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Abstract

We derive sufficient condiƟons for the non-emptyness of the efficient set for a class of StochasƟc
Dominance RelaƟons, commonly applied in Economics and Finance, over sets of distribuƟons on
the real line. We do so via the use of the concept of stochasƟc spanning and its characterizaƟon
via a saddle type property. Under the appropriate framework sufficiency takes the form of semi-
conƟnuity of some related funcƟonal. In some cases this boils down to mild uniform moment
existence condiƟons.
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1 IntroducƟon

StochasƟc dominance relaƟons (hereaŌer SDRs) are (pre-) orders on sets of Borel prob-
ability distribuƟons on the real line. Τheir study has gained importance in the fields of
economics, finance and staƟsƟcs/econometrics (see inter alia Kroll and Levy [4], McFad-
den [8], Levy [5, 6], Mosler and Scarsini [10]), since among others it enables inference on
issues regarding opƟmal choice under uncertainty, without parametric specificaƟon for
preferences.

Usually, SDRs are defined by complicated funcƟonal inequaliƟes, that have also char-
acterizaƟons in terms of classes of uƟlity funcƟons (see Levy [5, 6], Levy and Levy [7]-
hereaŌer L&L). This implies that when a distribuƟon dominates another w.r.t. such a
relaƟon, it is simultaneously prefered by any uƟlity in the relevant class and vice versa.
In this respect, order characterisƟcs of the relaƟon can be connected to properƟes of
opƟmal choices.
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2 Framework and Result 2

One such property is efficiency. A distribuƟon is efficient w.r.t. an SDR when it is a
maximal element of the order. When a uƟlity class characterizaƟon holds this is equiv-
alent to that it is prefered by some uƟlity in the class. Thereby, the efficient set of a
suchlike SDR is essenƟally the set of opƟmal choices of associated uƟliƟes, and its math-
emaƟcal structure has obvious importance for Decision Theory. Despite its importance,
to the best of our knowledge, there exists no general result in the literature that provides
with sufficient condiƟons even for the non-emptyness of the efficient set at least for the
SDRs that are commonly used in the related applicaƟons. This is in stark contrast to the
exhausƟve study of the efficient sets in theMean-Variance seƫng in finance (seeMerton
[9]), and demostrates the inherent complexiƟes of such orderings.

Thus, the purpose of the current note is to develop easily applicable sufficient con-
diƟons for the non-emptyness of the efficient set for as many ”commonly applied” SDRs
as possible. We derive those by uƟlizing another order characterisƟc of an SDR, that of
stochasƟc spanning. This is a brilliant idea of Thierry Post, influenced by the noƟon of
Mean-Variance spanning in Huberman and Kandell [3], that was formulated in the con-
text of second order stochasƟc dominance in ArvaniƟs, Hallam, Post and Topaloglou [1]
(hereaŌer AHPT), but is easily extendable to arbitrary SDRs. Vaguely, a subset of the
original set of distribuƟons is spanning, when opƟmal choices are not lost, when choices
are restricted from the laƩer to the former. It is not difficult to see that modulo equiv-
alences, the efficient set is a minimal spanning set. Hence, our strategy is to develop
analyƟcaly tractable condiƟons that ensure that the collecƟon of spanning sets has min-
imal elements. We do so via, among others, the analyƟcal characterizaƟon of spanning
via a ”saddle type” property of an appropriate funcƟonal.

We present our framework and derive the results in the following secƟon. In the final
one, we discuss issues for further research.

2 Framework and Result

Consider a set of Borel probability measures on ℝ, say 𝒫 ∶= {ℙ𝜆, 𝜆 ∈ Λ}, parameterized
by 𝜆 ∈ Λ a non empty compact subset of ℝ𝑚. We assume that the mapping 𝜆 → ℙ𝜆
is a conƟnuous bijecƟon w.r.t. the weak topology on 𝒫. Hence 𝒫 is weakly compact.
This is a quite general formulaƟon as it encompasses several frameworks encountered in
applicaƟons.

For an example, suppose that ℙ is a probability measure on ℝ𝑛, and 𝑓 ∶ Λ × ℝ𝑛 → ℝ
conƟnuous. ℙ𝜆 is represented by ∫ℝ𝑛 𝕀 {𝑓 (𝜆, 𝑢)}≤ ⋅}𝑑ℙ, i.e. the cdf of the measurable
transformaƟon ℝ𝑛 ∋ 𝑥 → 𝑓 (𝜆, 𝑥). If for any 𝜆, 𝑧, ∫ℝ𝑛 𝕀 {𝑓 (𝜆, 𝑢)} = 𝑧}𝑑ℙ = 0, then
the aforemenƟoned conƟnuity holds by dominated convergence. The laƩer framework is
usual in the context of financial economics and econometrics. Specifically, there 𝑚 = 𝑛,
Λ is a subset of the standard simplex of ℝ𝑛, and 𝑓 (𝜆, 𝑥) = 𝜆′𝑥 which represents a linear
porƞolio constructed on 𝑛 base assets with random returns that assume values inside
ℝ𝑛 (see Post and Levy [12], Scaillet and Topaloglou [13]-hereaŌer ST). Another example
involves income distribuƟons, whence Λ is simply a finite index set and the rest follow
easily (see McFadden [8], Horvath, Kokoszka, and ZiƟkis [2]).

HereaŌer 𝜆, 𝜅, potenƟally super-(sub-)scripted, denote generic elements of Λ. The
previous allow us to idenƟfy ℙ𝜆 with its index 𝜆. 𝐾 denotes a non empty closed subset
of Λ. ℐ is a finite parƟƟon of ℝ by intervals such that every 𝐼 ∈ ℐ is equipped with an
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orientaƟon 𝑜𝐼 ∈ {−1, 1}. When 𝑧 ∈ 𝐼 then 𝐼𝑧 ∶= {{𝑥 ∈ 𝐼, 𝑥 ≤ 𝑧} if 𝑜𝐼 = 1
{𝑥 ∈ 𝐼, 𝑥 ≥ 𝑧} if 𝑜𝐼 = −1 . For

𝑠 ∈ ℕ⋆, 𝐼 ∈ ℐ and 𝑧 ∈ 𝐼 , define recursively

𝒥𝐼 (𝑧, 𝜆, 𝑠) ≡ {
∫𝐼𝑧

𝒥 (𝐼, 𝑢, 𝜆, 𝑠 − 1) 𝑑𝑢, 𝑠 > 1
ℙ𝜆 ((−∞, 𝑧]) , 𝑠 = 1

. (1)

Using integraƟon by parts it is easy to establish that when 𝑠 = 1, or 𝑠 > 1 and 𝑜𝐼 = 1,
𝒥𝐼 is well defined if 𝔼𝜆 (|𝑋|𝑠−1 𝕀 {𝑋 ∈ 𝐼𝑧}) < ∞ for some 𝑧 ∈ 𝐼 , where 𝔼𝜆 denotes
expectaƟon w.r.t. ℙ𝜆. When 𝑠 > 1 and 𝑜𝐼 = −1 this holds when 𝐼 is bounded.

SDRs on𝒫 are usually defined via funcƟonal inequaliƟes. A quite general formulaƟon
is the following.

DefiniƟon 1. For 𝜅, 𝜆 ∈ Λ, 𝜅 weakly SD(ℐ, 𝑠)-dominates 𝜆, denoted by 𝜅 ≽𝑆𝐷 𝜆, iff
∀𝐼 ∈ ℐ, ∀𝑧 ∈ 𝐼

Δ𝐼 (𝑧, 𝜅, 𝜆, 𝑠) ≡ 𝒥𝐼 (𝑧, 𝜅, 𝑠) − 𝒥𝐼 (𝑧, 𝜆, 𝑠) ≤ 0. (2)

Strict SD(ℐ, 𝑠)-dominance, 𝜅 ≻𝑆𝐷 𝜆, occurs when in addiƟon to (2), ∃𝐼 ∈ ℐ, ∃𝑧 ∈ 𝐼
such that Δ𝐼 (𝑧, 𝜅, 𝜆, 𝑠) < 0. SD(ℐ, 𝑠)-equivalence, 𝜅 ∼𝑆𝐷 𝜆, occurs iff 𝜅 ≽𝑆𝐷 𝜆 and
𝜆 ≽𝑆𝐷 𝜅.

This encompasses several SDRs that appear in the literature. For example when ℐ =
{ℝ}, 𝑜ℝ = 1, then SD(ℐ, 𝑠) is the 𝑠𝑡ℎ- order SDR (see ST [13]). When 𝑠 = 1, ℐ =
{ℝ−, ℝ++} and 𝑜ℝ− −1 , 𝑜ℝ++ = 1, then SD(ℐ, 𝑠) is the Prospect SD, while when 𝑜ℝ− = 1,
𝑜ℝ++ − 1, we obtain the Markowitz SDR (see L&L [5]). We note here that the afore-
menƟoned SDRs can be characterized via opƟmal choices w.r.t. classes of uƟliƟes. E.g.
𝜅 ≽𝑆𝐷 𝜆 w.r.t. the 2𝑛𝑑- order SDR is equivalent to that 𝜅 is weakly prefered to 𝜆 by every
non-saƟable and risk averse uƟlity (see L&L [5]).

Given an SDR several order characterisƟcs are of importance. An example is the effi-
cient set comprised by elements that are not dominated by any other member of Λ, i.e.
they are SD(ℐ, 𝑠)-maximal.

DefiniƟon 2. 𝜅 ∈ Λ is an SD(ℐ, 𝑠)-efficient element of Λ iff ∀𝜆 ∈ Λ,

∃𝐼 ∈ ℐ ∃𝑧 ∈ 𝐼 ∶ Δ𝐼 (𝑧, 𝜅, 𝜆, 𝑠) < 0, or 𝜅 ∼𝑆𝐷 𝜆.

The set of the SD(ℐ, 𝑠)-efficient elements of Λ is denoted by ℰ𝑆𝐷 (Λ).

Under uƟlity class interpretaƟon, efficiency is global preference by some uƟlity func-
Ɵon in the class when Λ is convex (see Post [11]). Hence ℰ𝑆𝐷 (Λ) is the set of opƟmal
choices. The issue of its non-emptyness may be non trivial when supports are not com-
pact, even when the class contains appropriately conƟnuous uƟliƟes. In order to obtain
sufficient condiƟons for it, we exploit the order theoreƟc noƟon of spanning.

DefiniƟon 3. 𝐾 SD(ℐ, 𝑠)-spans Λ (say 𝐾 ≽𝑆𝐷 Λ) iff ∀𝜆 ∈ Λ, ∃𝜅 ∈ 𝐾 ∶ 𝜅 ≽𝑆𝐷 𝜆.



2 Framework and Result 4

Under a uƟlity class interpretaƟon, 𝐾 is spanning iff the excision of Λ − 𝐾 from the
choice set Λ does not affect opƟmality for all uƟliƟes in the class. If moreover a spanning
set is singleton then it represents an idenƟcal opƟmal choice for every uƟlity in the class,
which is thereby an SD(ℐ, 𝑠)-greatest element. StaƟsƟcal inference for greatest elements
is the subject of a strand of the analogous literature that generalizes the tradiƟonal pair-
wise comparisons (see ST [13]). As is evident from the previous, greatest elements are
generically difficult to exist.

ObviouslyΛ ≽𝑆𝐷 Λ. Hence (closed) spanning sets always exist. Consider𝑅𝑆𝐷 (Λ) =
{𝐾 ⊆ Λ, 𝐾 ≽𝑆𝐷 Λ, 𝐾 closed} and equip it with the ⊆-parƟal order. We thus obtain a
useful but not easily verifiable condiƟon for non-emptyness.

Lemma 1. If (𝑅𝑆𝐷 (Λ) , ⊆) has a minimal element then ℰ𝑆𝐷 (Λ) ≠ ∅.

Proof. Let 𝐾⋆ be minimal, and suppose that ℰ𝑆𝐷 (Λ) = ∅. The laƩer implies that for
any 𝜅 ∈ 𝐾⋆, ∃𝜆𝜅 ∈ Λ such that 𝜆𝜅 ≻𝑆𝐷 𝜅. Since 𝐾⋆ is spanning, then 𝜆𝜅 ∈ 𝐾. Then
𝐾⋆ − {𝜅} is also spanning which is impossible due to minimality.

We combine the result above with a saddle type characterizaƟon for spanning to ob-
tain tractable analyƟcal condiƟons. Suchlike results can also be useful for the design of
inferenƟal procedures for spanning via empirical analogues (see AHPT [1]). Its proof is
obvious and thereby omiƩed.

Lemma 2. 𝐾 ≽𝑆𝐷 Λ iff sup𝜆∈Λ inf𝜅∈𝐾 𝜌 (𝜅, 𝜆) ≤ 0, where

𝜌 (𝜅, 𝜆) ∶= max
𝐼∈ℐ

sup
𝑧∈𝐼

Δ𝐼 (𝑧, 𝜅, 𝜆, 𝑠) .

Our main result then links non-emptyness to semi-conƟnuity for 𝜌 via Zorn’s Lemma
and the finite intersecƟon property (fip).

Theorem 1. If for any 𝜆 ∈ Λ, 𝜌 (𝜆, ⋅) ∶ Λ → ℝ is lower semi-conƟnuous (lsc), then
ℰ𝑆𝐷 (Λ) ≠ ∅.

Proof. Due to Lemma (1) the result would follow if (𝑅𝑆𝐷 (Λ) , ⊆) has aminimal element.
By Zorn’s Lemma such a minimal element would exist if any chain inside (𝑅𝑆𝐷 (Λ) , ⊆)
has a lower bound that is also a spanning set. Consider an arbitrary chain {𝐾𝑠, 𝑠 ∈ 𝑆}
where 𝑆 is an appropriate ordered index set, as well as ∩𝑠∈𝑆𝐾𝑠, which is obviously a
lower bound for the chain. We will prove that ∩𝑠∈𝑆𝐾𝑠 ≽𝑆𝐷 Λ. Consider an arbi-
trary 𝜆 ∈ Λ as well as an arbitrary element of the chain, say 𝐾𝑠⋆ and the set 𝐾⋆

𝑠⋆ =
{𝜅 ∈ 𝐾𝑠⋆ ∶ 𝜅 ≽𝑆𝐷 𝜆}. This is non empty since 𝐾𝑠⋆ is a spanning set. If (𝜅𝑚)𝑚∈ℕ is any
convergent sequence in𝐾⋆

𝑠⋆ then its limit lies also inside𝐾⋆
𝑠⋆ since𝜌 (𝜆, ⋅) is lsc, by Lemma

(2). Hence𝐾⋆
𝑠⋆ is non-empty compact. Furthermore𝐾⋆

𝑠′ ⊆ 𝐾⋆
𝑠⋆ when 𝑠⋆ ≤ 𝑠′. Hence the

monotone collecƟon of compact subsets ofΛ, {𝐾⋆
𝑠 , 𝑠 ∈ 𝑆} has the fip, i.e. ∩𝑠∈𝑆𝐾⋆

𝑠 ≠ ∅,
which implies that ∩𝑠∈𝑆𝐾𝑠 has an element that weakly SD(ℐ, 𝑠)-dominates 𝜆, hence it
is spanning.

NoƟce that for any 𝜆, 𝜅 ∈ Λ and any sequence Λ ∋ 𝜅𝑚 → 𝜅, we have that

lim inf
𝑚→∞

𝜌 (𝜆, 𝜅𝑚) ≥ max
𝐼∈ℐ

sup
𝑧∈𝐼

lim inf
𝑚→∞

Δ𝐼 (𝑧, 𝜅𝑚, 𝜆, 𝑠) . (3)



3 Conclusions 5

Thereby, a sufficient condiƟon for (lsc) is thatΔ𝐼 (𝑧, ⋅, 𝜆, 𝑠) is lsc for some 𝑧 ∈ 𝐼 and some
𝐼 ∈ ℐ. When 𝑠 = 1, or 𝑠 > 1 and 𝑜𝐼 = 1 for all 𝐼 ∈ ℐ, by conƟnuity of 𝜆 → ℙ𝜆, (3)
holds if for some 𝛿 > 0, sup𝜅∈Λ 𝔼𝜅 (|𝑋|𝑠−1+𝛿 𝕀 {𝑋 ∈ 𝐼𝑧}) < ∞ for some 𝑧 ∈ 𝐼, 𝐼 ∈ 𝒥,
due to uniform integrability. When 𝑠 > 1 and addiƟonally to the previous 𝑜𝐼 = −1 for
some 𝐼 it holds if moreover this is bounded.

Such condiƟons are easily met when ∪𝜆∈Λsupp (ℙ𝜆) is bounded. This is the case for
every applicaƟon concerning the usual 2𝑛𝑑 order, Prospect, orMarkowitz SDR for income
distribuƟons, or in financial applicaƟons involving base assets with compact supports.
When Λ is convex, this agrees to that there exist proper upper semi-conƟnuous uƟliƟes
in the relevant characterizing class which hence admit opƟmal choices. For those SDRs
and non-bounded supports it is sufficient that sup𝜅∈Λ 𝔼𝜅 (|𝑋|1+𝛿) < ∞ which is mild
for many applicaƟons.

3 Conclusions

Wehave essenƟally shown that under the appropriate framework, mild uniformmoment
existence condiƟons are sufficient for the non-emptyness of the efficient set for some
commonly applied SDRs. We have done so via the use of the order theoreƟc noƟon of
spanning. The study of the efficient sets is obviously far from complete. In constrast to
theMean-Variance framework, efficient sets for suchlike SDRs are possiblymore complex
enƟƟes.

Given their importance for decision theory, and since a spanning set can be perceived
as an ”outer approximaƟon” via Lemma (1), it could bepossible that properƟes of efficient
sets can be approximated by properƟes of sequences of spanning sets that appropriately
converge to them. If this is true then the concept of spanning can also play a crucial role in
the further study of opƟmal choices in such complex environments. We obviously leave
such consideraƟons for future research.
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