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Abstract

In this paper we suggest panel data unit root tests which allow for serial correlation in the disturbance
terms and structural breaks in the individual e¤ects or linear trends of panel data models. The limiting
distributions of the tests are derived under the assumption that the time-dimension of the panel (T )
is �xed, while the cross-section (N) grows large. Thus, they are appropriate for short panels, where T
is small. The tests consider the cases of a known and unknown date break. For the latter case, the
distribution of the tests is nonstandard. The paper gives an analytic form of this distribution, based on
the maximum of T -elliptically contoured distributions, which faciliates the application of the tests. The
paper proves the consistency of the tests. Monte Carlo evidence suggest that our tests have size which
is very close to its nominal level and satisfactory power in small-T panels. This is true even for cases
where the degree of serial correlation is large and negative, where single time series unit root tests are
found to be oversized.
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1 Introduction

A vast amount of work has been recently focused on drawing inference about unit roots based on dynamic

panel data models (see, Hlouskova and Wagner (2006), for a more recent survey). Since many empirical

panel data studies rely on short panels, of particular interest is testing for a unit root in dynamic panel data

model when the time dimension of the panel, denoted as T , is �xed (�nite) and its cross-section, denoted as

N , grows large (see, e.g. Harris and Tzavalis (1999, 2004), Hadri (2000), Binder et al (2005) and De Wachter

et al (2007)). These tests have better small-T sample performance, compared to large-T panel unit root tests

(see, e.g., Levin et al (2002), Im et al (2003)), given that they assume �nite T: Implementations of �xed-T

panel unit root tests include many interesting applications in economics such as testing for the economic

convergence hypothesis [see de la Fuente (1997), for a survey], the purchasing power parity hypothesis under

di¤erent economic (or exchange rate) regimes [see Culver and Papell (1999), inter alia] and the e¤ects of

liberalization policies on trade (see, e.g., Warziarg and Welch (2004)).

In this paper, we extend the �xed-T panel data unit roots test statistics of Harris and Tzavalis (1999)

to allow for a common structural break in the deterministic components of panel data models, namely

their individual e¤ects or linear trends of a known and unknown date. This is done in a dynamic panel

data framework allowing for serial correlation of the disturbance terms. This extension is very useful given

plethora of evidence supporting the view that the presence of unit roots in economic time series can be

falsely attributed to the existence of structural breaks in their deterministic components (see, e.g., Perron

(2006), for a survey). On this front, the panel data approach o¤ers an interesting and unique perspective

that it is not shared by single univariate tests. The cross-sectional dimension of the panel can provide useful

sample information which can help to distinguish the type of shifts (breaks) in the deterministic components

of the panel from the e¤ects of stochastic permanent shocks. As pointed out by Bai (2010), this framework

can more accurately trace out structural break points of the panel data. Allowing for serial correlation in

the unit root tests is critical due to its inherent nature in economic time series data, as is stated in Schwert

(1989), Said and Dickey (1984) and Phillips (1987). The paper assumes that the maximum order of serial

correlation of the disturbance terms of the panel data model is a function of the time dimension T . Both the

variance and the serial correlation e¤ects in the disturbance terms of the panel data models are allowed to

be heterogenous across the individual units of the panel. This assumption makes the tests applicable under

quite general panel data generating processes, observed in reality.

There are a few studies in the literature which suggest �xed-T panel data unit root tests allowing for

a common structural break in the deterministic components of the panel data model (see, e.g., Carrion-

i-Silvestre et al (2002) and Tzavalis (2002), or more recently, Karavias and Tzavalis (2012a), and Hadri

(2012)). These studies however suggest unit root tests using the simple AR(1) panel data model as an

auxiliary regression model, which may not be operational in practice due to the assumption of no serial

correlation made for the disturbance terms. As recently is noted by De Blander and Dhaene (2011), this

may lead to erroneous inference about unit roots if there is substantial serial correlation in the disturbance

terms. The main goal of the above studies is to pass ideas how to test for unit roots in the presence of
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breaks of known or unknown date, using the AR(1) panel data model as an example. In addition to the

above, there are also studies in the literature which suggest panel unit root tests allowing for a common

structural break, but they assume that the time-dimension of the panel; T , is large and grows faster than

its cross-section, denoted as N (see, e.g., Carrion-i-Silvestre et al (2005), Bai and Carrion-i-Silvestre (2009),

and Kim (2011)). These are appropriate for large-T panel data sets. Application of this category of panel

unit root tests to small-T panels will lead to serious size distortions and critical power reductions in testing

the null hypothesis of unit roots against its stationary alternative (see Harris and Tzavalis (1999)). As shown

in Karavias and Tzavalis (2012a), the existence of a break in the data generating process requires panel

data sets with a quite large time-dimension, T (e.g. T > 100), so as the large-T panel unit root tests to have

satisfactory small sample properties.

The sequential panel data test statistics suggested by the paper for the case of an unknown break are in

line to those suggested by Andrews (1993), Zivot and Andrews (1992), Perron (1997), Perron and Vogelsang

(1998), inter alia), for single time series. In this paper the limiting distribution of these test statistics can be

obtained as the minimum value of a �nite number of correlated variates; T �2 for the panel data model with

individual e¤ects and T�3 for this model allowing also for individual linear trends. This distribution is shown

analytically based on recent results of Arellano-Valle and Genton (2008), who have derived the analytic form

of the probability density function of the maximum of absolutely continuous dependent random variables.

The analytic form of this distribution enables us to derive critical values of the suggested test statistics

without having to rely on Monte Carlo analysis, as in Karavias and Tzavalis (2012a). Thus, it substantially

facilitates application of the tests in practice.

The paper is organized as follows. In Section 2, we derive the limiting distributions of the panel unit root

test statistics allowing for a known, or an unknown, date break under the assumption that the disturbance

terms of panel data models are white noise processes. This analysis helps us to better understand the

testing principles of the test statistics. In Section 3, we generalize the results of Section 2 to allow for serial

correlation in the disturbance terms, while in Section 4.1 we extend the tests to allow also for individual

linear trends. In Section 4.2, we show how to carry out the tests when there is a break in the individual

e¤ects of panel data models under the null hypothesis. Section 5 conducts a Monte Carlo simulation study

to examine the small sample performance of the tests. Section 6 concludes the paper. All the mathematical

derivations are provided in the Appendix of the paper.

2 Test statistics and their limiting distribution

In this section, we present panel unit root test statistics for the cases that the break date is known and

unknown. This is done under the assumption that the disturbance terms of the AR(1) panel data model

considered are independently, identically normally distributed (NIID). Extensions of the tests to the more

general case of serially correlated and heterogenous disturbance terms are made in the next section.
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2.1 Known date break

Consider the following AR(1) nonlinear dynamic panel data model:

yit = a
(�)
it (1� ') + 'yit�1 + uit; i = 1; 2; ::; N , (1)

where ' 2 (�1; 1], a(�)it = a
(1)
i if t � T0 and a(2)i if t > T0, where T0 denotes the time-point of the sample,

referred to as break-point; where a common break in the individual e¤ects of panel data model (1) �i occurs,

for all cross-section units of the panel i. a(1)i and a(2)i denote the individual e¤ects of model (1) before and

after the break point T0, respectively. Throughout the paper, we will denote the fraction of the sample that

this break occurs as �, i.e. � = T0
T 2 I =

�
2
T ;

3
T ; :::::;

T�1
T

	
.

Under the null hypothesis of a unit root (i.e. ' = 1), model (1) reduces to the pure random walk model

yit = yit�1 + uit, for all i, while, under the alternative of stationarity (i.e. ' < 1), it considers a common

structural break in individual e¤ects ai. The above speci�cation of the null and the alternative hypotheses

is very common in single time series inference procedures allowing for structural breaks (see, e.g., Zivot

and Andrews (1992), Andrews (1993), Perron and Vogelsang (1998). The main focus of these procedures

is to diagnose whether evidence of unit roots can be spuriously attributed to the ignorance of structural

breaks in nuisance parameters of the data generating processes like individual e¤ects ai. The common break

assumption across all units of the panel i can be attributed to a monetary regime shift, which is common

across all economic units, or to a structural economic shock which is independent of the disturbance terms

uit, like a credit crunch or an exchange rate realignment. As aptly noted by Bai (2010), even if each series of

the panel data model has its own break point, the common break assumption across i is useful in practice not

only for its computational simplicity, but also because it allows for estimating the mean of possibly random

break points. This mean will have an economic policy interest.

The AR(1) panel data model (1) can be employed to carry out unit root tests allowing for a structural

break in individual e¤ects a(�)it based on the within groups least squares (LS) estimator of autoregressive

coe¢ cient of ', denoted as '̂(�). This estimator is also known as least square dummy variable (LSDV)

estimator (see, e.g., Baltagi (1995), inter alia). Under the null hypothesis of ' = 1, it implies:

'̂(�) � 1 =
"
NX
i=1

y0i;�1Q
(�)yi;�1

#�1 " NX
i=1

y0i;�1Q
(�)ui

#
, (2)

where yi = (yi1; :::; yiT )
0 is a (TX1)-dimension vector collecting the time series observations of dependent

variable yit of each cross-section unit of the panel i, yi;�1 = (yi0; :::; yiT�1)
0 is vector yi lagged one period

back, ui = (ui1; :::; uiT ) is a (TX1)-dimension vector of disturbance terms uit and Q(�) is the (TXT ) �within�

transformation matrix of the individual series of the panel data model, yit. Let us de�ne X(�) �
�
e(1); e(2)

�
to be a matrix of deterministic components used by the LSDV estimator to demean the levels of series yit,

for all i; where e(1) and e(2) are (TX1)-column vectors whose elements are de�ned as follows: e(1)t = 1 if

t � T0 and 0 otherwise, and e
(2)
t = 1 if t > T0 and 0 otherwise. Then, matrix Q(�) will be de�ned as

Q(�) = IT �X(�)(X(�)0X(�))�1X(�)0, where IT is an identity matrix of dimension (TXT ).
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Panel data unit root testing procedures based on above LSDV estimator '̂(�) have the very interesting

property that, under the null hypothesis, are invariant (similar) to the initial conditions of the panel yi0 and,

after appropriate speci�cation of matrix X(�), to the individual e¤ects of the panel data model, as will be

seen in Section 4. The latter happens if matrix X(�) also contains broken linear trends. Similarity of the

tests with respect the initial conditions of the panel does not require any mean or covariance stationarity

conditions on the panel data processes yit, as assumed by generalized method of moments, or conditional

and unconditional maximum likelihood based panel data unit root inference procedures (see, e.g., Hsiao et al

(2002) and Madsen (2008)). These conditions may be restrictive in practice. However, '̂(�) is an inconsistent

(asymptotic biased) estimator of ' due to the within transformation of the data, which wipes o¤ individual

e¤ects a(�)it (or initial conditions yi0 under the null hypothesis ' = 1) while allowing for a structural break

under the alternative hypothesis of stationarity, ' < 1. Thus, the test statistics that we suggest testing for

hypothesis ' = 1 will rely on a correction of estimator '̂(�) for its inconsistency (asymptotic bias) due to

the above transformation of the data (see, e.g., Harris and Tzavalis (1999, 2004)). To derive the limiting

distribution of these tests, we make the following assumption about the sequence of the disturbance terms

fuitg.

Assumption 1: (a1) fuig constitutes a sequence of independent identically distributed (IID) (TX1)-

dimension vectors with means E(ui) = 0 and variance-autocovariance matrices �i � E(uiu0i) = �2uIT < +1

and nonzero, for all i. (a2) E(uityio) = E
�
uita

(1)
it

�
= E

�
uita

(2)
it

�
= 0 and 8 i 2 f1; 2; :::; Ng; t 2 f1; 2; :::; Tg:

(a3) E
�
u4it
�
< +1; E(y4i0) < +1; E

�
(a
(1)
it )

4
�
< +1; E

�
(a
(2)
it )

4
�
< +1 and E

�
y2i0

�
a
(1)
it

�2�
< +1;

E

�
y2i0

�
a
(2)
it

�2�
< +1:

Condition (a1) of Assumption 1 enables us to derive the limiting distribution of a panel data unit root

test statistic based on estimator '̂(�) under the null hypothesis ' = 1 by applying standard asymptotic

theory for IID processes, while (a2) and (a3) are simple regularity conditions under which the test statistic

can be proved that is consistent under the alternative hypothesis, ' < 1. The following theorem provides

the limiting distribution of such a test statistic, based on estimator '̂(�) corrected for its bias. For analytic

convenience, this is done under the assumption that uit is also normally distributed, i.e. uit � NIID(0; �2u);

for all i and t:

Theorem 1 Let uit � NIID(0; �2u), then, under the null hypothesis ' = 1 and known �, we have

Z(�) � bV (�)�1=2�̂(�)pN  '̂(�) � b̂(�)

�̂
(�)
� 1
!

d�! N (0; 1) (3)

as N !1, where
b̂(�)

�̂
(�)

� �̂2utr(�
0Q(�))

1
N

PN
i=1 y

0
i;�1Q

(�)yi;�1
(4)

is a consistent estimate of the asymptotic bias of '̂(�) which, under the null hypothesis, is given as b(�)

�(�)
=

�2utr(�
0Q(�))

�2utr(�
0Q(�)�)

, �̂2u is a consistent estimator of variance �2u under the null hypothesis, which is given as

�̂2u =
PN

i=1�y
0
i	

(�)�yi
Ntr(	(�))

where � is the di¤erence operator and 	(�) is a (TXT )-dimension matrix having in
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its main diagonal the corresponding elements of matrix �0Q(�), and zeros elsewhere, and V (�) is a variance

function given as

V (�) = �4uF
(�)0(KT 2 + IT 2)F

(�), (5)

where F (�) = vec(Q(�)��	(�)0); KT 2 is a (T 2XT 2)-dimension commutation matrix and IT 2 is a (T 2XT 2)-

dimension identity matrix. The proof is given in the appendix.

The test statistic Z(�), given by Theorem 1, can be easily implemented to test unit root hypothesis

' = 1 based on the tables of the standard normal distribution. Theorem 1 shows that the asymptotic bias

of estimator '̂(�) stems from the "within" transformation matrix Q(�), which induces correlation between

vectors yi;�1 and ui (see, e.g. Nickel (1981)). Since disturbance terms uit are IID, the correlation between

yi;�1 and ui comes only from the main diagonal elements of the variance-autocovariance matrices of uit,

de�ned by Assumption 1 as �i � E(uiu
0
i) = �2uIT , for all i. The above bias can be estimated by the

nonparametric estimator b̂(�)

�̂
(�) and, thus, it can be subtracted from '̂(�) � 1 to obtain a test statistic which

is normally distributed and is asymptotically net of nuisance parameter e¤ects. To test the null hypothesis

' = 1, this statistic is based on the o¤-diagonal elements of the sample moments of variance-autocovariance

matrices �i which are equal to zero, i.e. E(uituis) = 0 for s 6= t. This can be better seen by writing test

statistic Z(�) as
1p
N

NX
i=1

u0i(�
0Q(�) �	(�))ui =

1p
N

NX
i=1

tr
h
(�0Q(�) �	(�))uiu0i

i
, (6)

(see Appendix) where (�0Q(�) � 	(�)) is matrix with zeros in its main diagonal due to the subtraction

of matrix 	(�) from �0Q(�); implying tr
�
(�0Q(�) �	(�))E(uiu0i)

�
= 0, for all i.1Matrix 	(�) allows us to

capture the correlation e¤ects between vectors yi;�1 and ui, which are induced by the "within" transformation

of the data through matrix Q(�) and, thus, generate the bias of LSDV estimator '̂(�). Subtracting 	(�) from

�0Q(�) enables us to adjust '̂(�) for this bias. The adjusted LS estimator relies on sample moments of

variance-autocovariance �i with zero elements, i.e. E(uituis) = 0, for s 6= t. These moments are weighted

by the elements of matrix �0Q(�) � 	(�). They can be consistently estimated under the null hypothesis

' = 1. Writing analytically matrix �0Q(�) � 	(�) can be easily seen that the elements of this matrix put

more weights to sample moments of E(uituis), for s 6= t, with s and t de�ned immediately before break

point, T0.

The next theorem establishes the consistency of test statistic Z(�).

Theorem 2 Under conditions (a1)-(a3) of Assumption 1, it can be proved that

lim
N!+1

P (Z(�) < za j Ha) = 1; � 2 I, (7)

where za is the critical value of standard normal distribution at signi�cance level a. The proof is given in

the appendix.

1Note that matrix 	(�) is used to estimate �2u, based on estimator �̂
2
u =

PN
i=1�y

0
i	

(�)�yi
Ntr(	(�))

where � is the di¤erence operator.
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2.2 Unknown break point

The results of Theorem 1 are based on the assumption that the break point T0 is known. Next, we relax this

assumption and propose a test statistic of the null hypothesis ' = 1 which, under the alternative hypothesis

of stationarity, allows for a common structural break in the individual e¤ects of model (1) of an unknown

date. As in single time series literature (see, e.g., Zivot and Andrews (1992) and Perron and Vogelsang

(1998)), we will view the selection of the break point as the outcome of minimizing the standardized test

statistic Z(�), given by Theorem 1, over all possible break points of the sample, after trimming out the initial

and �nal parts of the time series observations of the panel data. The minimum value of test statistics Z(�),

for all � 2 I; de�ned as z � min
�2I

Z(�), will give the least favorable result of the null hypothesis ' = 1. Let

�̂min denote the break point at which the minimum value of Z(�), over all � 2 I; is obtained. Then, the null

hypothesis will be rejected if we have:

Z(�̂min) < cmin, (8)

where cmin denotes the size a left-tail critical value of the limiting distribution of min
�2I

Z(�). The following

theorem enables us to tabulate the critical values of this distribution at any signi�cance (size) level a.

Theorem 3 Let condition (a1) of Assumption 1 hold and uit is normally distributed. Then, under the null

hypothesis ' = 1 and unknown �, we have

z � min
�2I

Z(�)
d�! � � min

�2I
N(0;�) (9)

as N !1, where � � [��s] is the variance-covariance matrix of the test statistics Z(�), with elements ��s
given by the following formula:

��s =
F (�)0(KT 2 + IT 2)F

(s)p
F (�)0(KT 2 + IT 2)F (�)

p
F (s)0(KT 2 + IT 2)F (s)

, (10)

where � and s denote two di¤erent fractions of the sample that the break can occur. See Appendix for a

proof.

The result of Theorem 3 implies that critical values of the limiting distribution of the standardized test

statisticmin
�2I

Z(�), denoted cmin, can be obtained from the distribution of the minimum value of a �xed number

of T � 2 correlated normal variables Z(�) with covariance matrix �. Since minfZ( 2T ); Z( 3T ):::; Z(T�1T )g =

maxf�Z( 2T );�Z( 3T ):::;�Z(T�1T )g, we can use the distribution of the maximum of normal variables �Z(�) to

calculate critical value cmin for a signi�cance level a, i.e.

P (� < cmin) = P (�� > �cmin) = a. (11)

The integral function P (� > �cmin) = a can be calculated numerically based on the probability density

function (pdf) of ��. This density function has been recently derived by Arellano-Valle and Genton (2008)
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for the more general case of the maximum of absolutely continuous dependent random variables of elliptically

contoured distributions. For the case of normal random variables, it is given as

f� (x) =
X
�

�(x;��;��;�)�(xeT�3;���;�;�����;�); x 2 R, (12)

where eT�3 is a (T �3)-column vector of unities, �(�) and �(�) are the pdf and cdf of the normal distribution

with arguments given as follows:

���;�(x) = ��� + (x� ��)���;�(��;�)�1 and �����;� = ����� � ���;��0��;�(��;�)�1;

where � = (���
...��)

0 and � =

24 ���;�� ���;�

��;�� ��;�

35 are respectively the vector of means and the variance-
autocovariance matrix of the (T � 2)-column vector Z which consists of random variables Z(�), for � 2 I,

partitioned as Z = (Z(��)
...Z(�))

0
, where Z(��) is a (T -3)-column vector consisting of the remaining elements

of Z excluding Z(�):

The above pdf of random variable ��, de�ned as f� (x), is a mixture of the normal marginal densities

�(x;��;��;�) corresponding to all possible break fractions of the sample �. These densities are weighed with

the cdf values of the (T -3)-column vector xeT�3, given �(xeT�3;���;�(x);�����;�), giving the probability

that �Z(�) takes the largest value across all � (implying that Z(�) takes its minimum value) and the

remaining variables of vector Z, collected in vector Z(��), having smaller values.

The consistency of the test given by Theorem 3 follows immediately from Theorem 2, which proves

the consistency of Z(�) for a known date break. This can be seen by noting that if, under the alternative

hypothesis ' < 1, test statistic Z(�) converges to minus in�nity, for � 2 I, then so does their minimum.

3 Generalizing the test statistics for serially correlated and het-

erogenous disturbance terms

In this section, we generalize the test statistics presented in the previous section to allow for serially correlated

and heterogenous disturbance terms uit, for all i. Due to the �xed-T dimension of panel data model (1)

and the allowance for a common structural break in the individual e¤ects �(�)it , the maximum order of serial

correlation, denoted as pmax, considered by our tests will be a function of T . This will be assumed to be

the same for both sample intervals before and after break point T0. Later on, we will give a table of values

of pmax which do not depend on the location of the break, T0, and thus can be proved very useful for the

application of our tests, in practice.

To derive the limiting distribution of test statistics based on estimator '̂(�) under the above more general

assumptions of panel data sets, we will make the following assumption about the sequence of the disturbance

terms fuig:

Assumption 2: (b1): fuig constitutes a sequence of independent random vectors of dimension (TX1)
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with means E(ui) = 0 and variance-autocovariance matrices E(uiu0i) = �i � [
i;ts], where 
i;ts = E(uituis) =

0 for s = t + pmax + 1; :::; T and t < s: (b2): The average population covariance matrix �N � 1
N

PN
i=1 �i

is bounded away from zero in large samples: �
N;tt > �0 for some �0 > 0 and for all N > N0; for some

N0; and for at least one t 2 f1; :::; Tg: (b3): The 4 + �-th population moments of �yi; i = 1; :::; N , are

uniformly bounded i.e. for every real (TX1) vector l such that l0l = 1; E(jl0�yij4+�) < B <1 for some B:

(b4): 1
N

NX
i=1

l0V ar(vec(�yi�y
0
i))l > �

0 for some �0 > 0; and for all N > N1; for some N1 and for every real

( 12T (T +1)X1) vector l with l
0l = 1: (b5): E(uityio) = E

�
uita

(1)
i

�
= E

�
uita

(2)
i

�
= 0 and 8 i 2 f1; 2; :::; Ng;

t 2 f1; 2; :::; Tg:

Assumption 2 enables us to derive the limiting distribution of '̂(�)�1 by employing standard asymptotic

theory under more general conditions than those of Assumption 1, which considers the simple case that

uit � NIID(0; �2u), for all i. More speci�cally, condition (b1) allows the variance-autocovariance matrices of

disturbance terms uit, �i = E(uiu0i), to be heterogenous across the cross-sectional units of the panel i with a

degree of serial correlation pmax less than T . The pattern of serial correlation considered by matrices �i can

capture that implied by moving average (MA) processes of uit, often assumed for many economic series (see,

e.g. Schwert (1989)). It can be also though of as approximating that implied by AR models of uit whose

autocorrelation dies out after pmax.2 Condition (b2) quali�es application of a central limit theorem (CLT)

to derive the limiting distribution of test statistic '̂(�) � 1 adjusted for the asymptotic bias (inconsistency)

of estimator '̂(�) as N ! 1, under the more general assumptions than condition (b1). More speci�cally,

Condition (b2) along with condition (b4) guarantees that, the variance and the test will be di¤erent than

zero. Finally, conditions (b5) and (b3) constitute weak conditions under which the consistency of the tests

can be proved. These two conditions correspond to conditions (a2) and (a3) of Assumption 1.

The limiting distribution of a normalized panel unit root test statistic based on estimator '̂(�) corrected

for its inconsistency under the above assumption is given in the next section. This statistic assumes that

the fraction of the sample � that the break occurs is known.

Theorem 4 Let conditions (b1) - (b5) of Assumption 2 hold. Then, under the null hypothesis ' = 1 and �

known, we have

Z
(�)
1 � V̂ (�)�1=21 �̂

(�)

1

p
N

 
'̂(�) � b̂

(�)
1

�̂
(�)

1

� 1
!

d�! N (0; 1) (13)

as N !1, where
b̂
(�)
1

�̂
(�)

1

=
tr(	

(�)
1 �̂N )

1
N

PN
i=1 y

0
i;�1Q

(�)yi;�1
(14)

is a consistent estimate of the asymptotic bias of '̂(�) which, under the null hypothesis, is given as

b
(�)
1

�
(�)
1

=
tr(�0Q(�)�N )

tr(�0Q(�)��N )
; (15)

where matrix 	(�)1 is a (TXT )-dimension matrix having in its main diagonal, and its p-lower and p�upper

2 In single time series literature, pmax is assumed to increase with T with an order of o(T 1=2) see Chang and Park (2002).
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diagonals of the main diagonal the corresponding elements of matrix �0Q(�), and zero otherwise, �̂N=
1
N

PN
i=1(�yi�y

0
i) is a consistent estimator of population variance-autocovariance matrix �N and V (�)1 is a

variance function given as

V
(�)
1 = F

(�)0
1 �F

(�)0
1 ; (16)

where F (�)1 = vec(Q(�)� � 	(�)01 ) and � = 1
N

XN

i=1
V ar(vec(uiu

0
i)) is the variance-covariance matrix of

vec(uiu
0
i): The proof is given in the appendix.

To implement the test statistic given by Theorem 4, Z(�)1 , to test hypothesis ' = 1, we need consistent

estimates of the variance-covariance matrix of vector vec(uiu0i), de�ned as �:This can be done under the

null hypothesis based on the following estimator:

�̂ =
1

N

NX
i=1

(vec(�yi�y
0
i)vec(�yi�y

0
i)
0) . (17)

As 	(�) for Z(�), matrix 	(�)1 plays a crucial role in constructing test statistic Z(�)1 . It adjusts LS estimator

'̂(�) for its asymptotic bias. This bias now comes from two sources: the "within" transformation of the

data through matrix Q(�) and the serial correlation of disturbance terms uit.3 Subtracting 	
(�)
1 from �0Q(�)

enables to adjust '̂(�) for the above two sources of bias. The adjusted LS estimator '̂(�) enables us to

test the null hypothesis ' = 1, as it relies on sample moments of the elements of variance-autocovariance

matrices �i, for all i, which are serially uncorrelated, i.e. E(uituis) = 0; for s = t + pmax + 1; :::; T and

t < s. These moments are weighted by elements of matrix �0Q(�)�	(�)1 , which assign higher weights to the

moments which are immediately before the break point T0 than those which are away than it. They can be

consistently estimated under the null hypothesis through the variance-covariance estimator �̂. The weights

that matrix �0Q(�) � 	(�)1 assigns to the above elements of variance-autocovariance matrices �i obviously

depend on the break point and the maximum order of serial correlation pmax is assumed by test statistic

Z
(�)
1 . Based on the speci�cation of this matrix, Table 1 and (18) give values of pmax which enable us to

apply our tests independently on the location of the break T0; or the fraction of the sample �. These values

are found based on the criterion that the elements of matrix �0Q(�) � 	(�)1 do not assign weights to zero

elements of �i which result in a value of variance function V
(�)
1 which is zero, i.e. V (�)1 = 0. They are useful

in choosing the maximum order of serial correlation pmax, considered by test statistic Z
(�)
1 , especially when

the break is of an unknown date.

Table 1: Maximum order of serial correlation

T 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pmax 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

pmax = [
T

2
� 2]� (18)

3Note that, under conditions of Assumption 1, test statistic Z(�)1 becomes identical to Z(�).
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where [:]� denotes the greatest integer function. Note that, in the case that disturbance tests uit are normally

distributed, the variance function V (�)1 can be written more analytically as follows:

V
(�)
1 = F

(�)0
1 (KT 2 + IT 2)(�N 
 �N )F (�)1 , (19)

where 
 denotes the Kronecker product.4 This form of V (�)1 can be easily calculated by replacing �N with

its consistent estimate �̂N = 1
N

PN
i=1(�yi�y

0
i) .

Following analogous steps to those required by Theorem 3, test statistic Z(�)1 can be easily extended to

the case of an unknown break point date, which requires a sequential application of the test. De�ne this test

statistic as z1 � min
�2I

Z
(�)
1 . The limiting distribution of z1 is given as

z1 � min
�2I

Z
(�)
1

d�! �1 � min
�2I

N(0;�1), (20)

N ! 1, where �1 � [�1;�s] is the variance-covariance matrix of the test statistics Z
(�)
1 whose elements,

de�ned as �1;�s, are given by the following formula:

�1;�s =
F
(�)0
1 �F

(s)
1q

F
(�)0
1 �F

(�)
1

q
F
(s)0
1 �F

(s)
1

. (21)

Critical values of the distribution of random variable �1, denoted as f�1(x1) where x1 2 R, can be calculated

by replacing the values of ��s in pdf formula (12) with those of �1;�s . This also requires to obtain consistent

estimates of variance-covariance matrix �, in the �rst step.

4 Extension of the tests to the case of deterministic trends

In this Section, we will extend the tests presented in the previous section to allow for individual (incidental)

linear trends in the panel data generating processes. We will consider two cases of AR(1) panel data models

with linear trends. In the �rst case, we will assume that these trends are present only under the alternative

hypothesis of stationarity (see, e.g. Karavias and Tzavalis (2012a), or Zivot and Andews (1992) for single

time series), while in the second that they are present under the null hypothesis of ' = 1 either (see,

e.g. Carrion-i-Silvestre et al (2005) and Kim (2011). The �rst of the above cases is more appropriate in

distinguishing between nonstationary panel data series which exhibit persistent random deviations from

linear trends, implied by the presence of individual e¤ects under the null hypothesis of unit roots, and

stationary panel data series allowing for broken individual linear trends. The second case is more suitable

when considering more explosive panel data series under the null hypothesis of unit roots, which can exhibit

both deterministic and random persistent shifts from their linear trends.

4This can be easily seen using standard results of the variance of a quadratic form for normally distributed variates (see e.g.
Schott(1996)), which imply

V ar[vec(uiu
0
i)] = V ar(ui 
 ui) = (IT2 +KT2 )(�N 
 �N ):
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4.1 Broken trends under the alternative hypothesis of stationarity

Consider the following extension of the nonlinear AR(1) model (1):

yit = �
(�)
it (1� ') + '�i + �

(�)
it (1� ')t+ 'yit�1 + uit; i = 1; :::; N (22)

where �(�)it are de�ned by equation (1) and �(�)it = �
(1)
i if t � T0 and �(2)i if t > T0. Under the null hypothesis

' = 1, �i�s constitute individual e¤ects of the panel data model, which capture linear trends in the level of

series yit, for all i. Under the alternative hypothesis ' < 1, �i will be given as �i = �
(1)
i if t � T0 and �(2)i

if t > T0. That is, they constitute the slope coe¢ cients of individual linear trends t, for all i.

Let us de�ne matrix X(�)
� = (e(1); e(2); � (1); � (2)), where � (1) and � (2) are (TX1)-column vectors whose

elements are given as � (1)t = t if t � T0; and zero otherwise, and �
(2)
t = t if t > T0, and zero otherwise.

Then, the "within" transformation matrix now will be written as Q(�)� = IT �X(�)
� (X

(�)0
� X

(�)
� )�1X

(�)0
� and

the LSDV estimator, denoted as '̂(�)� , can be written under null hypothesis ' = 1 as follows:

'̂(�)� � 1 =
"
NX
i=1

y0i;�1Q
(�)
� yi;�1

#�1 " NX
i=1

y0i;�1Q
(�)
� ui

#
. (23)

Following analogous steps to those for the derivation of test statistics Z(�) or Z(�)1 , inference about unit roots

can be conducted based on estimator '̂(�)� adjusted for its asymptotic bias. Under conditions of Assumption

2, this bias now is given as

b
(�)
2

�
(�)
2

=
tr(�0Q

(�)
� �N )

tr(�0Q
(�)
� ��N )

(24)

(see Appendix, proof of Theorem 5). However, in contrast to the case of model (1), the average pop-

ulation variance-autocovariance matrix �N cannot be consistently estimated based on estimator �̂N =

1
N

PN
i=1(�yi�y

0
i), due to the presence of individual e¤ects �i under the null hypothesis ' = 1. It can

be easily seen that, under ' = 1, �yi = ui + �ie, where e is a (TX1)-vector of unities, and thus

1

N

NX
i=1

E(�yi�y
0
i) = �N + �

2
NJT ; (25)

where JT is a T � T matrix of ones and �2N = 1
N

PN
i=1E((�i)

2): The last relationship clearly shows that

in order to provide consistent estimates of �N based on �̂N = 1
N

PN
i=1(�yi�y

0
i), we need to substitute out

the average of squared individual e¤ects �2N in �̂N . This can be done with the help of a (TXT )-dimension

selection matrix M , de�ned as follows: M has elements mts = 0 if 
ts 6= 0 and mts = 1 if 
ts = 0. That is,

the elements of this matrix correspond to the elements of matrix �N + �
2
NJT (or

1
N

PN
i=1E(�yi�y

0
i) which

contain only �2N . Based on matrix M , we can derive a consistent estimator of �
2
N under the null hypothesis,

which is given as

1

tr(MJT )N

NX
i=1

�y0iM�yi
p�! �2N , (26)
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since tr(M�N ) = 0, where "
p�! " signi�es convergence in probability. As mentioned above, this estimator

enables us to substitute out individual e¤ects �2N in the estimator of �N , given by �̂N . Then, a consistent

estimator of the bias of the LSDV estimator '̂(�)� for model (22), de�ned as b
(�)
2

�
(�)
2

, can be obtained. This is

given as
b̂
(�)
2

�̂
(�)

2

=
tr(	

(�)
2 �̂N )

1
N

PN
i=1 y

0
i;�1Q

(�)
� yi;�1

, (27)

where 	(�)2 = 	
(�)
1� +

tr(�0Q(�)
� M)

trace(MJT )
M (see Appendix, proof of Theorem 5) where 	(�)1� is a (TXT )-dimension

matrix having in its main diagonal, and its p-lower and p�upper diagonals of the main diagonal the corre-

sponding elements of matrix �0Q(�)� , and zero otherwise. It can be easily seen that tr(	(�)2 �̂N ) is a consistent

estimator of b̂(�)2 , since tr(	(�)2 (�N + �
(1)
N JT )) = tr(	

(�)
2 �N ).

Having derived a consistent estimator of the asymptotic bias of LS estimator '̂(�)� , next we derive the

limiting distribution of a test statistic of hypothesis ' = 1 based on this estimator adjusted for its bias. This

is done after trimming out two time series observations from the end of the sample, i.e. � = T0
T 2 I� =�

2
T ;

2
T ; :::::;

T�2
T

	
, due to the presence of individual e¤ects and linear trends under the alternative hypothesis

of stationarity. To derive this limiting distribution and to prove the consistency of the test, we rely the

following assumption.

Assumption 3: Let all conditions of Assumption 2 hold and we also have: E(uit�i) = 0; 8 i 2

f1; 2; :::; Ng; t 2 f1; 2; :::; Tg; E(a(�)it �
(�)
it ) = 0; 8 i 2 f1; 2; :::; Ng.

Then, the following theorem applies.

Theorem 5 Let the sequence fyi;tg be generated according to model (22) and conditions (b1)-(b4) of As-

sumption 2 hold. Then, under the null hypothesis ' = 1 and � known, we have

Z
(�)
2 � V̂ (�)�0:52 �̂

(�)

2

p
N

 
'̂(�)� � 1� b̂

(�)
2

�̂
(�)

2

!
d�! N (0; 1) , (28)

as N !1, where V (�)2 = F
(�)0
2 �F

(�)
2 ; � is de�ned in Theorem 4, and F (�)2 = vec(Q

(�)
� ��	(�)02 ): The proof

of the theorem is given in the appendix.

Apart from the initial conditions of the panel yi0, the test statistic given by Theorem 5, Z(�)2 , is similar

under the null hypothesis to the individual e¤ects of the panel �i, due to the allowance of broken trends in

the "within" transformation matrix, Q(�)� . To test the null hypothesis of unit roots, test statistic Z(�)2 relies

on the same moments to those assumed by statistic Z(�)1 , namely E(uituis) = 0; for s = t + pmax + 1; :::; T

and t < s. These moments now are weighted by elements of matrix �0Q(�)� � 	(�)2 , where matrix 	(�)2 is

appropriately adjusted to wipe o¤ the e¤ects of nuisance parameters �i on the limiting distribution of the

test statistic. The maximum order of serial correlation of variance-autocovariance matrices �i assumed by

test statistic Z(�)2 is the same to that assumed by test statistic Z(�)1 .

Finally, note that test statistic Z(�)2 can be extended to the case of an unknown date break following an

analogous procedure to that assumed for sequential tests statistics z and z1, de�ned by equations (9) and

13



(20), respectively. This version of the test statistic will be denoted as z2 � min
�2I�

Z
(�)
2 : Its limiting distribution

is given as

z2 � min
�2I�

Z
(�)
2

d�! �2 � min
�2I�

N(0;�2), (29)

as N !1, where �2 � [�2;�s] is the variance-covariance matrix of test statistics Z(�)2 whose elements �2;�s

are given by the formula: �2;�s =
F
(�)0
2 �F

(s)
2q

F
(�)0
2 �F

(�)
2

q
F
(s)0
2 �F

(s)
2

: Critical values of the distribution of �2 can be

derived based on the pdf f�(x), given by (12), following an analogous procedure to that assumed for test

statistic z1.

4.2 Broken trends under the null hypothesis of unit roots

To allow for a common break in the individual e¤ects of the panel data model under the null hypothesis

' = 1, consider the following extension of AR(1) model (1):

yit = �
(�)
it (1� ') + '�

(�)
it + �

(�)
it (1� ')t+ 'yit�1 + uit; i = 1; :::; N (30)

Using vector notation, this model implies that, under hypothesis ' = 1, the �rst-di¤erence of vector yi is

given as �yi = �
(1)
i e(1)+�

(2)
i e(2)+ui. As for model (22), this means that estimator �̂N = 1

N

PN
i=1(�yi�y

0
i)

will not lead to consistent estimates of the average population variance-autocovariance matrix �N , due to

the presence of individual e¤ects �(1)i and �(2)i . These imply

1

N

NX
i=1

E(�yi�y
0
i) = �

(1)
N e(1)e(1)0 + �

(2)
N e(2)e(2)0 + �N , (31)

where J1 = e(1)e(1)0 and J2 = e(2)e(2)0. The allowance of a break in incidental parameters �i under the

null hypothesis requires estimation of squared individual e¤ects �(1)N and �(2)N so as to obtain consistent

estimates of matrix �N . To this end, we will follow an analogous procedure to that introduced in the

previous subsection, based on selection matrix M . We will de�ne two (TXT )-dimension block diagonal

selection matrices M (1) and M (2), which select square individual e¤ects �(1)N and �(2)N , respectively. Matrix

M (1) which has elements m(1)
ts = 0 if 
ts 6= 0, and m

(1)
ts = 1 if 
ts = 0 and, thus, it selects the elements of

matrix �(1)N e(1)e(1)0 + �
(2)
N e(2)e(2)0 + �N consisting only of e¤ects �(1)N , for t; s � T0. For t or s > T0, all

elements of M (1) are set to m(1)
ts = 0. On the other hand, Matrix M

(2) has elements m(2)
ts = 0 if 
ts 6= 0, and

m2ts = 1 if 
ts = 0 and, thus, it selects the elements of matrix �(1)N e(1)e(1)0 + �
(2)
N e(2)e(2)0 + �N consisting

only of e¤ects �(2)N ; for t; s > T0. For t or s � T0, all the elements of M (2) are set to m(2)
ts = 0.

Based on the above de�nitions of selection matrices M (1) and M (2), we can obtain the following two

consistent estimators of �(1)N and �(2)N :

1

tr(M (1)J1)N

NX
i=1

�y0iM
(1)�yi

p�! �
(1)
N and

1

tr(M (2)J2)N

NX
i=1

�y0iM
(2)�yi

p�! �
(2)
N , (32)

respectively, since tr(M (j)�N ) = 0 for j = 1; 2 and tr(M (j)Jr) = 0 for j; r = 1; 2 and j 6= r. These estimators
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can be employed to obtain consistent estimates of matrix �N , which are net of square individual e¤ects �
(1)
N

and �(2)N . Then, a consistent estimator of the bias of the LSDV estimator '̂(�)� for model (30), de�ned as
b
(�)
3

�
(�)
3

, can be derived as

b̂
(�)
3

�̂
(�)

3

=
tr(	

(�)
3 �̂N )

1
N

PN
i=1 y

0
i;�1Q

(�)
� yi;�1

, (33)

where 	(�)3 = 	
(�)
1� +

tr(�0Q(�)
� M(1))

trace(M(1)J1)
M (1)+

tr(�0Q(�)
� M(2))

trace(M(2)J2)
M (2). Adjusting '̂(�)� by the above estimator of its bias

will lead to a panel unit root test statistic whose limiting distribution will be net of squared individual e¤ects

�
(1)
N and �(2)N under the null hypothesis. In the next theorem, we derive this distribution. This corresponds

to the case of known date break. If the date is unknown, then it can be estimated, in a �rst step, based on

the �rst di¤erences of the individual series yit of the panel data model under the null hypothesis ' = 1, i.e.

�yi = �
(1)
i e(1) + �

(2)
i e(2) + ui. As shown by Bai (2010), this estimator provides consistent estimates of the

break point T0, which converges at on o(
p
N) rate. Based on a consistent estimate of T0, then we can apply

the test statistic given by the next theorem to conduct inference about unit roots.

Theorem 6 Let the sequence fyi;tg be generated according to model (30) and conditions (b1)-(b4) of As-

sumption 2 hold. Then, under the null hypothesis ' = 1 and � known, we have

Z
(�)
3 � V̂ (�)�0:53 �̂

(�)

3

p
N

 
'̂(�)� � 1� b̂

(�)
3

�̂
(�)

3

!
d�! N (0; 1) , (34)

as N !1, where

V
(�)
3 = F

(�)0
3 �F

(�)
3 (35)

and F (�)3 = vec(Q
(�)
� ��	(�)03 ): The proof of the theorem is given in the appendix.

As test statistic Z(�)2 , the test statistic given by Theorem 6, Z(�)3 , is similar under the null hypothesis

to the individual e¤ects �(1)i and �(2)i , due to the inclusion of broken trends in the "within" transformation

matrix Q(�)� . Due to the presence of a break under the null hypothesis ' = 1, the maximum order of serial

correlation of the disturbance terms uit, pmax, allowed by the test is not given by Table 1. This is given by

a)
T

2
� 3;when T is even and T0 =

T

2
(36)

b)equal or less than minfT0 � 2; T � T0 � 2g in all other cases of T or T05

Based on conditions of Assumption 3, it can be proved that test statistic Z(�)3 is consistent, following

analogous steps to those for the proof of the consistency of test statistic Z(�)2 . The test is also consistent, if

5Again the criterion of choosing pmax is the value of variance function V
(�)
3 not to be zero. If T is even then pmax=minfT0�

2; T � T0 � 2g always except from the case that T0 = T
2
where it becomes pmax= T

2
� 3: Example: T = 10, T0 = 3 : pmax =

minfT0 � 2; T � T0 � 2g = minf1; 5g = 1
If T0 = T

2
= 5 : then pmax = T

2
� 3 = 2: If we used the results from (18) we would have. pmax = minfT0 � 2; T � T0 � 2g =

minf3; 3g = 3 which does not apply.
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the break point is unknown and is estimated, in the �rst step, based on the procedure mentioned above6 .

5 Simulation Results

In this section, we conduct a Monte Carlo study to investigate the small sample performance of the tests

suggested in the previous sections. For reasons of space, in our study, we consider only the case that the break

date is unknown. We consider experiments of di¤erent sample sizes of N and T , i.e. N = f50; 100; 200g and

T = f6; 10; 15g, while the fractions of sample that the break occurs are assumed to be � = f0:25; 0:5; 0:75g,

which facilitate the choice of the break point T0. For all experiments, we conduct 10000 iterations. In

each iteration, we assume that the data generating processes are given by models (1) and (22), respectively,

where disturbance terms uit follow a MA(1) process, i.e. uit = "it + �"it�1, with "it~NIID(0; 1); for all

i and t, and � = f�0:5; 0:0; 0:5g. The values of the nuisance parameters of the simulated models, namely

the individual e¤ects or the slope coe¢ cients of individual linear trends are assumed that they are driven

from the following distributions: �(1)i � U(�0:5; 0), �(2)i � U(0; 0:5); �i � U(0; 0:05), �
(1)
i � U(0; 0:025) and

�
(2)
i � U(0:025; 0:05), where U(�) stands for the uniform distribution.

The small magnitude of individual e¤ects �(j)i or slope coe¢ cients �(j)i assumed above correspond to

evidence found in the empirical literature, see e.g. Hall and Mairesse (2005). This small magnitude also

makes it harder for the tests to distinguish the null hypothesis of unit root from its alternative of stationarity.

For all simulation experiments, we assume that the order of serial correlation p is set to p = 1.

Table 2(a): Size and power of z1 � minZ(�)1 , for � = 0:5

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.059 0.062 0.065 0.053 0.056 0.063 0.056 0.053 0.053

' = 0:95 0.211 0.236 0.222 0.332 0.360 0.295 0.514 0.572 0.461

' = 0:90 0.445 0.449 0.328 0.714 0.699 0.504 0.945 0.934 0.759

� = 0:5

' = 1:00 0.060 0.064 0.065 0.053 0.055 0.063 0.052 0.050 0.058

' = 0:95 0.215 0.241 0.223 0.321 0.359 0.297 0.512 0.587 0.462

' = 0:90 0.452 0.440 0.330 0.712 0.698 0.505 0.947 0.935 0.766

� = 0:75

' = 1:00 0.060 0.060 0.065 0.052 0.054 0.065 0.051 0.050 0.054

' = 0:95 0.214 0.245 0.213 0.324 0.365 0.293 0.528 0.585 0.465

' = 0:90 0.463 0.452 0.342 0.711 0.703 0.500 0.942 0.934 0.760

6 If T = 15 then pmax=minfT0 � 2; T � T0 � 2g always (e.g. if T0 = 7; pmax = minf5; 6g = 5):
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Table 2(b): Size and power of z1 � minZ(�)1 , for � = �0:5

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.059 0.064 0.076 0.054 0.060 0.066 0.057 0.053 0.065

' = 0:95 0.076 0.075 0.078 0.079 0.074 0.068 0.090 0.079 0.071

' = 0:90 0.083 0.076 0.078 0.092 0.075 0.075 0.109 0.083 0.078

� = 0:50

' = 1:00 0.057 0.064 0.072 0.056 0.061 0.066 0.051 0.053 0.069

' = 0:95 0.082 0.070 0.073 0.074 0.072 0.068 0.087 0.079 0.071

' = 0:90 0.083 0.073 0.079 0.093 0.079 0.072 0.116 0.082 0.073

� = 0:75

' = 1:00 0.059 0.064 0.073 0.056 0.061 0.065 0.051 0.057 0.069

' = 0:95 0.076 0.069 0.077 0.074 0.070 0.073 0.088 0.078 0.071

' = 0:90 0.083 0.074 0.076 0.093 0.078 0.074 0.116 0.086 0.078

Table 2(c): Size and power of z1 � minZ(�)1 , for � = 0

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.057 0.061 0.076 0.051 0.058 0.063 0.060 0.052 0.064

' = 0:95 0.140 0.169 0.167 0.184 0.225 0.217 0.282 0.355 0.307

' = 0:90 0.234 0.258 0.228 0.365 0.393 0.322 0.575 0.629 0.488

� = 0:50

' = 1:00 0.056 0.060 0.076 0.054 0.058 0.063 0.053 0.052 0.064

' = 0:95 0.139 0.159 0.165 0.182 0.224 0.216 0.291 0.357 0.311

' = 0:90 0.235 0.246 0.232 0.365 0.395 0.326 0.592 0.632 0.490

� = 0:75

' = 1:00 0.057 0.060 0.070 0.053 0.059 0.069 0.049 0.052 0.064

' = 0:95 0.144 0.161 0.165 0.192 0.229 0.211 0.280 0.357 0.312

' = 0:90 0.234 0.248 0.230 0.362 0.401 0.326 0.589 0.635 0.495

This means that, for � = 0, we assume an order of serial correlation which is higher than the appropriate

order. This experiment will show if our tests underperform when a higher order of serial correlation is

assumed, which may happen in practice. The results of our Monte Carlo analysis for sequential test statistics

z1 and z2, corresponding to models (1) and (22), are summarized in Tables 2(a)-(c) and 3(a)-(c), respectively,

for values of � 2 f0:5;�0:5; 0:0g. These tables present values of the size and power of the tests. The size

of the tests is calculated for ' = 1:00, while the power for values of ' 2 f0:95; 0:9g. Note that, in all
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experiments, the power is calculated at the nominal 5% signi�cance level of the distribution of the tests.

The results of the tables indicate that both tests examined have size which is close to the nominal level 5%

considered. This is true for all combinations of N and T . The size performance of the tests is close to its

nominal level even if the MA parameter � takes a large negative value, i.e. � = �0:5. Note that, for this

case of �, single time series unit root tests are critically oversized (see, e.g., Schwert (1989)). The size of the

tests does also not deteriorate, if a higher order of serial correlation p = 1 is assumed than the true order,

i.e. � = 0. The size performance of the tests improves as N increases relative to T . This can be attributed

to the fact that, as N increases relative to T , variance-covariance matrix � is more precisely estimated by

estimator �̂. The above results hold independently on the fraction of the sample that the break occurs, �.

Table 3(a): Size and power of z2 � minZ(�)2 ; for � = 0:5

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.058 0.084 0.093 0.051 0.071 0.072 0.048 0.060 0.068

' = 0:95 0.056 0.085 0.117 0.055 0.083 0.106 0.056 0.081 0.118

' = 0:90 0.057 0.111 0.207 0.056 0.129 0.259 0.058 0.153 0.358

� = 0:5

' = 1:00 0.060 0.078 0.093 0.054 0.072 0.072 0.051 0.060 0.068

' = 0:95 0.055 0.090 0.117 0.054 0.084 0.106 0.054 0.081 0.120

' = 0:90 0.062 0.120 0.205 0.058 0.125 0.254 0.057 0.154 0.350

� = 0:75

' = 1:00 0.033 0.077 0.093 0.052 0.069 0.071 0.052 0.060 0.067

' = 0:95 0.058 0.091 0.117 0.054 0.083 0.105 0.053 0.081 0.116

' = 0:90 0.059 0.118 0.205 0.057 0.127 0.256 0.052 0.152 0.349

Regarding the power of the tests, the results of the tables indicate that, as was expected, the tests

have better power performance for the case of model (1), where there are only individual e¤ects under the

alternative. For model (22), where linear trends are considered either under the alternative hypothesis ' < 1

or the null, the power of the tests reduces. However, the tests are not biased and, consistently with the

theory, they have power which increases as the value of ' moves away from unity. The power performance

of all three test statistics is not a¤ected by the fraction of the sample that the break occurs; �; see also

Karavias and Tzavalis (2012a). However, it depends on the value of �. When � is negative (i.e., � = �0:5),

the power performance of both tests deteriorates. Finally, note that the power of the tests tends to increase

as N increases relative to T .
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6 Conclusion

This paper suggests panel unit root tests which allow for a common structural break in the individual e¤ects

or linear trends of dynamic panel data models. Common breaks in panel data models can arise in cases

of a credit crunch, an oil price shock or a change in tax policy (see e.g. Bai (2010)). The suggested tests

assume that the time-dimension of the panel T is �xed (or �nite), while the cross-section N grows large.

Thus, they are appropriate for short panel applications, where T is smaller than N . They are based on

the corrected for its inconsistency (asymptotic bias) least squares dummy variable (LSDV) estimator of the

autoregressive coe¢ cient of dynamic panel data models (see Harris and Tzavalis (1999)), and they allow

for serial correlation in the disturbance terms. This estimator provides unit root tests which have the very

useful property of being invariant (similar) under the null hypothesis of a unit root in the autoregressive

component of panel data models to the initial conditions of the panel or the individual e¤ects. This property

does not restrict application of the tests to panel data where conditions of mean or covariance stationarity

of the initial conditions or individual e¤ects are required.

Table 3(b): Size and power of z2 � minZ(�)2 , for � = �0:5

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.055 0.061 0.073 0.051 0.057 0.066 0.050 0.055 0.064

' = 0:95 0.057 0.075 0.102 0.052 0.080 0.109 0.052 0.090 0.135

' = 0:90 0.053 0.092 0.131 0.050 0.113 0.162 0.051 0.148 0.220

� = 0:50

' = 1:00 0.053 0.061 0.076 0.051 0.058 0.066 0.050 0.055 0.064

' = 0:95 0.050 0.073 0.104 0.052 0.080 0.107 0.052 0.086 0.133

' = 0:90 0.055 0.093 0.131 0.051 0.105 0.153 0.051 0.131 0.195

� = 0:75

' = 1:00 0.053 0.065 0.076 0.051 0.063 0.066 0.050 0.058 0.064

' = 0:95 0.052 0.074 0.103 0.053 0.085 0.108 0.051 0.086 0.132

' = 0:90 0.055 0.088 0.132 0.050 0.101 0.154 0.052 0.136 0.202

The paper derives the limiting distributions of the tests. When the break is unknown, it shows that the

limiting distribution of the tests is the minimum of a �xed number of correlated normals. This distribution

is given as a mixture of normals. It can be analytically obtained based on recent results of Arellano-Valle

and Genton (2008), for absolutely continuous dependent variables. Knowledge of the analytic form of the

limiting distribution of the tests considerably facilitates calculation of critical values for the implementation

of the tests in practice.

Finally, the paper examines the small sample size and power performance of the tests by conducting a

Monte Carlo study. This is done for the case that the break is of an unknown date. The results of this
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exercise indicate that our tests have the correct nominal size and power which is bigger than their size. As

was expected, the power of the tests is higher for the dynamic panel data model which consider individual

e¤ects rather than for the model which also allows for individual linear trends. For all cases, the power is

found to increase if N increases faster than T , due to the �xed-T assumption of the tests.

Table 3(c): Size and power of z2 � minZ(�)2 , for � = 0

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

� = 0:25

' = 1:00 0.056 0.076 0.089 0.051 0.066 0.075 0.051 0.064 0.070

' = 0:95 0.050 0.079 0.117 0.051 0.079 0.123 0.049 0.083 0.128

' = 0:90 0.054 0.103 0.184 0.053 0.119 0.231 0.055 0.141 0.322

� = 0:50

' = 1:00 0.055 0.068 0.089 0.052 0.064 0.075 0.051 0.063 0.068

' = 0:95 0.051 0.082 0.118 0.049 0.078 0.122 0.050 0.086 0.125

' = 0:90 0.055 0.107 0.181 0.058 0.111 0.226 0.050 0.145 0.309

� = 0:75

' = 1:00 0.053 0.076 0.091 0.055 0.061 0.075 0.051 0.064 0.069

' = 0:95 0.051 0.078 0.114 0.052 0.078 0.107 0.052 0.082 0.123

' = 0:90 0.055 0.107 0.189 0.050 0.110 0.229 0.059 0.137 0.306

7 Appendix

In this appendix, we provide proofs of the theorems or any other theoretical results presented in the main

text of the paper.

Proof of Theorem 1: To derive the limiting distribution of the test statistic of the theorem, we will

proceed into stages. We �rst show that the LSDV estimator '̂(�) is inconsistent, as N ! 1. Then, will

construct a normalized statistic based on '̂(�) corrected for its inconsistency (bias) and derive its limiting

distribution under the null hypothesis of ' = 1, as N !1.

Decompose the vector yi;�1 for model (1) under hypothesis ' = 1 as

yi;�1 = eyi0 + �ui, (37)

where the matrix � is is a (TXT ) matrix de�ned as �r;c = 1, if r > c and 0 otherwise.

Premultiplying (37) with matrix Q(�) yields

Q(�)yi;�1 = Q
(�)�ui, (38)
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since Q(�)e = (0; 0; :::; 0)0. Substituting (38) into (2) yields

'̂(�) � 1 =
1
N

PN
i=1 y

0
i;�1Q

(�)ui
1
N

PN
i=1 y

0
i;�1Q

(�)yi;�1
=

1
N

PN
i=1 u

0
i�
0Q(�)ui

1
N

PN
i=1 u

0
i�
0Q(�)�ui

. (39)

By Kitchin�s Weak Law of Large Numbers (KWLLN), we have

1

N

NX
i=1

u0i�
0Q(�)ui

p�! b(�) = �2utr(�
0Q(�)) and

1

N

NX
i=1

u0i�
0Q(�)�ui

p�! �(�) = �2utr(�
0Q(�)�), (40)

where "
p�!" signi�es convergence in probability. Using the last results, the yet non standardized statistic

Z(�) can be written by (39) as

p
N�̂

(�)

 
'̂(�) � 1� b̂(�)

�̂
(�)

!
=

p
N�̂

(�)

 
1
N

PN
i=1 y

0
i;�1Q

(�)ui

�̂
(�)

� �̂
2
utr(�

0Q(�))

�̂
(�)

!

=
p
N

 
1

N

NX
i=1

y0i;�1Q
(�)ui � tr(�0Q(�))

PN
i=1�y

0
i	

(�)�yi
Ntr(	(�))

!
. (41)

Since, under the null hypothesis ' = 1, we have ui = �yi, the last relationship can be written as follows:

p
N�̂

(�)

 
'̂(�) � 1� b̂(�)

�̂
(�)

!

=
p
N

 
1

N

NX
i=1

u0i�
0Q(�)ui �

tr(�0Q(�))

tr(	(�))

1

N

NX
i=1

u0i	
(�)ui

!

=
1p
N

NX
i=1

u0i(�
0Q(�) �	(�))ui =

1p
N

NX
i=1

tr
h
(�0Q(�) �	(�))uiu0i

i
(42)

=
1p
N

NX
i=1

W
(�)
i ,

where W (�)
i constitute random variables with mean

E(W
(�)
i ) = E[u0i(�

0Q(�) �	(�))ui] = tr[(�0Q(�) �	(�))E(uiu0i)]

= �2utr(�
0Q(�) �	(�)) = 0, for all i,

since tr(�0Q(�)) = tr(	(�)) (or tr(�0Q(�) �	(�)) = 0) and variance

V ar(W
(�)
i ) = V ar(u0i(�

0Q(�) �	(�))ui) = V ar[F (�)0vec(uiu0i)] =

= F (�)V ar[vec(uiu
0
i)]F

(�)0; for all i.

The results of Theorem 1 follows by applying Lindeberg-Levy central limit theorem (CLT) to the sequence

of IID random variables W (�)
i . Following standard linear algebra results (see e.g. Schott(1997), variance
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V ar[vec(uiu
0
i)] can be analytically written as V ar[vec(uiu

0
i)] = V ar(ui 
 ui) = �4u(IT 2 + KT 2), where 


denotes the Kroenecker product.

Proof of Theorem 2: Assume that the break point T0 is known. De�ne vector w = (1; '; '2; :::; 'T�1)0

and matrix


 =

0BBBBBBBBBBBBBBB@

0 : : : : : 0

1 0 :

' 1 : :

'2 ' : : :

: : : : :

: : 1 0 :

'T�2 'T�3 : : ' 1 0

1CCCCCCCCCCCCCCCA
Under null hypothesis ' = 1; we have 
 = �: Based on the above de�nitions of w and 
, vector yi;�1

can be writen as

yi;�1 = wyi0 +
X
(�)


(�)
i +
ui, (43)

where d(�)i = (a
(1)
i (1� '); a(2)i (1� '))0: Using last expression of yi;�1, test statistic Z(�) can be written

under the alternative hypothesis ' < 1 as follows:

Z(�) =
p
N bV (�)�1=2�̂(�) '̂(�) � 1� b̂(�)

�̂
(�)

!

=
p
NV̂ (�)�1=2�̂

(�)

 
'+

1
N

PN
i=1 y

0
i;�1Q

(�)ui
1
N

PN
i=1 y

0
i;�1Q

(�)yi;�1
� 1� �̂2utr(�

0Q(�))
1
N

PN
i=1 y

0
i;�1Q

(�)yi;�1

!

=
p
NV̂ (�)�1=2�̂

(�)
('� 1) +

p
NV̂ (�)�1=2

 
1

N

NX
i=1

y0i;�1Q
(�)ui � �̂2utr(�0Q(�))

!
(44)

=
np
NV̂ (�)�1=2�̂

(�)
('� 1)

o
(I)

+

(
V̂ (�)�1=2

1p
N

NX
i=1

(y0i;�1Q
(�)ui ��y0i	(�)�yi)

)
(II)

.

Next, we will show that summand (I) diverges to �1 and summand (II) is bounded in probability.

These two results imply that, as N !1, test statistic Z(�) converges to �1, which proves its consistency.

To prove the above results, we will use the following identities:

ui = yi � 'yi�1 �X(�)d
(�)
i (45)

and

�yi = ui + ('� 1)yi�1 +X(�)d
(�)
i , (46)
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which hold under the alternative hypothesis ' < 1.

To prove that summand (I), de�ned by (44), diverges to �1, it is su¢ cient to show that p lim �̂
(�)

is Op(1) and positive, and p lim �̂
2
u = Op(1) and nonzero. The last result implies that variance function

V̂ (�) = �̂4uF
(�)0(KT 2 + IT 2)F

(�) is bounded in probability. Using equations (43), (45) and (46), it can be

seen that �̂
(�)
is Op(1) as follows:

�̂
(�)

=
1

N

NX
i=1

y0i;�1Q
(�)yi;�1 =

1

N

NX
i=1

(wyi0 +
X
(�)d

(�)
i +
ui)

0Q(�)(wyi0 +
X
(�)d

(�)
i +
ui) (47)

=
1

N

NX
i=1

(y2i0w
0Q(�)w + yi0w

0Q(�)
X(�)d
(�)
i + yi0wQ

(�)
ui + :::+ u
0
i


0Q(�)
ui

p�! E(y2i0)w
0Q(�)w + tr(X(�)0
0Q(�)
X(�)�d) + �

2
utr(


0Q(�)
) = Op(1),

where �d = E(d
(�)
i d

(�)0
i ): The last result holds by condition a3 of Assumption 1. All quantities involved in

the above limit are positive because they are either variances or quadratic forms. Based on condition a3 of

Assumption 1, we can also show that the following result also holds:

�̂2u =
1

tr(	(�))

1

N

NX
i=1

�y0i	
(�)�yi (48)

=
1

tr(	(�))

1

N

NX
i=1

(ui + ('� 1)yi�1 +X(�)d
(�)
i )0	(�)(ui + ('� 1)yi�1 +X(�)d

(�)
i )

= Op(1).

This limit is a nonzero quantity because at least �2u > 0. The remaining terms entered into this limit are

zero or positive quantities.

To prove that summand (II) is bounded in probability note that, by Assumption 1, we have

1p
N

NX
i=1

(y0i;�1Q
(�)ui ��y0i	(�)�yi) = Op(1). (49)

See also proof of Theorem 1.

Proof of Theorem 3: The proof of this theorem follows as an extension of Theorem 1, by applying

the continuous mapping theorem to the joint limiting distribution of standardized test statistic Z(�), for all

� 2 I. The elements of the covariance matrix between random variables Z(�) and Z(�), for all � 6= �, can
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be derived by writing

Z(�)Z(�) =
p
N

 
�̂
(�)

p
V (�)

! 
'̂� 1� b̂(�)

�̂
(�)

!
p
N

 
�̂
(�)

p
V (�)

! 
'̂� 1� b̂(�)

�̂
(�)

!

=
�̂
(�)
�̂
(�)

p
V (�)

p
V (�)

N
( 1N
PN

i=1W
(�)
i )( 1N

PN
i=1W

(�)
i )

�̂
(�)
�̂
(�)

=
1p

V (�)
p
V (�)

1

N

NX
i=1

W
(�)
i

NX
i=1

W
(�)
i (50)

By the de�nition of W (�)
i (see (42)) and the assumption of cross-section independence between W (�)

i and

W
(m)
j , for i 6= j, we have E(W (�)

i W
(�)
j ) = 0, for i 6= j. Based on this result, we can show that

p lim
N!1

1

N

NX
i=1

W
(�)
i

NX
i=1

W
(�)
i = p lim

N!1

1

N

NX
i=1

W
(�)
i W

(�)
i = E(W

(�)
i W

(�)
i ). (51)

E(W
(�)
i W

(�)
i ) can be analytically derived as

E(W
(�)
i W

(�)
i ) = E[u0i(�

0Q(�) �	(�))uiu0i(�0Q(�) �	(�))ui]

= E[F (�)0vec(uiu
0
i)vec(uiu

0
i)
0F (�)]

= F (�)0E[vec(uiu
0
i)vec(uiu

0
i)
0]F (�)

= F (�)0E[vec(uiu
0
i)vec(uiu

0
i)
0]F (�), or (52)

E(W
(�)
i W

(�)
i ) = �4uF

(�)0[(IT 2 +KT 2) + vec(IT )vec(IT )
0]F (�); (53)

using the following result:

E[vec(uiu
0
i)vec(uiu

0
i)
0] = V ar(ui 
 ui) + E(vec(uiu0i))E(vec(uiu0i))0 (54)

= �4u[(IT 2 +KT 2) + vec(IT )vec(IT )
0].

Based on (53), it can be found that the probability limit of (50) is given as

E(Z(�)Z(�)) (55)

=
F (�)0�4u[(IT 2 +KT 2) + vec(IT )vec(IT )

0]F (�)p
F (�)0�4u[(IT 2 +KT 2 + vec(IT )vec(IT )0]F (�)

p
F (�)0�4u[(IT 2 +KT 2) + vec(IT )vec(IT )0]F (�)

=
F (�)0(IT 2 +KT 2)F

(�)p
F (�)0(IT 2 +KT 2)F (�)

p
F (�)0(IT 2 +KT 2)F (�)

;

where the result of the last row follows from F (�)0vec(IT )vec(IT )
0 = 0:

Proof of Theorem 4: The theorem can be proved following analogous steps to those for the proof of

Theorem 1.
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Proof of Theorem 5: The theorem can be proved following analogous steps to those for the proof of

Theorem 1 and using the following results:

1

N

NX
i=1

u0i�
0Q(�)ui

p! tr(�0Q(�)�N ) and
1

N

NX
i=1

u0i�
0Q(�)�ui !p tr(�0Q(�)��N ): (56)

Based on the de�nition of matrix 	(�)1 and conditions (b1) and (b2) of Assumption 2, it can be easily seen

that

E(W
(�)
i ) = tr((�0Q(�) �	(�)1 )�N ) = 0, for all i. (57)

Proof of Theorem 6: It can be proved following analogous steps to those followed for the proof of

Theorem 1. Under the null hypothesis ' = 1, vector yi;�1 can be decomposed as

yi;�1 = yi0e+ �e�i + �ui. (58)

Multiplying both sides of the last relationship by Q(�)� yields

Q
(�)
� yi;�1 = Q

(�)
� �ui, (59)

since Q(�)� e = 0 and Q(�)� �e = 0. Also, note that, under ' = 1, the following relationships hold:

�yi = ui + e�i (60)

and

Q
(�)
� �yi = Q

(�)
� ui and Q

(�)
� ��yi = Q

(�)
� �ui. (61)

Using (61), the numerator and denominator of '̂(�)� � 1 become

y0i;�1Q
(�)
� ui = u

0
i�
0Q

(�)
� ui = �y

0
i�
0Q

(�)
� �yi and (62)

y0i;�1Q
(�)
� yi;�1 = u

0
i�
0Q

(�)
� �ui = �y

0
i�
0Q

(�)
� ��yi, (63)

respectively. By Kitchin�s LLN; it can be shown that the inconsistency of estimator '̂(�)� is given as

'̂(�)� � 1 =
PN

i=1 y
0
i;�1Q

(�)
� uiPN

i=1 y
0
i;�1Q

(�)
� yi;�1

p! b
(�)
2

�
(�)
2

=
tr(�0Q

(�)
� �N )

tr(�0Q
(�)
� ��N )

. (64)
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The last result holds because, as N ! +1, we have

1

N

NX
i=1

y0i;�1Q
(�)
� ui � tr(�0Q(�)� (�N + �

2
NJT ))

p! 0, where �2N =
1

N

nX
i=1

E((�i)
2), (65)

or
1

N

NX
i=1

y0i;�1Q
(�)
� ui � tr(�0Q(�)� �N )

p! 0,

since tr(�0Q(�)� JT ) = 0; and

1

N

NX
i=1

y0i;�1Q
(�)
� yi;�1 � tr(�0Q(�)� �(�N + �

2
NJT ))

p! 0; (66)

since tr(�0Q(�)� �JT ) = 0:

The remaining of the proof follows the same steps with those of the proof of Theorem 1. That is, subtract

the consistent estimator of b
(�)
2

�
(�)
2

, given by (33), from '̂(�)� � 1 and, then, apply standard asymptotic theory.
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