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Abstract
We provide suffi cient conditions for the definition and the existence of strongly

consistent indirect estimators when the binding function is a compact valued corre-
spondence. These are generalizations of the analogous results in the relevant literature,
hence permit a broader scope of statistical models. We examine simple examples in-
volving Levy and ergodic conditionally heteroskedastic processes.
KEYWORDS: Indirect estimator, lower semicontinuous function, random set, nor-

mal integrand, upper topology, Fell topology, epi convergence, binding correspondence,
cluster points, indirect identification, linear model, Levy processes, ergodicity, condi-
tional heteroskedasticity, ARCH model, QARCH model.

1 Introduction

Indirect estimators (henceforth IE) are multistep M-estimators defined in the context of (semi)
parametric inference. They are minimizers of criteria (inversion criterion) that are functions of
an auxiliary estimator, itself derived as an extremum estimator. The latter minimizes a criterion
function (auxiliary criterion) that partially reflects the structure of a possibly misspecified
auxiliary statistical model. The inversion criterion is usually a (possibly stochastic) distance
function evaluated on the auxiliary estimator as well as on some functional approximation of
a mapping between the statistical models involved that is termed binding function. This is
constructed by some limiting argument concerning the auxiliary criterion. The IE is finally
defined by minimization of the inversion criterion. This definition is conceptually justified by
properties of the binding function that guarantee indirect identification and the subsequent
use of the analogy principle. Given the auxiliary criterion differences between IEs hinge on
differences on the distance functions, and/or the approximations of the binding function and/or
the optimization errors involved.
Indirect inference algorithms were initially employed in [31], formally introduced by [20],

complemented by [16] and extended by [8]. Furthermore econometric applications of these
estimators have become increasingly popular. They have been applied to stochastic volatility
and equity return models (e.g. [14], [17], [1]), exchange rate models (e.g. [6], and [11]),
commodity price and storage models (e.g. [25]), dynamic panel data (e.g. [21]), stochastic
differential equation models (e.g. [15] and [19]), and in ARMA models (e.g. [10], [18], [12],
and [28]).
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In the present paper, we are concerned with the issue of the existence of strongly con-
sistent IE allowing for cases where the binding function is compact valued (hence possibly
multivalued). Therefore we perform our study in a more general framework than the ones
employed in the relevant literature.
Our motivation lies in cases where the auxiliary criterion is a quasi likelihood function

involving a class of stationary-ergodic volatility processes defined by some GARCH or SV
type model that represent the statistical model at hand, and an auxiliary class of stationary-
ergodic invertible processes living in the premises of a possibly misspecified analogous model.
In such frameworks the limit criterion could assume extended real values due to the possible
existence of parameter values that imply non existence of relevant moments. Furthermore
since the limit criterion is of the form of a statistical divergence between the two classes of
processes the binding function can in principle be multivalued due to the geometry involved.
Notice that even when this is true, it is possible to study single valued reductions of it via
measurable selections. This could however imply stricter conditions for indirect identification.
Furthermore since these frameworks are generally suboptimal w.r.t. asymptotic effi ciency,
actual multi-valuedness could lead to effi ciency gains.
Our study has the form of a calculus of escalating weak suffi cient conditions that enable

the definition of IE in this framework and the proof of existence of strongly consistent ones.
First, using mild assumptions on the structure of the auxiliary criterion functions, we are
occupied with a weaker than the uniform notion of convergence of the relevant sequence
of criterion functions, that essentially concerns the almost sure asymptotic behavior of their
epigraphs and is suitable for the study of the asymptotic behavior of their minimizers. This
form of convergence has been studied in the statistical literature (see among others [13], [22],
[24]) and it enables the definition of the binding function and the determination of the limiting
relation between this function and the auxiliary estimator.
Then we strengthen our assumptions in order to obtain a form of continuity of the binding

function that enables the definition of IE derived from this function and the proof that these
exist as appropriate random elements. Finally the imposition of a relatively weak condition of
indirect identification on the behavior of the binding function along with the limiting relation
already established, enable the proof of the existence of strongly consistent IE via the use of the
same limit arguments also used for the pseudo consistency of the auxiliary estimator and the
subsequent definition of the binding function. This framework readily enables the description
of conditions concerning the behavior of any approximation of the binding function that could
also be used for the definition of IE in a similar manner.
Hence we manage to extend the framework for the definition of IE in a threefold manner.

We allow for the auxiliary and/or the inversion criteria and\or their appropriate limits to assume
extended real values. We study their asymptotic behavior via the use of the weaker known
topology associated with convergence of minimizers and we allow for the binding function
to be a correspondence that assumes non empty and compact values. This incorporates
the definitions used in the existing literature but simultaneously generalizes the set of the
statistical models that are in accordance with these conventions.
The structure of the paper is as follows. We first describe briefly some general notions that

are essentially used in the sequel and formulate our general set up. Next, we define and study
the asymptotic behavior of the auxiliary estimator, the binding correspondence and finally of
the IE. We then exhibit some of our results by a set of simple examples. We conclude posing
some questions for future research.
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2 Some General Notions

Fell and Upper Topology

In the following R denotes the two point compactification of R, equipped with the final
topology that makes the relevant inclusion continuous, i.e. the extended real line. Let
(E, τE) denote a general topological space. We identify the space with E when there is no
risk of confusion. We denote with F0 (E) the set of closed non empty subsets of E. We next
describe two topologies on F0 (E) using τE and the inclusion partial order on 2E.

Definition D.1 The upper topology TU on F0 (E) is generated by the subbase consisting of

[·, G] = {z closed : z ⊂ G} ,∀G ∈ τE, non empty.

The upper topology is extremely useful for the analysis of the asymptotic behavior of
sequences of sets of minimizers. If τE is generated by a metric (say d) w.r.t. which E is com-
pact then TU is hemimetrizable (see Proposition 4.2.2 of [23]) by δu : F0 (E)× F0 (E)→ R,
defined by δu (A,B) = inf {ε > 0 : B ⊂ Nε (A)} where Nε (A) = {x ∈ E : d (x,A) < ε}.1
Obviously, when B ⊆ A then δu (A,B) = 0.

Lemma 2.1 δu (A,B) = 0 iff B ⊆ A.

Proof. Since A is closed if x ∈ B and x /∈ A, then d (x,A) = δ > 0. But then B * Nδ/2 (A)
and therefore δu (A,B) > δ

2
.

Lemma 2.2 δu is a lower semicontinuous (lsc) real function w.r.t. the first argument.

Proof. If An → A with respect to the upper topology on F0 (E), then δu (A,B) ≤
δu (A,An) + δu (An, B), hence lim infn δu (An, B) ≥ δu (A,B).

Lemma 2.3 δu is an upper semicontinuous (usc) real function w.r.t. the second argument.

Proof. If Bn → B with respect to the upper topology on F0 (E), then δu (A,Bn) ≤
δu (A,B) + δu (B,Bn) establishing that lim supn δu (A,Bn) ≤ δu (A,B).
The second topology on F0 (E), known as the Fell topology, is defined by the use of the

following subbase (see [26], paragraph 1.1, and [23], Definition 4.5.1).

Definition D.2 The Fell topology, say TF , is the smallest topology on F0 (E) consisting of
both

1. FG = {z closed : z ∩G 6= ∅}, ∀G ∈ τE, non empty, and

2. FK = {z closed : z ∩K = ∅}, ∀K ⊂ E non empty and compact.

From Theorems 4.5.3-5 of [23] we have that when E is locally compact and Hausdorff
then (F0 (E) , TF ) is locally compact and, zn → z with respect to the Fell topology iff
z = Lizn = Lszn where Lizn is the set comprised of the limit points of any possible
sequence (xn) such that xn ∈ zn, and Lszn is the one comprised of the analogous cluster
points. Hence, in this case this type of convergence coincides with the Painleve-Kuratowski
convergence (see among others, Appendix B of [26], or Definition 3.1.4. of [23]). If E is also
separable then the Fell topology is metrizable. If furthermore E is compact and metrized by
d, then the Fell topology is actually metrized by the Hausdorff extended metric defined via a
symmetrization of δu i.e. δ (A,B) = max {δu (A,B) , δl (A,B)} where δl (A,B) + δu (B,A).
In this case we can prove the following lemma.

1where d (x,A) + inf
y∈A

d (x, y).
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Lemma 2.4 If E is compact and metrized by d, then δu is a lower semicontinuous (lsc) real
function w.r.t. the product topology on F0 (E) × F0 (E), when the first factor is endowed
with TU and the second with TF .

Proof. If (An, Bn) → (A,B) with respect to the aforementioned product topology on
F0 (E) × F0 (E), then δu (A,B) ≤ δu (A,An) + δu (An, Bn) + δl (B,Bn) establishing that
lim infn δu (An, Bn) ≥ δu (A,B).

Epigraphs of Semicontinuous Functions and Epiconvergence

Consider now the case where E is locally compact and Hausdorff and c : E → R. Call c
proper, if it does not assume the value −∞ and its image contains at least a real number,
and inf-compact, if its level sets (Level≤a (c) + {x ∈ E : c (x) ≤ a} for a ∈ R) are compact.
inf-compactness follows trivially when c is lsc and E is itself compact.

Definition D.3 The epigraph of c is

epi (c) = {(x, t) ∈ E × R : c (x) ≤ t}

Note that despite the fact that the image of c may include non real numbers, epi (c) is
by definition a subset of E × R. Iff c is lower semicontinuous (lsc) we have that due to
Proposition A.2 of [26], epi (c) ∈ F (E × R) with respect to the obvious product topology.
Hence any relevant lsc function can be identified with its epigraph, which in turn lies in a
space endowed with Fell topology, which in turn implies a notion of convergence.

Definition D.4 A sequence (cn) of lsc functions epiconverges to c (cn
e→ c) iff epi (cn) →

epi (c) with respect to the Fell topology.

It is easy to see that uniform convergence implies epiconvergence. Furthermore the relevant
set of lsc is closed w.r.t. the Fell topology. This notion is particularly suitable for the
description of the asymptotic behavior of the set of minimizers of sequences of lsc functions
(see Theorem 3.4 of [26] along with Theorem 7.1.4 of [23], Definition D.1 and Proposition
D.2 of [26]).

Closed and Compact Valued Correspondences-Random Closed Sets

A closed valued correspondence is by definition a representation of an underlying function c
from a set Ω to F0 (E) (i.e. a closed valued multifunction with domain the set Ω), when
this is considered as a relation in Ω × E. The benefit of not directly working with the
underlying function, is the fact that we can consider the graph of the correspondence as
the set {(x, y) : y ∈ c (x)} which resides in Ω × E instead of the set {(ω,z) : z = c (ω)}
inside Ω × F0 (E). When c (x) is compact for any x, then the correspondence in obviously
termed as compact valued. In the following we do not make explicit distinction between the
correspondence and the underlying multifunction.
The Borel σ-algebra on F0 (E) generated by TF will be abbreviated by B (EF ) and is

usually termed Effros algebra (see Paragraph 1.1 of [26]). If (Ω,J ) is a measurable space,
then c is a random closed set iff {ω ∈ Ω : c (ω) ∈ z} ∈ J for any z ∈ B (EF ). Analogously
we abbreviate by B (EU) the Borel σ-algebra on F0 (E) generated by TU and by B (EU × EF )
the Borel σ-algebra on F0 (E)×F0 (E) generated by the product topology described in lemma
2.4. Finally denote with B

(
R
)
the Borel σ-algebra of the extended real numbers with respect

to the usual topology.
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Lemma 2.5 If E is compact, separable and metrized by d, then δu is
B
(
R
)
/B (EU)⊗ B (EF ) measurable.

Proof. The separability of E implies the separability of (F0 (E) , TU) and (F0 (E) , TF ) for if
{xn, n = 0, 1, . . .} is dense in E then the countable subset of F0 (E), {{xn} , n = 0, 1, . . .}
intersects any basic open set w.r.t. to either topology. This implies the separability of
F0 (E) × F0 (E) when equipped with the topology discussed in lemma 2.4. This in turn
implies that the Borel σ-algebra w.r.t. to the product topology on F0 (E)× F0 (E) coincides
with B (EU) ⊗ B (EF ) by Lemma 1.4.1. of [33]. The rest follows by lemma 2.4 along with
the fact that the sets in the subbase of the upper topology of R generate B

(
R
)
.2

3 Assumptions and Main results

General Set Up

We are now ready to state our framework and describe the underlying statistical problem. Let
the triad (Ω,J , P ) denote a complete probability space. Let also (Θ, dΘ) and (B, dB) denote
two compact separable metric spaces. Let also B (Θ), B (B) denote the corresponding Borel
algebras.
The auxiliary criterion is a function cn (ω, θ, β) : Ω × Θ × B → R, that is of the form

qn (yn, β) with qn : Kn × B → R, for yn : Ω × Θ → Kn, for Kn some appropriate space,
usually homeomorphic to Rmn for some m > 0. qn reflects part of the structure of an
auxiliary model, a statistical model defined on the measurable space (Kn,FKn), with B as
its parameter space (e.g. it can be a likelihood function or a GMM type criterion-see section
4).3 yn (·, θ) is measurable for any θ, and thereby represents the underlying statistical model
which is essentially the set {P ◦ y−1

n (·, θ) , θ ∈ Θ}. These two models need not coincide.
We abbreviate with P a.s. any statement that concerns elements of J of unit prob-

ability. When not nessesary we avoid notating the potential dependence of those elements
on the parameters. We note that separability and sequential completeness of Θ and B and
completeness of the underlying probability space enables the appropriate measurability of inf,
sup, arg min etc.
In the following we provide with an escalating description of a set of suffi cient conditions

that enable first, the existence of the auxiliary estimator, second the construction of the
binding function and the description of the asymptotic relation between the two, third an
appropriate form of continuity of the binding function which along with the previous enable
the definition of the IE and finally consistency.

Definition and Existence of the Auxiliary Estimator

We begin with a suffi cient weak assumption on the behavior of cn that enables the definition
and the existence of the auxiliary estimator. It comprises of a joint measurability condition
along with a pointwise w.r.t. θ and P a.s. w.r.t. ω continuity and some condition concerning
the facilitation of minimization. All these conditions are weak enough so that their verification
to be easy in many cases.

Assumption A.1 Let the following hold:
2It is also possible to prove that in the context of separability B (EU ) = B (EF ).
3Which in general is a correspondence B ⇒ P (Kn), with P (Kn) the set of probability measures on Kn.
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1. cn is B
(
R
)
/J ⊗ B (Θ)⊗B (B) measurable.

2. cn (ω, θ, ·) : B → R is lsc and proper P a.s., ∀θ ∈ Θ.4

In our examples presented in section 4, the issue of joint measurability is handled easily due
to the fact that the cn’s considered are in fact Caratheodory functions, i.e. jointly continuous
(w.r.t. (θ, β)) and pointwise measurable. Separability of Θ×B and lemma 4.51 of Aliprantis
and Border [2] implies the required measurability. Properness is an ad hoc consideration that
is easily established in many cases. For instance, when cn has the form of a quasi likelihood
function it P a.s. does not attain extended values. This is also the case in instances where
cn has the form of a hemimetric as in section 3 due to the compactness of its arguments.

Remark R.1 The joint measurability and the pointwise semicontinuity imply that cn (·, θ, ·)
is a normal integrand (see Definition 3.5 and Proposition 3.6 in Chapter 5 of [26]). The
compactness of B then implies that cn is inf-compact P a.s. ∀θ ∈ Θ.

We are now ready to define and acquire existence of the auxiliary estimator.

Definition D.5 The auxiliary correspondence β#
n (ω, θ, εn) satisfies

β#
n (ω, θ, εn) = εn- arg min

B
cn (ω, θ, β)

+
{
β ∈ B : cn (ω, θ, β) ≤ inf

B
cn (ω, θ, ·) + εn

}
where εn is a P a.s. non-negative random variable defined on Ω.

Proposition 3.1 Under assumption A.1 β#
n (ω, θ, εn) is B (BF ) /J -measurable and P a.s.

non empty-compact valued ∀θ ∈ Θ.

Proof. For any θ ∈ Θ β#
n (ω, θ, εn) is non empty and compact due to A.1.2 and the com-

pactness of B.5 Then the joint measurability of cn (·, θ, ·) due to assumption A.1 along with
Proposition 3.10.(iii) in Chapter 5 of [26]) guarantees the measurability for infB cn (ω, β)+εn.
The result follows from the separability of B.
Obviously β#

n (ω, θ, 0) = arg minB cn (ω, θ, β) P a.s. In the following, dependence on Ω
will henceforth be suppressed (where possible) for notational simplicity. Dependence on B, Θ
and the "optimization error" εn will be kept.6

4 It is obvious that the element of J of unit probability w.r.t. which A.1 holds can depend on θ.
5For the ω for which εn (ω) 6= 0 non emptyness of β#n (ω, θ, εn (ω)) does not nessesitate A.1.2 due to the

properties of the g.l.b.
6The fundamental selection theorem (Theorem 2.13 of [26]) implies the existence of a measurable selection,

i.e. a B (B) /J ⊗ B (Θ)-measurable random element β∗n : Ω×Θ→ R termed as auxiliary selection, defined
by

cn (ω, θ, β∗n (θ)) ≤ inf
B
cn (ω, θ, β) + εn

We will not use selections to define and explore the subsequent definition of the IE since this would imply
stricter conditions for identification.
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Epi-Limits and Existence of a Fell Consistent Auxiliary Correspondence

Assumption A.1 is not suffi cient for the construction of the binding function as an appropriate
limit of the auxiliary correspondence. The following assumption facilitates the investigation of
the issue of (pseudo-) consistency for the auxiliary correspondence. It indicates the almost sure
epiconvergence of the auxiliary criterion to a proper, semicontinuous asymptotic counterpart.
Hence it enables the use of the fact that the arg min correspondence is upper continuous
as a function defined on the relevant space of lsc functions equiped with the topology of
epi-convergence. Analogous assumptions have been used for the establishment of strong
consistency of various estimators. See among others [13], [22], [24] and [27].

Assumption A.2 There exists a function c : Θ×B → R such that

1. ∀θ ∈ Θ, cn
e→ c P a.s., and

2. c (θ, ·) is proper ∀θ ∈ Θ.

Remark R.2 Following [24] the analogous sequential characterization dictates that for any
θ, P a.s. for any β:

1. lim infn→∞ cn (ω, θ, βn) ≥ c (θ, β) for all βn such that βn → β, and

2. lim supn→∞ cn (ω, θ, βn) ≤ c (θ, β) for some βn such that βn → β.

It is easy to see that ∀θ ∈ Θ, c (θ, ·) : B → R is lower semicontinuous since by the
local compactness of B × R and the subsequent coincidence of convergence w.r.t. the
Fell topology with the Painleve-Kuratowski one, the epigraph of c (θ, ·) is closed. In the
case that cn = 1

n

∑n
i=1 mi (ω, θ, β) for (mi (θ, β))i∈Z is ergodic for any (θ, β), then the as-

sumed epiconvergence would follow if for any θ there exists an open cover of B, so that
E |infβ∈Am0 (ω, θ, β)| < +∞, for any A in the cover (condition C0 and Theorem 2.3 of [9]).
In the considered cases c is proper since it is either an expectation that cannot assume the
value −∞, and there exists at least some parameter value for which it is finite, or it is defined
by composition with a (hemi-) metric, and assumes the value 0 for at least one parameter
value (see, for example, [32] Part 1, (ii) in association with Part 2 of the proof of Theorem
5.3.1, where cn is a quasi likelihood function and Θ coincides with B for the former or section
3 for the latter case). inf-compactness follows from the compactness of Θ. Finally, assump-
tions A.1, A.2 along with theorem 2.3.5 of [26], the separability and sequential completeness
of B and the completeness of the underlying probability space imply that for any θ P a.s.
for any β:

1. lim infn→∞ cn (ω, θ, βn (ω)) ≥ c (θ, β) for all measurable βn such that βn → β P a.s.,
and

2. lim supn→∞ cn (ω, θ, βn (ω)) ≤ c (θ, β) for some measurable βn such that βn → β P
a.s.7

Proposition 3.2 Under assumptions A.1, A.2 the binding correspondence b (θ) + arg minB c (θ, β)
is non empty-compact valued ∀θ ∈ Θ.

7This formulation implies that the elements of J of unit probability for which this convergence holds
generally depend on θ and the choice of the stochastic B-valued sequence.
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Proof. It follows from R.2.
Both the auxiliary and the binding correspondence, will be used for the definition of the

IE via some intuition that utilizes an analogy principle. The following result explores their
asymptotic relation. Its first and last implications are already known. Its second implication
is a partial generalization of Theorems 7.30, 7.32 of [30] in our setting. The first establishes
the upper pseudo-consistency and the other two the Fell pseudo-consistency of the auxiliary
to the binding correspondence.

Proposition 3.3 Under assumptions A.1, A.2:

1. for any εn such that εn → 0 P a.s. then δu
(
b (θ) , β#

n (θ, εn)
)
→ 0 P a.s.,

2. there exists a non negative random variable, ε∗n such that ε
∗
n → 0 P a.s. and

δ
(
b (θ) , β#

n (θ, εn)
)
→ 0 P a.s.,

3. if b (θ) is singleton then for any εn such that εn → 0 P a.s. then δ
(
b (θ) , β#

n (θ, εn)
)
→

0 P a.s.

For the proof of the previous propositions, we will need the following lemmas.

Lemma 3.4 Under assumptions A.1, A.2

lim sup
n

inf
B
cn (θ, β) ≤ inf

B
c (θ, β) P a.s.

Proof. Consider the family of θ-parametrized correspondences epin (ω, θ) + epi (cn (ω, θ, ·)).
Due to the fact that B is locally compact, epin (ω, θ) is a random closed set in the sense of the
previous paragraph, i.e. a B (BF ) /J ⊗ B (Θ)-measurable correspondence. Hence epin (ω, ·)
is an B (BF ) /J -measurable correspondence due to the measurability of the relevant projec-
tion. Now due to A.2 (see section 2) we have that for large n, and for all ω in an element of J
of unit probability epin (ω, θ)∩B× (−∞, a) 6= ∅ since B× (−∞, a) is open in the relevant
product topology. Hence infB cn (ω, θ, β) ≤ infB c (θ, β) for all ω described previously.
The next result will be used for the proof of 3.3.2-3.

Lemma 3.5 Under assumptions A.1, A.2 there exists a sequence of random variables defined
on Ω, say a∗n,

8 such that a∗n → infB (c (θ, β)) P a.s. and

Li
(
Level≤a∗n (cn (θ, ·))

)
⊇ b (θ) P a.s.

Proof. Let again aθ = infB c (θ, β). From the sequential implication of epiconvergence
in remark R.2, we have that for any x ∈ b (θ), there exists a measurable xn such that
xn → x P a.s. Obviously for an,x = cn (θ, xn) which is measurable, we have that xn ∈
Level≤an,x (cn (θ, ·)). Since b (θ) is compact, it is totally bounded and therefore for any ε > 0,
there exists an m (ε) ∈ N and {yi, i = 1, ...,m (ε)} ⊂ b (θ), such that the collection of balls
(in B) O

(
yi,

ε
2

)
covers b (θ). For some real sequence qn → 0, consider {yi, i = 1, ...,m (qn)}

and extract analogously random sequences (yi,n) such that yi,n → yi P a.s. Define an,yi =
cn (θ, yi,n) and n∗ (n) = min

{
n′ : |an′,yi − aθ| ≤ qn

2
, P a.s. for all i = 1, ...,m (qn)

}
which

well defined due to Egoroff’s theorem and the fact that m (qn) is finite. Obviously n∗ is non
decreasing in n. Then define a∗n = max {an∗,yi , i = 1, ...,m (qn)} which is measurable and

8It is obvious from the proof that a∗n depend also on θ.
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a∗n → aθ P a.s. Then for x ∈ b (θ), it follows that for any ε > 0, there exists an n and a
measurable xn ∈ Level≤a∗n (cn (θ, ·)) such that d (xn, x) < ε P a.s.
Proof of Proposition 3.3.
For 1. we have first that for any measurable non negative εn that need not converge to

zero if xn ∈ β#
n (θ, εn) measurable, such that a subsequence xnk → x P a.s.

c (θ, x) ≤ lim inf
n
cn (θ, xn) P a.s.

≤ lim inf
n
cn (θ, xn) + εn P a.s.

≤ lim sup
n
cn (θ, xn) + εn P a.s.

≤ lim sup
n

inf
B
cn (θ, xn) + εn P a.s.

≤ inf
B
c (θ, x) + εn P a.s.

where that last inequality follows from proposition 3.4. This establishes that for any non
negative random variable εn

Ls
(
β#
n (θ, εn)

)
⊆ εn- arg min

B
c (θ, β) P a.s.

Now 1. follows from the fact that ε-arg minB ⊆ ε′-arg minB if ε ≤ ε′. For 2. notice
that from the definition of the Fell topology in section 2 for any ε > 0, we have that
for large n, epin (ω, θ) ∩ B × [a− ε, a− 2ε] = ∅ P a.s. since B × [a− ε, a− 2ε] is
compact in the relevant product topology. This implies that lim infn infB cn (θ, β) ≥ aθ
P a.s. and in conjunction with 3.4 that infB cn (θ, β) → a P a.s. Then using proposition
3.5 set ε∗n = a∗n − infB cn (θ, β) which is obviously measurable and converges to zero P a.s.
3. follows from the proof of proposition 3.5 since a∗n = an,y where for b (θ) = {y}.
The proof of lemma 3.5 implies that the sequence (ε∗n)n∈N that appears in proposition

3.3.2 is non unique. However the fact that this implication does not hold for any sequence
of non negative random variables that P a.s. converge to zero is the cause of that in what
follows we can only prove the existence of strongly consistent indirect estimators among the
set of the ones to be defined.

Upper Hemi Continuity of the Binding Correspondence

The proposition 3.3 enables the use of δu
(
b (θ) , β#

n

)
as the inversion criterion. The following

assumption concerns the upper continuity of the binding correspondence which along with
the relevant properties of δu would imply the analogous continuity property for the particular
inversion criterion and thereby facilitate the issue of existence and consistency of the IE to
be defined.

Assumption A.3 b is upper hemicontinuous, i.e. for any θ and θ∗ → θ, δu (b (θ) , b (θ∗))→
0.

The following proposition provides with suffi cient conditions for this to hold. It essentially
strengthens assumption A.2 in that it requires that the relevant P a.s. epiconvergence be
continuous on Θ. Notice that its requirements are also stricter w.r.t. measurability compared
to the ones in assumption A.2 since the former requires that for any θ the relevant set of P
unit probability does not depend on the sequence that converges to θ.

Proposition 3.6 Suppose that for any θ, P a.s. for any ω, any θn → θ and any β:

9



1. lim infn→∞ cn (ω, θn, βn) ≥ c (θ, β), for all βn such that βn → β, and

2. lim supn→∞ cn (ω, θn, βn) ≤ c (θ, β), for some βn such that βn → β,

then assumption A.3 holds.

Proof. Suppose thatDF0 metrizes TF on F0 (B) (see section 2). Then it is obvious that 3.6 1-
2 are equivalent to the requirement that for any θ, and any θn → θ, DF0 (epin (ω, θn) , epi (θ))
converges to zero P a.s. Then, for any θ, and any θn → θ, c (θn, ·) epiconverges to c (θ, ·)
(DF0 (epi (θn) , epi (θ))→ 0), i.e. c (θ, ·) is epicontinuous on Θ. This is due to the following
standard argument: for an arbitrary θ, and ε > 0, we have thatDF0 (epin (ω, θ′) , epi (θ)) < ε

2

P a.s. for any θ′ in some open neighborhood of θ and large enough n, due to the assumed form
of convergence and Egoroff’s Theorem. By the same reasoning DF0 (epin (ω, θ′) , epi (θ′)) <
ε
2
P a.s. for any such θ′. The result follows from the fact that epi (θ) is independent of ω.

This along with equation 3.1 of Theorem 5.3.4 and proposition Appendix.D.2 of [26] implies
that the composite mapping θ → c (θ, ·)→ arg minB c (θ, β) is appropriately continuous.

Remark R.3 3.6.1-2 would obviously be implied if cn (ω, θ, β) is P a.s. jointly continuous
and converges jointly uniformly P a.s. to c (θ, β). Since we allow cn and/or c to assume
extended values, the relevant notion of uniform convergence must also be extended as in
definition 7.12 of [30]. The following lemma provides with a set of even weaker suffi cient
conditions than extended jointly uniform P a.s. convergence when cn has the form of an
arithmetic mean w.r.t. statonary and ergodic processes.

Lemma 3.7 Suppose that cn (ω, θ, β) = 1
n

∑n
i=1 mi (ω, θ, β), (mi (θ, β))i∈Z is ergodic for any

(θ, β), cn (ω, ·, ·) : Θ×B → R is jointly continuous P a.s., there exists a finite open cover of
Θ×B, such that E

∣∣inf(θ,β)∈Am0 (ω, θ, β)
∣∣ < +∞, for any A in the cover, E (m0 (ω, θ, β∗))

assumes values in R for any θ ∈ Θ and β∗ in a countable dense subset of B. Then proposition
3.6 holds.

Proof. Condition 3.6.1 follows from the fact that the assumption framework of the lemma
implies condition C0 and thereby Theorem 2.3 of [9], which implies the joint P a.s. epicon-
vergence of cn to Em0. For 3.7.2 notice that the separability of B and the P a.s. continuity
of m0 implies the existence of a countable dense B∗ such that for any β and any δ > 0 there
exists a β∗ ∈ B∗ such that

lim sup
n→∞

cn (ω, θn, β) ≤ lim sup
n→∞

(cn (ω, θn, β)− cn (ω, θn, β
∗)) + lim sup

n→∞
cn (ω, θn, β

∗) P a.s.

≤ δ + lim sup
n→∞

cn (ω, θn, β
∗) P a.s.

By assumption the subset of Ω of P unit probability can be chosen independent of δ and
δ can be chosen arbitrarily small. Hence, 3.6.2 would be implied for βn = β, if for any, θ,
β∗ ∈ B∗, P a.s. and any θn → θ, lim supn→∞ cn (ω, θn, β

∗) ≤ Em0 (θ, β∗) (i) due to the
countability of B∗. Notice that ((mi (θ, β

∗) ∧ −ρ) ∨ ρ)i∈Z is also stationary-ergodic for any
ρ > 0 (see for example Proposition 2.1.1. of [32]), hence the uniform version of Birkhoff’s
LLN implies that

1

n

∑n

i=1
((mi (ω, θn, β

∗) ∧ −ρ) ∨ ρ)

converges P a.s. to E (m0 (ω, θ, β∗) ∧ −ρ) ∨ ρ = (Em0 (ω, θ, β∗) ∧ −ρ) ∨ ρ for any ρ > 0.
Due to the separability of R the subset of Ω of P unit probability can be chosen independent
of ρ. Hence from definition 7.12 of [30] we obtain (i).
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This lemma explores suffi cient conditions for the required continuity of b solely via restric-
tions on the behavior of cn which in applications is generaly more analyticaly tractable than
c. Furthermore it combines joint epi-convergence with pointwise (on B) extended uniform
(w.r.t. θ) almost sure convergence. Finally notice that analogous result would also hold if
ergodicity is replaced by any kind of mixing condition that would justify the LLNs used in the
previous proof or implied in remark R.3.

Definition, Existence and Consistency of the Indirect Estimator

We are now ready to define the IE and explore the issues of its existence and consistency.
Proposition 3.3 along with the measurability of the auxiliary correspondence and the upper
hemi continuity of b facilitate the use of δu

(
b (θ) , β#

n (θ0)
)
for some distinguished θ0 ∈ Θ,

for the definition of the IE and the subsequent existence argument. Again an almost surely
non-negative random variable will assume the role of the "optimization error" in this second
step of the estimation procedure.

Definition D.6 The indirect correspondence θ#
n

(
ω, θ0, εn, ε

#
n

)
satisfies

θ#
n

(
ω, θ0, εn, ε

#
n

)
= ε#

n - arg min
Θ
δu
(
b (θ) , β#

n (θ0, εn)
)

+
{
θ∗ ∈ Θ : δu

(
b (θ∗) , β#

n (θ0, εn)
)
≤ inf

Θ
δu
(
b (θ) , β#

n (θ0, εn)
)

+ ε#
n

}
where ε#

n is a non-negative random variable defined on Ω.

We are initially concerned with the question of existence of the IE. We again suppress
the dependence of θn on ω when there is not a risk of confusion.

Proposition 3.8 Under assumptions A.1 and A.3 θ#
n is B (ΘF ) /J -measurable, P a.s. non

empty, compact valued correspondence.

Proof. First, notice that due to 2.5, 3.1 (implied by A.1), A.3 and the facts that β#
n (θ0, εn)

is independent of θ and b (θ) is independent of ω, we obtain that δu
(
b (θ) , β#

n (θ0, εn)
)

is B
(
R
)
/B (ΘF ) ⊗ J -measurable. Due to 2.3 and 3.1 δu

(
b (θ) , β#

n (θ0, εn)
)
is P a.s.

lsc and therefore a normal intergrand. It is also P a.s. proper due to the fact that b
and β#

n are P a.s. compact valued. Hence the result follows from proposition 3.1 where
cn = δu

(
b (θ) , β#

n (θ0, εn)
)
, when we consider B = Θ and Θ = {θ0} (the left hand sides

correspond to the notation of the latter lemma).
The fundamental selection theorem (Theorem 2.13 of [26]) would also enable the definition

of the IE as a measurable function with values in Θ. Having established existence we turn to
the issue of consistency. We need an assumption of indirect identification that is essentialy
derived from the form of the roots of the hemimetric used. Notice that this assumption along
with the proof of the following proposition justifies the definition of the D.6 by an analogy
principle. Mathematicaly both the definition and the existence argument do not require the
following assumption in order to be valid.

Assumption A.4 If θ 6= θ0 ⇒ b (θ0)− b (θ) 6= ∅.

Remark R.4 This condition is weaker that a condition of the form "If θ 6= θ0 ⇒ b (θ0) ∩
b (θ) = ∅" and stronger that a condition of the form "If θ 6= θ0 ⇒ b (θ0) 6= b (θ)". The latter
cannot be used due to the properties of δu upon which the definition of the IE is based. In
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the case that the binding correspondence is single valued, these become equivalent. This also
makes evident the claim that if the auxiliary estimator is defined by a measurable selection of
β#
n the corresponding identification condition would not be weaker than the one above.

The main result of the current section follows. It merely concerns the existence of strongly
consistent IE inside the established framework. Denote by θ (θ0) the arg minΘ δu (b (θ) , b (θ0))
which is non empty and compact due to the compactness of Θ, the properness of δu the hemi
continuity of b and lemma 2.2. Obviously, θ0 ∈ θ (θ0), while {θ0} = θ (θ0) iff assumption A.4
holds. Since we once again are dealing with compact valued correspondences, convergence is
metrized by δu and/or δ.

Proposition 3.9 Under assumptions A.1, A.2, A.3, and if ε#
n → 0 P a.s. then:

1. δu
(
θ (θ0) , θ#

n

(
ω, θ0, ε

∗
n, ε

#
n

))
→ 0 P a.s. where ε∗n is defined in lemma 3.3.2,

2. if b (θ0) is singleton then δu
(
θ (θ0) , θ#

n

(
ω, θ0, εn, ε

#
n

))
→ 0 P a.s. for any εn → 0 P

a.s.,

if furthermore A.4 holds then

1∗ δ
(
{θ0} , θ#

n

(
ω, θ0, ε

∗
n, ε

#
n

))
→ 0 P a.s. where ε∗n is defined in lemma 3.3.2, and

2∗ if b (θ0) is singleton then δ
(
{θ0} , θ#

n

(
ω, θ0, εn, ε

#
n

))
→ 0 P a.s. for any εn → 0 P

a.s.

Proof. First notice that due to lemma 3.3.2, A.3 and lemma 2.4 we have that for any θ and
θn → θ

lim inf
n
δu
(
b (θn) , β#

n (θ0, ε
∗
n)
)
≥ δu (b (θ) , b (θ0)) P a.s.

and that for any θ and θn = θ, due to lemma 2.3

lim sup
n
δu
(
b (θn) , β#

n (θ0, ε
∗
n)
)
≤ δu (b (θ) , b (θ0)) P a.s.

hence 1. follows from 3.3.1 for cn = δu
(
b (θn) , β#

n (θ0, ε
∗
n)
)
and if we denote with B (in the

notation of this lemma) the Θ space and with Θ (in the notation of this lemma) {θ0}. 2.
follows in the same manner if we replace any invocation of 3.3.2 with 3.3.3. Finally, notice
that if A.4 holds, then θ (θ0) = {θ0} establishing 1∗ and 2∗ via another use of 3.3.3.
If assumption A.4 does not hold then the implications of 3.9.1-2 correspond to the fact

that the statistical model is only indirectly set identified given this framework. They are trivial
when θ (θ0) = Θ and the closer to zero δu ({θ0} , θ (θ0)) is the more informative they become.
We once again point out that the implications 3.9.1 and 1∗ merely explore the issue of the
existence of strongly consistent estimators among those that comply with definition D.6. The
properties of the δu function along with proposition 3.3 do not permit for a stronger result
without strengthening the assumption framework. Finally notice that this framework enables
both the definition and the result on consistency of the IE to be derived via the use of exact
same notions that were used for the analogous results concerning the auxiliary one.
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Extension

In most cases b is analyticaly unknown even if several of its properties, such as some of
the ones discussed above can be established. In these cases the estimators defined in D.6
are obviously infeasible and possibly stochastic and algorithmicaly feasible approximations are
used for the construction of several other classes of feasible IE. In such a context the results
derived previously enable us to describe properties of such approximations that would imply
that these estimators are well defined and among them there exist strongly consistent ones.
Let κn (ω, θ) denote such an approximation. We readily obtain the following result for the
indirect estimator defined by the substitution of b with κn in D.6.

Proposition 3.10 Consider the IE defined by

ϑ#
n

(
ω, θ0, εn, ε

#
n

)
= ε#

n - arg min
Θ
δu
(
κn (ω, θ) , β#

n (θ0, εn)
)

where εn, ε#
n as before.

i. under assumption A.1 and if κn (ω, θ) is B (BF ) /J ⊗ B (ΘF )-measurable, P a.s. com-
pact valued and upper hemicontinuous then ϑ#

n is B (ΘF ) /J -measurable, P a.s. non
empty, compact valued correspondence, and

ii. if moreover A.2 holds and P a.s. for any θ and any θn → θ, δ (b (θ) , κn (ω, θ)) and
δu (b (θ) , κn (ω, θn)) converge to zero then the implications 3.10.1-2 hold also for ϑ#

n .
If furthermore assumption A.4 then then the implications 3.10.1∗-2∗ hold also for ϑ#

n .

Proof. i. As in the proof of 3.8 from 2.5, 3.1 the P a.s. upper hemicontinuity of
κn the facts that β

#
n (θ0, εn) is independent of θ and κn is jointly measurable, we ob-

tain that δu
(
β#
n (θ0, εn) , b (θ)

)
is B

(
R
)
/B (ΘF ) ⊗ J -measurable. Due to 2.3 and 3.1

δu
(
κn (ω, θn) , β#

n (θ0, εn)
)
is P a.s. lsc and therefore a normal intergrand. It is also P

a.s. proper due to the fact that κn and β#
n are P a.s. compact valued. Hence the re-

sult follows from proposition 3.1. ii. It suffi ces to prove that δu
(
κn (ω, θ) , β#

n (θ0, εn)
) e→

δu (b (θ) , b (θ0)) P a.s. when β#
n (θ0, εn) satisfies the implications 2 or 3 of proposition 3.3.

The rest would then follow as in the proof of proposition 3.10. Notice that for any θ and any
θn → θ

lim inf
n
δu
(
κn (ω, θn) , β#

n (θ0, ε
∗
n)
)
≥ δu (b (θ) , b (θ0)) , P a.s.

due to lemma 2.4, the definition of β#
n and the P a.s. continuous w.r.t θ upper convergence

of κn to b. Moreover for θn = θ

lim sup
n
δu
(
κn (ω, θ) , β#

n (θ0, ε
∗
n)
)

≤ lim sup
n
δu (κn (ω, θ) , b (θ)) + lim sup

n
δu
(
b (θ) , β#

n (θ0, ε
∗
n)
)
, P a.s.

≤ lim sup
n
δ (κn (ω, θ) , b (θ)) + δu (b (θ) , b (θ0)) , P a.s.

where the first inequality follows from the triangle inequality and the second from the the
definition of δ and the P a.s. Fell convergence of β#

n to b (θ0) and lemma 2.3. Due to the P
a.s. pointwise w.r.t. θ Fell convergence of κn to b we have that lim supn δ (κn (ω, θ) , b (θ)) =
0 P a.s. and therefore we obtain the needed result.
Notice that this proposition generalizes the results of propositions 3.8, 3.10. For a simple

example consider the case where κn = β#
n . This is possible when by some sort of resampling
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technique (e.g. bootstrap or Monte Carlo) realizations of the yn random elements are available
to the practitioner for any θ, and thereby so is β#

n (θ, εn) for any θ and some optimization
error εn independent of θ. Then a feasible IE can be defined by the approximate minimization
of δu

(
β#
n (θ, εn) , β#

n (θ0, εn)
)
w.r.t. θ. In this case the joint measurability of β#

n would follow
from the joint measurability of cn and εn, the separability of B and the subsequent joint
measurability of the relevant projection. The P a.s. upper hemicontinuity of β#

n would follow
from an easy extension of the implication 3.3.1 if assumption A.1 is strengthened so that the
mapping θ → epin (ω, θ) is P a.s. Fell continuous. Obviously the P a.s. joint continuity
of cn would suffi ce. Then the P a.s. pointwise Fell convergence to b would follow as in 3.3.2
or 3 and the P a.s. continuous w.r.t θ upper convergence to b would follow if proposition 3.6
holds with the set of unit probability independent of θ. Obviously it would suffi ce that cn is
P a.s. jointly continuous and converges to c jointly uniformly.

4 Examples

In this section we consider four simple examples that represent some of the previous results.
The first concerns the case of a linear semi-parametric model, the second a model comprised of
Levy processes and the final two emerge in the context of conditionally heteroskedastic ones.
In any of these, Θ is a compact subset of Rp and B a compact subset of Rq. In the second and
the fourth one the binding function is actually single valued (hence a fortiori compact valued)
and 1-1 enabling the direct application of 3.9.2∗. The first and second examples include cases
in which the IE can be interpreted as performing "inconsistency" correction to the auxiliary
one.

Example Semi - Parametric Linear Model with Linear Auxiliary.
Consider the n × p and n × q dimensional random matrices X (ω) and Z (ω) respectively,
where n ≥ q ≥ p. Suppose that X′X

n
→ MX′X , Z

′Z
n
→ MZ′Z , Z

′X
n
→ MZ′X P a.s., where

rank (MX′X) = rank (MZ′X) = p and p ≤ l + rank (MZ′Z) ≤ q. For u a n × 1 random
vector, let the underlying statistical model be the set of "regressions" Y (ω, θ) = Xθ + u,
θ ∈ Θ. For B a large enough compact and convex subset of Rq and any β ∈ B, let
cn (ω, θ, β) = 1

n
(Y − Zβ)′ (Y − Zβ), which clearly satisfies assumption A.1 due to continuity

with respect to β and the compactness of B. Obviously, cn is constructed by the auxiliary
set of regression w.r.t. Z. Proposition 3.1 ensures the existence of βn which in the light
of the previous can be interpreted as an OLSE in the context of the auxiliary model. Let
P : Rq →MZ′ZB be the (generally non-linear) projection defined by the optimization problem

arg min
x∈MZ′ZB

‖x− y‖

for y in Rq. P is well defined due to the compactness and the convexity of B and the linearity
and continuity of MZ′Z and continuous. Furthermore, for any y ∈ col (MZ′Z), consider the
linear system MZ′Zx = y, which is always satisfied by any member of the coset Ky + Hq−l,
where K is a matrix of rank l and Hq−l is a q − l-dimensional subspace of Rq, which is
trivial if and only if l = q whereas K = M−1

Z′Z , and maximal in the case that l = p. For
MX′u ∈ Rp,MZ′u ∈ Rq,Mu′u ∈ R assume that X′u

n
→ MX′u, u

′u
n
→ Mu′u and Z′u

n
→ MZ′u

P a.s. The previous imply the joint uniform P a.s. convergence of cn to

c (θ, β) = θ′ (MX′Xθ + 2MX′u) + β′ (MZ′Zβ − 2 (MZ′Xθ +MZ′u)) +Mu′u
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which implies both assumptions A.2, A.3 (via lemma 3.6 and R.3).Notice that

b (θ) = B ∩ (KP (MZ′Xθ +MZ′u) +Hq−l)

due to the convexity of c (θ, β) w.r.t. β for any θ and the definition ofB. If P (MZ′Xθ0 +MZ′u)−
P (MZ′Xθ +MZ′u) /∈ K−1Hq−l for any θ 6= θ0 then assumption A.4 applies.9 Hence, propo-
sition 3.9.1∗ implies the existence of a consistent IE for θ0 ∈ Θ. In the special case where
X = Z andMX′u ∈MX′X (B − θ) then b (θ) =

{
θ −M−1

X′XMX′u

}
and lemma 3.9.2∗ implies

that any IE defined by D.6 can be perceived as an "inconsistency corrector" of the underlying
OLSE for θ.�

We know consider the case of the estimation of the drift of a continuous time cadlag
process.

Example The drift of a Levy Process with Bounded Jumps.
Let W denote a standard Bownian motion and v a finite measure on the Borel algebra of
R−{0}, such that v (A) = 0 whenA ⊆ (−∞,−C2)∪(−C1, C1)∪(C2,+∞) for 0 < C1 < C2.
Obviously v is a Levy measure (see paragraph 1.2.4 of [3]). For p = 1 consider the stochastic
process on R+ defined by the following Levy-Ito decomposition (see Theorem 2.4.16 of [3])

Xt (ω) = θt+Wt (ω) +

∫
|x|∈[C1,C2]

xN (t, dx) (ω)

whereN denotes the independent toW Poisson randommeasure onR+×([−C2, C1] ∪ [C1, C2])
the existence of which is established by Theorem 2.3.6 of [3]. Let the underlying statistical
model be the set of the previous stochastic processes and for B a large enough compact subset
of R and any β ∈ B, let cn (ω, θ, β) = 1

n

∑n
t=1 (yt − β)2, where yt = exp (Xt −Xt−1) − 1.

This can be perceived to emerge as an approximate likelihood function of the auxiliary model
that contains the relevant discretizations of the processes that satisfy the SDE

dyt = βytdt+ ytdWt

for each β ∈ B. Obviously assumption A.1 is satisfied, due to continuity with respect to β
and the compactness of B. Proposition 3.1 ensures the existence of βn which in the light
of the previous can be interpreted as an (approximate) MLE in the context of the auxiliary
model. Furthermore since∣∣∣∣∫

|x|∈[C1,C2]

x (N (t, dx)−N (t− 1, dx))

∣∣∣∣ ≤ ∫
|x|∈[C1,C2]

|x| (N (t, dx)−N (t− 1, dx))

≤ C2 (N (t, [C1, C2])−N (t− 1, [C1, C2]))

and N (t, [C1, C2])−N (t− 1, [C1, C2])
i.i.d.∼ Poiss (v ([C1, C2])) independent of W , we have

that

E exp (Xt −Xt−1) = exp

(
θ +

1

2

)
C

for
0 < C ≤ exp (−v ([C1, C2]) (1− exp (C2)))

and
E (exp (Xt −Xt−1))2 = exp (2 (θ + 1))C∗

9More precicely we have that b (θ) ∩ b (θ0) = ∅.
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for
0 < C∗ ≤ exp (−v ([C1, C2]) (1− exp (2C2)))

Due to the definition of X the process y is iid and this along with the compactness of Θ, and
B and the existence of the previous moments imply the joint uniform P a.s. convergence of
cn to

c (θ, β) = exp (2 (θ + 1))C∗ − 2 exp

(
θ +

1

2

)
C (1 + β) + (1 + β)2

which implies both assumptions A.2, A.3 (via proposition 3.6 and R.3). IfB ⊇ exp
(
Θ + 1

2

)
C−

1 then

b (θ) =

{(
exp

(
θ +

1

2

)
C − 1

)}
In this case assumption A.4 applies and therefore proposition 3.9.2∗ implies that any IE defined
by D.6 is consistent for any θ0 ∈ Θ. When v ([C1, C2]) = 0 (and therefore v = 0) whereas
C = 1 the IE can be perceived as an "inconsistency corrector" of the underlying MLE for
the estimation of the drift of a geometric Brownian motion (see for example paragraph 6.1.1
of [19]).�

For the last pair of examples, let z : Ω → RZ be an i.i.d. sequence of random variables,
with Ez0 = 0, and Ez2

0 = 1. Consider a random element σ2 : Θ × Ω → (R+)
Z, with the

product space Θ × Ω equipped with B (Θ) ⊗ J with σ2
t (θ) independent of (zi)i≥t, ∀t ∈ Z,

∀θ ∈ Θ. Analogously, define the random element y : Θ× Ω→ (R)Z as

(yt (ω) (θ))t∈Z,θ∈Θ =

(
zt (ω)

√
σ2
t (ω) (θ)

)
t∈Z,θ∈Θ

Then ∀θ ∈ Θ, (yt (θ))t∈Z is called a conditionally heteroskedastic process, while the
random element (yt (ω) (θ))t∈Z,θ∈Θ a conditionally heteroskedastic model. Our examples will
solely concern ergodic heteroskedastic models.10

Example IV Estimation in Regressions on Squared ARCH(1) processes. Let σ4 =
Ez4

0 < +∞ and 0 < δ < 1√
σ4
. Suppose that a ∈ Θ = [0, δ] and consider the stochastic

difference equation
σ2
t (a) = 1 + az2

t−1σ
2
t (a)

Due to the fact that σ4 > 1 Theorem 5.2.1. of [32] implies that for any α ∈ Θ the equation
admits a unique stationary and ergodic solution defining the analogous ARCH (1) process.
Consider the random vector Y (a) = (y2

t (a))t∈{1,...,n}, and the n × 2 dimensional random
matrices

Z (a) =

 1 y2
−1 (a)

...
...

1 y2
n−2 (a)

 , X (a) =

 1 y2
0 (a)

...
...

1 y2
n−1 (a)

 (1)

jointly measurable with respect to J ⊗ B (Θ), where n > 2 and ergodic for any a ∈ Θ. For

β =

(
β1

β2

)
∈ B = [1, 1 + δ]× [−δ, δ], let cn (ω, a, β) =

∥∥ 1
n
Z ′ (a) (Y (a)−X (a) β)

∥∥ which
10The establishment of the ergodicity is initiated by the analogous establishment for

(
σ2t (θ)

)
t∈Z ∀θ ∈ Θ.

Suffi cient conditions for that are described and employed in a variety of heteroskedastic models in chapter 5 of
[32] via Theorem 5.2.1. Then the ergodicity of (yt (θ))t∈Z and

(
y2t (θ)

)
t∈Z ∀θ ∈ Θ follow from the definition

of z, y, the previous assumption and Proposition 2.2.1 of [32].
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clearly satisfies assumption A.1 due to joint continuity with respect to (a, β) the compactness
of B, the joint measurability and the fact that cn is defined via composition with a norm.
This consideration is motivated from the AR (1) representation of the ARCH (1) process
with respect to the martingale difference noise vt = (z2

t − 1)σ2
t (a) (see, for example, [7])

and cn can be perceived to emerge from an auxiliary model that is consisted of the set of
"auxiliary" regression functions of Y on Xβ, along with the instrumental variables appearing
in the columns of Z where obviously the ith element in any column is clearly orthogonal to
vt for i ≤ t. Proposition 3.1 ensures the existence of βn which in the light of the previous
sentence can be interpreted as an IV estimator in the context of the auxiliary model. Due to
the compactness of B, the definition of the ARCH (1) model and the definitions of Θ and σ4

we have that

E sup
a,β

∥∥∥∥ 1

n
Z ′ (a) (Y (a)−X (a) β)

∥∥∥∥
≤ C1

∥∥∥∥∥
(

1 1
1−δ

1
1−δ

1

(1−δ)(1−δ2σ4)

)∥∥∥∥∥+ C2

∥∥∥∥∥
(

1
1−δ
1+δ

(1−δ)(1−δ2σ4)

)∥∥∥∥∥ < +∞

for C1, C2 > 0 which along with (the uniform version of) Birkhoff’s Ergodic Theorem (see
for example [32], Theorem 2.2.1) implies both assumptions A.2, A.3 (via proposition 3.6 and
R.3) for

c (a, β) =

∥∥∥∥( 1 1
1−a

1
1−a

1
(1−a)(1−a2σ4)

)(
β1

β2

)
−
( 1

1−a
1+a

(1−a)(1−a2σ4)

)∥∥∥∥
In fact a simple calculation shows that

b (a) =


{(

1
a

)}
, a ∈ (0, δ]

{(β1, 1− β1) , β1 ∈ [1, 1 + δ]} , a = 0

which clearly implies assumption A.4. Hence proposition 3.9.2∗ implies that any IE defined by
D.6 is consistent if a0 ∈ (0, δ], and proposition 3.9.1∗ implies the existence of an analogously
consistent IE when a0 = 0. It is easy to see that given βn,

θ#
n (ω, θ0, ε

∗
n, 0) =


{a} if βn ⊆ b (a)

mid
(
projβ2 (βn)

)
if βn * b (a) and mid

(
projβ2 (βn)

)
≥ 0

{0} if βn * b (a) and mid
(
projβ2 (βn)

)
< 0

,

where projβ2 denotes projection to the β2-axis and mid (A) denotes the midpoint of the
smallest interval that contains A. Notice that in our case mid

(
projβ2 (βn)

)
is well defined

due to the fact that βn is P a.s. compact valued hence its projβ2 (βn) is a P a.s. compact
subset of the real line. Finally and due to the fact that bootstrap resampling techniques
are readily available in the context of this model, proposition 3.10 implies also the analogous
properties for IE defined by κn when this equals the auxiliary estimator derived from bootstrap
resampling for any a.�

The final example is about an asymmetric heteroskedastic process.

Example −cn is the Quasi-Likelihood Function of an Approximate to QARCH (1)
Model. Let E |z0| < 1 and δ > 0, and consider for γ ∈ Θ = [−δ, 0] $0, a0 > 0, $ =

$0 + δ2

4a0
, and a0 < exp (−2E ln |z0|) the stochastic difference equation

σ2
t (γ) = $ + a0z

2
t−1σ

2
t (γ) + γzt−1σt (γ)
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For any γ ∈ Θ, the previous define a unique stationary and ergodic QARCH (1) volatility
process with existing log moments that is uniformly bounded from below away from zero
(see Lemmas 2.1 and 3.4 and Remark R.2 of Arvanitis and Louka [5]). Notice that Jensen’s
inequality allows a0 ≥ 1 which in turn implies that Eσ2

t (γ) = +∞. For γ∗ ∈ B = [0, δ]
consider the process defined by

ht (γ, γ∗) = $ + a0y
2
t−1 + γ∗ |yt−1| 1yt−1<0 (2)

P a.s.
= $ + a0y

2
t−1 + γ∗ |yt−1| 1zt−1<0

ht (γ, γ∗) is well defined due to the definition of B and it is stationary and ergodic with existing
log moments due to the previous and Proposition 2.1.1. of [32]. Now consider

cn (ω, γ, γ∗) + 1

n

n∑
i=1

(
− ln

y2
i (γ)

hi (γ, γ∗)
+

y2
i (γ)

hi (γ, γ∗)

)
−cn can be considered as an approximation of (a monotonic transformation of) the conditional
quasi likelihood function of the auxiliary conditionally heteroskedastic model defined by 2 and
B. Also the ergodicity of (cn) for any (γ, γ∗) follows from the previous and Proposition 2.1.1.
of [32].11 Assumption A.1 follows readily from the form of cn and the P a.s. continuity with
respect to (γ, γ∗). Hence βn is well defined and can be interpreted as an approximate QMLE
in the context of the auxiliary model. Now, consider an arbitrary finite open cover of B and
notice that

E inf
A∩B

(
− ln

$ + a0y
2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

+ z2
0

$ + a0y
2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

)
≥ −E sup

A∩B
ln

$ + a0y
2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

+ E

(
$ + a0y

2
0 + γy0

$ + a0y2
0 + δ |y0| 1z0<0

)
≥ −E ln

((
1 +

γy0

$ + a0y2
0

)
1z0<0

)
+ E

((
1 +

γy0

$ + a0y2
0

)
1z0≥0

)
> −∞

and that

E inf
A∩B

(
− ln

$ + a0y
2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

+ z2
0

$ + a0y
2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

)
≤ 1− E

(
ln

(
1 +

γy0

$ + a0y2
0

))
1z0≥0 + E

(
1 +

γy0

$ + a0y2
0

)
< +∞

for A an arbitrary member of the partition. Notice also that −2E ln |z|−E $+a0y20+γy0
$+a0y20+γ∗|y0|1z0<0

+

E
$+a0y20+γy0

$+a0y20+γ∗|y0|1z0<0
> −∞ for all (γ, γ∗) due to the fact that

E ln
$ + a0y

2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

≥ E ln

(
1 +

γy0

$ + a0y2
0

)
> −∞

11In practice cn (ω, γ, γ∗) is unknown but approximated by an analogous ĉn (ω, γ, γ∗) dependent on
non ergodic solutions of the stochastic difference equation that defines h based on arbitrary initial condi-
tions. In this case, due to ergodicity, Proposition 5.2.12 of [32] can be employed in order to ensure that
supB |cn (ω, θ, β)− ĉn (ω, θ, β)| converges almost surely to zero for any θ ∈ Θ (see the first part of the proof
of Theorem 5.3.1 of [32]), thereby facilitating the asymptotic analysis of minimizers of ĉn (ω, θ, β) by the
analogous analysis of minimizers of cn (ω, θ, β).
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Hence, remark R.2 implies that assumption A.2 holds with

c (γ, γ∗) = −2E ln |z| − E ln
$ + a0y

2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

+ E
$ + a0y

2
0 + γy0

$ + a0y2
0 + γ∗ |y0| 1z0<0

.

Notice that c (0, γ∗) is uniquely minimized at γ∗ = 0 (see for example the Part 1. of the
proof of Theorem 5.3.1. of [32] to obtain the analogous arguments along with the fact that

$+a0y20
$+a0y20+γ∗|y0|1z0<0

P a.s.
= 1 iff γ∗ = 0). When γ 6= 0 then c (γ,−γ) < c (γ, 0) due to the fact

that

−E ln
$ + a0y

2
0 + γy0

$ + a0y2
0 − γ |y0| 1z0<0

+ E ln
$ + a0y

2
0 + γy0

$ + a0y2
0

= E

(
ln

(
1 +

γy0

$ + a0y2
0

)
1z0<0

)
and

E
$ + a0y

2
0 + γy0

$ + a0y2
0 − γ |y0| 1z0<0

− E$ + a0y
2
0 + γy0

$ + a0y2
0

= −E
(

γy0

$ + a0y2
0

1z0<0

)
< 0

and that when x > 0, then ln (1 + x) < x. Furthermore, using the fact that by 2 h is P a.s.
two times differentiable w.r.t. γ∗ for γ∗ 6= 0 and since

E sup
γ∗

∣∣∣∣($ + a0y
2
0 + γ∗ |y0| 1z0<0

$ + a0y2
0 + γy0

− 1

)
$ + a0y

2
0 + γy0

($ + a0y2
0 + γ∗ |y0| 1z0<0)

2 |y0| 1z0<0

∣∣∣∣
≤

(
δ

|γ| − 1

)
E

∣∣∣∣∣$ |y0|+ a0 |y0|3 + γy2
0

($ + a0y2
0)

2 1z0<0

∣∣∣∣∣ < +∞

and

E sup
γ∗

∣∣∣∣( $ + a0y
2
0 + γy0

($ + a0y2
0 + γ∗ |y0| 1z0<0)

2

)
z2

01z0<0

∣∣∣∣
≤ 1

$
E

∣∣∣∣(1 +
γy0

$ + a0y2
0

)
1z0<0

∣∣∣∣ < +∞

E sup
γ∗

∣∣∣∣∣
(
$ + a0y

2
0 + γ∗ |y0| 1z0<0

$ + a0y2
0 + γy0

− 1

)
($ + a0y

2
0 + γy0)

2

($ + a0y2
0 + γ∗ |y0| 1z0<0)

3 z
2
01z0<0

∣∣∣∣∣
≤ 1

$

(
δ

|γ| − 1

)
E

∣∣∣∣∣
(

1 +
γy0

$ + a0y2
0

)2

1z0<0

∣∣∣∣∣ < +∞

as well as dominated convergence, we have that

∂c (γ, γ∗)

∂γ∗
= E

(
$ + a0y

2
0 + γ∗ |y0| 1z0<0

$ + a0y2
0 + γy0

− 1

)
$ + a0y

2
0 + γy0

($ + a0y2
0 + γ∗ |y0| 1z0<0)

2 |y0| 1z0<0

which is zero iff γ∗ = −γ, and
∂2c (γ, γ∗)

∂ (γ∗)2 |γ∗=−γ = E

((
$ + a0y

2
0 + γy0

($ + a0y2
0 − γ |y0| 1z0<0)

2

)
z2

01z0<0

)
> 0

establishing along with the previous that b (γ) = {−γ}. This validates simultaneously both
assumptions A.3 and A.4. Hence proposition 3.9.2∗ implies that any IE defined by D.6 is
consistent for any γ0 ∈ [−δ, 0].�
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5 Conclusions

In this paper we generalize the definition of IE and are occupied with the questions of exis-
tence and strong consistency. We allow for cases where the binding function is a compact
valued correspondence. We have used conditions that concern the asymptotic behavior of the
epigraphs of the criterion functions involved in the relevant procedures, a relevant notion of
continuity for the binding correspondence as well as an indirect identification condition that
restricts the behavior of the aforementioned correspondence. These results are generalizations
of the analogous ones in the relevant literature, hence permit a broader scope of statistical
models.
First, notice that our framework could still be extended in the following manner. The

established results would remain almost intact if the underlying parameter spaces were only
locally compact under more restrictive assumptions on the behavior of the criteria involved.
In such a case Proposition 4.2.1.(i) of [23] would permit the validity of the results, except
for the compactness of the auxiliary and the binding correspondences, under the additional
condition that P a.s. cn (ω, θ, ·), c (θ, ·) and δu

(
b (·) , β#

n (θ0, ε
∗
n)
)
have totally bounded level

sets and non empty arg mins.
Second, the present generalization in certainly non unique. Again under stricter conditions

on the behavior of the auxiliary criteria, possibly relevant to the ones in Proposition 3.42 of
[29], the implication 3.3.2 could be strengthened to hold for any asymptotically null sequence
of optimization errors. In this case in the definition of the IE δu could be replaced by δ and
this would initially allow the identification condition in assumption A.4 to be replaced by the
weaker "if θ 6= θ0 ⇒ b (θ0) 6= b (θ)". If assumption A.3 were also strengthened to require
Fell continuity then the strong consistency result would be valid for any IE defined in this
framework. We leave this for future research.
We also leave for future research the questions of the definition and consistency of IE

when the κn appearing in proposition 3.10 is some sort of integral of β
#
n (see for example

[4]) or some (possibly) stochastic approximation of it. The same holds for the issues of the
establishment of the rates of convergence, and the asymptotic distribution of the IE in this
general framework. Notice that this limit theory could in principle be quite complex due
to complexities in the analogous theory for β#

n and/or to different properties of potential
polynomial approximations for different selections of b around θ e.t.c.
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