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Abstract

We are occupied with a simple example concerning the limit theory of the OLSE when the innova-
tion process of the regression has the form of a martingale transform the i.i.d. part of which lies
in the domain of attraction of an «-stable distribution, the scalling sequence has a potentially di-
verging truncated ae-moment and the regressor process is asymptotically stationary. We obtain rates
that reflect the stability parameter as well as the slow variations present in the aforementioned se-
quences and mixtures of stable limits. We also derive asymptotic exactness, consistency as well as
local asymptotic unbiaseness under appropriate local alternatives for relevant Wald tests derived by
subsampling.
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1 Introduction

In this note we are occupied with a simple example concerning the limit theory of the OLSE
when the innovation process of the regression has the form of a martingale transform the
i.i.d. part of which lies in the domain of attraction of an a-stable distribution, the scall-
ing sequence has a potentially diverging truncated a-moment and the regressor process is
asymptotically stationary.
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Our motivation is twofold. First we are interested in the development of limit theorems
to stable limits when the rate contains also information about the aforementioned diver-
gence whilst the scalling sequence itself has a multiplicative structure. Second we are inter-
ested in the question of asymptotic robustness of Wald tests based on subsampling in such
a framework.

The issue of the limit theory for parameter estimators in linear models, autoregressions,
moving average processes e.t.c. with heavy tailed innovations is vast. We incompletely men-
tion only Knight [9] as well as Kokoszka and Taqqu [10] and direct to Hall and Yao [6] (p. 291)
for a comprehensive list of references. We note that in the relevant literature the innovation
process is usually assumed i.i.d. following a stable distribution. In the present paper we al-
low for stationary martingale transforms with marginals that belong to the general domain
of attraction of a stable law. This implies among others that the rates that we obtain are
generally more complex. Furthermore, even though our assumption framework does not
allow for ARMA type of regressors® our framework allows for the extraction of limits that are
mixtures of stable distributions with common stability parameters.

The limit theory for regularly varying martingale transforms with applications to the limit
theory of the QMLE in GARCH-type modes, has been the subject of a literature consisting
of papers such as the ones of Hall and Yao [6], Mikosch and Straumann [11] or Surgailis
[15]. There the martingale transform is consisted by an i.i.d. process supposed to lie in
the domain of (normal in the latter case) attraction of an a-stable distribution while the
scalling process is a stationary ergodic sequence with either high enough moments and/or
obeying some mixing condition. The limits are « stable distributions in some cases partially
characterized. Arvanitis and Louka [1] generalize the aforementioned results by retaining
only stationarity for the scalling process while requiring only the @ moment to exist, albeit
with some restrictions to the marginal regular variation of the i.i.d. process when higher
moments do not exist for the scalling process. They obtain mixed a-stable distributions while
they are able to obtain analogous results in some trivial cases of non-stationarity.

In the present note we rely on a limit theorem partially involving an analogous transform.
We generalize the aforementioned result in the following ways. First we allow for the scalling
process to have itself a multiplicative structure in order to avoid the i.i.d. assumption for the
innovation process of the regression model. Second we allow for the latter process to be in a
strong sense only asymptotically stationary. Third, we allow for the scalling process to have
a slowly varying trunctated a-moment that is allowed to diverge. In this respect we obtain
more complex rates than in the aforementioned literature. We derive our results by allowing
a more restrictive framework for the regular variation of the i.i.d. sequence in comparison
to the aforementioned paper.

The assumption framework, the aforementioned limit theorem and the limit theory of
the relevant OLSE is presented in the following section. In the final one, based on the pre-
vious, we derive asymptotic exactness, consistency as well as local asymptotic unbiaseness
under appropriate local alternatives for relevant Wald type testing procedures derived by
subsampling.

! except for the case of the domain of attraction to the normal law.
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2 Assumption Framework and OLSE Limit Theory

We employ the framework of an underlying complete probability space (2, #,P). In what
follows, we are among others interested in the asymptotic behavior of the partial sums of
a martingale transform type process of the form (Xivifi)iew The assumption framework
presented below, essentially specifies properties of the constituent factor processes.
Assumption 1. (&), is stationary. The log-characteristic function of &, has the following
representation locally around zero:

—c|t|*h(1/1t]) (1 — ibsgn(t) tan <%7TO(>> .

€ (1,2], b € [-1,1], c € R, his slowly varying at infinity. If h diverges then there exist
h(tx)
h(zx)

enough x, where m is increasing while t~*m (t) is eventually bounded and g (z) — 0 as

r — oo. lim h(x) > 0 if it exists.

m and g such that ‘ 1’ < m(t) g (x) for all t in a neighborhood of infinity and large

T— 00

The representation in Assumption 1 holds iff the distribution of £ lies in the domain of
attraction of an a-stable law (Theorem 2.6.5 of Ibragimov and Linnik [8]). « is the index of
stability, b the skewness and c the scale parameter. The aforementioned Tauberian theorem
implies that «, b, ¢ and the slowly varying function h represent the asymptotic behavior of
the tails of the distribution of {,. The existence of the pair m, g is ensured if & belongs to
the Zygmund class of slowly varying functions (see Theorem 1.5.5 of Bingham et. al. [2])

and xh’(x), is Lebesgue almost everywhere bounded. Examples are C’% ford, €

[0,1], 6, > 0, C(In'™ (exp (1) + 2))® for § € [0,1]. In any case the restrictions on the
behavior of h imply that £, does not have moments of order greater or equal to c.

Assumption 2. (v, ). is a stationary, ergodic R, . -valued process, for which
P(vgy>xz)=0(P(|&|" > ), asz — +oo.

Define (k,,) _ by

neN
()7 = sup > 0500 (o) < ).

forh* (z) = E [Ugl{vigm}}- If k,, diverges then
Z Cov (v§, v}) = o (nk2) ,
i=1

for vy = Ugl{vié(nﬂn)l/a}.
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(v;)ien is (part of) the scaling process of the transform. v, has a regularly varying tail of
index at least —a and its « moment may not exist. In this case, i.e. when «,, diverges, the
covariance summability condition facilitates the derivation of a Generalized LLN that extends
Theorem 2 in Section VII.7 of Feller [4] (see Lemmata 2 and 4 in the Appendix). It is implied
by the previous and uniform mixing for the process with summable coefficients, by Theorem
1.4.(b) of Rio [13]. The existence of (k;);c) is ensured by the right-continuity of 2* as in
Theorem 2 in Section VII.7 of Feller [4].

Assumption3. X, = K,+A.. <Ki>z'ew is a stationary R4-valued process and for some A > (),
E (||K0 72 < +oo). For J the invariant o-field of the process andV = E (K,KI"/7)

rank [V] = q, P a.s.

<Ai>iEN is a R9-valued process, such that A, AT™ is uniformly integrable and converges to 0
P a.s.

Assumption 3 specifies the asymptotically stationary regressor process as the pointiwise
sum of a stationary process and an asymptotically ,-degenerate at zero process. The LLN
of Doob implies convergence of the mean of the squared stationary part to the relevant
non degenerate conditional expectation. The existence of at least the second moment of
X, cannot be easily dispensed, except for the case where o = 2, due to the restriction that
shoud be imposed on the distribution of KiKiTT by the aforementioned Generalized LLN and
our interest for the asymptotic behavior of 1 E?:l X, XIT. The condition on the boundness
of the sequence of second moments facilitates among others results on the variation of the
“tails” of the (vector) martingale transform (X,v,&;),cn-

Assumption 4. &, is independent of ; = o (¢;_v;_; X, ;,j > 0), and conditionally on F ,,

&, v;, X, are mutually independent Vi € IN.

i—j Vi i—js
Assumption 4 establishes the dependence structure between the processes involved. It
enables the use of the Principle of Conditioning of Jakubowski [7]. It does not preclude non-
contemporaneous dependence between the (v;),-, and the (X,),, processes.
Consider (y;), _,, specified by

y; = X]I"By + &vys

where 3, € R?. Given the random element (y;, Xi)?:1 we are interested in the asymptotic
behavior of the OLSE for 3, i.e.

-1 -1
Bn = (Z XiXiTT> ZXiyi = fo + (Z XiXiTT> ZXivz' i
=1 =1 =1 =1

This is established in the following proposition the basic part of which is essentially a joint
limit theorem for the partial sums of a martingale transform and the quadratic variation of
the regressors. In what follows S, (3, ¢, ) denotes the a-stable distribution on R with b, ¢
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as above and location parameter v.2 When o = 2, necessarily 3 = 0 and the resulting
distribution is the N (7, 2¢). In such a case and without loss of generality, we assume that
CcC= bR
Furthermore the notation E [S,, (b, ¢, 7v)] denotes the mixture of the distributions of S, (b, ¢, )

w.r.t. P giventhat we allow (for some of) those parameters to be F-measurable non-constant
functions defined on (). Finally, the weak limits appearing below, are mixtures of multi-
variate a-stable distributions where the (random) spectral measures (for their definition see
Paragraph 2 of Mikosch and Straumann [11]) are characterized by the action of the set of non-
trivial linear transformations on the limiting random vectors due to Theorem 2.3 of Gupta

et. al. [5].

Proposition 1. Under Assumptions 1-4 for any A € R% — {qu1}

1 - 1< Tr
(WleivigiaﬁleiXi ) 2 (G, V)

and .
n= 4

i (B = Bo)  VT(

L
where

ATTCAE [S, (by,g:62,9:0)]

E[|AT"Ko|™ sgn(ATTKy) /T e | ; .

byg =bEL LIl L, e\ s = cE [|NT"K,|" /9] and (r,,) _ is defined by

(nss, )~V = sup {z>0: 2% (27) < Ynw, } .

Remark 1. a. The result on the joint weak convergence generalizes current results on
stable weak limits of martingale transforms, in the sense that it allows for the non-
existence of the a-moment of the scalling process of the transform, a fact that is to
our knowledge novel in the relevant literature. In this respect the rate contains infor-
mation on the tail properties of the distribution of £, as well as on the asymptotic
behavior of h*. In the special case where h*, h converge we obtain the standard rate
n'/®. The rate of the OLSE also contains the aforementioned information and it is
slower than n/® when h* and/or h diverge.

b. The existence of (7’n)nEN can be established by analogous arguments to the ones in
the proof of Theorem 2.6.5 in Ibragimov and Linnik .

c. The weak limit of the transform is a multivariate mixture of a-stable distributions. The
mixture is trivial iff 7 is trivial, i.e. (Ki)iew is ergodic, whence V is a constant positive
definite matrix. When the latter is not trivial, the stability and the location parameters

of the limit are independent of 7. cvis also independent of K. In any case the spectral

2 Which is equivalently defined by its characteristic function vit — c|¢t|* (1 — ibsgn(t) tan (37a)).
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measures depends only on the relevant moments of K, and the analogous parameters
of the distribution of £,. Analogously the spectral measures of the mixing distributions
characterizing the asymptotic distribution of the OLSE obviously depend also on V1.

d. Whena = 2,{ « E[N (0,,V)], whence Vit (Bn = By) » E [N (0, V"H)]. If
k,and/or r,, diverge the rate is slower than the usual y/n. For example suppose that
&y ~ ty,and (v?)iewis a stationary ergodic conditional variance process in the context
of some GARCH type model with finite second moment. Then some calculations imply

that /72 (8, — By) ~ E [N (0,4, 2E (v3) V71)].

e. It can be easily proven that the results above are valid when o € (0, 1) since the
local representation in Assumption 1 holds also in this case. Then a simple inspec-
tion implies that [3,, is asymptotically non-tight and thereby inconsistent. The same
would be true when a = 1 which as a matter of fact would be a more preplexed case
since it would involve a different local representation as well as a sequence of translat-
ing random vectors. Since those cases would not be relevant to the discussion below
about the limit properties of Wald-type tests,> we do not pursue them to economize
on space.

f. Suppose that for some 3 € R? we have that 3, ,, = (3, + [t ] . The previous

readily imply that under the law implied by 60’71

(B Bo) v BT VTG AT (B + VIO ~ E [S, (by s 00,0 ATTBY))]

(ki)

a result useful for the derivation of power properties under local alternatives for the
testing procedures discussed below.

Proof. By the “Main Lemma for Sequences” of Jakubowski [7], the Cramer-Wold device,
Doob’s LLN, and Assumption 4 for the first result it suffices that

1 n
s D OATTX w8, ATTC

[nr, K, =

L 1
H [E exp —V)\TTX,L‘/U,L' /71
=1 [nrnﬁn] :

converges in probability to the cf of

Tr @ Tr
5 (5[E [ A7 Ko|™ sgn(ATTKy) /7] CeE [NTTE|" /9] ,0> :

This follows if forall ¢t € R

E AT Ko|"]

3 It is easy to see that in those cases Lemma 6 in the Appendix would seize to hold.
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Suppose that the representation in Assumption 1 holds for all ¢t € (—t, t,), where t, > 0.
Then for any ¢t # 0, defining the event

Ql~

Ch = {w € Q: N7 X,v;| < M, (nr,) NVi=1,... ,n}

where M, < %1', we have that IP(C',CL’M) — 0 by Lemma 5 as n — oo. Due to Assumption 1

loggq, (t) = — cltl” Z ‘t)\T’"Xivi‘a h <[m’n/in]l/a |t)\T’"Xivi|_1> (1 —iBsgn(tATTX,) tan (%7?04)) .

Ny Ky =

Notice that for any §,€ > 0, and V, = [tAT"X,v,|" or V; = [IAT" X, v;|" sgn(¢tAT"X;)

h(nr, k)7 |t)\T7"Xin-|_1>
h ([m“n/fn]l/a)

(s ) 1
S[P(Bn . — Z|m|>5>

h(m’ Ky,

nK, T, >ZW| <

—1{ >4

b ([ ren) )
+P | C;, " 4y > 5,m<ax AT X0, < e

n

where X
[nr,k,] %h ([nrnmn] /o :1;)

[nr, Kk, h ([m‘n/{n]l/o‘)

«

— X ,

1 <z<l
—]1/_a_gc_€

[nrprn

and due to the UCT for regularly varying functions (see Theorem 1.5.2 of Bingham et al. [2])
B, — 0. If h converges then

h ([nrnmn]l/a :U)
h ([ m,) ")

If h diverges since the pair m, g exists, there exists a C' > 0,

Cy = max —1

1<z<too

=0, ¢, = iy 2o, Vil

Cs = g(Inrr,)"") =0, g, = <.

n

In every case the result follows from Assumptions 1, 3 and Lemma 4. The second follows
from the previous and the CMT. ]
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3 Application: Robust Self-Normalized Subsampling Wald Tests

In the premise of the linear model
=X,0+&v,;, BeR?

consider for some 3, € RY the hypothesis structure

H: 8y = .,
H,i : By # B.-
Also, given the notation established in Remark 1.6 consider the local alternative hypothesis
_ [ ) "
alt ,n 50 - BOn B + ﬁ

Notice that in our Assumption framework the asymptotic exactness of the usual Wald test
for this structure, based on the asymptotic chi-squared distribution becomes generally inval-
idated. Proposition 1 provides with a way to robustify the procedure as the following Lemma
implies.

Lemma 1. Given Assumption 1, if o < 2 suppose that (Ki)iew is ergodic. Then,

9 X0:8; v2E2
i—zl <[nrnmn]%’ [nrn/{n]%> o (Gis)s

where ¢ = 1 when o = 2. When o # 2, ¢ - S&/2 which has non-negative support and the
distribution of ((, <) is absolutely continuous w.r.t. the Lebesgue measure on R?. Also under
the law implied by 3, ,,

. T 2y XX B+ V(B +Q)
Nn =1 (8, — B,) an_ﬁ*)% & )

wheree; =y, — X "B, i=1,...,n.

Proof. When a@ = 2 we have that Z - ,_,u -+ 1 in a similar spirit to the proofs of lem-
mata 2 and 4. When « # 2 the result foIIows as in the proofs of Theorems 2.1.c,e and 3.1 of
Hall and Yao [6] by noting that J is trivial. ]

The last result obviously provides with the asymptotic distribution of the self-normalized
Wald test under Hy,. Notice that if « = 2 the limit distribution is x2 even in the cases where
the second moments of both processes do not exist and/or we have mixed normality due to
the stochasticity of V. Hence in this case the classical test remains asymptotically exact and
consistent. Furthermore it is easy to see that it is locally asymptotically unbiased but w.r.t.
the sequences described in Hj; ;.

This seizes to be true when « # 2. Hence under our assumption framework in order for
a feasible testing procedure to be established, an approximation of the relevant quantiles of
the aforementioned distribution is needed. The following algorithm provides the well known
modification based on subsampling.
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Algorithm 1. The testing procedure consists of the following steps:
a. Evaluate n),, at the original sample value.

b. For0 < ¢, < ngenerate subsamples from the original observations ( Y;, X, ), e, —1
forallt=1,2,...,n—¢c, + 1L

c. Evaluate the test statistic on each subsample thereby obtaining Mhnse, t for the subsam-
pleindexedbyt=1,2,...,n—c, + L.

d. Approximate the cdf of the asymptotic distribution under the null of n,, by Spc, (y) =
T 21:10"“ 1 (nn,cmt < y) and for a € (0, 1) calculate

n.c, (1—a) = inf {$ne, () >1—a}.

e. Reject Hy at aiffn, > q, . (1—a).

In order to derive the asymptotic properties below we finally employ the following stan-

dard assumption that restricts the asymptotic behaviour of (Cn)neN'

Assumption 5. (c,,) _, possibly depending on (Y;, X );_y ., satisfies
P, <ec,<u,) —1

where (,,) and (u,,) are real sequencessuchthat1 <, <, foralln,l,, - coand % — 0
asn — oo.

The main result is the following.

Proposition 2. Suppose that Assumptions 1 and 5 as well as the the provisions of Lemma 1
hold. For the testing procedure described in Algorithm 1 we have that

a. If Hy is true then
lim P (nn > ¢y, (1— a)) = a.

n—oo

b. If H,,, is true then
lim P (0, > q,,, (1-a)) =1.

c. IfH is true then

alt,n

n—oo

* Tr y—1 *
B+ V(B +<>>q(1_a)>’

lim P (1, > ¢, (1—a)) =P ( G

where q (1 — a) is the (1 — a) quantile of the distribution of _gTer;g.
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Proof. The first and third result follow by a direct application of Theorem 3.5.1.i,iii respec-

tively of Politis et al. [12], and this is enabled by the results of Lemma 1. For the second result
a—1

notice that if HL,j is true then due to Lemmata 1, 6, ,, = ky,, + k3 27 (B, — B,) +

I I
Ky Tr

1 2
< "Q“l) 180 — B.]% where ky ,,|[k2 ]| = O, (1) and thereby it diverges to +cc. O

1
Ky T

The results in the previous proposition imply that the usual subsampling modification of
the Wald test remains robust under our current assumption framework. More specifically
asymptotic exactness and consistency remain invariant even when the limiting distributions
are stable with a > 1, while the rates also involve sequences that are asymptotically equiv-
alent to diverging truncated moments of the scalling processes involved in the relevant mar-
tingale transforms. Furthermore the test also remains locally asymptotically unbiased when
the sequences of local alternatives are appropriately modified.

A possibly interesting extension would be the derivation of suchlike results even in cases
where the limiting distributions are mixtures and @ < 2. This would require a non-trivial
extension of the results applied in the proof of Theorem 3.1 of Hall and Yao [6] and is thereby
left for future research.

References

[1] Arvanitis and Louka. (2015). Martingale Transforms with Mixed Stable Limits and the
QMLE for Conditionally Heteroskedastic Models. mimeo.

[2] Bingham N.H., Goldie C.M. and J.L. Teugels. (1992). Regular Variation. Encyclopedia of
Mathematics and Its Applications, Vol. 27, C.U.P.

[3] Cline, D. B., & Samorodnitsky, G. (1994). Subexponentiality of the product of indepen-
dent random variables. Stochastic Processes and their Applications, 49(1), 75-98.

[4] Feller, W. (1971). An Introduction to Probability Theory and its Applications, (Vol. 2).
New York: Wiley.

[5] Gupta, A. K., Nguyen, T. T., & Zeng, W. B. (1994). Conditions for stability of laws with all
projections stable. Sankhya: The Indian Journal of Statistics, Series A, 438-443.

[6] Hall P. and Yao Q. (2003). Inference in ARCH and GARCH Models with Heavy Tailed Er-
rors. Econometrica, 71, 285-317.

[7] Jakubowski A. (2012). Principle of Conditioning Revisited. Demonstratio Mathematica,
Vol. XLV, No 2.

[8] lbragimov I.A. and Yu. V. Linnik (1971), Independent and Stationary Sequences of Ran-
dom Variables. WOLTERS-NOORDHOFF PUBLISHING GRONINGEN.



3 Application: Robust Self-Normalized Subsampling Wald Tests 11

[9] Knight, K. (1993). Estimation in dynamic linear regression models with infinite variance
errors. Econometric Theory, 9(04), 570-588.

[10] Kokoszka, P. S., & Taqqu, M. S. (1996). Parameter estimation for infinite variance frac-
tional ARIMA. The Annals of Statistics, 24(5), 1880-1913.

[11] Mikosch, T., & Straumann, D. (2006). Stable limits of martingale transforms with appli-
cation to the estimation of GARCH parameters. The Annals of Statistics, 493-522.

[12] Politis, D. N., J. P. Romano and M. Wolf (1999). Subsampling. Springer New York.

[13] Rio, E. (2013). Inequalities and limit theorems for weakly dependent sequences.
MIMEO. url: https://hal.archives-ouvertes.fr/cel-00867106/document.

[14] Sung, S. H. (1999). Weak law of large numbers for arrays of random variables. Statistics
& probability letters, 42(3), 293-298.

[15] Surgailis, D. (2008). A Quadratic ARCH(oo) Model with Long Memory and Levy Stable
Behavior of Squares. Advances in Applied Probability, 40:1198-1222, 2008.

Appendix-Auxiliary Lemmata

Lemma 2. Under Assumption 1.b-c for any § > 0

u>< 25)60.

Proof. If k,, converges the result follows from Birkhoff’s LLN. If not, then, letting v} = vf‘l{

dl )

E|(v5)°] 227, (n—t+1)E [v5]] 1

=1 ? ] /o
nk2 42 i n?k2 42 +F <z_rr11axn vi > () ) +o(l),

where the last display follows from the inequality of Chebychev. Due to the covariance

summability condition in Assumption 1.b the second term of the last display converges to
zero. For the first term we have that

E [(v5)?]

2
nk;,

n

1

=1

Ui§<n'k"’n)1/a}

1 n
- o
e 207 =)

=1

2
n Kpn

n 2 nKk,
=——PF (v§ >nmn)+—/ P (v > x) dx
K
0
which converges to zero again due to 1.b. Likewise

P (Amax v; > (n/in>1/a> <nP (vo > (nmn)l/a) — 0.

1=1,...,n
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Lemma 3. Let A € R? — {0, }. Under Assumption 1.c, for any § > 0 and any 0 < a < 2,
P ( > 5) — 0,
1 & p o

P ( =3 IATTX| " sgn (ATTX,) — E [|NTTE| " sgn (ATTK) /]| > 5) — 0,

N3

P ( > 5) — 0.

Proof. For the first result we have that for any § > 0 due to the Triangle Inequality
Pl >0 | <P li!)\T’”A‘]“>5

n B B N R
and the latter converges to zero due to the Cezaro Mean Theorem. Then the result follows

from Doob’s LLN for stationary sequences due to Assumption 1.c. Analogously for the second
result we have that
> 5>

1
[p(_
n

Furthermore

1
P(—
n

since the sgn function is Lipschitz. From Assumption 1.c and Holder’s inequality, the proba-
bility in the rhs is less than or equal to

LS ATrX = E [T | /9]
n=

and

LS X XTI F (KoK /9]
n=

i INTT K, + AT, | — Zn: IANTTE |

=1 =1

D MK 4+ AT AT sen (ATTXG) = D IATTEG | sgn (ATTX)
=1 =1

n

1 Tr o
S[P<;ZIA Ay 25).

=1

Z AT K| [sen (ATTX;) — sgn (ATTK,)]

=1

=1

—_—

1 n A a+A 1 n Gt A MAA
P (—Z]/\TTKAM) (—ZIAT%IT) > 9
= =

and the result follows from Doob’s LLN for stationary sequences and the Cezaro Mean Theo-
rem due to Assumption 1.b-c. For the last result we see that due to sub-multiplicativity and
Cauchy-Schwarz inequality,

1 : 1 , 1 n ) 5
(E3ariza) <e (25 2 4= )

and the result follows again from Doob’s LLN for stationary sequences and the Cezaro Mean
Theorem due to Assumption 1.b-c. L]

l - Tr ATy
25>gu><n2\A K| AT 4| > 6

)
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Lemma 4. Let A € R? — {0, }. Under Assumption 1.a-d, for any § > 0
( > 5) -0
1 n

— > M X0, sgn (AT X)) — E [|ATT K| sgn (ATTKG) /7]

nK
> 5)

n j=1
RN o 5
. ;:1 AT X “I> 5)

1 0
= >—=1.
+u><n _2>

The second term in the rhs converges to zero due to Lemma 3. For the first one notice that

1 - r & a 1 - r @ %
P(E;W X% oS —n—ﬁn;w X;|" v} 25)

<P (Jug| > (nr,)"") = 0(1),

due to Assumption 1.a-c. We also have that due to 1.b-d and Cezaro’s Theorem

gx1

Tr x @ Tr @
S E

and

(

Proof. For arbitrary 6 > 0,

)

1 a a
—Z\AT’” vl = E[AT K| /7]

nk,, =
<

Z INTT XY — E (AT | /]

=1

sup ~ Z[EWTX\ EUD < (W) + oup - ST (W7A%) < o

n>1 M Ky

Furthermore, forany e > 0

1 & o
m ; E {[E ((‘)\TrXZ‘ U;1{|)\TTXi|O‘U§>enﬁn}) /U (Xz))]

_ 1 - T @
= n_/{n;l}: ‘)\ TXZ-| 1{\>\TT'Xi\a>e}[E (U?l{wﬁ<vi<<nﬁ )1/a} ]

w ((nr)”) b ()]

1 o
ZEZ[E AT L arex s
i=1
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and the latter converges to zero due to dominated convergence, Assumption 3 and the fact
that 1™ is slowly varying at infinity. Hence there exists some ¢, — 0 for which

nh—{gomz “/\TTX‘ U; 1{|)\T”X\ vi>e nnn}] 0

and thereby, due to Theorem 1 of Sung [14]

%Z (‘)\TTXZ-‘Q Ui _I/il}: (Uz)> =o, (1) '
=1 n

The result then follows from Lemma 2. A similar consideration provides the second result.

[
Lemma 5. Under Assumption 1.a-d, for any M > 0
P <m<ax INT" X ;| > M (nrnﬂon)l/a> — 0.
Proof. See Cline and Samorodnitsky [3]. L]

Lemma 6. Under Assumption 1, for any § > 0,

P(% (€0~ (e)?] 25> 0

Proof. For arbitrary > 0 and f3 ,,as in Remark 1.6, due to submultiplicativity
1 Zn: [(€v:)? = (y; — XT78,)%]| = 6
n — 7 n —

F( YK )w(”ﬁ ﬁw”zuxw )

-1

and the latter probability converges to zero due to Proposition 1 and Lemma 3. ]

n

wheree; =y, — X7,

Hﬁn -
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