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Abstract

We derive sufficient conditions for the non-emptyness of the efficient set for a class of Stochastic
Dominance Relations, commonly applied in Economics and Finance, over sets of distributions on
the real line. We do so via the use of the concept of stochastic spanning and its characterization
via a saddle type property. Under the appropriate framework sufficiency takes the form of semi-
continuity of some related functional. In some cases this boils down to mild uniform moment
existence conditions.
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1 Introduction

Stochastic dominance relations (hereafter SDRs) are (pre-) orders on sets of Borel prob-
ability distributions on the real line. Their study has gained importance in the fields of
economics, finance and statistics/econometrics (see inter alia Kroll and Levy [4], McFad-
den [8], Levy [5, 6], Mosler and Scarsini [10]), since among others it enables inference on
issues regarding optimal choice under uncertainty, without parametric specification for
preferences.

Usually, SDRs are defined by complicated functional inequalities, that have also char-
acterizations in terms of classes of utility functions (see Levy [5, 6], Levy and Levy [7]-
hereafter L&L). This implies that when a distribution dominates another w.r.t. such a
relation, it is simultaneously prefered by any utility in the relevant class and vice versa.
In this respect, order characteristics of the relation can be connected to properties of
optimal choices.
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One such property is efficiency. A distribution is efficient w.r.t. an SDR when it is a
maximal element of the order. When a utility class characterization holds this is equiv-
alent to that it is prefered by some utility in the class. Thereby, the efficient set of a
suchlike SDR is essentially the set of optimal choices of associated utilities, and its math-
ematical structure has obvious importance for Decision Theory. Despite its importance,
to the best of our knowledge, there exists no general result in the literature that provides
with sufficient conditions even for the non-emptyness of the efficient set at least for the
SDRs that are commonly used in the related applications. This is in stark contrast to the
exhaustive study of the efficient sets in the Mean-Variance setting in finance (see Merton
[9]), and demostrates the inherent complexities of such orderings.

Thus, the purpose of the current note is to develop easily applicable sufficient con-
ditions for the non-emptyness of the efficient set for as many “commonly applied” SDRs
as possible. We derive those by utilizing another order characteristic of an SDR, that of
stochastic spanning. This is a brilliant idea of Thierry Post, influenced by the notion of
Mean-Variance spanning in Huberman and Kandell [3], that was formulated in the con-
text of second order stochastic dominance in Arvanitis, Hallam, Post and Topaloglou [1]
(hereafter AHPT), but is easily extendable to arbitrary SDRs. Vaguely, a subset of the
original set of distributions is spanning, when optimal choices are not lost, when choices
are restricted from the latter to the former. It is not difficult to see that modulo equiv-
alences, the efficient set is a minimal spanning set. Hence, our strategy is to develop
analyticaly tractable conditions that ensure that the collection of spanning sets has min-
imal elements. We do so via, among others, the analytical characterization of spanning
via a “saddle type” property of an appropriate functional.

We present our framework and derive the results in the following section. In the final
one, we discuss issues for further research.

2 Framework and Result

Consider a set of Borel probability measures on R, say P := {P,, A € A}, parameterized
by A € A a non empty compact subset of R™. We assume that the mapping A — P,
is a continuous bijection w.r.t. the weak topology on P. Hence P is weakly compact.
This is a quite general formulation as it encompasses several frameworks encountered in
applications.

For an example, suppose that P is a probability measure on R”, and f : A x R — R
continuous. [P, is represented by j[%n 1{f (A u)}< -}dP, i.e. the cdf of the measurable
transformation R™ > = — f (A, x). If forany A, z, fan 0{f(\u)} = 2}dP = 0, then
the aforementioned continuity holds by dominated convergence. The latter framework is
usual in the context of financial economics and econometrics. Specifically, there m = n,
A is a subset of the standard simplex of R”, and f (A, x) = A’z which represents a linear
portfolio constructed on n base assets with random returns that assume values inside
R™ (see Post and Levy [12], Scaillet and Topaloglou [13]-hereafter ST). Another example
involves income distributions, whence A is simply a finite index set and the rest follow
easily (see McFadden [8], Horvath, Kokoszka, and Zitikis [2]).

Hereafter A, k, potentially super-(sub-)scripted, denote generic elements of A. The
previous allow us to identify PP, with its index A\. K denotes a non empty closed subset
of A. 7 is a finite partition of R by intervals such that every I € 7 is equipped with an
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{rel,x <z} ifo,=1

. For
{rel,v >z} ifo,=-1

orientation o; € {—1,1}. When z € [ then I, := {

s € N*, I € Jand z € I, define recursively

fI J(Iu X\, s—1)du, s>1

. (1)
P ((—OO,Z]), s=1

ﬂl(z,/\,s)z{

Using integration by parts it is easy to establish that when s = 1,ors > 1lando; = 1,
J 1 is well defined if £, (]X\Sil 1{X e Iz}) < oo for some z € I, where £, denotes
expectation w.r.t. Py. When s > 1 and o; = —1 this holds when I is bounded.

SDRs on P are usually defined via functional inequalities. A quite general formulation
is the following.

Definition 1. For k, A\ € A, k weakly SD(J, s)-dominates X, denoted by k =g, A, iff
VieJ,Vzel

A (z, kN 8) =7 (2,k,8) —J;(2,A,8) <O0. (2)

Strict SD(J, s)-dominance, k >gp A, occurs when in addition to (2), 3/ € 7, 3z € I
such that A; (2, K, A, s) < 0. SD(J, s)-equivalence, k ~¢gp, A, occurs iff K =g A and
A ?—'SD K.

This encompasses several SDRs that appear in the literature. For example when J =
{R}, og = 1, then SD(7, s) is the s"*- order SDR (see ST [13]). When s = 1, J =
{R~,R**}andogr- —1, ogs+ = 1,then SD(J, s) is the Prospect SD, while when o = 1,
og++ — 1, we obtain the Markowitz SDR (see L&L [5]). We note here that the afore-
mentioned SDRs can be characterized via optimal choices w.r.t. classes of utilities. E.g.
K =gp AW.r.t. the 2"<_ order SDR is equivalent to that x is weakly prefered to A by every
non-satiable and risk averse utility (see L&L [5]).

Given an SDR several order characteristics are of importance. An example is the effi-
cient set comprised by elements that are not dominated by any other member of A, i.e.
they are SD(J, s)-maximal.

Definition 2. x € Aisan SD(J, s)-efficient element of A iff VA € A,
AreJIFzel: Ar(z,k, N 8) <0, 0rk ~gp A
The set of the SD(J, s)-efficient elements of A is denoted by £ g, (A).

Under utility class interpretation, efficiency is global preference by some utility func-
tion in the class when A is convex (see Post [11]). Hence Egp (A) is the set of optimal
choices. The issue of its non-emptyness may be non trivial when supports are not com-
pact, even when the class contains appropriately continuous utilities. In order to obtain
sufficient conditions for it, we exploit the order theoretic notion of spanning.

Definition 3. K SD(7,s)-spans A (say K =gp A)iff VA€ A, 3k € K : k=gp A
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Under a utility class interpretation, K is spanning iff the excision of A — K from the
choice set A does not affect optimality for all utilities in the class. If moreover a spanning
set is singleton then it represents an identical optimal choice for every utility in the class,
which is thereby an SD(7, s)-greatest element. Statistical inference for greatest elements
is the subject of a strand of the analogous literature that generalizes the traditional pair-
wise comparisons (see ST [13]). As is evident from the previous, greatest elements are
generically difficult to exist.

Obviously A *=g, A. Hence (closed) spanning sets always exist. Consider Rgp, (A) =
{K CAK =gp A, K closed} and equip it with the C-partial order. We thus obtain a
useful but not easily verifiable condition for non-emptyness.

Lemma 1. If (Rgp, (A), C) has a minimal element then Egp, (A) # 0.

Proof. Let K* be minimal, and suppose that ¢, (A) = 0. The latter implies that for
any k € K*, 3\, € Asuchthat A\, >4 k. Since K* is spanning, then \,, € K. Then
K* — {k} is also spanning which is impossible due to minimality. L]

We combine the result above with a saddle type characterization for spanning to ob-
tain tractable analytical conditions. Suchlike results can also be useful for the design of
inferential procedures for spanning via empirical analogues (see AHPT [1]). Its proof is
obvious and thereby omitted.

Lemma 2. K =gp Aiffsup, _, inf,cx p (K, A) <0, where

p (K, A) :=maxsupA; (z,k, A, S) .
1€ zer

Our main result then links non-emptyness to semi-continuity for p via Zorn’s Lemma
and the finite intersection property (fip).

Theorem 1. If forany A € A, p(\,:) : A — R is lower semi-continuous (lIsc), then

Esp (A) # 0.

Proof. Due toLemma (1) the result would follow if (Rgp, (A) , C) has a minimal element.
By Zorn’s Lemma such a minimal element would exist if any chain inside (Rgp (A), Q)
has a lower bound that is also a spanning set. Consider an arbitrary chain {K,s € S}
where S is an appropriate ordered index set, as well as N .gK, which is obviously a
lower bound for the chain. We will prove that N,.gK, =g, A. Consider an arbi-
trary A € A as well as an arbitrary element of the chain, say K. and the set K. =
{k € K,. : Kk ’=gp A}. This is non empty since K. is a spanning set. If (Hm)melN is any

convergent sequence in K% thenits limit lies also inside K7 since p (A, -) isIsc, by Lemma
(2). Hence K% is non-empty compact. Furthermore K*, C K. when s* < s’. Hence the

S
monotone collection of compact subsets of A, { K, s € S} hasthefip,i.e. N g K # 0,
which implies that N, ¢ K, has an element that weakly SD(7, s)-dominates A, hence it
is spanning. [

Notice that for any A\, kK € A and any sequence A 3 k,, — K, we have that

lim inf p (A kK,,) > maxsuplim inf A;(z,kK,,,A,S). (3)

m—0o0 IeJg zel m—0o0
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Thereby, a sufficient condition for (Isc) isthat A; (z, -, A, s) isIsc for some z € I and some
I €J. Whens =1,0ors > 1ando; = 1forall I € J, by continuity of A — P,, (3)
holds if for some & > 0, sup__, E, (| X" " 1{X € L}) < coforsome z € I,I € ,
due to uniform integrability. When s > 1 and additionally to the previous o; = —1 for
some [ it holds if moreover this is bounded.

Such conditions are easily met when U, ., supp (P, ) is bounded. This is the case for
every application concerning the usual 2"¢ order, Prospect, or Markowitz SDR for income
distributions, or in financial applications involving base assets with compact supports.
When A is convex, this agrees to that there exist proper upper semi-continuous utilities
in the relevant characterizing class which hence admit optimal choices. For those SDRs
and non-bounded supports it is sufficient that sup __, E, (|X|1+6> < oo which is mild
for many applications.

3 Conclusions

We have essentially shown that under the appropriate framework, mild uniform moment
existence conditions are sufficient for the non-emptyness of the efficient set for some
commonly applied SDRs. We have done so via the use of the order theoretic notion of
spanning. The study of the efficient sets is obviously far from complete. In constrast to
the Mean-Variance framework, efficient sets for suchlike SDRs are possibly more complex
entities.

Given their importance for decision theory, and since a spanning set can be perceived
as an "outer approximation” via Lemma (1), it could be possible that properties of efficient
sets can be approximated by properties of sequences of spanning sets that appropriately
converge to them. If this is true then the concept of spanning can also play a crucial role in
the further study of optimal choices in such complex environments. We obviously leave
such considerations for future research.
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