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Abstract

We develop non-parametric tests for prospect stochastic dominance Efficiency (PSDE) and Markowitz

stochastic dominance efficiency (MSDE) with rejection regions determined by block bootstrap re-

sampling techniques. Under the appropriate conditions we show that they are asymptotically con-

servative and consistent. We engage into Monte Carlo experiments to assess the finite sample size

and power of the tests allowing for the presence of numerical errors. We use them to empirically

analyze investor preferences and beliefs by testing whether the value-weighted market portfolio can

be considered as efficient according to prospect and Markowitz stochastic dominance criteria when

confronted to diversification principles made of risky assets. Our results indicate that we cannot

reject the hypothesis of prospect stochastic dominance efficiency for the market portfolio. This is

supportive of the claim that the particular portfolio can be rationalized as the optimal choice for any

S-shaped utility function. Instead, we reject the hypothesis for Markowitz stochastic dominance,

which could imply that there exist reverse S-shaped utility functions that do not rationalize the

market portfolio.

Key words and phrases: Non parametric test, prospect stochastic dominance efficiency,

Markowitz stochastic dominance efficiency, simplical complex, extremal point, Linear Pro-

gramming, Mixed Integer Programming, Block Bootstrap, Consistency.

JEL Classification: C12, C13, C15, C44, D81, G11.

1 Introduction

In classical decision models, the utility of wealth is everywhere increasing and concave and

hence investors are considered non-satiable and globally risk averse. However, there is empirical

as well as experimental evidence that decision-makers are not always globally risk averse, but

instead they seem to exhibit local risk-seeking behaviour (i.e., the utility function has convex

segments). The aim of this paper is to develop statistical procedures for testing for efficiency

under some cases of locally convex utility schemes (convex-concave, or concave-convex).

Using these tests, we analyze investor preferences and beliefs by testing whether investors are

risk seeking for losses and risk averse for gains, or the opposite, thus analyzing how investors

behave in bull vs bear markets.
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Traditionally, in the context of portfolio theory, investors are assumed to act as non satiable

and risk averse agents and thus their preferences are represented by increasing and globally

concave utility functions. For this reason, most of the criteria used to verify the efficiency of

a given portfolio (see, among others, Gibbons, Ross, and Shenken (1989)) are based on the

first and second stochastic dominance rules, see e.g. the papers by Kroll and Levy (1980)

and Levy (1992), and the excellent monograph on the theory of stochastic dominance by

Levy (2006). Recently, Gonzalo and Olmo (2014) propose nonparametric consistent tests of

conditional stochastic dominance of arbitrary order in a dynamic setting.

A portfolio is first order stochastic dominance efficient if it is optimal w.r.t. any increasing

utility function. Thus, this is a notion of efficiency w.r.t. non satiation. A portfolio is second

order stochastic dominance efficient if it is optimal w.r.t. any increasing and globally concave

utility function. This is a notion of efficiency w.r.t. non satiation and global risk aversion.

Given non satiation, empirical evidence suggests that investors do not always act as risk-

averters. Instead, under certain circumstances they behave in a much more complex fashion

exhibiting characteristics of both risk-loving and risk-hating. Furthermore, they seem to eval-

uate wealth changes of assets w.r.t. to benchmark cases, rather than final wealth positions.

They behave differently on gains and losses, and one can say that they are more sensitive to

losses than to gains (loss aversion). In addition, there are cases where the relevant utility (or

value) function could be either concave for gains and convex for losses or convex for gains and

concave for losses. Moreover, they seem to transform the objective probability measures to

subjective ones using transformations that potentially increase the probabilities of negligible

(and possibly averted) events, and which in some cases share similar analytical characteristics

to the aforementioned utility functions. Examples of risk orderings that (partially) reflect

such findings are the dominance rules of behavioral finance (see Friedman and Savage (1948),

Baucells and Heukamp (2006), Edwards (1996), and the references therein).

A seminal instance of an analysis that incorporates the previous, developed in an experi-

mental framework, is the prospect theory of Kahneman and Tversky (1979). In addition to the

above mentioned theory, preferences can be characterized by S-shaped value functions w.r.t.

a benchmark point. The theory was further developed by Tversky and Kahneman (1992) to

cumulative prospect theory in order to be consistent with first-order stochastic dominance.
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In a different context, related to the spirit of Friedman and Savage (1948), Markowitz

(1952) suggests that individuals are risk averse for losses and risk seeking for gains as long as

the outcomes are not very extreme. A class of utility functions that partially1 represents this

kind of behavior is the one of reverse S-shaped (utility or value) functions.

Inspired by previous work, Levy and Levy (2002) formulate the notions of prospect stochas-

tic dominance (PSD) and Markowitz stochastic dominance (MSD). These are essentially ob-

tained by the consideration of two partial orders on th e set of probability measures on R.

According to their definition, portfolio A prospect stochastically dominates portfolio B iff the

expected utility of the return of A is greater than or equal to the expected utility of the return

of B for any utility function in the set of increasing, convex on the negative part and concave

on the positive part real functions (termed as S-shaped (at zero) utility functions). PSD

efficiency is then derived when one considers maximal elements w.r.t. this ordering. Analo-

gously, portfolio A Markowitz stochastically dominates portfolio B iff the expected utility of

the return of A is greater than or equal to the expected utility of the return of B for any utility

function in the set of increasing, concave on the negative part and convex on the positive

part real functions (termed as reverse S-shaped (at zero) utility functions). Again, the notion

of MSD efficiency follows naturally from the notion of maximality w.r.t. the particular order-

ing. PSD efficiency and MSD efficiency are not mutually exclusive. That is, one portfolio

could be prospect as well as Markowitz stochastic dominance efficient (see the Monte Carlo

experiment).

The main contribution of this paper is to develop consistent tests for prospect stochastic

dominance (PSD) and Markowitz stochastic dominance (MSD) efficiency (where full diversifi-

cation is allowed), to analyse observed investor behavior in a statistical context. We construct

the test statistics using the principle of analogy along with the preference free representations

of those notions by Levy and Levy (2002). We construct stochastic rejection regions based

on approximations of asymptotic critical values using block bootstrap. Under the appropriate

conditions we show that they are asymptotically conservative and consistent, a minimal result

that is typical in the relevant literature. Both the statistics as well as the rejection regions

are defined by complex optimization procedures. We approximate the optimal solutions by

1 i.e. when the possibility of further changes of the risk attitude on extreme events is ignored.
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reducing them to appropriate sets of linear or mixed integer optimization problems. We en-

gage into Monte Carlo experiments to evaluate the finite sample size and power of the tests

allowing for optimization errors in the framework of conditional heteroskedasticity.

We study whether observed portfolio choices can be characterized as efficient w.r.t. any

of the two notions of stochastic dominance described in the previous paragraph. Prospect

and Markowitz stochastic dominance efficiency criteria have not been well statistically tested,

despite their appeal with experimental observations. This is the case, even though this research

field seems particularly well suited for statistical analysis, given the availability of large datasets

of historical returns.

Post and Levy (2005) test for weaker versions of the aforementioned notions of stochas-

tic dominance. More specifically, they allow for a portfolio A to be prospect (Markowitz)

stochastically dominant to B iff there exists an S-shaped (reverse S-shaped) utility function

that rationalizes the optimal choice of A over B. It is easy to see that by substituting the

universal with the existential quantifier they weaken the PSD and MSD notions as defined in

Levy and Levy (2002) and discussed above. Then, they propose a non parametric test based

on a test statistic constructed from first order conditions of utility maximization. They derive

asymptotic critical values by an asymptotic normality argument in an iid framework.2

In contrast, first, as noted above, we use the stronger versions of PSD and MSD efficiency

of Levy and Levy (2002). We do so motivated by the possibillity that an investor (e.g. a

financial institution) being uncertain of the exact form of her utility function, may find useful

to have a test of whether a given portfolio can be considered as an optimal choice for any

given S-shaped (reverse S-shaped) utility function.

Second, we test for global optimality rather than using first-order conditions, something

that among others complexifies our numerical procedures in comparison to the linear program-

ming ones used in the aforementioned paper.

Third, we allow for dynamic time-series patterns (rather than serial IIDness). These

research objectives are interesting and can have important effects on empirical research in

portfolio analysis and asset pricing.

Our work is in the spirit of Scaillet and Topaloglou (2010) who develop consistent tests

2 that is generally inconsistent with the empirical characteristics of financial data.
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for stochastic dominance efficiency at any order for time-dependent data (see also Linton,

Post and Wang (2013)), relying on weighted Kolmogorov-Smirnov type statistics in testing

for stochastic dominance. They are in turn inspired by the consistent procedures developed

by Barrett and Donald (2003) and extended by Horvath, Kokoszka, and Zitikis (2006) to

accommodate for non-compact support.

The paper is organized as follows. In Section 2, we discuss the general hypotheses for

testing prospect and Markowitz stochastic dominance efficiency. We describe the testing

procedures, and derive their minimal asymptotic properties. The procedures are based on ap-

proximations of the asymptotic rejection regions3 by a block bootstrap method. Notice here

that other resampling methods such as subsampling are also available (see Linton, Maasoumi

and Whang (2005) for the standard stochastic dominance tests). Linton, Post and Whang

(2013) follow this route in the context of testing procedures for second order stochastic dom-

inance efficiency. They use subsampling to estimate the p -values, and discuss power issues of

the testing procedures. We use block bootstrap instead of subsampling, since our asymptotic

considerations under the null, are based on random variables that are upper bounds for the

test statistics at hand. Those bounds cannot be subsampled since they depend on a gen-

erally unknown distribution, instead they can be bootstraped when the latter is replaced by

the empirical distribution. Their weak limits provide with possibly small asymptotic rejection

regions hence the characterization of the testing procedures as asymptotically conservative.4

The derivation of the exact limits under the null and the subsequent ability to use the subsam-

pling method so as to obtain asymptotically exact procedures is delegated to further research.

However the block bootstrap method enables the use of the full sample information. Hence

it can be in some cases preferable especially in the presence of samples with a limited number

of time-dependent data: we have 996 monthly observations in our empirical application. We

note here that the testing procedures for both prospect and Markowitz stochastic dominance

efficiency are algorithmically formulated in terms of linear and mixed integer programming

respectively.

In Section 3, we design a Monte Carlo study to evaluate for the finite sample size and

power of the proposed tests in a framework of conditional heteroskedasticity.

3 actually of the limiting p-values.
4 A minimal property which allows for the existence of local alternatives under which the tests are biased.
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In Section 4, we provide an empirical illustration. We analyze investor preferences and

beliefs by testing whether the value-weighted market portfolio can be considered as efficient

according to prospect and Markowitz stochastic dominance criteria when confronted to diver-

sification principles made of risky assets. For this pupropse, we use proxies of the individual

assets in the investment universe. Thus, for the individual risky assets, we use four different

sets of benchmark portfolios: The 6, the 25 and the 100 Fama and French benchmark port-

folios constructed as the intersections of portfolios formed on size and book-to-market equity

ratios, and the 49 Fama and French Industry portfolios. Although these datasets have been

well studied in the literature, we use a novel analyses that leads to new scientific insights. The

usual assumption in the literature is that the utility function of wealth is everywhere concave,

where in this paper we test for utility schemes which are locally convex (convex-concave, or

concave-convex). To focus on the role of preferences and beliefs, we largely adhere to the as-

sumptions of a single-period, portfolio-oriented model of a frictionless and competitive capital

market.

The problem is interesting, given the fact that many institutional investors hold portfo-

lios that mimic the behaviour of the market portfolio. Many institutional investors invest in

Exchange-Traded Funds (ETFs) and mutual funds. These funds track stocks, commodities

and bonds, or value-weighted equity indices which strongly resemble the market portfolio.

Moreover, many actual funds, including total market index funds which are based on the

Wilshire 5000 index, are very highly correlated with the market portfolio. Thus, it is inter-

esting to see whether this behaviour can be rationalized by preferences represented inside the

aforementioned classes of utility functions.

We find that we cannot reject the PSD hypothesis for the market portfolio, in any of the

different datasets. However, the MSD hypothesis for the market portfolio can be rejected

in every case. These findings are in contrast to the normative implications inherent within

classical expected utility frameworks, that assume that investors are universaly risk averse.

Given the possibility of decision errors, our findings predict that individuals tend to be risk

averse in a domain of gains, and risk seeking in a domain of losses.

We give some concluding remarks and provide some hints for further research in Section

5. We discuss in detail the computational aspects of mathematical programming formulations



2 Consistent Tests for Prospect and Markowitz Stochastic Dominance Efficiency 8

corresponding to the test statistics, and we give all the proofs in the Appendix.

2 Consistent Tests for Prospect and Markowitz Stochastic

Dominance Efficiency

2.1 Notation, Assumption Framework and Hypotheses Structures

We describe and formulate consistent yet infeasible testing procedures for both criteria. We

approximate them by feasible ones that retain consistency.

In this respect, consider a complete probability space (Ω,F ,P), upon which a strictly

stationary process (Y t)t∈Z taking values in Rn is defined. Y ti denotes the i
th element of Y t.

The sample is a realization of the random element (Y t)t=1,...,T . In our context it represents

observed returns of n financial assets. F denotes the cdf of Y 0 and F̂T the empirical cdf

associated with the random element (Y t)t=1,...,T . (x)+ = max {x, 0} and (x)− = min {x, 0}

and when x is a vector, they are to be interpreted in the coordinatewise sense. In what follows,

absolute continuity is considered w.r.t. the relevant Lebesgue measure.

Assumption A. F is absolutely continuous with convex support andmaxi=1,...,n E
∣∣(Y 0i)−

∣∣ <
+∞. Furthermore, (Y t)t∈Z is a-mixing with mixing coefficients at such that aT = O(T−a)

for some a > 1 as T → ∞.

The mixing part of the previous assumption is readily implied by concepts such as ge-

ometric ergodicity which holds for many stationary models used in the context of financial

econometrics. Prominent examples are the strictly stationary versions of ARMA or GARCH

and stochastic volatility type of models. Counter-examples are stationary models that ex-

hibit long memory, etc. See Doukhan (1994) for the relevant rigorous definition and further

examples.

Assumption B. Assumption A holds and for some δ > 0, maxi=1,...,n E
[
(Y 0i)+

]2+δ
< +∞.

Furthermore a > 1 + 2
δ
.

The previous strengthens the requirements of Assumption A so that moment conditions

that enable the validity of a mixing CLT hold. Those are readily established in models such
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as the ones mentioned above usually in the form of stricter restrictions on the properties of

building blocks and the parameters of the processes involved.

Assumption C. L is a simplicial complex comprised of a finite number of simplices of Λ =

{λ ∈ Rn
+ : e′λ= 1, }. It contains all the extreme points of Λ.

The parameter set L represents the portfolio collection at hand via the identification

λ → λ′Y t. τ denotes some distinguished element of L that represents the portfolio to be

tested for the relevant notion of efficiency w.r.t. the elements of L. The structure of L

allows for it to be non-convex and possibly disconnected while it is obviously compact. It

enables the establishment of the limit theory of the procedures to be defined in relation to

n i.e., the number of the extreme points of λ, while its structure as a simplicial complex

facilitates our numerical formulation. We obviously suppose that n > 1 since in the opposite

case Λ = L = {τ} in which case this distinguished element is efficient w.r.t. any notion of

stochastic dominance.

Suppose that F ∗ denotes the distribution function of some finite measure on Rn. Let

G(z,λ, F ∗) be
∫
Rn I{λ′u ≤ z}dF ∗(u), i.e. the cdf of the linear transformation x → λ′x.

The following is a list of linear functionals useful for the definition and the derivation of the

properties of the testing procedures that we later implement. Let

J2(z,λ, F
∗) :=

∫ z

−∞
G(u,λ, F ∗)du. (1)

This is finite if E∗ [(−λ′Y 0)+
]
exists (see Horvath, Kokoszka, and Zitikis (2006)) where E∗

denotes the expectation operator w.r.t. F ∗. Assumption A implies the existence of J2(z,λ, F )

for any z ∈ R, λ ∈ λ. From Davidson and Duclos (2000) Equation (2), we obtain that

J2(z,λ, F
∗) =

∫ z

−∞
(z − u)dG(u,λ, F ∗),

which can be rewritten as

J2(z,λ, F
∗) =

∫
Rn

(z − λ′u)I{λ′u ≤ z}dF ∗(u). (2)

J2 can be used to represent second order stochastic dominance. The following transformations

and ”complements” of J2 are associated with representations of the notions of stochastic

dominance that are considered below and are useful for either the derivation of asymptotic
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properties and/or computational facilitation. The first, relevant to the prospect stochastic

dominance, is

J (z,λ, τ , F ∗) ≑
∫ 0

z

G(u, τ , F ∗)du−
∫ 0

z

G(u,λ, F ∗)du.

Under assumption A it can be rewritten as

J2(0, τ , F
∗)− J2(z, τ , F

∗)− (J2(0,λ, F
∗)− J2(z,λ, F

∗)) . (3)

The second, relevant to Markowitz stochastic dominance, is

J c
2 (z,λ,τ , F

∗) :=

∫ +∞

z

(G (u,λ, F ∗)−G (u, τ , F ∗)) du.

It not hard to see (Lemma 8 in the Appendix) that J c
2 (z,λ,τ , F

∗) is finite if E∗[(λ′Y 0)+]

and E∗[(τ ′Y 0)+] exist. Assumption B implies the existence of J c
2 (z,λ,τ , F

∗) for any λ ∈ L.

Prospect stochastic dominance efficiency We use the preference free representation of

prospect stochastic dominance efficiency of Levy and Levy (2002), and express it with respect

to the aforementioned functionals so as to formulate the hypotheses structure for this form

of efficiency. This also facilitates the numerical formulation of the relevant tests.

Remember that the dominant portfolio for this form of efficiency is interpreted as the

optimal choice for any function in the class of s-shaped utility functions. The following

definition draws from equivalence (3) of Levy and Levy (2002) and it is simply expressed in

terms of some iterated optimization functional applied on J .

Definition I. τ is PSD-efficient iff

S (τ ) := max
(
Sα (τ ) , Sβ (τ )

)
= 0,

where

Sα (τ ) := sup
z≥0,λ∈L

J (z,−λ,−τ , F ) ,

and

Sβ (τ ) := sup
z≥0,λ∈L

−J (z,λ, τ , F ) .

τ is PSD-inefficient iff S (τ ) > 0.



2 Consistent Tests for Prospect and Markowitz Stochastic Dominance Efficiency 11

This directly identifies the hypothesis structure for any statistical test on the P-efficiency

of τ as follows.

H(P)
0 : S (τ ) = 0,

H(P)
1 : S (τ ) > 0.

Markowitz stochastic dominance efficiency Similarly to the previous case we formulate

the hypotheses structure for the Markowitz stochastic dominance efficiency based on the utility

free representation of Levy and Levy (2002), equivalently expressed w.r.t. the functionals

introduced in previous paragraphs due to reasons stated above.

Again, the dominant portfolio is by construction the optimal choice when the preferences

are represented by any utility function in the class of reverse shaped ones. The following

definition draws from equivalence (4) of Levy and Levy (2002) which is expressed in terms of

some nested optimization procedure that involves J2 and J c
2 .

Definition II. If J2 and J c
2 exist then τ is MSD-efficient (see Levy and Levy (2002)), equation

(4) iff

Υ(τ ) := max
(
Υ̂α (τ ) , Υ̂β (τ )

)
= 0

where

Υα (τ ) := sup
z≤0,λ∈L

(J2(z, τ , F )− J2(z,λ, F )) ,

and

Υβ (τ ) := sup
z≥0,λ∈L

[∫
Rn

(
(λ′u)+ − (τ ′u)+

)
dF (u) + J (z,λ, τ , F )

]
.

τ is MSD-inefficient iff Υ(τ ) > 0.

This again establishes the current hypothesis structure for M-efficiency of as follows.

H(M)
0 : Υ (τ ) = 0,

H(M)
1 : Υ (τ ) > 0.

2.2 Generally Infeasible Tests

Given the hypotheses structure in any of the aforementioned notions of efficiency, we con-

struct test statistics via the use of the principle of analogy. In every occurrence inside the
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expressions of the null hypothesis we replace the cdf with its empirical counterpart. We then

form appropriate differences of the empirical versions of the resulting linear functionals and

maximise them w.r.t. z and λ. Under the appropriate limit theory (enabled by our assumption

framework) we obtain a well defined asymptotic distribution for a sequence of random vari-

ables that bound from above the previous maximum under the null. Thereby, we obtain valid

asymptotic critical values for appropriate levels of significance, so that the limiting probability

of rejection under the null is bounded above by the chosen significance level while under the

alternative becomes unity.

The test statistics are obtained by two ”internal” and a trivial ”external” maximization

procedure in each case. The former are usually analytically intractable and are thereby nu-

merically approximated. The details of the relevant numerical procedures are explained in the

Appendix. Finally, the asymptotic critical values are also usually analytically intractable since

they are maxima of complicated Gaussian processes depending on usually unknown properties

of F . Hence, they must also be approximated. This is accomplished by bootstrap resampling

and numerical optimization and it is explained in the subsequent section. Thus, in this section

we present the infeasible tests and their limit theory. The former are then approximated by

feasible versions with the same (first order) asymptotic properties.

Prospect stochastic dominance efficiency In the case of the PSD efficiency the proce-

dure defined above results in the following random variable which is the empirical analogue

of the functional appearing in the definition of the null:

ŜT (τ ) = max
(
Ŝα
T (τ ) , Ŝβ

T (τ )
)

where

Ŝα
T (τ ) = sup

z≥0,λ∈L

√
TJ

(
z,−λ,−τ , F̂T

)
,

and

Ŝβ
T (τ ) = sup

z≥0,λ∈L
−
√
TJ

(
z,λ, τ , F̂T

)
.

Furthermore, given the one sided form of the alternative, for some cP consider the decision

rule

rejectH(P)
0 iff ŜT (τ ) > cP . (4)
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The following proposition demonstrates the minimal asymptotic properties for the test

based on (4). The condition (5) appearing in addition to assumption A is identical to the one

used in Horvath, Kokoszka, and Zitikis (2006) and Scaillet and Topaloglou (2010) and it is

implied by the existence of E ∥Y 0∥1+ϵ for some ϵ > 0.

Proposition 1. Suppose that Assumptions A and C hold and that G satisfies∫
R

√
G (u,λ, F ) (1−G (u,λ, F ))du < +∞, for all λ ∈ L. (5)

1. If H(P)
0 is true, then there exists a random variable S̄ (τ ) with the following properties.

Its law has support [0,+∞). If τ is an extreme point of λ then it may have an atom

at zero of probability at most 1
n
, and it is absolutely continuous when restricted to

(0,+∞). If τ is not an extreme point of λ then its law is absolutely continuous. Given

this, for the test based on the decision rule (4) and any α ∈ (0, 1), there exists a cP

such that:

lim sup
T→∞

P
(
reject H(P)

0

)
≤ P

(
S̄ (τ ) > cP

)
≑ α (cP) .

2. If H(P)
0 is false, then

lim
T→∞

P
(
reject H(P)

0

)
= 1.

Thereby, the test is both asymptotically conservative and consistent. The fact that the

asymptotic rejection regions are potentially smaller to the ones possibly related to the given

level of significance is attributed to the fact that the derivation goes through via the construc-

tion of upper bounds for the test statistic. This is a result that also repeats itself in all the

remaining cases and procedures. Hence we will refer to it generally as a minimal asymptotic

property. Furthermore, the result specifies the absolute continuity of the limit law, at least

when restricted to the interior of its support. Hence, via the connectedness of its support,

it implies the continuity of its quantile function when α < n−1
n
. Notice that this condition

implies that in the non trivial cases (i.e. when n > 1), this is satisfied when α ≤ 1
2
which

is obviously a slack restriction in the standard cases. Both those results are used in order to

obtain consistency for the feasible analogues of those testing procedures based on bootstrap

when the significance leven is chosen according to this information. Again, those properties
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also appear in the analogous results for the remaining test for the same reasons. Hence, given

the previous comment they will not be further discussed.

Markowitz stochastic dominance efficiency Analogously to the previous paragraph, the

following random variable has a similar form and thereby a suchlike structure to the one used in

the prospect theory testing procedure. This is then used as the test statistic for the Markowitz

type of efficiency. It is

Υ̂T (τ ) = max
(
Υ̂α

T (τ ) , Υ̂β
T (τ )

)
where

Υ̂α
T (τ ) = sup

z≤0,λ∈L

√
T
(
J2(z, τ , F̂T )− J2(z,λ, F̂T )

)
,

and

Υ̂β
T (τ ) = sup

z≥0,λ∈L

[
1√
T

∑T

i=1

(
(λ′Yi)+ − (τ ′Yi)+

)
+
√
TJ

(
z,λ, τ , F̂T

)]
.

Furthermore, given the one sided form of the relevant alternative, for some cM consider the

decision rule

rejectH(M)
0 iff Υ̂T (τ ) > cM. (6)

The proposition that follows similarly derives the minimal asymptotic and the bootstrap

related properties for the test based on (6). Similarly to the previous, the condition (7)

appearing in addition to assumption B implies along with the assumption (5). It is implied by

the existence of maxi=1,...,n E
∣∣(Y 0i)−

∣∣1+ϵ
for some ϵ > 0.

Proposition 2. Suppose that Assumptions B and C hold and that G satisfies∫ 0

−∞

√
G (u,λ, F ) (1−G (u,λ, F ))du < +∞, for all λ ∈ L. (7)

1. If H(M)
0 is true, then there exists a random variable Ῡ (τ ) with the following properties.

Its law has support [0,+∞). If τ is an extreme point of λ then it may have an atom

at zero of probability at most 1
n
, and it is absolutely continuous when restricted to

(0,+∞). If τ is not an extreme point of λ then its law is absolutely continuous. Given

this, for the test based on the decision rule (6) and α ∈ (0, 1), there exists a cM such

that:
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lim sup
T→∞

P
(
reject : H(M)

0

)
≤ P

(
Ῡ (τ ) > cM

)
≑ α (cM) .

2. If H(M)
0 is false, then

lim
T→∞

P
(
rejectH(M)

0

)
= 1.

2.3 K-S type Tests Based on Block Bootstrap

The previous testing procedures are generally non implementable due to the fact that in most

cases the critical values are unknown. This is first due to the fact that the covariance kernels

of the limiting Gaussian processes that enable the previous results are generally unknown

and cannot be estimated without further parametric assumptions. Furthermore, even if such

estimates were available, the optimization of the resulting processes is generally analytically

intractable, and thereby must be as well performed by numerical procedures.

In this section, in order to avoid such assumptions, and given that in any case the numerical

burden employed in what follows would be comparable to the one implied in the previous

paragraph (see the relevant comment after Proposition 2 of Scaillet and Topaloglou (2010)) we

consider approximations based on bootstrap resampling techniques that manage to incorporate

the assumed dependence.5

Block bootstrap methods are based on “blocking” arguments, in which data are divided

into blocks and those, rather than individual data, are resampled in order to mimic the time

dependent structure of the original data.6 Let bT , lT denote integers such that T = bT lT .

bT denotes the number of blocks and lT the block size. The following assumption rests on

Theorem 2.2 of Peligrad (1998).

Assumption D. For some 0 < ρ < 1
3
and some 0 < h < 1

3
− ρ, T h ≪ lT ≪ T

1
3
−ρ and

lT = l2k for 2k ≤ T < 2k+1.

5 As also mentioned before, the subsampling procedure employed in Linton et al. [26] is not implementable

in our case since we do not have an exact limit theory of our test statistics under the relevant null hypotheses.

Since only asymptotic upper bounds are available, bootstrap resampling schemes are implementable on the

empirical analogues of those limits conditional on the sample. This is not true for subsampling schemes since

F is unknown.
6 i.e. the relevant empirical measure on the powerset of the sample is essentially used.
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We consider only the case of non-overlapping blocks. This is due to the fact that the bias

reducting centering of the relevant statistics would imply further serious numerical burden.7

In any case, and due to the fact that we are only concerned with first order asymptotic

properties it would be easy to see that the overlapping case would also have those properties.

Let (Y ∗
t )t=1,...,T denote a bootstrap sample arising by either methodology and let F̂ ∗

T denote

its empirical distribution. Denote with E∗
T [·] the expectation operator with respect to the

probability measure induced by the sampling scheme. Under the current methodology we have

that E∗
T [J2

(
z,λ, F̂ ∗

T

)
] = J2

(
z,λ, F̂T

)
and E∗

T [
1
T

∑T
i=1 Y

∗
i ] =

1
T

∑T
i=1 Y i (see Scaillet and

Topaloglou(2010)). Hence we are able to define and study the consistency of the following

approximations to the testing procedures defined previously.

Prospect stochastic dominance efficiency Consider the bootstrapped analogues of the

random variables appearing in the infeasible testing procedure for the P efficiency. Those are

obtained when the linear functionals appearing in the objective functions of each part of the

test statistic are evaluated at the difference between the empirical measure of the bootstrapped

sample and the empirical measure of the original one. Given the analogous optimizations the

decision rule is then formulated by an approximation of the relevant p-value. In this respect

we obtain:

Ŝ∗
T (τ ) = max

(
Ŝα∗
T (τ ) , Ŝβ∗

T (τ )
)
,

where

Ŝα∗
T (τ ) = sup

z≥0,λ∈L

√
T
(
J
(
z,−λ,−τ , F̂ ∗

T

)
− J

(
z,−λ,−τ , F̂T

))
,

and

Ŝβ∗
T (τ ) = sup

z≥0,λ∈L

√
T
(
J
(
z,λ, τ , F̂T

)
− J

(
z,λ, τ , F̂ ∗

T

))
.

Define p∗P := P[Ŝ∗
T (τ ) > ŜT (τ )] and consider the decision rule

reject H(P)
0 iff p∗PSD < α. (8)

We then obtain the following result.

7 At least for the second test, the recentering makes the test statistics very difficult to compute, since the

optimization for Markowitz stochastic dominance involves a large number of binary variables (see the section

on the numerical implementation).
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Proposition 3. Suppose that Assumptions A, C and D hold, G satisfies the condition (5) in

Proposition 1 for all λ ∈ λ. Suppose that 0 < α < n−1
n

when τ is an extreme point of λ

and that α ∈ (0, 1) when it is not. Then, for such a choice of the significance level the test

based on decision rule (8) is asymptotically conservative and consistent.

The restriction on the choice of the significance level is of negligible practical importance

since when n > 1, the usual choices of α nessesarily satisfy it. Again, the approximation of

the p-value is analytically intractable. It is approximated by an empirical frequency argument

based on several bootstrap samples. More specifically, given R ≥ 1 bootstrap samples, an

approximation of the rejection probability of the bootstrap test of PSD and for significance

level α is R̂P PSD(α) =
1

R

R∑
r=1

I{ŜT,r (τ ) < Q̂∗
PSD(α)} where the test statistics ŜT,r (τ )

are obtained for r = 1, · · · , R, and Q̂∗
PSD(α) is the empirical α-quantile of the sample of

bootstrap statistics Ŝ∗
T,r (τ ) , r = 1, · · · , R (see also Davidson and MacKinnon (2006a,b)).

The asymptotic theory used for the proof of those propositions along with an application of

the CMT imply also the consistency of those procedures for any R, given T → ∞. Obviously,

the value of R is expected to affect higher order properties of the resulting procedures.

Markowitz stochastic dominance efficiency Again, we consider the bootstrapped ana-

logues of the random variables appearing in the infeasible testing procedure for the M effi-

ciency.

Υ̂∗
T (τ ) = max

(
Υ̂α∗

T (τ ) , Υ̂β∗
T (τ )

)
,

where

Υ̂α∗
T (τ ) = sup

z≤0,λ∈L

√
T
(
J2

(
z, τ , F̂ ∗

T

)
− J2

(
z, τ , F̂T

)
− J2

(
z,λ, F̂ ∗

T

)
+ J2

(
z,λ, F̂T

))
,

and

Υ̂β∗
T (τ ) = sup

z≥0,λ∈L

[
κ∗
T (λ, τ )−

√
T
(
J
(
z,λ, τ , F̂T

)
− J

(
z,λ, τ , F̂ ∗

T

))]
,

where

κ∗
T (λ, τ ) =

1√
T

∑T

i=1

[(
(λ′Y ∗

i )+ − (λ′Y i)+
)
−
(
(τ ′Y ∗

i )+ − (τ ′Y i)+
)
]
]
.
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Define p∗M := P[Υ̂∗
T (τ ) > Υ̂T (τ )] and consider the decision rule

reject H(M)
0 iff p∗MSD < α. (9)

The following proposition establishes the analogous limit theory.

Proposition 4. Suppose that Assumptions B, C, D hold, and that G satisfies condition (7)

for all λ ∈ λ. Furthermore, let 0 < α < n−1
n

when τ is an extreme point of λ and that

α ∈ (0, 1) when it is not. Then, for such a choice of the significance level the test based on

decision rule (8) is asymptotically conservative and consistent.

Again, as in the previous case, the computation of the p-values appearing in each proposi-

tion is also analytically intractable in most cases. Analogously to the PSD, we use the rejection

probability approximation R̂PMSD(α) =
1

R

R∑
r=1

I{Υ̂T,r (τ ) < Q̂∗
MSD(α)} for r = 1, · · · , R

where the test statistics Υ̂T,r (τ ) are obtained from the R subsamples, and Q̂∗
MSD(α) is the

empirical α-quantile of the sample of bootstrap statistics Υ̂∗
T,r (τ ) , r = 1, · · · , R.

3 Monte Carlo study

Remember that the ”feasible” versions of both tests depend on every step of their formulation

on complex optimization procedures. The numerical formulation of those programs, operating

by reduction to appropriate sets of simpler optimization problems, are explained in detail in

the Appendix.

In this section we design a set of Monte Carlo experiments to evaluate the size and

power of the proposed tests in finite samples, in the context of the aforementioned numerical

approximation of the test statistics and the critical (or p-values), as well as w.r.t. the choice

of the block size for which the assumption framework provides only asymptotic guidance.

We do so in a framework of conditional heteroskedasticity that is consistent with empirical

findings on returns of financial data that are similar to the empirical application that follows.

The (Y t)t∈Z process is constructed as a vector GARCH(1,1) process that also contains an

appropriately transformed element. Under the appropriate restrictions, this allows for both

temporal as well as cross sectional dependence between the random variables that constitute

the vector process. In the following paragraph we describe the process, and using the analogous
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propositions, we establish efficient and non-efficient portfolios w.r.t to any of the criteria. We

engage to the experiment and present the results in the final paragraph of this section.

3.1 GARCH Type Processes and Efficiency Considerations

Suppose that

zt

iid∼ N (0, 1) , t ∈ Z.

Furthermore for all t ∈ Z, for i = 1, 2, 3, ωi, αi, βi ∈ R++, µi ∈ R+ define

yit = µi + zth
1/2
it

,

hit = ωi +
(
αiz

2
t−1 + βi

)
hit−1 , E

(
αiz

2
0 + βi

)1+ϵ
< 1,

for some ϵ > 0 while for i = 4 and v1, v2 ∈ R define

y4t = v1

(
zth

1/2
3t

)
+
+ v2

(
zth

1/2
3t

)
−
.

Suppose thatYt = (y1t , y2t , y3t , y4t)
′. Then, Corollary 1 and Theorem 8 of Lindner (2003),

the definition of strong mixing along with the measurability of (·)+, (·)− and their indepen-

dence from t, imply that assumptions A and B hold for (Yt). They also imply covariance

stationarity. Notice that the vector process of interest also exhibits contemporaneous depen-

dence between its elements. Furthermore, trivial calculations show that Cov
(
yit , yit−k

)
= 0

for all non zero k and i ̸= 4, while this is not true for i = 4. Let τ =(0, 0, 1, 0), τ ∗=(0, 0, 0, 1)

and L = {(λ, 1− λ, 0, 0) , λ ∈ [0, 1] , τ , τ ∗}. Obviously, Assumption C also holds.

The first proposition establishes that τ ∗ is a portfolio that is both Markowitz and prospect

efficient w.r.t. L when the structuring coefficients are appropriately chosen so that the

negative part of τ ∗ has smaller variance and the positive part of τ ∗ has larger variance when

compared to the other portfolios in L.

Proposition 5. If µi = 0 for i = 1, 2, 3, |v1| >
√

max{ωi,αi,βi, i=1,2,3}
min{ωi,αi,βi, i=1,2,3} and |v2| <

√
min{ωi,αi,βi, i=1,2,3}
max{ωi,αi,βi, i=1,2,3}

then τ ∗ is both M and P-efficient w.r.t. L.

Proof. Define Ft = σ {zt−1, zt−2, . . .} and notice that due to the definition of λ, the almost

sure positivity of hit for all i and Jensen’s inequality

min {h1t , h2t , h3t} ≤ vλt ≤ max {h1t , h2t , h3t} P a.s.
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where vλt ≜ Var (λy1t + (1− λ) y2t/Ft) or vλt ≜ h3t. Define the auxiliary processes by

h∗t = α∗
(
1 +

(
z2t−1 + 1

)
h∗t−1

)
h∗
t = α∗ (1 + (z2t−1 + 1

)
h∗
t−1

)
,

for α∗ = min {ωi, αi, βi, i = 1, 2, 3}, α∗ = max {ωi, αi, βi, i = 1, 2, 3} and notice that

h∗t ≤ min {h1t , h2t , h3t} ≤ max {h1t , h2t , h3t} ≤ h∗
t , P a.s.

Hence, when v22α
∗ < α∗ then |v2|

√
h3t <

√
vλt P a.s. and when v21α∗ > α∗ then

|v1|
√
h3t >

√
vλt , P a.s. Furthermore, the distribution function of λ equals EΦ

(
x√
vλt

)
due to the law of iterated expectations. In an analogous manner it is easy to see that

the distribution function of τ ∗ equals


EΦ
(

x

|v2|
√

h3t

)
, x ≤ 0

EΦ
(

x

|v1|
√

h3t

)
, x > 0

. The monotonicity of the

integral along with the relevant property of Φ imply that both distribution functions are strictly

increasing. Hence for z ≤ 0 we have that

J2(z,λ, F )− J2(z, τ , F )

=

∫ z

−∞

(
EΦ
(

x
√
vλt

)
− EΦ

(
x

|v2|
√
h3t

))
dx > 0

due to the previous and the fact that x assumes non positive values except for sets of Lebesgue

measure zero. Analogously, for any z > 0

J c
2 (z,λ, τ , F ) =

∫ +∞

z

(
EΦ
(

x
√
vλt

)
− EΦ

(
x

|v1|
√

h3t

))
dx > 0

which holds due to the fact that the integral exists from lemma 8, the previous and the fact

that x assumes positive values. The result for M efficiency follows from the definition above.

The same arguments show that when z ≤ 0∫ 0

z

(
EΦ
(

x
√
vλt

)
− EΦ

(
x

|v2|
√

h3t

))
dx > 0

and when z > 0 ∫ z

0

(
EΦ
(

x
√
vλt

)
− EΦ

(
x

|v1|
√

h3t

))
dx > 0

establishing P-efficiency via the relevant definition above.

The following proposition provides with a counterexample by describing conditions under

which τ is neither M or P-efficient w.r.t. L. Notice that an analogous result is directly

obtained by the previous proposition in a more restricted setting.
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Proposition 6. If µi = 0 for i = 1, 3, ω1 < ω3, a1 < a3 and β1 < β3 then τ is both P and

M-inefficient w.r.t. L.

Proof. Let λ = 1 whence h3t > v1 = h1t P a.s. Using analogous arguments as before we

have that for z ≤ 0

J2(z, 1, F )− J2(z, τ , F )

=

∫ z

−∞

(
EΦ

(
x√
h1t

)
− EΦ

(
x√
h3t

))
dx < 0,

which implies that the first part of definition II is not valid. Analogously

J (z, 1, τ , F )

=

∫ 0

z

(
EΦ

(
x√
h3t

)
− EΦ

(
x√
h1t

))
dx > 0

invalidating the first part of definition I.

Finally, the existence of moments of order 2+ δ implies the validity of (5) and (7) for any

of the considered portfolios.

Choice of Monte Carlo and Bootstrap Parameters

In each case the relevant data generating process DGP is used to draw realizations of the asset

returns using the GARCH process described above (with different parameters for each case

to evaluate size and power). We generate R = 300 original samples with size T = 500. For

each one of these original samples we generate a block bootstrap (nonoverlapping case) data

generating process D̂GP. Once D̂GP is obtained for each replication r, a new set of random

numbers, independent of those used to obtain D̂GP, is drawn. Then, using these numbers

we draw R original samples and R block bootstrap samples to compute ŜT,r (τ ), Ŝ
∗
T,r (τ ),

Υ̂T,r (τ ) and Υ̂∗
T,r (τ ) to get the estimates R̂P PSD(α) and R̂PMSD(α) respectively.

Size evaluation. To approximate the fixed T size, we test for PSE and MSD efficiency

of portfolio τ ∗ containing the fourth asset, with respect to all other possible portfolios w ∈

L−{τ ∗}. We set µi = 0 for i = 1, 2, 3, ω1 = 0.5, ω2 = 0.5, and ω3 = 0.5, a1 = 0.4, a2 =

0.45, and a3 = 0.5 and β1 = 0.5, β2 = 0.45, and β3 = 0.4. Then, we set v1 = 1.5 and v2 =

0.5. In this case, we have that |v1| >
√

max{ωi,αi,βi, i=1,2,3}
min{ωi,αi,βi, i=1,2,3} and |v2| <

√
min{ωi,αi,βi, i=1,2,3}
max{ωi,αi,βi, i=1,2,3} .
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We set the significance level α equal to 5%, and the block size to l = 10. We get

R̂P PSD(5%) = 2.8% for the prospect stochastic dominance efficiency test, while we get

R̂PMSD(5%) = 4.1% for the Markowitz stochastic dominance efficiency test. Hence, we may

conclude that both bootstrap tests perform well in terms of size properties.

Power evaluation. To approximate the fixed T power, we test for PSE and MSD efficiency

of portfolio τ containing the third asset, with respect to all other possible portfolios w ∈

L−{τ}. We set µi = 0 for i = 1, 2, 3, ω1 = 0.5, ω2 = 0.5, and ω3 = 0.8, a1 = 0.3,

a2 = 0.4, and a3 = 0.45 and β1 = 0.3, β2 = 0.4, and β3 = 0.45. Then, we set v1 = 2 and

v2 = 0.2. In this case, we have that ω1 < ω3, a1 < a3 and β1 < β3.

We find positive evidence for the power of both tests. Indeed, we have that R̂P PSD(5%) =

97.1% for the prospect stochastic dominance efficiency test when we take wrongly as efficient

the portfolio (τ =(0, 0, 1)). Similarly we find R̂PMSD(5%) = 95.2% for the Markowitz

stochastic dominance efficiency.

We present our Monte Carlo results in Table 1 on the sensitivity to the choice of block

length. We investigate block sizes ranging from l = 4 to l = 12 by step of 4. This covers the

suggestions of Hall, Horowitz, and Jing (1995), who show that optimal block sizes are multiple

of T 1/3, T 1/4, T 1/5, depending on the context. According to our experiments the choice of the

block size does not seem to dramatically alter the performance of our methodology. Finally,

we investigate the sensitivity of the tests to the choice of the number of original samples (R)

and size (T). Three different cases are presented in Table 1. The tests seem to perform well

in every case.

Computational Resources and Time We solve all the optimization problems using the

General Algebraic Modeling System (GAMS), which is a high-level modeling system for math-

ematical programming and optimization. This language calls special solvers (GUROBI in our

case) that are specialized in linear and mixed integer programs. GUROBI uses the branch and

bound technique to solve the MIP program. The Matlab code (where the simulations run)

calls the specific GAMS program, which calls the GUROBI solver to solve each optimization.

The problems are optimized on an iMac (i7 processor, 2.9 GHz Power, 16Gb of RAM).

We note the almost exponential increase in solution time with the increasing number of
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observations.

The computational time for each PSD case which involves only linear optimization prob-

lems varies from 10 minutes in case 1, to 30 minutes in case 3. On the other hand, the

computational time for each MSD case which involves linear as well as MIP problems varies

from 2 hours in case 1, to 30 hours in case 3.

4 Empirical application

In this section we present the results of an empirical application. To illustrate the potential

of the proposed test statistics, we analyze investor preferences and beliefs by testing whether

the value-weighted market portfolio can be considered as efficient according to prospect and

Markowitz stochastic dominance criteria when confronted to diversification principles made of

risky assets. For this purpose, we use proxies of the individual assets in the investment universe.

Thus, for the individual risky assets, we use four different sets of benchmark portfolios: The

6, the 25 and the 100 Fama and French benchmark portfolios constructed as the intersections

of portfolios formed on size and book-to-market equity ratios, and the 49 Fama and French

Industry portfolios.

4.1 Description of the data

We use three different datasets of the Fama and French (FF) benchmark portfolios as well as

industry portfolios as our sets of risky assets.

• The 6 FF Benchmark portfolios: They are constructed at the end of each June, and

correspond to the intersections of two portfolios formed on size (market equity, ME)

and three portfolios formed on the ratio of book equity to market equity (BE/ME). The

size breakpoint for year t is the median NYSE market equity at the end of June of year

t. BE/ME for June of year t is the book equity for the last fiscal year end in t − 1

divided by ME for December of t− 1. Firms with negative BE are not included in any

portfolio. The annual returns are from January to December.

• The 25 FF Benchmark portfolios: They are constructed at the end of each June,

are the intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios
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formed on the ratio of book equity to market equity (BE/ME).

• The 100 FF Benchmark portfolios: They are constructed at the end of each June, are

the intersections of 10 portfolios formed on size (market equity, ME) and 10 portfolios

formed on the ratio of book equity to market equity (BE/ME).

• The 49 Industry portfolios: They are constructed by assigning each NYSE, AMEX,

and NASDAQ stock to an industry portfolio at the end of June of year t based on

its four-digit SIC code at that time. The Compustat SIC codes are used for the fiscal

year ending in calendar year t-1. Whenever Compustat SIC codes are not available, the

CRSP SIC codes for June of year t are used.

For each dataset we use data on monthly excess returns (month-end to month-end) from

January 1930 to December 2012 (996 monthly observations) obtained from the data library on

the homepage of Kenneth French (http://mba.turc.dartmouth.edu/pages/faculty/ken.french).

The test portfolio is the Fama and French market portfolio, which is the value-weighted av-

erage of all non-financial common stocks listed on NYSE, AMEX, and Nasdaq, and covered

by CRSP and COMPUSTAT.

Table 2 presents some sample characteristics of the Market portfolio and the 6 FF port-

folios8 covering the period from January 1930 to December 2012 (996 monthly observations)

that are used in the test statistics.

As we can see from Table 2 the sample skewness and kurtosis provide evidence against

marginal normality. If this is true and the investor utility function is not quadratic, then

preference relation of any such investor cannot be represented by the variance-covariance

matrix of these portfolios. At this point it is perhaps interesting to note that Scaillet and

Topaloglou (2010) show that the Fama and French market portfolio is not mean-variance

efficient, compared to the 6 benchmark portfolios. This motivates us to test whether the

market portfolio is efficient when different preferences are taken into account.

8 Analogous statistical characteristics are also available for the other datasets
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4.2 Results of the stochastic dominance efficiency tests

We find a significant autocorrelation of order one at a 5% significance level in some benchmark

portfolios, while ARCH effects are also present at a 5% significance level. This indicates that

a block bootstrap approach should be favored over a standard i.i.d. bootstrap approach.

Furthermore, estimation of GARCH type models provide evidence in favor of the mixing and

moment conditions appearing in our assumption framework. Indeed, both for the market

portfolio as well as for each benchmark portfolio i, the estimates of the sum of the GARCH

and the ARCH coefficients are less than 1. We choose a block size of 10 observations following

the suggestions of Hall, Horowitz, and Jing (1995), who show that optimal block sizes are

multiple of T 1/3, where in our case, T = 996. The p-values are approximated as shown before.

The 6 FF Benchmark portfolios. For the prospect stochastic dominance efficiency, we

cannot reject the hypothesis that the market portfolio is efficient. The p-value, p̃ = 0.647 is

way above the significance level of 5%. We divide the full period into two sub-periods, the first

one from January 1930 to June 1971, a total of 498 monthly observations, and the second one

from July 1971 to December 2012, 498 monthly observations. We test for prospect stochastic

dominance of the market portfolio to each sub-period. We find that the p-value for the first

sub-period is p̃1 = 0.597 and the p-value for the second sub-period is p̃2 = 0.713.

On the other hand, we find that the MSD criterion cannot be accepted at the afore-

mentioned significance level. The p-value, p̃ = 0.039 is below the significance level of 5%.

Additionally, the p-value p̃1 = 0.027 for the first sub-period and the p-value p̃2 = 0.043 for the

second sub-period indicate that the market portfolio is not Markowitz stochastic dominance

efficient in each sub-period as well as in the full period.

The 25 FF Benchmark portfolios. As before, for the prospect stochastic dominance

efficiency, we cannot reject the hypothesis that the market portfolio is efficient. The p-value,

p̃ = 0.437 is way above the significance level of 5%. We find that the p-value for the first

sub-period is p̃1 = 0.523 and the p-value for the second sub-period is p̃2 = 0.614.

We additionally find that the MSD criterion cannot be accepted. The p-value, p̃ = 0.047 is

below the significance level of 5%. Additionally, the p-value p̃1 = 0.036 for the first sub-period

and the p-value p̃2 = 0.055 for the second sub-period indicate that the market portfolio is not

Markowitz stochastic dominance efficient in each sub-period as well as in the full period.
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The 100 FF Benchmark portfolios. Again, for the prospect stochastic dominance

efficiency, we cannot reject the hypothesis that the market portfolio is efficient. The p-value,

p̃ = 0.514 is above the significance level of 5%. We find that the p-value for the first

sub-period is p̃1 = 0.631 and the p-value for the second sub-period is p̃2 = 0.597.

As before, we find that the MSD criterion cannot be accepted. The p-value, p̃ = 0.043 is

below the significance level of 5%. Additionally, the p-value p̃1 = 0.029 for the first sub-period

and the p-value p̃2 = 0.046 for the second.

The 49 Industry portfolios. We cannot reject the hypothesis that the market portfolio

is prospect stochastic dominance efficient. The p-value is p̃ = 0.623. We find that the p-value

for the first sub-period is p̃1 = 0.517 and the p-value for the second sub-period is p̃2 = 0.679.

Finally, we find that the MSD criterion cannot be accepted. The p-value is p̃ = 0.034,

which is below the significance level of 5%. Additionally, the p-value p̃1 = 0.031 for the first

sub-period and p-value p̃2 = 0.064 for the second sub-period.

The results provide evidence in favor of the claim that the market portfolio is prospect

stochastic dominance efficient in each sub-period as well as in the whole period. If this holds,

it implies that any S-shaped utility function rationalizes the market portfolio as an optimal

choice. On the other hand, in all cases the market portfolio is not Markowitz stochastic

dominance efficient in each sub-period as well as in the full period. If this holds, it does not

imply that no reverse S-shaped utility function can rationalize the market portfolio, but only

the existence of at least one such function that fails to do so.

Experimental evidence suggests that decision makers subjectively transform the true re-

turn distribution and use subjective decision weights that overweight or underweight the true

probabilities. The most common pattern of probability transformation overweights small prob-

abilities of large gains and losses, and underweights large and intermediate probabilities of small

and intermediate gains and losses (Tversky and Kahneman, (1992)). The prospect stochastic

dominance efficiency of the market portfolio we found here, is not affected by transformations

that are increasing and convex over losses and increasing and concave over gains, that is,

S-shaped transformations. Moreover, if the market portfolio is non dominated w.r.t. PSD,

then it is also non dominated w.r.t. the weaker condition given by Baucells and Heukamp

(2006).
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4.3 Rolling window analysis

We carry out an additional analysis to validate the prospect stochastic dominance efficiency

of the market portfolio and the stability of the model results. It is possible that the efficiency

of the market portfolio as a weighted average varies over time due to changes in the weights

constructing it from the universe of assets. 9 Furthermore the temporal extend of our sample

could imply the non validity of the stationarity assumption due to possible changes in the

DGP. To account for the above, we perform a rolling window analysis, using a window width

of 20 years. The test statistic is calculated separately for 63 overlapping 20-year periods,

(January 1930-December 1949), (January 1931-December 1951),...,(January 1993-December

2012). The time series in this case is smaller (240 monthly observations) so that a maintained

assumption of stationarity is more credible.

Figure 1 shows the corresponding p-values for the prospect stochastic dominance efficiency

test (upper graph) and for the Markowitz stochastic dominance efficiency test (lower graph)

using the 6 FF benchmark portfolios. We observe that the market portfolio is prospect

stochastic dominance efficient in the total sample period. The prospect stochastic dominance

efficiency is not rejected on any subsample. The p-values are always greater than 25%, and

in some cases they reach the 70%. This result is in consonance to that prospect stochastic

dominance efficiency that was not rejected in the previous subsection, for the full period. On

the other hand, we observe that the Markowitz stochastic dominance efficiency is rejected on

46 out of 63 subsamples. The p-values are most of the cases lower than 5%. This result is

in accordance with the rejection of the Markowitz stochastic dominance efficiency that was

found in the previous subsection. If this is true, it implies that for those subsamples there

exist portfolios constructed from the set of the six benchmark portfolios that dominates the

market portfolio w.r.t. at least one reverse S-shaped utility function.

Figure 2 shows the corresponding p-values for the prospect stochastic dominance efficiency

test (upper graph) and for the Markowitz stochastic dominance efficiency test (lower graph)

using the 49 Industry portfolios. Interestingly, we observe that the market portfolio is prospect

stochastic dominance efficient in the total sample period. Again, the prospect stochastic

dominance efficiency is not rejected on any subsample. The p-values are always greater than

9 It is also possible that the degree of efficiency may change over time, as pointed by Post (2003).
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17%, and in some cases they reach the 55%. This result is in consonance to that prospect

stochastic dominance efficiency that was not rejected in the previous subsection. On the

other hand, we observe that the Markowitz stochastic dominance efficiency is rejected on 50

out of 63 subsamples. The p-values are most of the cases lower than 5%. This result is

in accordance with the rejection of the Markowitz stochastic dominance efficiency that was

found in the previous subsection. It implies that for those subsamples there exist portfolios

constructed from the set of the 49 Industry portfolios that dominates the market portfolio

w.r.t. at least one reverse S-shaped utility function.

5 Concluding remarks

In this paper we develop consistent and feasible statistical tests for prospect and Markowitz

stochastic dominance efficiency for time-dependent data. We use a block bootstrap formula-

tion to achieve valid asymptotic inference in a setting of temporal dependence. Linear as well

as mixed integer programs are used to compute the test statistics. The PSD and MSD criteria

allow us to test the prospect theory S-shaped value function hypothesis and the Markowitz

reverse S-shaped hypothesis in a framework where full diversification is allowed.

To illustrate the potential of the proposed test statistics, we test whether the two stochastic

dominance efficiency criteria rationalize the Fama and French market portfolio over three

different data sets of Fama and French benchmark portfolios constructed as the intersections

of ME portfolios and BE/ME portfolios, as well as over 49 Industry portfolios. Empirical

results support the claim that the market portfolio is prospect stochastic dominance efficient.

Analogously they are not in favor of the claim that the market portfolio is Markowitz stochastic

dominance efficient, indicating that utility functions with global risk aversion for losses and

risk seeking over gains cannot rationalize the market portfolio.

Both the asymptotic analysis and the numerical implementation revealed an interesting

asymmetry between the two testing procedures. The MSD test uses stricter assumptions and

is carried out with more computational intensity. A possibly interesting future research could

focus on whether those asymmetries could be weakened.

These tests could possibly be used as initial steps for the statistical decoupling of the

form of the utility or value function to the transformation of the probability measures that
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characterize many theories of choice under uncertainty. For example non rejection of the MSD

efficiency using the previous methodology could support the validity of cumulative prospect

theory when the curvature of the S-shaped utility is dominated by the reverse S-shaped prob-

ability transformation (see Post and Levy (2005)) as this theory suggests. The construction

of inferential procedures that statistically disentangle the two could be of importance and is

delegated to future research.

Finally, the methodology used could be also relevant for the construction of tests of

efficiency w.r.t. notions of stochastic dominance that are representable by utility functions

with more complex behavior (e.g. attitudes towards risks may exhibit additional changes on

extreme events). Such considerations are also delegated to future research.

APPENDIX

Numerical Implementation

In this section we present the numerical implementation of the feasible testing procedures

for PSD and MSD efficiency. Remember that, as noted above, both the computation of the

statistics appearing in any of the tests, as well as the approximation of the asymptotic critical

or p-values are analytically infeasible and thereby performed numerically.

In what follows, we describe a procedure applicable for the computation of every statistic in

every testing procedure. This is essentially a reduction that involves a sequence of equivalent

(w.r.t. optimization) problems one for each statistic. The transition from the previous to the

next problem in each case involves numerical simplification and is essentially based on results

similar to proposition 7 that appears below. A completely analogous procedure is used for the

approximation of the critical values but it is by construction more tediously describable and

thereby omitted to economize on space.

We also assume that L is actually convex in order to facilitate the presentation. The

formulation is easily generalized to the cases covered by Assumption C since in that case the

parameter space is a finite union of convex sets.

Let T denote the sample size. Denote with Tp both an indexing set and its cardinality,

representing the part of the sample for which τ ′Yt is positive. Given this convention Tn = T−
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Tp denotes the analogous notion for the part of the sample of strictly negative observations.10

Formulation for prospect stochastic dominance

Given the previous notation, the statistic11 Ŝα
T (τ ) is for a fixed T , equivalent to

sup
z≥0,λ∈L

∑Tp

t=1

(
(z − τ ′Y t)+ − (z − λ′Y t)+ I0≤λ′Y t

)
.

An equivalent (see below) programming formulation is the following:

max
z≥0,λ∈L

1√
T

Tp∑
t=1

(Lt −Wt) (10a)

s.t. M(Ft − 1) ≤ z − τ ′Yt ≤ MFt, ∀ t ∈ Tp, (10b)

−M(1− Ft) ≤ Lt − (z − τ ′Yt) ≤ M(1− Ft), ∀ t ∈ Tp, (10c)

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tp, (10d)

Wt ≥ z − λ′Yt, ∀ t ∈ Tp, (10e)

τ ′Yt ≥ 0, ∀ t ∈ Tp, (10f)

λ′Yt ≥ 0, ∀ t ∈ Tp, (10g)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tp. (10h)

with M being a large constant that is allowed to depend on z.

This is a mixed integer programming formulation maximizing the distance between the

sum over all scenarios of two variables,

Tp∑
t=1

Lt and

Tp∑
t=1

Wt which represent the difference

between (z − τ ′Y t)+ and (z − λ′Y t)+ respectively. This is difficult to solve since it is the

maximization of the difference of two convex functions. We use a binary variable Ft, which,

according to inequalities (10b), equals 1 for each scenario t ∈ Tp for which z ≥ τ ′Yt, and 0

otherwise. Then, inequalities (10c) and (10d) ensure that the variable Lt equals z− τ ′Yt for

the scenarios for which this difference is positive, and 0 for all the other scenarios. Inequalities

(10e) and (10h) ensure that the optimal Wt equals exactly the difference z − λ′Yt for the

10 Notice that Tp would remain unaltered when defined on a bootstrapped sample due to the non-overlapping

scheme considered here.
11 or the analogous one that appears in the resampling procedure for the approximation of the asymptotic

critical values.
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scenarios for which this difference is positive, and 0 otherwise. Inequalities (10f) and (10g)

ensure that both τ ′Yt and λ′Yt are greater than zero.

The model is easily transformed to a linear one, which is also very easy to solve. The key

lies in the following proposition.

Proposition 7. The optimal value of z belongs to the finite set R = {0, r1, r2, ..., rT ∗
p
} that

is containing zero and the mutually different strictly positive realizations of the benchmark

portfolio ordered increasingly.

A direct consequence is that we can reduce the solution of the previous problem to the

solution of Tp∗ smaller problems P (r), r ∈ R, in which z is fixed to r. Then we take take the

value for z that yields the best total result. The advantage is that the optimal values of the

Lt variables are known in P (r). Precisely,
∑

t=1,...,Tp

Lt is equal to the number of t such that

τ ′Yt ≤ r. Hence problem P (r) boils down to the following simpler problem.

max
z≥0,λ∈L

1√
T

Tp∑
t=1

(Lt −Wt)

s.t. Wt ≥ r − λ′Yt, ∀t ∈ Tp

Lt = (r − τ ′Yt)+, ∀t ∈ Tp

λ′Yt ≥ 0, ∀ t ∈ Tp,

Wt ≥ 0, ∀ t ∈ Tp.

The constant M and the binary variable Ft do not appear in any of those problems. Hence

the previous is reduced to the solution of a finite number of linear programs. The optimal

portfolio λ and the optimal value r of variable z are those that give the maximum objective

value. Something analogous (given the relevant reformulations) is also true for Ŝβ
T and thereby

the analogous formulation is not presented for reasons of economy of space.

Formulation for Markowitz stochastic dominance

As previously mentioned, the numerical formulation for the statistic Υ̂α
T (τ ) can be also reduced

to the solution of a finite number of linear programming problems via the use of an analogous
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formulation as above or via the results for the mathematical implementation of the SSD test

in Scaillet and Topaloglou (2010) and thereby the relevant details are also omitted. This

seizes to be true for the final statistic in the MSD test. Υ̂β
T (τ ) can be equivalently written as

sup
z≥0,λ∈L

[∑Tp

t=1
((λ′Yt)+ − (τ ′Y t)) +

∑Tp

t=1

(
(z − λ′Y t)+ Iλ′Y t≥0

)
− (z − τ ′Y i)+

]
.

An equivalent programming formulation is the following:

max
z≥0,λ∈L

1√
T
[

T∑
t=1

(λ′Y t − τ ′Y t) +

Tp∑
t=1

(Lt −Wt)] (12a)

s.t. M(Ft − 1) ≤ z − λ′Y t ≤ MFt, ∀ t ∈ Tp, (12b)

−M(1− Ft) ≤ Lt − (z − λ′Y t) ≤ M(1− Ft), ∀ t ∈ Tp, (12c)

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tp, (12d)

Wt ≥ z − τ ′Y t, ∀ t ∈ Tp, (12e)

τ ′Y t ≥ 0, ∀ t ∈ Tp, (12f)

λ′Y t ≥ 0, ∀ t ∈ Tp, (12g)

λ ≥ 0, (12h)

Wt ≥ 0, ∀ t ∈ Tp, (12i)

Ft ∈ {0, 1}, ∀ t ∈ Tp. (12j)

M is again a large constant that may also depend on λ. Given that this assumes its

values in a compact set, M can be chosen large enough to avoid this dependence. This is

again a mixed integer programming formulation. Now we use a binary variable Ft, which,

according to inequalities (12b), equals 1 for each scenario t ∈ Tp for which z ≥ λ′Y t, and 0

otherwise. Then, inequalities (12c) and (12d) ensure that the variable Lt equals z−λ′Y t for

the scenarios for which this difference is positive, and 0 for all the other scenarios. Inequalities

(12e) and (12i) ensure that the optimal Wt equals exactly the difference z − τ ′Y t for the

scenarios for which this difference is positive, and 0 otherwise. Inequalities (12f) and (12g)

ensure that both τ ′Y t and λ′Y t are greater than zero.

As before this optimization program can be reduced to the solution of a finite number of

smaller problems P (r), r ∈ R, in which z is fixed to r, and the above problem boils down to

the following problem.
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max
z≥0,λ∈L

1√
T
[

T∑
t=1

(λ′Yt − τ ′Yt) +

Tp∑
t=1

(Lt −Wt)]

s.t. M(Ft − 1) ≤ r − λ′Yt ≤ MFt, ∀ t ∈ Tp,

−M(1− Ft) ≤ Lt − (r − λ′Yt) ≤ M(1− Ft), ∀ t ∈ Tp,

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tp,

Wt = (r − τ ′Y)+, ∀t ∈ Tp

λ′Yt ≥ 0, ∀ t ∈ Tp,

Ft ∈ {0, 1}, ∀ t ∈ Tp.

(13a)

Due to the dependence of Lt on λ the smaller problems depend also on the binary variable.

Hence each one of them is a Mixed Integer program. It usually takes significantly multiple

time for the solution of each such a problem compared to the ones before. Even though the

analytical formulations of PSD and MSD can be derived by particular combinations of the

SSD and its dual, both the strength of the assumptions utilized as well as the complexity of

the numerical implementations imply an asymmetry between the two notions.

Finally, notice that in every case the practical implementation of any test using R bootstrap

samples involves 2(R + 1) internal numerical optimizations and R + 1 trivial ones. Hence,

the usual trade off between possibly desirable higher order properties and numerical burden is

obviously present in our considerations.

Helpful Lemmata and Proofs

In what follows⇝ denotes weak convergence and
p⇝ (conditional) weak convergence in prob-

ability (see among others Paragraph 3.6.1 of van der Vaart and Wellner (1996)). Analogously

p→ denotes convergence in probability. CMT abbreviates the continuous mapping theorem in

the relevant context.

Lemma 8. If E∗ (λ′Y 0)+ and E∗ (τ ′Y 0)+ exist then J c
2 (z,λ, τ , F ) exists and equals

E∗ (τ ′Y 0)+ − E∗ (λ′Y 0)+ − J (z,λ, τ , F ∗) .
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Proof. Remember that the distribution function of (λ′Y 0)+ is

 0, u < 0

G (u,λ, F ∗) , u ≥ 0
and

thereby iff E∗ (λ′Y 0)+ < +∞ then we have that E∗ (λ′Y 0)+ =
∫ +∞
0

(1−G (u,λ, F ∗)) du

and therefore ∫ +∞

z

(G (u,λ, F ∗)−G (u, τ , F ∗)) du

=

∫ +∞

z

(1−G (u, τ , F ∗))− (1−G (u,λ, F ∗)) du

= E∗ (τ ′Y 0)+ − E∗ (λ′Y 0)+ +

∫ z

0

G (u, τ , F ∗) du−
∫ z

0

G (u,λ, F ∗) du.

In the following let

xT =

 √
T supz≥0,λ∈L

(
J
(
z,−λ,−τ , F̂T

)
− J (z,−λ,−τ , F )

)
√
T supz≥0,λ∈L

(
J (z,λ, τ , F )− J

(
z,λ, τ , F̂T

))
 ,

and

yT =

 √
T supz≤0,λ∈L

(
D2

(
z, τ ,λ, F̂T

)
−D2 (z, τ ,λ, F )

)
supz≥0,λ∈L

[
κT (λ, τ )−

√
T
(
J (z,λ, τ , F )− J

(
z,λ, τ , F̂T

))]
 ,

where

D2 (z, τ ,λ, F
∗) = J2(z, τ , F

∗)− J2(z,λ, F
∗),

and

κT (λ, τ ) =
1√
T

∑T

i=1

((
(λ′Y i)+ − (τ ′Y i)+

)
−
(
E (λ′Y 0)+ − E (τ ′Y 0)+

))
.

Lemma 9. 1. Suppose that for any λ ∈ L, G satisfies the condition (5) and that assump-

tion A holds. Then as T → ∞

xT ⇝

 supz≥0,λ∈L J (z,−λ,−τ ,BF )

supz≥0,λ∈L−J (z,λ, τ ,BF )


where BF denotes a zero mean Gaussian process in the Skorokhod space of real val-

ued functions on Rn with uniformly continuous paths and covariance kernel given by

Cov(BF (x),BF (y)) =
∑

t∈Z Cov(1(X0 ≤ x, 1(Xt ≤ y).
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2. Suppose that for any λ ∈ L, G satisfies the condition (7) and that assumption B holds.

Then as T → ∞

yT ⇝

 supz≤0,λ∈LD2 (z, τ ,λ,BF )

supz≥0,λ∈L−J c
2 (z,λ,BF )


where BF is as before.

Proof. Notice first that due to assumption A (which holds in both frameworks) we have that

√
T
(
F̂T − F

)
⇝ BF

in the Skorokhod space of real valued functions on Rn (see e.g. Theorem 7.3 of Rio (2013)).

Assumption A along with a trivial extension of Proposition 2.2 of Scaillet and Topaloglou

(2010) (which evolves along the lines of the proof of Theorem 1 of Horvath, Kokoszka, and

Zitikis (2006)) and relations (1), (2) imply that J2 (z,λ, ·) is linear and continuous for any

z ∈ R, λ ∈L ∪ −L tangentially at D0 ≜
{√

T
(
F̂T − F

)
,B◦F, T = 1, 2, . . .

}
due to the

results of Theorem 1 of Horvath, Kokoszka, and Zitikis (2006). Thereby Theorem 20.8 of

van der Vaart (functional Delta method) implies that for any z ∈ R, λ ∈L ∪ −L

√
T
(
J2

(
z,λ, F̂T

)
− J2 (z,λ, F )

)
⇝ J2 (z,λ,BF ) ,

which is a Gaussian process due to linearity.

1. The previous along Assumption A, the relation (3) and the CMT imply that for any

(z,λ) ∈ R+ × L,

√
T

 J
(
z,−λ,−τ , F̂T

)
− J (z,−λ,−τ , F )

J (z,λ, τ , F )− J
(
z,λ, τ , F̂T

)
⇝

 J (z,−λ,−τ ,B◦F )

−J (z,λ, τ ,B◦F )

 ,

which is a well defined Gaussian process due to linearity. The result would follow from the CMT

along with Theorem 1.4.8 of van der Vaart and Wellner (1996) if supz∈R,λ∈L∪−L J (z,λ,−τ , F ∗
n)

is (asymptotically) tight for any sequence (F ∗
n) of members of D0. The fact that (asymptotic)

tightness is preserved by continuous transformations and it is equivalent to tightness of the

normed sequence, the triangle inequality along with the results of Proposition 2.2 of Scaillet

and Topaloglou (2010), and the representation of J in terms of J2 in (3) imply the result.

2. Assumption B, and a trivial application of the multivariate functional central limit theorem
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for stationary strongly mixing sequences stated in Rio (2000) and the fact that the transforma-

tion (λ′·)+ is measurable and independent of T imply that for any λ ∈L,
1√
T

∑T
i=1

(
(λ′Y i)+ − E (λ′Y i)+

)
converges weakly to a Gaussian random variable. This

along with the representation of J c
2 in lemma 8 and Theorem 1 of Horvath, Kokoszka, and

Zitikis (2006) imply that

 D2 (z, τ ,λ, ·)

−J c
2 (z,λ, ·)

 is linear and continuous for all z,λ, τ tangen-

tially at D0. Hence Theorem 20.8 of van der Vaart (functional Delta method) implies that

for any z ∈ R, λ ∈L

√
T

 D2

(
z, τ ,λ, F̂T

)
−D2 (z, τ ,λ, F )

J c
2 (z,λ, τ , F )− J c

2

(
z,λ, τ , F̂T

)
⇝

 D2 (z, τ ,λ,B◦F )

−J c
2 (z,λ,BF )

 ,

which is a well defined Gaussian process due to linearity. Likewise to the previous case the result

would follow from the CMT along with Theorem 1.4.8 of van der Vaart and Wellner (1996) if

supz∈R,λ∈L D2 (z,λ,−τ , F ∗
n) and supz∈R,λ∈L J c

2 (z,λ,−τ , F ∗
n) are supz∈R,λ∈L∪−L J (z,λ,−τ , F ∗

n)

is (asymptotically) tight for any sequence (F ∗
n) of members of D0. This follows directly from

the results of Proposition 2.2 of Scaillet and Topaloglou (2010), the analogous results of the

previous part and the compactness of L, the Lipschitz continuity of λ → (λ′Y 0)+, the analo-

gous continuity of λ → E (λ′Y 0)+ due to assumption B and dominated convergence, a trivial

application of Markov’s inequality and Yokoyama’s (1980) strong mixing inequality for p = 2,

imply the asymptotic equicontinuity in probability for 1√
T

∑T
i=1

(
(λ′Y i)+ − E (λ′Y i)+

)
w.r.t.

λ, since L ∪ −L is compact and remains so w.r.t. any weaker topology. This also implies that

1√
T

∑T
i=1

(
(λ′Y i)+ − E (λ′Y i)+

)
converges to a Gaussian process in the space of continuous

real functions on L ∪ −L which means that the supremum w.r.t. λ of the limit is also tight.

This implies tightness for supz∈R,λ∈L−J c
2 (z,λ,BF ).

Proof of Proposition 1. First notice that

sup
z≥0,λ∈L

J (z,−λ,−τ , F ∗) = sup
z≥0,λ∈L

(∫ 0

z

G(u,−τ , F ∗)du−
∫ 0

z

G(u,−λ, F ∗)du

)
= sup

z≥0,λ∈L

(∫ z

0

G(u,−λ, F ∗)du−
∫ z

0

G(u,−τ , F ∗)du

)
= sup

z≤0,λ∈L

(∫
Rn

((z − τ ′Y i) Iz≤τ ′Y i≤0 − (z − λ′Y i) Iz≤λ′Y i≤0) dF
∗ (u)

)
= sup

z≤0,λ∈L
J (z,λ, τ , F ∗) .
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Due to the previous

Ŝa
T (τ ) =

√
T sup

z≥0,λ∈L

(
J
(
z,−λ,−τ , F̂T

)
− J (z,−λ,−τ , F ) + J (z,−λ,−τ , F )

)
(14)

which is less than or equal to

x1,T + sup
z≤0,λ∈L

J (z,λ, τ , F ) .

and similarly

Ŝβ
T (τ ) =

√
T sup

z≥0,λ∈L

(
J (z,λ, τ , F )− J

(
z,λ, τ , F̂T

)
− J (z,λ, τF )

)
(15)

which is analogously less than or equal to

x2,T + sup
z≥0,λ∈L

−
√
TJ (z,λ, τ , F ) .

1. If H(P)
0 holds then the previous imply that

Ŝa
T ≤ x1,T and Ŝβ

T (τ ) ≤ x2,T

and thereby

ŜT (τ ) ≤ max (x1,T , x2,T )

and due to the CMT and lemma 9.1 max (x1,T , x2,T ) converges in distribution to

S̄ (τ ) ≑ max

 supz≤0,λ∈L J (z,λ, τ ,BF )

supz≥0,λ∈L−J (z,λ, τ ,BF )

′

,

and the result follows. Furthermore since the (a, b) → max(sup(a), sup(b)) function when

well defined on the product of some space of real functions is convex, Corollary 4.4.2.(i)-(ii) of

Bogachev (1991) implies that the cdf of the law ofmax

 supz≥0,λ∈L J (z,−λ,−τ ,B◦F )

supz≥0,λ∈L−J (z,λ, τ ,B◦F )


restricted to (c,+∞) is absolutely continuous with a possible atom on some c ∈ R defined in

the aforementioned corollary as the argument that minimizes of the set of positive values of

the relevant cdf. We will identify this with zero and provide an upper bound for the probability

attributed to the possible atom. Assumption A implies that for every ε > 0 there exists a

zε > 0 such that infλ G(zε,λ, F ) ≥ 1− ε for all λ. Let Fε denote the cdf of the probability

measure obtained by restriction of F to the set ∪λ∈L⋆ {u ∈ Rn : λ′y ≤ zε} where L⋆ is a
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countable dense subset of L. Notice first that 0 lies in the support of S̄. Furthermore it is

easy to see that S̄ is greater than or equal to T = supλ∈L−J (zε,λ, τ ,BF ) and the support

of the latter is [0,+∞). This along with the previous imply that c = 0. Consider the random

variables S̄ε and Tε defined as S̄ and T respectively by replacing F with Fϵ in the relevant

definitions. The previous arguments hold also for S̄ε and Tε and their relation. Furthermore,

as ε → ∞ we have that P
(
S̄ε = 0

)
→ P

(
S̄ = 0

)
. Notice that using an analogous to the

previous argument for the support of supL
∫
Rn ((λ

′u)− − (τ ′u)−) dBFε(u),

Tε ≥ sup
L
(λ− τ )′Y ε + sup

L

∫
Rn

((λ′u)− − (τ ′u)−) dBFε(u) ≥ sup
L
(λ− τ )′Y ε,

where Y ε follows an n-variate zero mean normal distribution with positive definite variance

that depends on ε. Thereby P
(
S̄ε = 0

)
≤ P (supL(λ− τ )′Y ε = 0) and the latter probability

equals exactly the probability that the maximum of the random vector Y ε occurs at a coordi-

nate that represents an element in the intersection of the set of extreme points of the simplices

of λ and τ due to Assumption C. If the intersection is empty then this probability is zero. If

it not then using Theorem 2 in chapter 3 (p. 37) of Sidak et al. [32] by (in their notation)

letting p be the density of the n-variate standard normal distribution it is easy to see that

this is less than or equal to 1
n
. In both case the result follows by passing to the limit as ε → ∞.

2. If H(P)
0 is not true then supz≥0,λ∈L−

√
TJ (z,λ, τ , F ) and/or

supz≥0,λ∈L
√
TJ (z,−λ,−τ , F ) diverge to +∞. If any of them does not then it does not

also contribute to the relevant maximum. By choosing admissible yet arbitrary z,λ, τ in

each case, and by using relations (14)and (15) and due to the results of lemma 9 there exist

asymptotically Gaussian random variables, s1,T , s2,T such that

Ŝa
T ≥ s1,T+ sup

z≥0,λ∈L

√
TJ (z,−λ,−τ , F ) and/or Ŝβ

T (τ ) ≥ s2,T+ sup
z≥0,λ∈L

−
√
TJ (z,λ, τ , F )

and thereby ŜT (τ ) is greater than or equal to the maximum of the right hand sides of the

previous display and the result follows.

Proof of Proposition 2. First notice that the moment condition in assumption B implies that

G satisfies the condition (5) in Proposition 1. Then from lemma 8 we obtain that

Υ̂β
T (τ ) = sup

z≥0,λ∈L
−
√
T
(
J c

2

(
z,λ, τ , F̂T

)
− J c

2 (z,λ, τ , F )
)
−

√
TJ c

2 (z,λ, τ , F ) (16)
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which is less than or equal to

y2,T + sup
z≥0,λ∈L

−
√
TJ c

2 (z,λ, τ , F ) .

Similarly

Υ̂a
T (τ ) =

√
T sup

z≤0,λ∈L

(
D2

(
z, τ ,λ, F̂T

)
±D2 (z, τ ,λ, F )

)
(17)

which is again less than or equal to

y1,T + sup
z≤0,λ∈L

√
T (J2(z, τ , F )− J2(z,λ, F )) .

1. If H(M)
0 holds then the previous imply that

Υ̂a
T ≤ y1,T and Υ̂β

T (τ ) ≤ y2,T

and thereby

ŜT (τ ) ≤ max (y1,T , y2,T )

and due to the CMT and lemma 9.2 max (y1,T , y2,T ) converges in distribution to

Ῡ (τ ) ≑ max

 supz≤0,λ∈L D2 (z, τ ,λ,BF )

supz≥0,λ∈L [−J c
2 (z,λ, τ ,BF )]

′

,

and the result follows. The results on the properties of the distribution of the previous random

variable follow exactly as in the previous proposition using analogous comparisons between

the limit random variable and the first element of the random vector in its aforementioned

representation.

2. If H(M)
0 is not true then supz≤0,λ∈L

√
T (J2(z, τ , F )− J2(z,λ, F )) and/or

supz≥0,λ∈L −
√
TJ c

2 (z,λ, τ , F ) diverge to +∞. If any of them does not then it does not

also contribute to the relevant supremum. By choosing admissible yet arbitrary z,λ, τ in

each case, and by using relations (16)and (17) and due to the results of lemma 9 there exist

asymptotically Gaussian random variables, m1,T , m2,T such that

Υ̂a
T ≥ m1,T + sup

z≤0,λ∈L

√
T (J2(z, τ , F )− J2(z,λ, F ))

and/or

Υ̂β
T (τ ) ≥ m2,T + sup

z≥0,λ∈L
−
√
TJ c

2 (z,λ, τ , F )

and thereby Υ̂T (τ ) is greater than or equal to the maximum of the right hand sides of the

previous display and the result follows.
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Proof of Proposition 3. From assumptions A and D and Theorem 2.3 of Peligrad (1998) we

have that conditionally on the sample

√
T
(
F̂ ∗
T − F̂T

)
p⇝ B∗

F

where B∗
F is an independent version of the Gaussian process in lemma 9. Analogously to the

results of lemma 9 we obtain that Ŝα∗
T (τ )

Ŝβ∗
T (τ )

 p⇝

 supz≥0,λ∈L J (z,−λ,−τ ,B∗
F )

supz≥0,λ∈L−J (z,λ, τ ,B∗
F )


and due to the CMT we finally obtain

Ŝ∗
T (τ )

p⇝ max


 supz≥0,λ∈L J (z,−λ,−τ ,B∗

F )

supz≥0,λ∈L −J (z,λ, τ ,B∗
F )

′ .

1. The absolute continuity of the CDF when appropriately restricted due to the results of

the first part of proposition 1 implies the continuity of the quantile function when α < 1− 1
n
,

and the result follows exactly as in the proof of Proposition 3.1 of Scaillet and Topaloglou

(2010) (or Propositions 2 or 3 of Barrett and Donald (2003)). This is due to the equivalence

of weak convergence (in probability) to locally uniform convergence at continuity points of

the limit CDF (see Bhattacharya and Rao (2010)) and the subsequent pointwise convergence

(in probability) of quantile functions at continuity points.

2. follows directly from the previous part of the current proof, the second part of proposition

1 and the fact that cP is finite.

Proof of Proposition 4. The results follow as in the proof of proposition 3 in view of the

second part of lemma 9.

Proof of Proposition 7. If z such that ri ≤ z ≤ ri+1, i = 1, · · ·Tp∗ ,
∑

t=1,...,Tp

Lt is constant (it

is equal to the maximum value of t such that τ ′Yt ≤ ri). Further, when ri ≤ z ≤ ri+1, the

maximum value of −
∑

t=1,...,Tp

Wt is reached for z = ri. Analogous considerations are easily

obtained when z < r1 or z > rTp∗+1
. Hence, we can restrict z to belong to the set R.
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Tab. 1: Sensitivity analysis of size and power to the choice of block length using the GARCH

process for the asset returns. We compute the actual size and power of the prospect

and Markowitz stochastic dominance efficiency tests for block sizes ranging from l = 4

to l = 12.

Block size l : 4 8 10 12

Case 1: R=100 T=200

Size:

R̂P PSD 4.5% 4.8% 3.7% 3.9%

R̂PMSD 5.1% 5.3% 4.7% 4.8%

Power:

R̂P PSD 94.8% 95.1% 95.7% 96.2%

R̂PMSD 95.4% 96% 94.6% 95.3%

Case 2: R=300 T=500

Size:

R̂P PSD 3.8% 4.7% 2.8% 3.5%

R̂PMSD 4.5% 4.2% 4.1% 3.9%

Power:

R̂P PSD 95.4% 96.2% 97.1% 98.0%

R̂PMSD 97.1% 96.8% 95.2% 96.1%

Case 3: R=500 T=1000

Size:

R̂P PSD 2.6% 3.1% 2.5% 3.1%

R̂PMSD 2.7% 3.3% 2.9% 2.1%

Power:

R̂P PSD 97.1% 98.7% 98.4% 98.9%

R̂PMSD 98.6% 99.1% 96.3% 98.2%



5 Concluding remarks 45

Descriptive Statistics (January 1930 to December 2012)

No. Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Market Portfolio 0.604 5.413 0.237 7.593 -29.98 37.77

1 1.016 7.825 1.026 7.270 -32.32 65.63

2 1.288 7.139 1.310 11.660 -31.10 64.12

3 1.493 8.367 2.175 18.810 -33.06 85.24

4 0.847 5.308 -0.023 2.231 -28.08 32.55

5 0.936 5.823 1.303 14.227 -28.01 51.52

6 1.161 7.327 1.547 14.926 -35.45 68.25

Tab. 2: Descriptive statistics of monthly returns in % from January 1930 to December 2012

(996 monthly observations) for the Fama and French market portfolio and the six

Fama and French benchmark portfolios formed on size and book-to-market equity

ratio. Portfolio 1 has low BE/ME and small size, portfolio 2 has medium BE/ME

and small Size, portfolio 3 has high BE/ME and small size, ..., portfolio 6 has high

BE/ME and large size.
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Fig. 1: 6 FF portfolios: p-values for the prospect stochastic dominance efficiency test (upper

graph) and for the Markowitz stochastic dominance efficiency test (lower graph) using

a rolling window of 20 years. The test statistic is calculated separately for 63 over-

lapping 20-year periods, (January 1930-December 1949), (January 1931-December

1951),...,(January 1993-December 2012). The prospect stochastic dominance effi-

ciency is not rejected in any subperiod, while the Markowitz stochastic dominance

efficiency is rejected in 46 out of 63 subperiods.
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Fig. 2: 48 Industry portfolios: p-values for the prospect stochastic dominance efficiency

test (upper graph) and for the Markowitz stochastic dominance efficiency test (lower

graph) using a rolling window of 20 years. The test statistic is calculated sepa-

rately for 63 overlapping 20-year periods, (January 1930-December 1949), (January

1931-December 1951),...,(January 1993-December 2012). The prospect stochastic

dominance efficiency is not rejected in any subperiod, while the Markowitz stochastic

dominance efficiency is rejected in 50 out of 63 subperiods.
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