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Abstract

We are occupied with a simple example concerning the limit theory of the OLSE when the innova-
Ɵon process of the regression has the form of a marƟngale transform the i.i.d. part of which lies
in the domain of aƩracƟon of an 𝛼-stable distribuƟon, the scalling sequence has a potenƟally di-
verging truncated 𝛼-moment and the regressor process is asymptoƟcally staƟonary. We obtain rates
that reflect the stability parameter as well as the slow variaƟons present in the aforemenƟoned se-
quences and mixtures of stable limits. We also derive asymptoƟc exactness, consistency as well as
local asymptoƟc unbiaseness under appropriate local alternaƟves for relevant Wald tests derived by
subsampling.
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1 IntroducƟon

In this note we are occupied with a simple example concerning the limit theory of the OLSE
when the innovaƟon process of the regression has the form of a marƟngale transform the
i.i.d. part of which lies in the domain of aƩracƟon of an 𝛼-stable distribuƟon, the scall-
ing sequence has a potenƟally diverging truncated 𝛼-moment and the regressor process is
asymptoƟcally staƟonary.
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1 IntroducƟon 2

Our moƟvaƟon is twofold. First we are interested in the development of limit theorems
to stable limits when the rate contains also informaƟon about the aforemenƟoned diver-
gence whilst the scalling sequence itself has a mulƟplicaƟve structure. Second we are inter-
ested in the quesƟon of asymptoƟc robustness of Wald tests based on subsampling in such
a framework.

The issue of the limit theory for parameter esƟmators in linear models, autoregressions,
moving average processes e.t.c. with heavy tailed innovaƟons is vast. We incompletely men-
Ɵon only Knight [9] as well as Kokoszka and Taqqu [10] and direct to Hall and Yao [6] (p. 291)
for a comprehensive list of references. We note that in the relevant literature the innovaƟon
process is usually assumed i.i.d. following a stable distribuƟon. In the present paper we al-
low for staƟonary marƟngale transforms with marginals that belong to the general domain
of aƩracƟon of a stable law. This implies among others that the rates that we obtain are
generally more complex. Furthermore, even though our assumpƟon framework does not
allow for ARMA type of regressors1 our framework allows for the extracƟon of limits that are
mixtures of stable distribuƟons with common stability parameters.

The limit theory for regularly varying marƟngale transforms with applicaƟons to the limit
theory of the QMLE in GARCH-type modes, has been the subject of a literature consisƟng
of papers such as the ones of Hall and Yao [6], Mikosch and Straumann [11] or Surgailis
[15]. There the marƟngale transform is consisted by an i.i.d. process supposed to lie in
the domain of (normal in the laƩer case) aƩracƟon of an 𝛼-stable distribuƟon while the
scalling process is a staƟonary ergodic sequence with either high enough moments and/or
obeying some mixing condiƟon. The limits are 𝛼 stable distribuƟons in some cases parƟally
characterized. ArvaniƟs and Louka [1] generalize the aforemenƟoned results by retaining
only staƟonarity for the scalling process while requiring only the 𝛼 moment to exist, albeit
with some restricƟons to the marginal regular variaƟon of the i.i.d. process when higher
moments do not exist for the scalling process. They obtainmixed𝛼-stable distribuƟonswhile
they are able to obtain analogous results in some trivial cases of non-staƟonarity.

In the present note we rely on a limit theorem parƟally involving an analogous transform.
We generalize the aforemenƟoned result in the followingways. First we allow for the scalling
process to have itself a mulƟplicaƟve structure in order to avoid the i.i.d. assumpƟon for the
innovaƟon process of the regressionmodel. Second we allow for the laƩer process to be in a
strong sense only asymptoƟcally staƟonary. Third, we allow for the scalling process to have
a slowly varying trunctated 𝛼-moment that is allowed to diverge. In this respect we obtain
more complex rates than in the aforemenƟoned literature. We derive our results by allowing
a more restricƟve framework for the regular variaƟon of the i.i.d. sequence in comparison
to the aforemenƟoned paper.

The assumpƟon framework, the aforemenƟoned limit theorem and the limit theory of
the relevant OLSE is presented in the following secƟon. In the final one, based on the pre-
vious, we derive asymptoƟc exactness, consistency as well as local asymptoƟc unbiaseness
under appropriate local alternaƟves for relevant Wald type tesƟng procedures derived by
subsampling.

1 except for the case of the domain of aƩracƟon to the normal law.



2 AssumpƟon Framework and OLSE Limit Theory 3

2 AssumpƟon Framework and OLSE Limit Theory

We employ the framework of an underlying complete probability space (Ω, ℱ, ℙ). In what
follows, we are among others interested in the asymptoƟc behavior of the parƟal sums of
a marƟngale transform type process of the form (𝑋𝑖𝑣𝑖𝜉𝑖)𝑖∈ℕ. The assumpƟon framework
presented below, essenƟally specifies properƟes of the consƟtuent factor processes.

AssumpƟon 1. (𝜉𝑖)𝑖∈ℕ is staƟonary. The log-characterisƟc funcƟon of 𝜉0 has the following
representaƟon locally around zero:

−𝑐|𝑡|𝛼ℎ(1/|𝑡|) (1 − 𝑖𝑏 sgn(𝑡) tan (1
2𝜋𝛼)) .

𝛼 ∈ (1, 2], 𝑏 ∈ [−1, 1], 𝑐 ∈ ℝ++, ℎ is slowly varying at infinity. If ℎ diverges then there exist

𝑚 and 𝑔 such that ∣ℎ(𝑡𝑥)
ℎ(𝑥) − 1∣ ≤ 𝑚 (𝑡) 𝑔 (𝑥) for all 𝑡 in a neighborhood of infinity and large

enough 𝑥, where 𝑚 is increasing while 𝑡−𝛼𝑚 (𝑡) is eventually bounded and 𝑔 (𝑥) → 0 as
𝑥 → ∞. lim𝑥→∞ ℎ (𝑥) > 0 if it exists.

The representaƟon in AssumpƟon 1 holds iff the distribuƟon of 𝜉0 lies in the domain of
aƩracƟon of an 𝛼-stable law (Theorem 2.6.5 of Ibragimov and Linnik [8]). 𝛼 is the index of
stability, 𝑏 the skewness and 𝑐 the scale parameter. The aforemenƟoned Tauberian theorem
implies that 𝛼, 𝑏, 𝑐 and the slowly varying funcƟon ℎ represent the asymptoƟc behavior of
the tails of the distribuƟon of 𝜉0. The existence of the pair 𝑚, 𝑔 is ensured if ℎ belongs to
the Zygmund class of slowly varying funcƟons (see Theorem 1.5.5 of Bingham et. al. [2])
and 𝑥ℎ′(𝑥), is Lebesgue almost everywhere bounded. Examples are 𝐶 (ln(𝑚1)(𝑥))𝛿1

(ln(𝑚2)(𝑥))𝛿2
for 𝛿1 ∈

[0, 1] , 𝛿2 ≥ 0, 𝐶(ln(𝑚)(exp (1) + 𝑥))𝛿 for 𝛿 ∈ [0, 1]. In any case the restricƟons on the
behavior of ℎ imply that 𝜉0 does not have moments of order greater or equal to 𝛼.

AssumpƟon 2. (𝑣𝑖)𝑖∈ℕ is a staƟonary, ergodic ℝ++-valued process, for which

ℙ (𝑣𝛼
0 > 𝑥) = 𝑜 (ℙ (|𝜉0|𝛼 > 𝑥)) , as 𝑥 → +∞.

Define (𝜅𝑛)𝑛∈ℕ by

(𝑛𝜅𝑛)−1/𝛼 ≑ sup {𝑥 > 0 ∶ 𝑥𝛼ℎ⋆ (𝑥−1) ≤ 1/𝑛} ,

for ℎ⋆ (𝑥) ≑ 𝔼 [𝑣𝛼
0 1{𝑣𝑖≤𝑥}]. If 𝜅𝑛 diverges then

𝑛
∑
𝑖=1

ℂov (𝑣⋆
0, 𝑣⋆

𝑖 ) = 𝑜 (𝑛𝜅2
𝑛) ,

for 𝑣⋆
𝑖 ≑ 𝑣𝛼

𝑖 1{𝑣𝑖≤(𝑛𝜅𝑛)1/𝛼}.
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(𝑣𝑖)𝑖∈ℕ is (part of) the scaling process of the transform. 𝑣0 has a regularly varying tail of
index at least −𝛼 and its 𝛼 moment may not exist. In this case, i.e. when 𝜅𝑛 diverges, the
covariance summability condiƟon facilitates the derivaƟon of a Generalized LLN that extends
Theorem 2 in SecƟon VII.7 of Feller [4] (see Lemmata 2 and 4 in the Appendix). It is implied
by the previous and uniformmixing for the process with summable coefficients, by Theorem
1.4.(b) of Rio [13]. The existence of (𝜅𝑖)𝑖∈ℕ is ensured by the right-conƟnuity of ℎ⋆ as in
Theorem 2 in SecƟon VII.7 of Feller [4].

AssumpƟon3. 𝑋𝑖 = 𝐾𝑖+𝐴𝑖. (𝐾𝑖)𝑖∈ℕ is a staƟonaryℝ𝑞-valued process and for someΔ > 0,
𝔼 (‖𝐾0‖2+∆ < +∞). For ℐ the invariant 𝜎-field of the process and 𝕍 = 𝔼 (𝐾0𝐾𝑇 𝑟

0 /ℐ)

rank [𝕍] = 𝑞, ℙ a.s.

(𝐴𝑖)𝑖∈ℕ is a ℝ𝑞-valued process, such that 𝐴𝑖𝐴𝑇 𝑟
𝑖 is uniformly integrable and converges to 0

ℙ a.s.

AssumpƟon 3 specifies the asymptoƟcally staƟonary regressor process as the poinƟwise
sum of a staƟonary process and an asymptoƟcally 𝕃2-degenerate at zero process. The LLN
of Doob implies convergence of the mean of the squared staƟonary part to the relevant
non degenerate condiƟonal expectaƟon. The existence of at least the second moment of
𝑋𝑖 cannot be easily dispensed, except for the case where 𝛼 = 2, due to the restricƟon that
shoud be imposed on the distribuƟon of𝐾𝑖𝐾𝑇 𝑟

𝑖 by the aforemenƟonedGeneralized LLN and
our interest for the asymptoƟc behavior of 1𝑛 ∑𝑛

𝑖=1 𝑋𝑖𝑋𝑇 𝑟
𝑖 . The condiƟon on the boundness

of the sequence of second moments facilitates among others results on the variaƟon of the
“tails” of the (vector) marƟngale transform (𝑋𝑖𝑣𝑖𝜉𝑖)𝑖∈ℕ.

AssumpƟon 4. 𝜉𝑖 is independent of ℱ𝑖 ≑ 𝜎 (𝜉𝑖−𝑗𝑣𝑖−𝑗𝑋𝑖−𝑗, 𝑗 > 0), and condiƟonally on ℱ𝑖,
𝜉𝑖, 𝑣𝑖, 𝑋𝑖 are mutually independent ∀𝑖 ∈ ℕ.

AssumpƟon 4 establishes the dependence structure between the processes involved. It
enables the use of the Principle of CondiƟoning of Jakubowski [7]. It does not preclude non-
contemporaneous dependence between the (𝑣𝑖)𝑖∈ℕ and the (𝑋𝑖)𝑖∈ℕ processes.

Consider (𝑦𝑖)𝑖∈ℕ specified by

𝑦𝑖 = 𝑋𝑇 𝑟
𝑖 𝛽0 + 𝜉𝑖𝑣𝑖,

where 𝛽0 ∈ ℝ𝑞. Given the random element (𝑦𝑖, 𝑋𝑖)𝑛
𝑖=1 we are interested in the asymptoƟc

behavior of the OLSE for 𝛽0, i.e.

𝛽𝑛 = (
𝑛

∑
𝑖=1

𝑋𝑖𝑋𝑇 𝑟
𝑖 )

−1 𝑛
∑
𝑖=1

𝑋𝑖𝑦𝑖 = 𝛽0 + (
𝑛

∑
𝑖=1

𝑋𝑖𝑋𝑇 𝑟
𝑖 )

−1 𝑛
∑
𝑖=1

𝑋𝑖𝑣𝑖𝜉𝑖.

This is established in the following proposiƟon the basic part of which is essenƟally a joint
limit theorem for the parƟal sums of a marƟngale transform and the quadraƟc variaƟon of
the regressors. In what follows 𝑆𝛼 (𝛽, 𝑐, 𝛾) denotes the 𝛼-stable distribuƟon on ℝ with 𝑏, 𝑐
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as above and locaƟon parameter 𝛾.2 When 𝛼 = 2, necessarily 𝛽 = 0 and the resulƟng
distribuƟon is the 𝑁(𝛾, 2𝑐). In such a case and without loss of generality, we assume that
𝑐 = 1

2 .
Furthermore thenotaƟon𝔼 [𝑆𝛼 (𝑏, 𝑐, 𝛾)]denotes themixture of the distribuƟons of𝑆𝛼 (𝑏, 𝑐, 𝛾)

w.r.t. ℙ given thatweallow (for someof) those parameters to beℱ-measurable non-constant
funcƟons defined on Ω. Finally, the weak limits appearing below, are mixtures of mulƟ-
variate 𝛼-stable distribuƟons where the (random) spectral measures (for their definiƟon see
Paragraph 2 ofMikosch and Straumann [11]) are characterized by the acƟonof the set of non-
trivial linear transformaƟons on the limiƟng random vectors due to Theorem 2.3 of Gupta
et. al. [5].

ProposiƟon 1. Under AssumpƟons 1-4 for any 𝜆 ∈ ℝ𝑞 − {0𝑞×1}

( 1
[𝑛𝑟𝑛𝜅𝑛]1/𝛼

𝑛
∑
𝑖=1

𝑋𝑖𝑣𝑖𝜉𝑖,
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋𝑇 𝑟
𝑖 ) ⇝ (𝜁, 𝕍)

and
𝑛𝛼−1𝛼

[𝑟𝑛𝜅𝑛]1/𝛼
(𝛽𝑛 − 𝛽0) ⇝ 𝕍−1𝜁

where
𝜆𝑇 𝑟𝜁 ∽ 𝔼 [𝑆𝛼 (𝑏𝜆,ℐ, 𝑐𝜆,ℐ, 0)] ,

𝑏𝜆,ℐ = 𝑏𝔼[∣𝜆𝑇𝑟𝐾0∣𝛼 sgn(𝜆𝑇𝑟𝐾0)/ℐ]
𝔼[|𝜆𝑇𝑟𝐾0|𝛼] , 𝑐𝜆,ℐ = 𝑐𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ] and (𝑟𝑛)𝑛∈ℕ is defined by

(𝑛𝜅𝑛𝑟𝑛)−1/𝛼 ≑ sup {𝑥 > 0 ∶ 𝑥𝛼ℎ(𝑥−1) ≤ 1/𝑛𝜅𝑛} .

Remark 1. a. The result on the joint weak convergence generalizes current results on
stable weak limits of marƟngale transforms, in the sense that it allows for the non-
existence of the 𝛼-moment of the scalling process of the transform, a fact that is to
our knowledge novel in the relevant literature. In this respect the rate contains infor-
maƟon on the tail properƟes of the distribuƟon of 𝜉0, as well as on the asymptoƟc
behavior of ℎ⋆. In the special case where ℎ⋆, ℎ converge we obtain the standard rate
𝑛1/𝛼. The rate of the OLSE also contains the aforemenƟoned informaƟon and it is
slower than 𝑛1/𝛼 when ℎ⋆ and/or ℎ diverge.

b. The existence of (𝑟𝑛)𝑛∈ℕ can be established by analogous arguments to the ones in
the proof of Theorem 2.6.5 in Ibragimov and Linnik .

c. The weak limit of the transform is a mulƟvariate mixture of 𝛼-stable distribuƟons. The
mixture is trivial iff ℐ is trivial, i.e. (𝐾𝑖)𝑖∈ℕ is ergodic, whence 𝕍 is a constant posiƟve
definite matrix. When the laƩer is not trivial, the stability and the locaƟon parameters
of the limit are independent ofℐ. 𝛼 is also independent of𝐾0. In any case the spectral

2 Which is equivalently defined by its characterisƟc funcƟon 𝛾𝑖𝑡 − 𝑐|𝑡|𝛼 (1 − 𝑖𝑏 sgn(𝑡) tan ( 1
2 𝜋𝛼)).
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measures depends only on the relevantmoments of𝐾0 and the analogous parameters
of the distribuƟon of 𝜉0. Analogously the spectral measures of themixing distribuƟons
characterizing the asymptoƟc distribuƟon of the OLSE obviously depend also on 𝕍−1.

d. When 𝛼 = 2, 𝜁 ∽ 𝔼 [𝑁 (0𝑞, 𝕍)], whence √ 𝑛𝑟𝑛𝜅𝑛
(𝛽𝑛 − 𝛽0) ⇝ 𝔼 [𝑁 (0𝑞, 𝕍−1)]. If

𝜅𝑛and/or 𝑟𝑛 diverge the rate is slower than the usual
√𝑛. For example suppose that

𝜉0 ∼ 𝑡2, and (𝑣2
𝑖 )𝑖∈ℕis a staƟonary ergodic condiƟonal variance process in the context

of some GARCH typemodel with finite secondmoment. Then some calculaƟons imply
that √ 𝑛

ln 𝑛 (𝛽𝑛 − 𝛽0) ⇝ 𝔼 [𝑁 (0𝑞, 2𝔼 (𝑣2
0) 𝕍−1)].

e. It can be easily proven that the results above are valid when 𝛼 ∈ (0, 1) since the
local representaƟon in AssumpƟon 1 holds also in this case. Then a simple inspec-
Ɵon implies that 𝛽𝑛 is asymptoƟcally non-Ɵght and thereby inconsistent. The same
would be true when 𝛼 = 1 which as a maƩer of fact would be a more preplexed case
since it would involve a different local representaƟon as well as a sequence of translat-
ing random vectors. Since those cases would not be relevant to the discussion below
about the limit properƟes of Wald-type tests,3 we do not pursue them to economize
on space.

f. Suppose that for some 𝛽⋆ ∈ ℝ𝑞 we have that 𝛽0,𝑛 = 𝛽0 + [𝑟𝑛𝜅𝑛]1/𝛼

𝑛 𝛼−1𝛼
𝛽⋆. The previous

readily imply that under the law implied by 𝛽0,𝑛

𝑛𝛼−1𝛼

[𝑟𝑛𝜅𝑛]1/𝛼
(𝛽𝑛 − 𝛽0) ⇝ 𝛽⋆ + 𝕍−1𝜁, 𝜆𝑇 𝑟 (𝛽⋆ + 𝕍−1𝜁) ∽ 𝔼 [𝑆𝛼 (𝑏𝜆,𝒥, 𝑐𝜆,𝒥, 𝜆𝑇 𝑟𝛽⋆)]

a result useful for the derivaƟon of power properƟes under local alternaƟves for the
tesƟng procedures discussed below.

Proof. By the “Main Lemma for Sequences” of Jakubowski [7], the Cramer-Wold device,
Doob’s LLN, and AssumpƟon 4 for the first result it suffices that

1
[𝑛𝑟𝑛𝜅𝑛]1/𝛼

𝑛
∑
𝑖=1

𝜆𝑇 𝑟𝑋𝑖𝑣𝑖𝜉𝑖 ⇝ 𝜆𝑇 𝑟𝜁.

This follows if for all 𝑡 ∈ ℝ

𝑞𝑛 (𝑡) ≑
𝑛

∏
𝑖=1

𝔼 (exp (𝑖𝑡 1
[𝑛𝑟𝑛𝜅𝑛]1/𝛼

𝜆𝑇 𝑟𝑋𝑖𝑣𝑖) /ℱ𝑖)

converges in probability to the cf of

𝑆𝛼 (𝛽𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 sgn(𝜆𝑇 𝑟𝐾0)/ℐ]
𝔼 [|𝜆𝑇 𝑟𝐾0|𝛼] , 𝑐𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ] , 0) .

3 It is easy to see that in those cases Lemma 6 in the Appendix would seize to hold.
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Suppose that the representaƟon in AssumpƟon 1 holds for all 𝑡 ∈ (−𝑡0, 𝑡0), where 𝑡0 > 0.
Then for any 𝑡 ≠ 0, defining the event

𝐶𝑛,𝐾 ∶= {𝜔 ∈ Ω ∶ |𝜆𝑇 𝑟𝑋𝑖𝑣𝑖| ≤ 𝑀𝑡 (𝑛𝑟𝑛) 1𝛼 , ∀𝑖 = 1, … , 𝑛}

where 𝑀𝑡 < 𝑡0
|𝑡| , we have that ℙ(𝐶𝑐

𝑛,𝑀) → 0 by Lemma 5 as 𝑛 → ∞. Due to AssumpƟon 1
if 𝜔 ∈ 𝐶𝑛,𝑀

log 𝑞𝑛 (𝑡) = − 𝑐|𝑡|𝛼
𝑛𝑟𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣
𝛼 ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼 ∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣

−1) (1 − 𝑖𝛽 sgn(𝑡𝜆𝑇 𝑟𝑋𝑖) tan (1
2𝜋𝛼)) .

NoƟce that for any 𝛿, 𝜖 > 0, and 𝑉𝑖 = ∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣
𝛼
or 𝑉𝑖 = ∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣

𝛼 sgn(𝑡𝜆𝑇 𝑟𝑋𝑖)

ℙ ⎛⎜⎜
⎝

ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)
𝑛𝜅𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖| ∣
ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼 ∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣

−1)
ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)

− 1∣ > 𝛿⎞⎟⎟
⎠

≤ ℙ (𝐵𝜖
𝑛

ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)
𝑟𝑛

1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

|𝑉𝑖| > 𝛿)

+ℙ (𝐶𝜖
𝑛

ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)
𝑟𝑛

𝑞𝑛 > 𝛿, max
𝑖≤𝑛

∣𝑡𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣ ≤ 𝜖)

where

𝐵𝜖
𝑛 = 𝜖𝛼 max

1
[𝑛𝑟𝑛𝜅𝑛]1/𝛼 ≤𝑥≤ 1𝜖

∣
[𝑛𝑟𝑛𝜅𝑛] 𝑥𝛼ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼 𝑥)

[𝑛𝑟𝑛𝜅𝑛] ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)
− 𝑥𝛼∣ ,

and due to the UCT for regularly varying funcƟons (see Theorem 1.5.2 of Bingham et al. [2])
𝐵𝜖

𝑛 → 0. If ℎ converges then

𝐶𝜖
𝑛 = max

1𝜖 ≤𝑥<+∞
∣
ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼 𝑥)
ℎ ([𝑛𝑟𝑛𝜅𝑛]1/𝛼)

− 1∣ → 0, 𝑞𝑛 = 1𝑛𝜅𝑛
∑𝑛

𝑖=1 |𝑉𝑖|.

If ℎ diverges since the pair 𝑚, 𝑔 exists, there exists a 𝐶 > 0,

𝐶𝜖
𝑛 = 𝑔 ([𝑛𝑟𝑛𝜅𝑛]1/𝛼) → 0, 𝑞𝑛 = 𝐶𝜅𝑛

.

In every case the result follows from AssumpƟons 1, 3 and Lemma 4. The second follows
from the previous and the CMT.
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3 ApplicaƟon: Robust Self-Normalized Subsampling Wald Tests

In the premise of the linear model

𝑦𝑖 = 𝑋𝑖𝛽 + 𝜉𝑖𝑣𝑖, 𝛽 ∈ ℝ𝑞

consider for some 𝛽⋆ ∈ ℝ𝑞 the hypothesis structure

𝐇0 ∶ 𝛽0 = 𝛽⋆,
𝐇𝐚𝐥𝐭 ∶ 𝛽0 ≠ 𝛽⋆.

Also, given the notaƟon established in Remark 1.6 consider the local alternaƟve hypothesis

𝐇𝐚𝐥𝐭,𝐧 ∶ 𝛽0 ≔ 𝛽0,𝑛 = 𝛽⋆ + [𝑟𝑛𝜅𝑛]1/𝛼

𝑛𝛼−1𝛼
𝛽⋆.

NoƟce that in our AssumpƟon framework the asymptoƟc exactness of the usual Wald test
for this structure, based on the asymptoƟc chi-squared distribuƟon becomes generally inval-
idated. ProposiƟon 1 provides with a way to robusƟfy the procedure as the following Lemma
implies.

Lemma 1. Given AssumpƟon 1, if 𝛼 < 2 suppose that (𝐾𝑖)𝑖∈ℕ is ergodic. Then,

𝑛
∑
𝑖=1

( 𝑋𝑖𝑣𝑖𝜉𝑖
[𝑛𝑟𝑛𝜅𝑛]1/𝛼

, 𝑣2
𝑖 𝜉2

𝑖
[𝑛𝑟𝑛𝜅𝑛]2/𝛼

) ⇝ (𝜁, 𝜍) ,

where 𝜍 = 1 when 𝛼 = 2. When 𝛼 ≠ 2, 𝜍 ∽ 𝑆𝛼/2 which has non-negaƟve support and the
distribuƟon of (𝜁, 𝜍) is absolutely conƟnuous w.r.t. the Lebesgue measure on ℝ2. Also under
the law implied by 𝛽0,𝑛

𝜂𝑛 ≑ 𝑛 (𝛽𝑛 − 𝛽⋆)𝑇 𝑟 ∑𝑛
𝑖=1 𝑋𝑖𝑋𝑇 𝑟

𝑖
∑𝑛

𝑖=1 𝜖2
𝑖

(𝛽𝑛 − 𝛽⋆) ⇝ (𝛽⋆ + 𝜁)𝑇 𝑟 𝕍−1 (𝛽⋆ + 𝜁)
𝜁2

,

where 𝜖𝑖 ≑ 𝑦𝑖 − 𝑋𝑇 𝑟
𝑖 𝛽𝑛, 𝑖 = 1, … , 𝑛.

Proof. When 𝛼 = 2 we have that ∑𝑛
𝑖=1

𝑣2
𝑖 𝜉2

𝑖𝑛𝑟𝑛𝜅𝑛
⇝ 1 in a similar spirit to the proofs of lem-

mata 2 and 4. When 𝛼 ≠ 2 the result follows as in the proofs of Theorems 2.1.c,e and 3.1 of
Hall and Yao [6] by noƟng that ℐ is trivial.

The last result obviously provides with the asymptoƟc distribuƟon of the self-normalized
Wald test under 𝐇0. NoƟce that if 𝛼 = 2 the limit distribuƟon is 𝜒2

𝑞 even in the cases where
the second moments of both processes do not exist and/or we have mixed normality due to
the stochasƟcity of 𝕍. Hence in this case the classical test remains asymptoƟcally exact and
consistent. Furthermore it is easy to see that it is locally asymptoƟcally unbiased but w.r.t.
the sequences described in 𝐇𝐚𝐥𝐭,𝐧.

This seizes to be true when 𝛼 ≠ 2. Hence under our assumpƟon framework in order for
a feasible tesƟng procedure to be established, an approximaƟon of the relevant quanƟles of
the aforemenƟoned distribuƟon is needed. The following algorithmprovides thewell known
modificaƟon based on subsampling.
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Algorithm 1. The tesƟng procedure consists of the following steps:

a. Evaluate 𝜂𝑛 at the original sample value.

b. For 0 < 𝑐𝑛 ≤ 𝑛generate subsamples from the original observaƟons ( 𝑌𝑖, 𝑋𝑖 )𝑖=𝑡,…,𝑡+𝑐𝑛−1
for all 𝑡 = 1, 2, … , 𝑛 − 𝑐𝑛 + 1.

c. Evaluate the test staƟsƟc on each subsample thereby obtaining 𝜂𝑛,𝑐𝑛,𝑡 for the subsam-
ple indexed by 𝑡 = 1, 2, … , 𝑛 − 𝑐𝑛 + 1.

d. Approximate the cdf of the asymptoƟc distribuƟon under the null of 𝜂𝑛 by 𝑠𝑛,𝑐𝑛
(𝑦) =

1
𝑛−𝑐𝑛+1 ∑𝑛−𝑐𝑛+1

𝑡=1 1 (𝜂𝑛,𝑐𝑛,𝑡 ≤ 𝑦) and for 𝑎 ∈ (0, 1) calculate

𝑞𝑛,𝑐𝑛
(1 − 𝑎) = inf

𝑦
{𝑠𝑛,𝑐𝑛

(𝑦) ≥ 1 − 𝑎} .

e. Reject 𝐇𝟎 at 𝑎 iff 𝜂𝑛 > 𝑞𝑛,𝑐𝑛
(1 − 𝑎).

In order to derive the asymptoƟc properƟes below we finally employ the following stan-
dard assumpƟon that restricts the asymptoƟc behaviour of (𝑐𝑛)𝑛∈ℕ.

AssumpƟon 5. (𝑐𝑛)𝑛∈ℕ, possibly depending on ( 𝑌𝑖, 𝑋𝑖 )𝑖=1,…,𝑛, saƟsfies

ℙ (𝑙𝑛 ≤ 𝑐𝑛 ≤ 𝑢𝑛) → 1

where (𝑙𝑛) and (𝑢𝑛) are real sequences such that 1 ≤ 𝑙𝑛 ≤ 𝑢𝑛 for all𝑛, 𝑙𝑛 → ∞ and 𝑢𝑛𝑛 → 0
as 𝑛 → ∞.

The main result is the following.

ProposiƟon 2. Suppose that AssumpƟons 1 and 5 as well as the the provisions of Lemma 1
hold. For the tesƟng procedure described in Algorithm 1 we have that

a. If 𝐇𝟎 is true then
lim

𝑛→∞
ℙ (𝜂𝑛 > 𝑞𝑛,𝑏𝑛

(1 − 𝑎)) = 𝑎.

b. If 𝐇𝐚𝐥𝐭 is true then
lim

𝑛→∞
ℙ (𝜂𝑛 > 𝑞𝑛,𝑏𝑛

(1 − 𝑎)) = 1.

c. If 𝐇𝐚𝐥𝐭,𝐧 is true then

lim
𝑛→∞

ℙ (𝜂𝑛 > 𝑞𝑛,𝑏𝑛
(1 − 𝑎)) = ℙ ((𝛽⋆ + 𝜁)𝑇 𝑟 𝕍−1 (𝛽⋆ + 𝜁)

𝜁2
> 𝑞 (1 − 𝑎)) ,

where 𝑞 (1 − 𝑎) is the (1 − 𝑎) quanƟle of the distribuƟon of 𝜁𝑇𝑟𝕍−1𝜁
𝜁2

.
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Proof. The first and third result follow by a direct applicaƟon of Theorem 3.5.1.i,iii respec-
Ɵvely of PoliƟs et al. [12], and this is enabled by the results of Lemma 1. For the second result
noƟce that if 𝐇𝐚𝐥𝐭 is true then due to Lemmata 1, 6, 𝜂𝑛 = 𝑘1,𝑛 + 𝑘𝑇 𝑟

2,𝑛 𝑛 𝛼−1𝛼

𝜅
1𝛼𝑛 𝑟

1𝛼𝑛
(𝛽0 − 𝛽⋆) +

( 𝑛 𝛼−1𝛼

𝜅
1𝛼𝑛 𝑟

1𝛼𝑛
)

2
‖𝛽0 − 𝛽⋆‖2 where 𝑘1,𝑛, ∥𝑘2,𝑛∥ = 𝑂𝑝 (1) and thereby it diverges to +∞.

The results in the previous proposiƟon imply that the usual subsampling modificaƟon of
the Wald test remains robust under our current assumpƟon framework. More specifically
asymptoƟc exactness and consistency remain invariant even when the limiƟng distribuƟons
are stable with 𝛼 > 1, while the rates also involve sequences that are asymptoƟcally equiv-
alent to diverging truncated moments of the scalling processes involved in the relevant mar-
Ɵngale transforms. Furthermore the test also remains locally asymptoƟcally unbiased when
the sequences of local alternaƟves are appropriately modified.

A possibly interesƟng extension would be the derivaƟon of suchlike results even in cases
where the limiƟng distribuƟons are mixtures and 𝛼 < 2. This would require a non-trivial
extension of the results applied in the proof of Theorem 3.1 of Hall and Yao [6] and is thereby
leŌ for future research.
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Appendix-Auxiliary Lemmata

Lemma 2. Under AssumpƟon 1.b-c for any 𝛿 > 0

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

𝑣𝛼
𝑖 − 1∣ ≥ 𝛿) → 0.

Proof. If𝜅𝑛 converges the result follows fromBirkhoff’s LLN. If not, then, leƫng 𝑣⋆
𝑖 ≑ 𝑣𝛼

𝑖 1{𝑣𝑖≤(𝑛𝜅𝑛)1/𝛼}

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

(𝑣𝛼
𝑖 − 𝜅𝑛)∣ ≥ 𝛿)

≤
𝔼 [(𝑣⋆

0)2]
𝑛𝜅2𝑛𝛿2 +

2 ∑𝑛
𝑖=1 (𝑛 − 𝑡 + 1) 𝔼 [𝑣⋆

0𝑣⋆
𝑖 ]

𝑛2𝜅2𝑛𝛿2 + ℙ ( max
𝑖=1,…,𝑛

𝑣𝑖 > (𝑛𝜅𝑛)1/𝛼) + 𝑜 (1) ,

where the last display follows from the inequality of Chebychev. Due to the covariance
summability condiƟon in AssumpƟon 1.b the second term of the last display converges to
zero. For the first term we have that

𝔼 [(𝑣⋆
0)2]

𝑛𝜅2𝑛
= − 𝑛

𝜅𝑛
ℙ (𝑣𝛼

0 > 𝑛𝜅𝑛) + 2
𝜅2𝑛𝑛 ∫

𝑛𝜅𝑛

0
𝑥ℙ (𝑣𝛼

0 > 𝑥) 𝑑𝑥

which converges to zero again due to 1.b. Likewise

ℙ ( max
𝑖=1,…,𝑛

𝑣𝑖 > (𝑛𝜅𝑛)1/𝛼) ≤ 𝑛ℙ (𝑣0 > (𝑛𝜅𝑛)1/𝛼) → 0.
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Lemma 3. Let 𝜆 ∈ ℝ𝑞 − {0𝑞×1}. Under AssumpƟon 1.c, for any 𝛿 > 0 and any 0 ≤ 𝛼 ≤ 2,

ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ]∣ ≥ 𝛿) → 0,

ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 sgn (𝜆𝑇 𝑟𝑋𝑖) − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 sgn (𝜆𝑇 𝑟𝐾0) /ℐ]∣ ≥ 𝛿) → 0,

and

ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋𝑇 𝑟
𝑖 − 𝔼 [𝐾0𝐾𝑇 𝑟

0 /ℐ]∣ ≥ 𝛿) → 0.

Proof. For the first result we have that for any 𝛿 > 0 due to the Triangle Inequality

ℙ ( 1
𝑛 ∣

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖 + 𝜆𝑇 𝑟𝐴𝑖∣
𝛼 −

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖∣
𝛼∣ ≥ 𝛿) ≤ ℙ ( 1

𝑛
𝑛

∑
𝑖=1

∣𝜆𝑇 𝑟𝐴𝑖∣
𝛼 ≥ 𝛿)

and the laƩer converges to zero due to the Cezaro Mean Theorem. Then the result follows
fromDoob’s LLN for staƟonary sequences due to AssumpƟon 1.c. Analogously for the second
result we have that

ℙ ( 1
𝑛 ∣

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖 + 𝜆𝑇 𝑟𝐴𝑖∣
𝛼 sgn (𝜆𝑇 𝑟𝑋𝑖) −

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖∣
𝛼 sgn (𝜆𝑇 𝑟𝑋𝑖)∣ ≥ 𝛿)

≤ ℙ ( 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐴𝑖∣
𝛼 ≥ 𝛿) .

Furthermore

ℙ ( 1
𝑛 ∣

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖∣
𝛼 [sgn (𝜆𝑇 𝑟𝑋𝑖) − sgn (𝜆𝑇 𝑟𝐾𝑖)]∣ ≥ 𝛿) ≤ ℙ ( 1

𝑛
𝑛

∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖∣
𝛼 ∣𝜆𝑇 𝑟𝐴𝑖∣ ≥ 𝛿) ,

since the sgn funcƟon is Lipschitz. From AssumpƟon 1.c and Holder’s inequality, the proba-
bility in the rhs is less than or equal to

ℙ ⎛⎜
⎝

( 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐾𝑖∣
𝛼+∆)

𝛼
𝛼+∆

( 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝐴𝑖∣
𝛼+∆

∆ )
∆

𝛼+∆

≥ 𝛿⎞⎟
⎠

and the result follows from Doob’s LLN for staƟonary sequences and the Cezaro Mean Theo-
rem due to AssumpƟon 1.b-c. For the last result we see that due to sub-mulƟplicaƟvity and
Cauchy-Schwarz inequality,

ℙ ( 1
𝑛

𝑛
∑
𝑖=1

∥𝐾𝑖𝐴𝑇 𝑟
𝑖 ∥ ≥ 𝛿) ≤ ℙ (√ 1

𝑛
𝑛

∑
𝑖=1

‖𝐾𝑖‖2√ 1
𝑛

𝑛
∑
𝑖=1

‖𝐴𝑖‖2 ≥ 𝛿
Δ)

and the result follows again from Doob’s LLN for staƟonary sequences and the Cezaro Mean
Theorem due to AssumpƟon 1.b-c.
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Lemma 4. Let 𝜆 ∈ ℝ𝑞 − {0𝑞×1}. Under AssumpƟon 1.a-d, for any 𝛿 > 0

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣
𝛼 − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ]∣ ≥ 𝛿) → 0,

and

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣
𝛼 sgn (𝜆𝑇 𝑟𝑋𝑖) − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 sgn (𝜆𝑇 𝑟𝐾0) /ℐ]∣ ≥ 𝛿) → 0.

Proof. For arbitrary 𝛿 > 0,

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣
𝛼 − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ]∣ ≥ 𝛿)

≤ ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣𝛼

𝑖 − 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼∣ ≥ 𝛿

2)

+ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 − 𝔼 [∣𝜆𝑇 𝑟𝐾0∣𝛼 /ℐ]∣ ≥ 𝛿

2) .

The second term in the rhs converges to zero due to Lemma 3. For the first one noƟce that

ℙ (∣ 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣𝛼

𝑖 − 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣⋆

𝑖 ∣ ≥ 𝛿)

≤ 𝑛ℙ (|𝑣0| > (𝑛𝜅𝑛)1/𝛼) = 𝑜 (1) ,
due to AssumpƟon 1.a-c. We also have that due to 1.b-d and Cezaro’s Theorem

sup
𝑛≥1

1
𝑛

𝑛
∑
𝑖=1

𝔼 ∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝔼 (𝑣⋆

𝑖 )
𝜅𝑛

≤ 𝔼 (∣𝜆𝑇 𝑟𝐾0∣𝛼) + sup
𝑛≥1

1
𝑛

𝑛
∑
𝑖=1

𝔼 (∣𝜆𝑇 𝑟𝐴𝑖∣
𝛼) ≤ +∞.

Furthermore, for any 𝜖 > 0

1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

𝔼 [𝔼 ((∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣⋆

𝑖 1{|𝜆𝑇𝑟𝑋𝑖|𝛼𝑣⋆
𝑖>𝜖𝑛𝜅𝑛}) /𝜎 (𝑋𝑖))]

= 1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

𝔼 [∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 1{|𝜆𝑇𝑟𝑋𝑖|𝛼>𝜖}𝔼 (𝑣𝛼

𝑖 1
{ (𝜖𝑛𝜅𝑛)1/𝛼

∣𝜆𝑇𝑟𝑋𝑖∣ <𝑣𝑖≤(𝑛𝜅𝑛)1/𝛼}
)]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼 ⎡⎢⎢
⎣

∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 1{|𝜆𝑇𝑟𝑋𝑖|𝛼>𝜖}

ℎ⋆ ((𝑛𝜅𝑛)1/𝛼) − ℎ⋆ ( (𝜖𝑛𝜅𝑛)1/𝛼

|𝜆𝑇𝑟𝑋𝑖| )
𝜅𝑛

⎤⎥⎥
⎦
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and the laƩer converges to zero due to dominated convergence, AssumpƟon 3 and the fact
that ℎ⋆ is slowly varying at infinity. Hence there exists some 𝜖𝑛 → 0 for which

lim
𝑛→∞

1
𝑛𝜅𝑛

𝑛
∑
𝑖=1

𝔼 [∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣⋆

𝑖 1{|𝜆𝑇𝑟𝑋𝑖|𝛼𝑣⋆
𝑖>𝜖𝑛𝑛𝜅𝑛}] = 0

and thereby, due to Theorem 1 of Sung [14]

1
𝑛

𝑛
∑
𝑖=1

(∣𝜆𝑇 𝑟𝑋𝑖∣
𝛼 𝑣⋆

𝑖 − 𝔼 (𝑣⋆
𝑖 )

𝜅𝑛
) = 𝑜𝑝 (1) .

The result then follows from Lemma 2. A similar consideraƟon provides the second result.

Lemma 5. Under AssumpƟon 1.a-d, for any 𝑀 > 0

ℙ (max
𝑖≤𝑛

∣𝜆𝑇 𝑟𝑋𝑖𝑣𝑖∣ > 𝑀 (𝑛𝑟𝑛𝜅𝑛)1/𝛼) → 0.

Proof. See Cline and Samorodnitsky [3].

Lemma 6. Under AssumpƟon 1, for any 𝛿 > 0,

ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

[(𝜉𝑖𝑣𝑖)2 − (𝜖𝑖)2]∣ ≥ 𝛿) → 0

where 𝜖𝑖 ≑ 𝑦𝑖 − 𝑋𝑇 𝑟
𝑖 𝛽𝑛.

Proof. For arbitrary 𝛿 > 0 and 𝛽0,𝑛as in Remark 1.6, due to submulƟplicaƟvity

ℙ (∣ 1
𝑛

𝑛
∑
𝑖=1

[(𝜉𝑖𝑣𝑖)2 − (𝑦𝑖 − 𝑋𝑇 𝑟
𝑖 𝛽𝑛)2]∣ ≥ 𝛿)

≤ ℙ (∣∥𝛽𝑛 − 𝛽0,𝑛∥2 1
𝑛

𝑛
∑
𝑖=1

‖𝑋𝑖‖2∣ ≥ 𝛿
2) + ℙ (∣∥𝛽𝑛 − 𝛽0,𝑛∥

𝑛
𝑛

∑
𝑖=1

∥𝑋𝑇 𝑟
𝑖 𝑣𝑖𝜉𝑖∥∣ ≥ 𝛿

4) ,

and the laƩer probability converges to zero due to ProposiƟon 1 and Lemma 3.
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