude values and asymmetry, especially at the sub-intervals of

large negative or positive return innovations. Note that, due to the allowance for

di¤erent threshold parameter values rL and rR, the NIFs implied by the SVEB model

are more asymmetric with respect to large negative return innovations, rather than

the positive. These functions imply that a large negative shock "tjt�1 will lead to a

higher in magnitude change of future volatility ��t+1jt than that of large positive

shock. As Figure 4 clearly indicates, the shape of these NIFs is consistent with that

implied by the changes of VIX, which is an observable risk neutral measure of market

volatility.

Another interesting conclusion which can be drawn from the inspection of Figure

4 is that the impact function of returns rt on expected volatility changes implied by

the SVEB (or SV) model is lower than that implied by the VIX index, especially for

large negative values of returns, i.e. for rt < �3:5. This can be obviously attributed

to the fact that the implied by option prices estimates of the stock market volatility

values are adjusted for risk premia e¤ects. Note that the di¤erences between the VIX

based estimates of volatility changes and those predicted by the SVEB model become

larger, the larger the negative values of returns rt are. This result can be taken to

support the view that stock market risk premia e¤ects or their associated price of risk
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may increase in terms of magnitude with the size of negative return innovations.

Return shocks SVEB with (rL,rR)=(�2:05; 2:33) SV
obs. ��t+1jt mean of "tjt�1 obs ��t+1jt mean of "tjt�1

"tjt�1 � �2:05 27 0.2257 -6.9449 25 0.1815 -7.1389
�2:05 < "tjt�1 � �1:5 74 0.1493 -3.7282 78 0.1103 -3.7376
�1:5 < "tjt�1 � �1 143 0.1024 -2.4008 160 0.0686 -2.3572
�1 < "tjt�1 � �0:5 233 0.0650 -1.3845 215 0.0493 -1.2998
�0:5 < "tjt�1 � 0 262 0.0162 -0.3338 261 0.0104 -0.3454
0 < "tjt�1 � 0:5 339 -0.0291 0.6881 319 -0.0221 0.6624
0:5 < "tjt�1 � 1 246 -0.0611 1.6265 266 -0.0429 1.5425
1 < "tjt�1 � 1:5 181 -0.0931 2.7306 177 -0.0722 2.8019
1:5 < "tjt�1 � 2:33 64 -0.1316 4.4018 68 -0.0823 4.2908
2:33 < "tjt�1 7 -0.1709 6.6817 7 -0.1227 6.6817

Table 5: NIFs of the SVEB and SV models
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Figure 3: NIFs of the SVEB and SV models.
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Values of rt SVEB with (rL,rR)=(�2:05; 2:33) SV VIX
obs. mean of rt ��t+4 ��t+4 obs. mean of rt ��t+4

rt < �3:5 76 -5.48 0.133 0.111 55 -5.52 0.183
�3:5 < rt � �2:50 73 -2.93 0.094 0.076 46 -2.87 0.131
�2:50 < rt � �2:0 66 -2.25 0.079 0.063 45 -2.24 0.099
�2:0 < rt � �1:5 101 -1.75 0.064 0.052 65 -1.76 0.072
�1:50 < rt � �1 109 -1.25 0.059 0.048 76 -1.26 0.051
�1 < rt � �0:5 123 -0.75 0.035 0.028 80 -0.76 0.029
�0:5 < rt � 0 141 -0.26 0.021 0.019 106 -0.24 0.010
0 < rt � 0:5 155 0.24 -0.004 -0.003 108 0.23 -0.012
0:5 < rt � 1 180 0.73 -0.027 -0.024 124 0.73 -0.030
1 < rt � 1:5 176 1.23 -0.038 -0.030 112 1.23 -0.055
1:5 < rt � 2:0 110 1.73 -0.059 -0.050 73 1.71 -0.065
2:0 < rt � 2:5 86 2.23 -0.069 -0.060 49 2.22 -0.063
2:5 < rt � 3:5 92 2.94 -0.091 -0.075 59 2.97 -0.105
rt > 3:5 84 4.95 -0.11 0.086 58 5.01 -0.128

Table 6: NIFs of the SVEB and SV models, and VIX
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Figure 4: NIFs of the SVEB and SV models, and VIX with respect to stock return
rt.
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5.3 Generalized impulse response functions of large stock re-
turn shocks

To study the pattern of the dynamic e¤ects of large return shocks "t on the expected

future values of volatility ht+� net of the e¤ects of possible future or past return

innovations on volatility, in this section we will employ the SVEB model to calcu-

late impulse response functions of future sequences of volatility ht+� jt, for horizons

� = 1; 2; 3; ::::, with respect to innovations "t. Our analysis will enables us to exam-

ine the relative importance of large and ordinary return shocks on volatility, either

for negative or positive shocks. Since the SVEB model is nonlinear and has a mul-

tivariate structure, we will calculate the Generalized IRF (GIRF ) (see, e.g., Koop

et al (1996), Pesaran and Shin (1998)), instead of the traditional IRF . The GIRF

considers impulse responses that are history and shock independent, while it treats

the problem of future realizations of traditional IRFs. It is de�ned as the di¤erence

of the following conditional expectations E [ht+� j "t; at] and E [ht+tj at], i.e.

GIRF (�; "t; at) = E [ht+� j "t; at]� E [ht+tj at] , for � = 1; 2; :::; (14)

and it can provide impulse responses of ht+� jt to "t given only the past of state

vector at. If we consider "t and at as particular realizations of random variables,

GIRF (�; "t; at) can be thought itself as a realization of a random variable whose

distribution can be estimated.

The random nature of GIRF (�; "t; at) provides a more �exible approach to an-

alyzing the e¤ects of "t on ht+� . Someone can condition on a particular shock "t

and treat at as a random vector, or she/he can condition on a particular history at,

treating "t as a random variable. Another possibility is to condition on particular

subsets of the history of "t, i.e. large or ordinary positive, or negative, values of inno-

vations "t. To this end, we will �rst de�ne the following sets: B(1) = (�1;�2:05) and
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B(2) = (2:33;1) consisting of the large negative and positive return shocks, respec-

tively, identi�ed by the estimates of the threshold parameters of the SVEB model,

obtained in Section 5. Given B(1) and B(2), the following complementary sets of re-

turn shocks: ~B(1) = (�2:05; 0) and ~B(2) = (0; 2:33) de�ne the ordinary negative and

positive return shocks, respectively. Then, for the above all sets, we will calculate

GIRF (�; "t; at), at time t. Below, we describe how this can be done for the case of

large return shock sets, i.e. for "t 2 B(i), i = 1; 2. An analogous procedure can be

followed for the ordinary shocks "t, i.e. for "t 2 ~B(i), i = 1; 2.

We will estimate the distribution of GIRF (�; "t; at) by means of a Monte Carlo

integration. First, we will pick up 500 series of at from its sample estimates. To

compute the �rst expectation of (14), i.e. E [ht+� j "t; at], we proceed as follows: When

� = 1, for each of the 500 series of at, we will draw 30 realizations of the large return

shock "t from the truncated normal distribution TNB(i) (0; 1), which is truncated at

B(i), for i = 1; 2. That is, we will generate 15000 (= 500� 30) realizations of GIRF .

Then, for each of the 30 realizations of "t, we will simulate 1000 volatility shocks �t

conditional on each choice of "t, i.e. �t � N
�
���"t; �

2
� (1� �2)

�
, and will average out

to compute expectation E [ht+� j "t; at]. For � > 1, to estimate E [ht+� j "t; at] we will

simulate 1000 vectors of innovations "t+��1 and �t+��1; according to its distributional

assumption given in (4) and we will calculate the values of future volatility ht+�

recursively, based on its data generating process. The average of the 1000 series of

ht+� generated will give the estimate of E [ht+� j "t; at], for � > 1. To compute the

second expectation of (14), E [ht+� j at], for all � , we will draw 1000 samples of the

vector of innovations "t+��1 and �t+��1, and then we will calculate ht+� recursively,

according to its data degenerating process. The average of the series of ht+� generated

will give an estimate of E [ht+� j at]. Given the above estimates of E [ht+� j "t; at]

and E [ht+� j at], we can then obtain estimates of GIRF (�; "t; at), for all � , through
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equation (14). To obtain the density of these estimates of GIRF (�; "t; at), we will

use a normal kernel.

Figures 5 and 6 present the marginal densities of GIRF (�; "t; at) implied by the

SVEB model, for horizons � = 1; 2; :::; 20; based on the procedure described above.

This is done for both negative and positive large return shocks "t, i.e. "t 2 B(1) and

"t 2 B(2), as well as for their complementary sets ~B(i), for i = 1; 2, consisting of

ordinary return shocks. To better understand the economic meaning of distribution

features of the above densities related to the traditional IRFs, in Table 7 we present

the following descriptive statistics of them: the mean, variance, and skewness and

kurtosis coe¢ cients, for di¤erent values of horizon � . Inspection of the results of

Figures 5-6 and Table 7 lead to a number of very useful conclusions about the dynamic

e¤ects of large or ordinary stock return shocks on the future paths of volatility.

First, both the plots of the GIRF densities and the values of their descriptive

statistics reported in the table clearly indicate that the e¤ects of large return shocks

on future paths of volatility tend to be much bigger than those of the ordinary shocks

and to last for a higher number of future horizons � , e.g. � = f10g, ahead. This

is much more likely to happen and it is true either for negative or positive return

shocks. In terms of the distribution statistics reported in Table 7, it can be justi�ed

by the higher in magnitude values of the mean and skewness coe¢ cients of the GIRF

densities for the large shocks, compared to those of the ordinary shocks for up to

� = 10 horizons ahead. Note that the variance values of these densities between large

and ordinary shocks are of the same order of magnitude, for all � .12

Second, either large or ordinary return shocks have the correct sign e¤ect on

12As it can be seen from the descriptive statistics of Table 7, the distributional features
of GIRF for both the large and ordinary tend to those of the normal distribution, which
has skeweness and kurtosis coe¢ cients 0 and 3, respectively. But, this happens faster
for the ordinary shocks. The mean of this distribution tends also faster to zero for the
ordinary shocks. The latter can be obviously attributed to the speci�cation of break
process assumed by the SVEB model.
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volatility, predicted by the leverage hypothesis. That is, the negative shocks (re�ect-

ing bad market news) have a positive e¤ect on volatility, while the positive shocks

(re�ecting positive market news) have a negative e¤ect. Note that these e¤ects are

much more clear and stronger than those implied by the estimates of the sample

correlation coe¢ cients Corr(ht+� jn,"tjt), for the di¤erent size of shocks, reported in

Table 3, which undermine the e¤ects of positive return shocks on volatility. The

magnitude e¤ects of these shocks on volatility di¤er slightly between the negative

and positive shocks, with the positive shocks to have bigger mean e¤ects than the

negative. This can obviously attributed to the asymmetry of the estimates of the

threshold parameters rL and rH found by our data.
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Figure 5: Estimates of the densities of GIRF of the SVEB model across � , for
large positive and negative return shocks
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Figure 6: Estimates of the densities of GIRF of the SVEB model across � , for
ordinary positive and negative return shocks

Summing up, the above results of the GIRF density estimates can be taken to

support the view that �nancial leverage e¤ects and their persistence can be mainly

attributed to large returns shocks. These results have important implications on

forecasting volatility of stock returns.
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"t 2 (�1;�2:05) "t 2 �2:05; 0:0)
Horizon Mean Var Sk Ku Mean Var Sk Ku
� = 1 0.3842 0.0029 1.4794 6.1243 0.1153 0.0067 0.5775 2.4801
� = 2 0.3372 0.0022 1.4423 5.7246 0.1029 0.0052 0.5433 2.4219
� = 3 0.2954 0.0017 1.3968 5.5584 0.0887 0.0039 0.5683 2.4710
� = 4 0.2603 0.0014 1.3946 5.5507 0.0786 0.0030 0.5542 2.4602
� = 5 0.2278 0.0011 1.3691 5.5613 0.0685 0.0023 0.5536 2.4641
� = 10 0.1185 3.9�10�4 0.8923 4.4514 0.0358 6.6�10�4 0.5331 2.4863
� = 15 0.0613 2.5�10�4 0.2173 3.2368 0.0184 2.2�10�4 0.3693 2.7530
� = 20 0.0319 2.6�10�4 0.0586 3.0158 0.0096 1.4�10�4 0.0797 2.9805

"t 2 (2:33;1) "t 2 (0:0; 2:33)
Horizon Mean Var Sk Ku Mean Var Sk Ku
� = 1 -0.4244 0.0026 -1.4358 5.7257 -0.1214 0.0077 -0.6706 2.7022
� = 2 -0.3721 0.0020 -1.4572 5.9072 -0.1065 0.0059 -0.6656 2.7086
� = 3 -0.3267 0.0015 -1.4751 6.0474 -0.0940 0.0046 -0.6616 2.6730
� = 4 -0.2859 0.0012 -1.4622 5.9919 -0.0805 0.0034 -0.6896 2.7452
� = 5 -0.2513 9.3�10�4 -1.3392 5.4702 -0.0718 0.0027 -0.6729 2.7057
� = 10 -0.1304 3.5�10�4 -0.8354 4.4029 -0.0365 7.4�10�4 -0.6564 2.7549
� = 15 -0.0678 2.4�10�4 -0.2078 3.1435 -0.0192 2.5�10�4 -0.4583 2.8454
� = 20 -0.0351 2.5�10�4 -0.0109 3.0047 -0.0101 1.5�10�4 -0.1472 3.0269

Table 7: Descriptive statistics of GIRFs of the SVEB and SV models, for di¤erent �

Notes: Mean, Var, Sk and Ku stand for the mean, variance, skewness and kurtosis of the

densities GIRF (�; "t; at), for � = 1; 2; :::; 20:

6 Conclusions

This paper suggests a new stochastic volatility model which extents the standard

stochastic volatility model to allow for persistent level shifts in volatility, referred to

as structural breaks in the empirical �nance literature. These shifts are endogenously

driven by large asset (stock) return shocks. The latter are de�ned as being bigger than

the values of threshold parameters which can distinguish large negative shocks from

positive shocks. Thus, the model is appropriate for studying the dynamic e¤ects of

large positive, or negative, pieces of stock market news on long-term paths of volatility.

The suggested model allows for shifts in volatility which are stochastic both in
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time and magnitude. The last property of the model can explain clusters of volatility

of asset return series observed in reality, whose variability has di¤erent size over time.

Apart from interpreting di¤erent sources of volatility shifts, the model can be also

employed to reveal from the data the magnitude of stock market return innovations

which can be considered as large shocks. Since the model is nonlinear, to estimate

its parameters and state variables, namely volatility and break processes, the paper

relies on a Bayesian MCMC method. A Monte Carlo exercise conducted by the

paper shows that the above estimation method can e¢ ciently retrieve from the data

estimates of its parameters and state variables. To estimate the threshold parameters

of the model, we rely on a grid search method. This chooses as sample estimates of

them those which give the maximum value of the marginal likelihood of the model.

The paper employs the model to investigate if level shifts in the volatility of

the US stock market aggregate return are endogenously driven by large negative or

positive return shocks. Then, it examines the dynamic e¤ects of these shocks on the

future levels of this volatility. The empirical analysis of the paper leads to a number of

interesting conclusions. First, it identi�es as large negative shocks these which are less

than the -2.05% on weekly basis and as large positive shocks those which are bigger

than 2.33%, and it �nds out that cyclical shifts of the US stock market volatility

can be satisfactorily modelled through large return shocks. The slight asymmetry

between the values of large negative and positive return shocks identi�ed by the data

through our model can explain shapes of stock market news impact curves of future

levels of volatility changes which are more asymmetric with respect to negative large

return shocks (or, simply, stock returns) than positive return shocks, as is observed in

reality. Finally, based on the generalized impulse response functions calculated by the

estimates of the SVEB model, the paper indicates that large positive stock market

shocks are expected to substantially reduce future levels of volatility, as predicted
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by the �nancial leverage e¤ects hypothesis. The last relationship can not be easily

diagnosed by sample data statistics due to the within-sample o¤setting e¤ects that

positive and negative return shocks can have on volatility.
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Appendix

In this appendix, we provide the proof of Theorem 1, presented in the main text.

Proof of Theorem 1

We now prove strict stationarity for ht, given by

yt = exp

�
�ht
2

�
"t

ht+1 = bt+1 + �ht + �t and bt+1 = �tbt + I(At)
t,

where

�t =

�
1 if I(jbtj < b)
0 otherwise.

(15)

The �rst step is to derive a recursive representation for ht. This is given by

ht =
1X
j=0

�j (bt�j + �t�j�1) .

Following Theorem 2.1 of Ling and McAleer (1996), the result will follow if we show

that for some � 2 (0; 1)

E (h�t ) <1:

By The Marcinkiewicz-Zygmund inequality we have that

E(h�t ) = E

  1X
j=0

�j (bt�j + �t�j�1)

!�!
� c

 1X
j=0

�2j

!�=2
E (bt�j + �t�j�1)

� ;

which is �nite as long as bt is strictly stationary and E (bt�j)
� <1 and E (�t�j�1)

� <

1. Thus it su¢ ces to prove that bt is strictly stationary and E (bt�j)
� < 1.

E (bt�j)
� < 1 follows easily from strict stationarity and E (
t)

� < 1. Thus we

only need to prove strict stationarity for bt. To do that we prove geometric ergodicity

of bt, which implies strict stationarity asymptotically. To prove geometric ergodicity,

we use the drift criterion of Tweedie (1975). This condition states that a process

is ergodic under the regularity condition that disturbances have positive densities
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everywhere if the process tends towards the center of its state space at each point in

time. More speci�cally, bt is geometrically ergodic if there exists constants 0 < # < 1,

B;L <1, and a small set C such that

E [kbtk j bt�1 = d] � # kdk+ L; 8d =2 C; (16)

E [kbtk j bt�1 = d] � B; 8d 2 C; (17)

where k�k is the Euclidean norm. The concept of the small set is the equivalent of

a discrete Markov chain state in a continuous context. It is clear that (17) follows

easily. We need to show (16). (16) follows if the following condition holds

E(�t) < 1: (18)

To prove (18) it su¢ ces to show that

Pr(jbtj > b) > 0:

This follows easily by the independence of "t�1 and 
t, the fact that Pr(At) > 0 and

the fact that Pr(j
tj > 2b) > 0 for all �nite b.
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