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Abstract

We examine the asymptotic properties of the QMLE for the GQARCH(1, 1) model.
Under suitable conditions, we establish that the asymptotic distribution of n

a−1
a (QMLE−θ0)

is characterized by the one of the unique minimizer of a quadratic form over a closed and
convex subset of R4. This respesents the squared distance (w.r.t. a p.d. matrix) from a
random vector that follows a normal distribution when a = 2 or is a linear transformation
of an α-stable random vector when a ∈ (1, 2). When the parameter is an interior point
this implies that we have distributional convergence to this random vector. Hence we
have examined cases in which non normal asymptotic distributions are obtained either due
to convergence of the estimator on the boundary of the parameter space, and/or due to
the non existence of high order moments for random elements involved in this framework.
Possible extensions concern the establishment of analogous results for indirect estimators
based on the QMLE which could have desirable first order asymptotic properties.
KEYWORDS: Conditional heteroskedasticity, quadratic ARCH models, stochastic re-

currence equation, stationarity, ergodicity, quasi likelihood, normal integrand, epi-convergence,
martingale CLT, CLT′ s to a-stable distributions, inner limit of set sequences, weak con-
vergence to minimizers of quadratic forms over convex sets.

1 Introduction

We examine the asymptotic properties of the QMLE for the GQARCH (1, 1) model. The latter
falls into the general class of quadratic ARCH models which was introduced in 1995 by Sentana
[11]. This provided the most general formulation of any element of the conditional variance
process as a (non anticipative) quadratic function of elements of the QARCH process itself.
This formulation allows for the representation of negative dynamic asymmetry (partly attributed
to the so called "leverage effect") that is a frequent empirical exhibited in financial time series.
Our motivation stems from the fact that even though the analogous properties of the QMLE

were studied for a wide class of conditionally heteroskedastic models (for a detailed catalogue see
for example Straumann [9]), this model was not included in any of these results. Our methodology
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allows for cases where the true parameter vector lies on the boundary of the parameter space
and/or the random variables of the innovation process upon which the conditional variance process
is constructed do not possess finite fourth moments. The asymptotic theory of M-estimators
when the true parameter lies on the boundary has already been studied in the context of the
GARCH (p, q) model in the more general work of Andrews [1]. Our considerations involve
a slightly different approach for the approximation of the sequence of shifted and normalized
parameter spaces that seems more general. Finally, to our knowledge, there are no analogous
results for the asymptotic properties of the QMLE even for the already studied heteroskedastic
models when the fourth moment of the innovations is not finite.
Our methodology and the remaining structure of the paper is as follows. We first present the

model and discuss how the chosen parameterization enables the subsequent approach. Secondly,
using the stochastic recurrence equation (SRE) theory as in Straumann [9], we provide suffi cient
conditions for the existence of a unique stationary ergodic solution to the associated recurrence re-
lation and prove that there exist (among others weakly non stationary) GQARCH (1, 1) processes
for which these are satisfied. The presence of the autoregressive parameter in the conditional
variance SRE complicates the issue of the derivation of tighter conditions, yet the consideration
of the QARCH case provides us with some directions for future research.
Third, given the previous we define the usual in applications version of the quasi likelihood

function emerging from filtering the volatility by arbitrary initial conditions and its stationary
and ergodic approximation. We show that these functions are P a.s. twice differentiable on
the largest subset of R4 for which the model is well defined, even in cases where the associated
partial derivatives are obtained by one sided differentiation as in Andrews [1]. Given results
concerning approximations of the non stationary by the stationary and ergodic likelihoods and
their derivatives, and via the use of an LLN concerning stationary and ergodic random functions
which may attain the value +∞, and then the use of a CLT for stationary and ergodic martingale
differences when finite fourth moments exist, or of a CLT for convergence in distribution to an
α-stable random vector (see Theorem B.1 of Surgailis [10]) when finite absolute moments of
some order in (3, 4) exist, we show first consistency and then that the rate of convergence is
n
a−1
a for a = 2 and a ∈ (1, 2) in the first and second case respectively.
Finally, when the parameter space can be suitably approximated by some closed and convex

subset of R4, we obtain via the use of Lemma 7.13 of van der Vaart [13] that the asymptotic
distribution of n

a−1
a (QMLE−θ0) is characterized as the one of the unique minimizer over that

set of a quadratic form w.r.t. a p.d. matrix and a random vector that follows a normal distribution
when a = 2 or is a linear transformation of an α-stable random vector when a ∈ (1, 2). We
conclude by posing some questions for future research emerging from our results. The proofs of
the main propositions are presented in the main body of the paper. Several auxiliary technical
lemmas are presented in the appendix.

2 Model Specification

In the following let (Ω,F , P ) denote a complete probability space and Θ a non empty subset of
the Euclidean space R4. Any concept of measurability is in any case handled w.r.t. to F , the
Borel σ-fields of R, Rn, RZ (the latter w.r.t. the product topology) and Θ or where appropriate
w.r.t. analogous product σ-fields. Notice that separability and completeness imply measurability
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of infA ‖·‖ where A is either RZ or any sequentially complete subset of Θ. Let z : Ω → RZ be
an iid sequence of random variables, with Ez0 = 0, and Ez2

0 = 1. Define the volatility process
(σ2

t )t∈Z as any (Z indexed) sequence of non negative random variables satisfying the following
first order stochastic recurrence equation (see Sentana [11])

σ2
t (θ) = ω + α

(
zt−1σt−1 (θ) +

γ

2α

)2

+ βσ2
t−1 (θ) (1)

where θ = (ω, a, γ, β)′ ∈ Θ. Given the existence of (σ2
t )t∈Z construct the GQARCH (1, 1)

process (yt)t∈Z by
yt = ztσt

In the following paragraph we provide some justification for the choice of parameterization in (1),
and simultaneously specify Θ as the largest subset of R4 so that any process satisfying (1) is well
defined (i.e. σ2

t is finite and non-negative P a.s. for any t) and the methodology used for the
derivation of asymptotic properties is valid.

Parameter Restrictions-Positivity Constraints. A necessary condition for the existence
of a solution to (1) is that σ2

t is finite and non-negative P a.s. for any t. We easily obtain
from the analogous GARCH (1, 1) case and the choice of parameterization in (1) that this holds
strictly iff ω > 0, a > 0, β ≥ 0. Notice that this encompasses neither the case of non random,
yet time varying volatility nor the one of homoskedasticity since the choice a = 0 is obviously
not allowed. A reformulation of (1) so as to contain the case of a = 0 could be obtained if
we specified σ2

t = ω + βσ2
t−1 when a = 0, hence impose the convention that when a = 0 then

γ = 0 and furthermore that 0
0

= 0. This however would invalidate the methods used for the
determination of the rates of convergence and the asymptotic distribution of the QMLE below.1

Notice here that we could have considered two alternative parameterizations of (1) so as to
disentangle this restriction. The first one would be σ2

t = ω∗+α∗z2
t−1σ

2
t−1 (θ)+γ∗zt−1σt−1+βσ2

t−1.
In this case it is already known from Sentana [11] that strict positivity P a.s. for any t holds iff

ω∗ > 0, a∗ ≥ 0, β∗ ≥ 0 and ω∗a∗ > (γ∗)2

4
when a∗ > 0 and γ∗ = 0 when a∗ = 0. This case

obviously invalidates lemma 2.1 below. The second one would be σ2
t = ω∗+α∗ (zt−1σt−1 + γ∗)

2+
β∗σ

2
t−1. For this strict positivity P a.s. for any t holds iff ω∗ > 0, a∗ ≥ 0, β∗ ≥ 0. In this case

when a∗ = 0 if γ∗ assumes more than one values then it remains non identified. This problem
is fixed if γ∗ assumes one value (say 0). Notice however that the derivatives of the volatility
process w.r.t. γ∗ (or γ

∗ in the previous case) evaluated at any point of the form (ω∗, 0, 0, 0)′

would be identically zero, rendering the methodology used given consistency invalid. Hence we
stick with the parametrization in (1) and restrict a > 0. Notice that this restriction implies that
the asymptotic properties of the QMLE in any of the last two parameterizations can be directly
recovered by the analogous properties of the QMLE in the case considered via the continuous

1If we had adopted this reformulation then given the framework (to be defined later) of the auxiliary volatility
process and the likelihood function we have that the latter would remain a P a.s. lower semicontinuous function
and the arguments in the proof of proposition 3.5 would remain intact. Hence the QMLE would be consistent
even when θ0 = (ω0, 0, 0, β0) except for the case where β0 6= 0 since this would obviously invalidate lemma 3.3.
Then it is easy to see that for θ0 = (ω0, 0, 0, 0) lemma 3.6 would not hold (the likelihood function would not
posses Frechet derivatives at θ0) hence the subsequent methodology would break down.
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mapping theorem and the delta method (which generally goes through by Theorem 20.8 of Van
der Vaart [13]).
Furthermore, we allow γ to assume only non positive values, something that is in accordance to

the empirical stylized fact of the leverage effect in financial time series. Hence this constraint has
econometric significance. Finally in order to facilitate the following result (first among others) we
further constrain β to be strictly less than 1. Given the previous we define the eligible parameter
space as

Θ = R++ × R++ × R− × [0, 1)

In what follows the inference procedures to be examined will be defined so as to employ
compact subsets of Θ. The following result is quite useful. It states that for any θ ∈ Θ the
volatility process is bounded away from zero.

Lemma 2.1 If for some θ ∈ Θ there exists a volatility process satisfying (1) then inf
z∈RZ

σ2
t ≥

ω
1−β ∀t ∈ Z.

Proof. Minimizing ω + α
(
zt−1σt−1 (θ) + γ

2α

)2
+ βσ2

t−1 (θ) given σ2
t−1 we obtain

inf
zt−1∈R

σ2
t = ω + βσ2

t−1

Proceeding recursively the result follows.

Existence-Stationarity-Ergodicity. Given the construction of Θ, we use the SRE ap-
proach in Straumann [9] in order to show that there exist elements of Θ for which (1) assumes
a unique stationary ergodic solution.2 From (1) and lemma 2.1 it is obvious that

σ2
t = φt

(
σ2
t−1

)
, t ∈ Z

where φt :
[

ω
1−β ,∞

)
→
[

ω
1−β ,∞

)
with

φt(s) = ω + α
(
zt−1

√
s+

γ

2α

)2

+ βs.

Due to the properties of z and Proposition 2.1.1 of Straumann [9] this specifies a stationary
ergodic sequence of random map and the

Λ (φt) = sup
s∈[ ω

1−β ,∞)

∣∣∣∣αz2
t−1 + β +

γzt−1

2
√
s

∣∣∣∣ <∞.
specifies the analogous stationary ergodic sequence of their random Lipschitz coeffi cients.

Lemma 2.2 E
[
log+ Λ (φt)

]
<∞.

2Uniqueness holds in the sense that any other solution belongs to the same equivalence class w.r.t. the
exponentialy almost sure (w.r.t. P ) convergence as t→∞. See Straumann [9], Theorem 2.6.1.
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Proof. Observe that Λ (φt) ≤ az2
t−1 + β + sup

x∈[ ω
1−β ,∞)

−γ|zt−1|
2
√
x

which, due to Lemma 2.1, equals

az2
t−1 + β + −γ|zt−1|

2
√

ω
1−β

<∞. Hence, EΛ (φt) <∞ which completes the proof.

Hence Theorem 2.6.1 of Straumann [9], and Lemma 2.2, the SRE (1) admits a unique
stationary ergodic solution (σ2

t )t∈Z when θ ∈ Θ ∩ {θ : E [log Λ (φt)] < 0} which has the P a.s.
representation

σ2
t (θ) = lim

m→∞
φt−1 ◦ ... ◦ φt−m (y) , t ∈ Z (2)

Furthermore by Proposition 2.1.1 of Straumann [9] (yt)t∈Z is also stationary ergodic.
We term the elements of Θ that also satisfy the aforementioned restriction as ergodic by an

obvious abuse of terminology. The following remark implies that such ergodic θ exist and further-
more that there exist ergodic θ that imply second order non stationarity for the GQARCH (1, 1)
process.

Remark R.1 From the analogous results for the GARCH (1, 1) we know that there exist α > 0,
β > 0 so that the corresponding volatility process is stationary ergodic (see Nelson [6]). Let such a

pair of (a, β). Also we have that so that E (σ2
0) does not exist. Now sup

s∈[ ω
1−β ,∞)

∣∣∣αz2 + β + γz
2
√
s

∣∣∣ ≤
αz2 + β − γ|z|

2
√

ω
1−β
≤ αz2 + β − γ(1+z2)

2
√

ω
1−β

=

(
α− γ

2
√

ω
1−β

)
z2 +

(
β − γ

2
√

ω
1−β

)
. Then due to the

continuity of E log (αz2
0 + β) in (α, β) and Jensen’s inequality there exist ω and γ (that can be

chosen strictly negative) so that E log (αz2
0 + β) < 0 implies that

E log

α− γ

2
√

ω
1−β

 z2 +

β − γ

2
√

ω
1−β

 < 0.

Hence there exist ergodic θ. Finally notice that from the results for the GARCH (1, 1) case a
and β can be chosen so that α + β ≥ 1. Hence there exist ergodic θ that imply first order non
stationarity for the volatility process (hence covariance non stationarity for the GQARCH (1, 1)
process).

The next remark implies that the condition described above can be restrictive. It concerns
the QARCH (1) case.

Remark R.2 Suppose that β = 0, then the condition E log (αz2
0) < 0 (which is also necessary

and suffi cient condition for the the existence and uniqueness of stationary and ergodic solution
in the ARCH (1) case) is suffi cient. To see this, consider the SRE describing the squared root
of the conditional variance process in the QARCH (1) case, i.e.

σt = φt (σt−1) , t ∈ Z

with φt (s) =
[
ω + α

(
zt−1s+ γ

2α

)2
]1/2

. Then |φ′t (s)| =

∣∣∣∣√α(zt−1s+ γ
2α)

φt(s)

∣∣∣∣√α |zt−1| ≤
√
α |zt−1|

since

∣∣∣∣√α(zt−1s+ γ
2α)

φt(s)

∣∣∣∣ =

√
α(zt−1s+ γ

2α)
2

ω+α(zt−1s+ γ
2α)

2 < 1 as ω > 0. This along with partial evidence from
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simulations lead us to conjecture that the necessary and suffi cient condition for existence and
uniqueness of stationary and ergodic solution for theGARCH (1, 1)model, i.e. E log (αz2

0 + β) <
0, is also suffi cient for the GQARCH (1, 1) model.

3 First Order Theory for Quasi Maximum Likelihood Esti-
mation

We are interested in the behavior of the QMLE for θ0 when the latter is an ergodic point.
We restate known ergodic and non ergodic versions of the Quasi Likelihood function based on
volatility filters (auxiliary volatility processes) constructed from the GQARCH process and the
form of the SRE in (1). In the first case the filter is defined on Z whereas in the second one it
is assumed to stem from an arbitrary initial condition posed on the same SRE.
In any of the two cases it is easily deduced that the necessary condition of finiteness and

non-negativity P a.s. for any t, for the existence of processes that satisfy the analogous SRE
(or the initial condition problem) are satisfied due to the definition of Θ (see the discussion in
paragraph 2). Obviously only the QMLE associated with the second case is practically feasible.

Auxiliary Ergodic Volatility Process and the Ergodic Quasi Likelihood Function. We
first consider the ergodic case.

Definition D.1 For any θ ∈ Θ and given (yi (θ0))t∈Z for θ0 an ergodic point, define the random
element (ht)t∈Z by the following SRE

ht = ω + α
(
yt−1 (θ0) +

γ

2α

)2

+ βht−1.

Lemma 3.1 The previous P a.s. admits a unique stationary and ergodic solution (ht)t∈Z of the
form

ht =
ω

1− β + α
∑∞

i=0
βi
(
yt−1−i (θ0) +

γ

2α

)2

.

Moreover infK infy∈RZ ht (θ) > 0 and independent of t for K any compact subset of Θ.

Proof. It follows from the definition of Θ, Proposition 5.2.12 of Straumann [9] and lemma 2.1.

The following defines the (infeasible w.r.t. applications) Quasi Likelihood function. The term
is used in an abusive manner since the original function would be constructed as−1

2
∗cn (θ)+const.

This form enables the characterization of the QMLE as a minimizer.

Definition D.2 For any θ ∈ Θ and given (yi (θ0))t∈Z for θ0 an ergodic point, consider

cn (θ) =
1

n

n∑
i=1

`i (θ)

where

`i (θ) = log hi (θ) +
y2
i (θ0)

hi (θ)

Term cn the ergodic quasi likelihood function of the GQARCH (1, 1) process.
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Remark R.3 cn is continuous on Θ due to the previous lemma, and jointly measurable, hence
when restricted to any compact subset of Θ (say K) it is a normal integrand in the sense of
definition 3.5 of [5]. Also due to the ergodicity of σ2

t and ht, cn defines an ergodic process for
any θ.

Non Ergodic Volatility Process and the non Ergodic Quasi Likelihood Function. We
study versions of the processes in the previous definitions emerging from arbitrary initial conditions.
In this stationarity and ergodicity are lost but feasibility w.r.t. applications is obtained.

Definition D.3 For any θ ∈ Θ and given (yi (θ0))t∈Z define the random element (ht)t≥0 by the
following

h∗t (θ) =

{
ς0 if t = 0

ω + α
(
yt−1 + γ

2α

)2
+ βh∗t−1 (θ) if t ≥ 1

for some positive random variable ς0 where again θ = (ω, a, γ, β)′ ∈ Θ.

Remark R.4 Obviously (h∗t )t≥0 is well defined but generally non stationary. Also
infK infy∈RZ++ h

∗
t (θ) > 0 and independent of t for K any compact subset of Θ.

Definition D.4 Consider

c∗n (ω, θ) =
1

n

n∑
i=1i

`∗i (θ)

where

`∗i (θ) = lnh∗i (θ) +
y2
i (θ0)

h∗i (θ)

We term c∗n the non ergodic quasi likelihood function of the GARCH (1, 1) process.

Remark R.5 c∗n is also continuous on Θ as well as jointly measurable, hence it is a normal
integrand in the sense of definition 3.5 of [5] when restricted to K an arbitrary compact subset
of Θ.

3.1 Existence and Consistency of the QMLE Estimator

Definition and Existence

The following assumption defines the parameter space that will be subsequently used.

Assumption A.1 Given an ergodic θ0, K is a compact subset of Θ for which θ0 ∈ K.

Notice that given the definition of Θ, K could be chosen from some further available infor-
mation for θ0. The following propositions define and provide the existence for the QMLE w.r.t.
the two versions of the likelihood functions presented before. We allow for the case that the
estimators are approximate maximizers and thereby there exist optimization errors.
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Proposition 3.2 For an arbitrary P a.s. non negative random variable εn there exists a random
element θn with values in K defined by

c∗n (θn) ≤ inf
K
c∗n (θ) + εn

Proof. The result follows by remark R.3 which renders applicable Proposition 3.12.iii and the
fundamental selection theorem (Theorem 2.13) of [5].
Notice that the continuity arguments for the existence and measurability of the estimator are

essential only in the case that the optimization error is P a.s. zero.

Consistency

The following lemmas provide with an identification condition, existence of log moments and
enable the approximation between the two versions of the likelihood function. They are used for
the derivation of consistency. We enable them by the use of the following assumptions.

Assumption A.2 The distribution of z0 is not concentrated in two points.

Assumption A.3 εn → 0 P a.s.

Assumption A.4 E log+ (ς0) <∞.

The first one implies the validity of asymptotic identification. The second that the optimiza-
tion error is asymptotically negligible. The third is not very restrictive and permits the derivation
of consistency for θn from the approximation of c∗n by cn.

Lemma 3.3 Under assumption A.2 the relation ht(θ) = ht(θ0) P a.s. ∀θ ∈ K, ∀t implies
θ = θ0.

Proof. Towards a contradiction, suppose that there exist θ 6= θ0, so that ht(θ) = ht(θ0) P a.s.
∀t. Then

(ω∗ − ω∗0) + (α− α0)y2
t−1 + (γ − γ0)yt−1 + (β − β0)ht−1 = 0 ∀t

where we define ω∗ = ω+ γ2

4α
and ω∗0 = ω0 +

γ20
4α0
. However, this implies that ht−1 is at the same

time a measurable function of zt−1 and independent of zt−1. By Lemma 5.4.2 of Straumann [9]
the only way for this to be possible is if ht−1 is constant ∀t P a.s. Suppose ht = h constant This
necessarily implies that α + β < 1. Taking expectations on the volatility process we must have
h = ω∗

1−α−β . But

h = ω∗ + (αz2
0 + β)h+ γz0

√
h

which is equivalent to

z2
0 +

(
γ

α

√
1− α− β

ω∗

)
z0 − 1 = 0

and this is a second order equation in zt−1 with positive discriminant. It has two roots, one
positive and one negative. This would imply that the support of the distribution of z0 contains
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exactly two points. This violates assumption A.2 thus necessarily β = β0. Now the following
equation

(α− α0)y2 + (γ − γ0)y + (ω∗ − ω∗0) = 0

is a second order equation in y. Since (ω∗ − ω∗0, α − α0, γ − γ0) 6= (0, 0, 0), there are
three distinct cases concerning its roots: i) a single root λ of multiplicity 2, which leads to
contradiction due to the facts E(y) = 0, E(y2) 6= 0, ii) two roots of the same sign, which leads
to contradiction since either E(y) does not exist or equals 0, and iii) two roots of alternating
sign, in which case the contradiction is a consequence of the fact that zt is independent of ht
and ht is not a constant. Then necessarily (ω∗ − ω∗0, α − α0, γ − γ0) = (0, 0, 0). The definition
of ω∗ and the fact that γ∗ is non positive completes the proof.

Lemma 3.4 E log+ σ2
t <∞, E log+ y2

t <∞ and E log+ ht (θ) <∞ for any θ ∈ K.

Proof. First notice that due to lemma 2.1

σ2
t ≤ ω0 +

γ2
0

4a0

+

(
a0z

2
t−1 + β0 +

γ0zt−1

σt−1

1 {zt−1 < 0}1
{
σt−1 ≥ 2

√
ω0

1− β0

})
σ2
t−1

+γ0zt−11 {zt−1 < 0}1
{
σt−1 < 2

√
ω0

1− β0

}
σt−1

≤ ω0 +
γ2

0

4a0

+

a0z
2
t−1 + β0 +

γ0zt−1

2
√

ω0
1−β0

1 {zt−1 < 0}1
{
σt−1 ≥ 2

√
ω0

1− β0

}σ2
t−1

+2

√
ω0

1− β0

γ0zt−11 {zt−1 < 0}

≤ Atσ
2
t−1 + Ct−1

whereAt + a0z
2
t−1+β0+ γ0zt−1

2
√

ω0
1−β0

1 {zt−1 < 0} < Λ (φt) andCt−1 + ω0+
γ20
4a0

+2
√

ω0
1−β0

γ0zt−11 {zt−1 < 0}.

Then from the definition of θ0 we have that E logAt ≤ E log Λ (φt) < 0. If we define the auxiliary
SRE

s2
t = At−1s

2
t−1 + Ct−1

we can use similar arguments as in Example 5.2.5 of Straumann [9] to show that ∃η : 0 < η ≤ 1
so that E [s2

t ]
η
<∞. Then

E log+ σ2
t ≤ E log+ s2

t (θ) ≤ 1

η
E log+

[
s2η
t

]
≤ 1

η
log+

[
Es2η

t

]
<∞

The above implies E log+ y2
t <∞ as E (z2

t ) = 1. Furthermore, E log+ ht (θ) <∞ can be shown
by an application of the Minkowski inequality to the P a.s. representation

ht (θ) =
ω + γ2

4a

1− β +

∞∑
i=0

βi
(
ay2

t−i−1 + γyt−i−1

)
which exists due to the fact that θ0 is ergodic and β < 1, to obtain E [ht (θ)]η <∞.
Given identification and existence of log moments strong consistency follows for the estimator

under examination.
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Proposition 3.5 Under assumptions A.1, A.2, A.3 and A.4 θn is P -strongly consistent.

Proof. If E log+ (ς0) <∞ then Proposition 5.2.12 of [9] holds which implies that

|cn (θ)− c∗n (θ)|K → 0 P a.s.

due to Part 1.(i) of the proof of Theorem 5.3.1 of Straumann [9]. Then notice that

E inf
θ∈K

∣∣∣∣lnh0 (θ) +
z2

0σ
2
0 (θ0)

h0 (θ)

∣∣∣∣ ≤ inf
θ∈K

(
E |lnh0 (θ)|+ E σ2

0

h0 (θ)

)
= E |lnh0 (θ0)|+ 1 <∞

where the last equality follows from Part 1.(iii) of the proof of Theorem 5.3.1 of [9] and
E |lnh0 (θ0)| exists due to lemma 3.4 and the fact that h0 (θ0) = σ2

0 P a.s. from lemma 3.3.
Second, notice that from the pointwise ergodic theorem, cn (θ) converges almost surely to its ex-
pectation, a function with values on the extended real line, which does not assume the value −∞,
since by lemma 3.1 infK infy∈RZ ht (θ) > 0 independent of t, and is proper due to the argument
of the previous sentence. Hence, from Theorem 2.1 of [4] cn epiconverges almost surely to its
expectation, which due to stationarity is E`0. Hence, due to the fact that the topology of uniform
convergence is finer from the topology of epiconvergence, and due to the previous we have that c∗n
epiconverges almost surely to E`0. Therefore, due to the almost sure convergence of εn to zero,
there exists a measurable Ω∗ ⊆ Ω with P (Ω∗) = 1 such that for any ω ∈ Ω∗, Theorem 7.31 of [8]
implies that lim supn→∞ (εn − arg minK) (c∗n) ⊆ arg minK (E`0).3 Due to lemma 3.3 we have
that for all ω ∈ Ω arg minK (E`0) = {θ0} which implies limn→∞ (εn − arg minK) (c∗n) = {θ0},
P a.s. since by proposition 3.2 θn exists and belongs to (εn − arg minK) (cn).

3.2 Rates of Convergence

Given consistency, we establish the remaining first order asymptotic properties of the estimator
via the use of local quadratic approximations of the likelihood functions. These are enabled by
the existence of first and second order (possibly one sided) partial derivatives of cn and c∗n at θ0

and/or neighboring points, which are well defined even in cases where θ0 is a boundary point of Θ,
due to the form of Θ and the definitions of the likelihood functions and the volatility filters. Then
the quadratic approximations emerge from second order Taylor expansions of the likelihoods in
neighborhoods of θ0 and remain valid when restricted to random elements assuming their values
in K, even though the remainders may depend on random elements assuming values in compact
subsets of Θ that contain θ0 but are not subsets of K. In the following for δ > 0, C (θ, δ), and
S (θ, δ) denote the open cube and the sphere in R4 centered at θ respectively.
In what follows we partially differentiate w.r.t. θ when perceived as a member of Θ. The

vector of first order partial (possibly one sided) derivatives is denoted by c′n (resp. c
′∗
n ) and the

matrix of second order partial derivatives by c′′n (resp. c′′∗n ). The vector of first order partial
derivatives is denoted by c′n (resp. c

′∗
n ) and the matrix of second order partial derivatives by c

′′
n

(resp. c′′∗n ). Their forms are well known in the literature concerning the asymptotic theory for the

3Notice that the P a.s. continuity of cn and the mode of convergence implies the lower semicontinuity of E`0
(see proposition 7.4.a of [8]). This along with the compactness of K imply that infK E`0 is well separated.
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QMLE in GARCH type models. We denote with `t (θ), and h′t (θ) (resp. `′∗t (θ) and h′∗t ) and
`′′t (θ) and h′′t (θ) (resp. `′′∗t (θ) h′′∗t ) the analogous structures concerning the derivatives of the
random variables `t (θ) and ht (resp. `t (θ) and h∗t ) w.r.t. θ on K

+. These are explicitly derived
and used in the appendix for the establishment of several intermediate results. The arguments of
the previous paragraph are based on the following lemma.

Lemma 3.6 Assumption 22∗ .(a) of Andrews [1] holds for Θ.

Proof. When θ0 belongs to the interior of Θ, choose δ < inf ‖θ0 − y‖ where the infimum is
taken w.r.t. the boundary points of Θ and it is strictly positive since the boundary is a closed
set. Let (in the notation of Assumption 22∗) K+ = C (θ0, δ) and notice that K+− θ0 = C (0, δ)
and then for any δ∗ < δ S (θ0, δ) ⊂ C (θ0, δ). When θ0 belongs to the interior of Θ, choose
K+ = C (θ0, δ)∩Θ for arbitrary δ and notice that K+−θ0 is the intersection of R4 with C (0, δ)
and then for any δ∗ < δ, S (θ0, δ

∗) ⊂ K+.
We establish the rate of convergence for θn. This given the previous lemma essentially depends

on the differentiability (possibly in the sense of Theorem 6 of Andrews [1]) of the likelihoods w.r.t.
θ ∈ Θ, their proximity and particular properties of the stationary distribution of the innovation
process. The following lemma enables the main proposition of the present section. This result
will obviously be also used for the establishment of the asymptotic distribution. We denote
convergence in distribution with  .

Lemma 3.7 Under assumption A.2 i) If Ez4
0 < +∞ then

√
nc′n(θ0)

d→ V2 ∼ N (0,G0) as
n → ∞ where G0 = (Ez4

t − 1) J and J a positive definite matrix defined in lemma 4.6. ii)
If P

(
z0 ∈

[
−
√
x+ 1,

√
x+ 1

])
= 1 − c2+o(1)

xα
h (x) as x → +∞, for c2 > 0, α ∈ (1, 2) and

h a slowly varying function at infinity (in the Karamata sense),4 then n
α−1
a c′n(θ0)  −Vα

where Vα follows an α-stable distribution on R4 characterized as follows: for any non zero
λ ∈ R4 λTVα follows an α-stable distribution on R with characteristic function fλT cα (θ) =

exp
(
−c (λ) |θ|α

(
1− iβ (λ) sgn (θ) tan

(
πα
2

)))
where c (λ) = −Γ(2−α)

a−1
c2 cos

(
πα
2

)
E
(∣∣∣λT h′t(θ0)

σ2t

∣∣∣α)
and β (λ) = −

E

(∣∣∣∣λT h′t(θ0)σ2t

∣∣∣∣α sgn

(
λT

h′t(θ0)
σ2t

))
E

(∣∣∣∣λT h′t(θ0)σ2t

∣∣∣∣α) . iii) If assumption A.4 holds then for any K∗ compact

subset of Θ, n
α−1
a ‖c′n(θ)− c∗′n (θ)‖K∗ → 0 P a.s., for a = 2 when Ez4

0 < +∞ or α ∈ (1, 2)
when the analogous condition in ii) holds and therefore, if additionally assumption A.2 holds then
n
α−1
a c∗′n (θ0) V2 in the first and n

α−1
a c∗′n (θ0) −Va in the second case.

Proof. First notice that due to the chain rule (that holds for one sided partial derivatives) we
have that

−c′n(θ) =
1

n

n∑
t=1

(
y2
t

ht (θ)
− 1)

h′t (θ)

ht (θ)

where h′t is given in lemma 4.1 in the Appendix. Hence by exploiting the fact that ht (θ0) = σ2
t

P a.s. we obtain that

−c′n(θ0) =
1

n

n∑
t=1

(z2
t − 1)

h′t (θ0)

σ2
t

.

4Remember that h : R+ → R+ is slowly varying at infinity (in the Karamata’s sense) if and only if for any
c > 0, limx→∞

h(ax)
h(x) = 1.
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Then notice that the random element h′t(θ0)

σ2t
is measurable with respect to Ft−1 = {zt−k, k ≥ 1}

and Ft−1 is independent of zt and Ez2
t = 1. i) Since Ez4

0 < +∞ and due to Lemma 4.1
the sequence (`′t (θ0))t∈N is a finite variance stationary ergodic zero-mean martingale difference
sequence with respect to the filtration (Ft−1)t∈N. Consequently we can apply the central limit
theorem for finite variance stationary ergodic martingale difference sequences to obtain the result.
Furthermore

G0 = E
[
`′t (θ0) (`′t (θ0))

T
]

= E

[
h′t (θ0) (h′t (θ0))T

σ4
0

]
E
[
(z2
t − 1)2

]
= E

[
h′t (θ0) (h′t (θ0))T

σ4
0

] (
Ez4

t − 1
)

=
(
Ez4

t − 1
)
J

By Lemma 4.6 and since Ez4
t = E (z2

t )
2
> (Ez2

t )
2, it follows that G0 is a positive definite matrix.

ii) The assumption on the asymptotic behavior of the distribution of z0 is equivalent to

P
(
z2

0 − 1 ≤ x
)

= 1− c2 + o (1)

xα
h (x) as x→ +∞

Then due to Theorem 2.6.1 of Ibragimov and Linnik [3] it follows that the distribution of z2
0 − 1

(c1 = 0) lies in the domain of attraction of an α-stable distribution. Notice that this and
Theorem 2.6.3 of Ibragimov and Linnik [3] imply that E (z2

0)
γ
< +∞ for any 1 ≤ γ < α.

Then Theorem 2.6.5 of Ibragimov and Linnik [3] implies that in a neighborhood of the origin
the characteristic function of z2

0 − 1 is of the form exp
(
−c |θ|α

(
1− iβ sgn (θ) tan

(
πα
2

)))
where

c = −Γ(2−α)
a−1

c2 cos
(
πα
2

)
and β = −1. Then Theorem B.1 of Surgailis [10] along with lemma 4.1

imply that −nα−1
a λT c′n(θ0) converges in distribution to an α-stable random variable for any non

zero λ. The result follows by the Cramer-Wald device and the Continuous Mapping Theorem.
iii) We have that P a.s.

n
α−1
a ‖c′n(θ0)− c∗′n (θ0)‖K∗

≤ 1

n
1
a

n∑
t=1

∥∥∥∥(
y2
t

ht (θ)
− 1)

h′t (θ)

ht (θ)
− (

y2
t

h∗t (θ)
− 1)

h∗′t (θ)

h∗t (θ)

∥∥∥∥
K∗

≤ 1

n
1
a

n∑
t=1

y2
t

∣∣h−2
t (θ)− h−2∗

t (θ)
∣∣
K∗
‖h′t (θ)− h∗′t (θ)‖K∗

+
1

n
1
a

n∑
t=1

∣∣h−1
t (θ)− h−1∗

t (θ)
∣∣
K∗
‖h′t (θ)− h∗′t (θ)‖K∗

Exploiting the fact that ht and h∗t are P a.s. uniformly over t and any compact subset of
Θ bounded away from zero we obtain from the mean value theorem that there exist positive
constants c1, c2 for which the majorant side in the previous display is P a.s. less than or equal to

c1

n
1
a

n∑
t=1

y2
t |ht (θ)− h∗t (θ)|K∗ ‖h′t (θ)− h∗′t (θ)‖K∗

+
c2

n
1
a

n∑
t=1

|ht (θ)− h∗t (θ)|K∗ ‖h′t (θ)− h∗′t (θ)‖K∗

12



The first result follows from lemma 4.10, Proposition 5.2.12 of Straumann [9] which holds due to
the definition of θ0, assumption A.4, lemma 3.4 which enables Proposition 2.5.1 of Straumann
[9] and the fact that in any case a is positive. The second result is a trivial consequence of the
previous.
Hence the following result obtained by restricting the rate of convergence of the optimization

error.

Proposition 3.8 Under assumptions A.1, A.2, A.4 and if moreover εn = op
(
n−k
)
for k ≥ 2− 2

a

then
n
α−1
α (θn − θ0) = Op (1)

with α = 2 when Ez4
0 <∞ and α ∈ (1, 2) when P

(
z0 ∈

[
−
√
x+ 1,

√
x+ 1

])
= 1− c2+o(1)

xα
h (x)

as x→ +∞, for c2 > 0 and h as in proposition 3.7.

Proof. First notice that by the definition of θn we have∑n

t=1
`∗t (θn)−

∑n

t=1
`∗t (θ0) ≤ op

(
n1−k)

From lemma 3.6 and the definition of `∗t and h
∗
t we have that since in any case 1 < a ≤ 2 the

previous implies

νTn
1

n
1
a

∑n

t=1
`′∗t (θ0) +

1

2
νTnc

′′∗
t (θ∗n) νn ≤ op

(
n−ε
)
≤ op (1)

where ε = k − 2 + 2
a
≥ 0 by hypothesis and νn = n

a−1
a (θn − θ0) and θ∗n is a random element

with values in the line segment between θn and θ0 P a.s. which can stay outside K with positive
probability. Obviously due to lemma 3.4 θ̄n converges to θ0 P a.s. Using this we can choose
ε > 0 so that lemma 4.5 holds and by additionally employing lemma 4.11 in the Appendix we
have that the previous can be expressed as

νTn
1

n
1
a

∑n

t=1
`′∗t (θ0) +

1

2
νTn

(
E`
′′

0 (θ0) + op (1)
)
νn ≤ op (1)

From lemma 4.6 we have that E`
′′
0 (θ0) is a positive definite matrix and using this along with

lemma 4.5. iii) we obtain that there exists some positive c > 0 such that

Op (‖νn‖)− c ‖νn‖2 + ‖νn‖2 op (1) ≥ op (1)

which implies that

Op (1) ≥ ‖νn‖2 (1 + op (1))− 2 ‖νn‖ (1 + op (1))Op (1) +Op (1)

Hence
‖νn‖ (1 + op (1)) ≤ Op (1)

and the result follows.
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3.3 Asymptotic Distribution

In order to characterize the asymptotic distribution of n
α−1
α (θn − θ0) we first, following van der

Vaart [13] (see paragraph 7.4), characterize the asymptotic parameter space as a convenient
limit of the sequence of centered and rescaled parameter spaces and then impose some further
structure in the assumption that follows. For a as in the previous section, we denote with Hn (a)

the n
a−1
a (K − θ0) =

{
n
a−1
a (x− θ0) , x ∈ K

}
and notice that given the assumption A.1 Hn (a)

is compact and contains 0.

Definition D.5 H (a) = lim supn→∞Hn (a) i.e. it is the set containing any x ∈ R4 such that
x is a cluster point of some (xn)n∈N with xn ∈ Hn (a).

Notice thatH (a) always exists and it is a closed subset of R4 (see Proposition 4.4 of Rockafel-
lar and Wets [8]). In our case it is always different from ∅ since it contains 0. From exercise 4.2
of Rockafellar and Wets [8] we obtain that x ∈ H (a) iff lim infn→∞ n

a infy∈K−θ0
∥∥ x
na
− y
∥∥ = 0.

But the limit inferior equals to lim infn→∞ n
a∗ infy∈ 1

na
∗−a (K−θ0)

∥∥ x
na∗
− y
∥∥. Hence a suffi cient

condition for H (a) = H (a∗) is that K − θ0 is a cone. The next assumption enables the
uniqueness of the main result.

Assumption A.5 H (a) is convex.

We first present the main result and then discuss some examples.

Proposition 3.9 Under assumptions A.1, A.2, A.4, A.5 and if moreover εn = op
(
n−k
)
for

k ≥ 2− 2
a
, then

n
α−1
α (θn − θ0) h̃

with h̃ defined uniquely by q
(
h̃
)

= inf
h∈H(a)

q (h) and q (h) := (h− J−1Z)
′ J (h− J−1Z) for

J=E`′′0 (θ0) positive definite, and using the notation and definitions and of lemma 3.7 i) Z = V2

when α = 2 when Ez4
0 < ∞ i.e. Z ∼ N (0, (Ez4

t − 1) J) or ii) Z = −Vα for α ∈ (1, 2) when
P
(
z0 ∈

[
−
√
x+ 1,

√
x+ 1

])
= 1− c2+o(1)

xα
h (x) as x→∞ and h slowly varying at infinity and

c2 > 0 where Vα follows the α-stable distribution characterized in lemma 3.7.

Proof. From lemma 3.6 and the definitions of the likelihoods in each of the cases described in
the proposition, we can define $n : Θ→ R as

$n (h) ≡ n2a−1
a

(
c∗n

(
θ0 + n−

α−1
α h
)
− c∗n (θ0)

)
= h′

1

n
1
a

∑n

t=1
`′∗t (θ0) +

1

2
h′c′′∗t (θ0)h+

1

2
h′
(
c′′∗n
(
θ̄n
)
− c′′∗n (θ0)

)
h

where θ̄n is a random element with values in the line segment between n−
α−1
α h + θ0 and θ0 P

a.s. that lies inside Θ. Obviously due to lemma 3.4 θ̄n converges to θ0 P a.s. Using this we can
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choose ε > 0 so that lemma 4.5 holds and by additionally employing lemma 4.11 in the Appendix
and lemma 3.7, we have that for U an arbitrary compact subset of Θ∣∣∣∣$n(h)− h′Z − 1

2
h′Jh

∣∣∣∣
U

= op (1) . (3)

Due to proposition 3.8 hn + n
α−1
α (θn − θ0) ∈ Hn (a) ∩ B

(
0, n

α−1
α ε
)
+ H∗n (a) with P -

probability tending to 1 for some ε > 0. If F is a closed non empty subset of R4, and hn ∈ F ,
then for large enough n, either H∗n (a) ⊂ F , or H∗n (a) * F but H∗n (a) ∩ F 6= ∅. In either case
due to the definitions of θn, $n and the fact that εn = op

(
n−k
)
for k ≥ 2− 2

a

inf
h∈H∗n(a)∩F

$n (h) ≤ inf
h∈H∗n(a)

$n (h) + op (1)

and therefore due to Slutsky’s lemma

P (hn ∈ F ) ≤ P

(
inf

h∈H∗n(a)∩F
$n (h) ≤ inf

h∈H∗n(a)
$n (h) + op (1)

)
≤ P

(
inf

h∈H∗n(a)∩F
$n (h) ≤ inf

h∈H∗n(a)
$n (h)

)
+ o (1)

Now notice thatH∗n = H∗n∩Rq andRq is open, lim supn→∞H
∗
n (a) = H (a), since lim supn→∞Hn (a) =

H (a) and n
α−1
α →∞. Furthermore equation 3 and the continuous mapping theorem imply that

Lemma 7.13.2-3 of van der Vaart [13] is applicable, so that the last probability is less than or
equal to

P

(
inf

h∈H(a)∩F
$n (h) ≤ inf

h∈H(a)
$n (h) + op (1)

)
≤ P

(
inf

h∈H(a)∩F
$n (h) ≤ inf

h∈H(a)
$n (h)

)
+ o (1)

due to Slutsky’s Lemma. Again from equation 3, the continuous mapping theorem and Slutsky’s
Lemma we obtain that the last probability is less than or equal to

P

(
inf

h∈H(a)∩F
h′Z − 1

2
h′Jh ≤ inf

h∈H(a)
h′Z − 1

2
h′Jh

)
+ o (1)

Now

P

(
inf

h∈H(a)∩F
h′Z +

1

2
h′Jh ≤ inf

h∈H(a)
h′Z +

1

2
h′Jh

)
= P

(
inf

h∈H(a)∩F
h′Z +

1

2
h′Jh± 1

2
Z ′J−1Z ≤ inf

h∈H(a)
h′Z +

1

2
h′Jh± 1

2
Z ′J−1Z

)
= P

(
inf

h∈H(a)∩F

(
h− J−1Z

)′ J (h− J−1Z
)
≤ inf

h∈H(a)

(
h− J−1Z

)′ J (h− J−1Z
))

Assumption A.5 implies that H (a) is closed and convex, and lemma 4.6 that J is positive definite.
Hence due to uniqueness when

inf
h∈H(a)∩F

(
h− J−1Z

)′ J (h− J−1Z
)
≤ inf

h∈H(a)

(
h− J−1Z

)′ J (h− J−1Z
)
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holds then
h̃ ∈ H (a) ∩ F

and therefore the last probability is less than or equal to

P
(
h̃ ∈ H (a) ∩ F

)
≤ P

(
h̃ ∈ F

)
hence we have proven that

lim sup
n→∞

P (hn ∈ F ) ≤ P
(
h̃ ∈ F

)
and the result follows from the Portmanteau theorem due to the fact that F is chosen arbitrarily.
Notice that when Ez4

0 < ∞ from lemma 3.7 we obtain that a = 2 and Z ∼ N (0, (Ez4
t − 1) J)

while from the same result when a ∈ (1, 2), P
(
z0 ∈

[
−
√
x+ 1,

√
x+ 1

])
= 1− c2+o(1)

xα
h (x) as

x→∞, c2 > 0 and h slowly varying at infinity Z = −Va which follows the a-stable distribution
in the second case of lemma 3.7.
We close this paragraph by providing some examples concerning the form of K and the

subsequent form of H (a). Some of these have obvious econometric significance. In the last one
we examine a simple case where assumption A.5 does not hold.

Example: interior point. Suppose that θ0 ∈ IntK. This implies that there exists an open ball
centered at θ0 that lies entirely inside K. Then definition D.5 implies that H (a) = R4. Hence
in the first case of the previous proposition n

α−1
α (θn − θ0)  N (0, (Ez4

t − 1) J−1) and in the
second one n

α−1
α (θn − θ0) −J−1Va.

Example: GARCH (1, 1). Suppose that θ0 = (ω0, α0, 0, β0) and K = [ωl, ωu] × [αl, αu] ×
[γl, 0] × [0, βu] where 0 < ωl < ω0 < ωu, 0 < αl < α0 < αu, 0 < β0 < βu and γl < 0.
Then the centered parameter space is K − θ0 = [ωl − ω0, ωu − ω0] × [αl − α0, αu − α0] ×
[γl, 0] × [−β0, βu − β0]. Hence H (a) = R2 × (−∞, 0] × R and assumption A.5 holds. Given
the econometric significance of the negative dynamic asymmetry, the result in the following
proposition implies that the restriction of γ as above is asymptotically informative when γ0 = 0.

Example: QARCH (1, 1). Let θ0 = (ω0, α0, γ0, 0) and K = [ωl, ωu]× [αl, αu]× [γl, 0] × [0, βu]
where 0 < ωl < ω0 < ωu, 0 < α0 < αu, γl < γ0 < 0 and βu > 0. Then the centered
parameter space is K − θ0 = [ωl − ω0, ωu − ω0]× [−α0, αu − α0]× [γl − γ0,−γ0]× [0, βu] and
H (a) = R3 × R+, and again assumption A.5 holds.

Example: discrete K. Suppose that K is discrete hence due to assumption A.1 it is finite.
Then K − θ0 is also finite and H (a) = {0}. Assumption A.5 holds and the previous proposition
implies that in any of the two cases the asymptotic distribution is degenerate at 0.

Example: θ0 lies on a sphere. Suppose that θ∗ ∈ Int Θ, K = B̄ (θ∗, ε) for
ε ≤ min (|γ∗| , β∗, 1− β∗), and ‖θ0 − θ∗‖ = ε. Then K − θ0 = B̄ (θ∗ − θ0, ε). Since K − θ0

is closed and convex there exists a supporting hyperplane and thereby H (a) is the closed half
space containing K − θ0 and the hyperplane. If K = S (θ∗, ε) then H (a) equals the supporting
hyperplane itself. In any case assumption A.5 holds.
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Example: θ0 lies on the boundary of an annulus. Suppose that θ∗ and ε are as before, and
K = B̄ (θ∗, ε) /B (θ∗, ε0) for ε0 < ε, and ‖θ0 − θ∗‖ = ε0 or ‖θ0 − θ∗‖ = ε. Let Hε denote the
supporting hyperplane of B̄ (θ∗ − θ0, ε) and CHε the closed half space containing B̄ (θ∗ − θ0, ε)
and Hε. In the first case H (a) = CHc

ε ∪ Hε and in the second H (a) = Hε. In both cases
assumption A.5 holds.

Example: K is a union of line segments. For some ergodic θ0 ∈ Θ suppose that K is the
union of a countable collection of line segments, each one of which contains θ0 and lies inside
B (θ0, δ) for δ < infy∈Bd Θ ‖θ0 − y‖ where Bd Θ denotes the boundary of Θ. Hence K − θ0 is
the union of a countable collection of line segments which contain 0 and have length less than
δ. H (a) then equals the countable union of the one dimensional subspaces that are uniquely
defined by each of the line segments in K − θ0. Obviously assumption A.5 holds iff all the initial
line segments are colinear.

4 Further Research

We have examined the asymptotic properties of the QMLE of the GQARCH (1, 1) model. Under
our assumption framework, we established that the asymptotic distribution of n

a−1
a (QMLE−θ0)

is characterized by the one of the unique minimizer of a quadratic form over a closed and convex
subset of R4.5 This respesents the squared distance (w.r.t. a p.d. matrix) from a random
vector that follows a normal distribution when a = 2 or is a linear transformation of an α-stable
random vector when a ∈ (1, 2). When the parameter is an interior point this implies that we
have distributional convergence to this random vector. Hence we have examined cases in which
non normal asymptotic distributions are obtained either due to convergence of the estimator on
the boundary of the parameter space, and/or due to the non existence of high order moments
for random elements involved in this framework.
The previous results raise two possible directions for further research. The first concerns the

investigation of the conjecture that the necessary and suffi cient conditions for stationarity and
ergodicity of the GARCH (1, 1) are suffi cient for the GQARCH (1, 1). The second concerns the
derivation of the asymptotic distribution for particular indirect estimators when the QMLE is used
as an auxiliary in the same context. We expect that when θ0 is a boundary point some of these
estimators have "smaller" first order asymptotic bias and mse than the QMLE. We suspect that
the derivation of these results would be facilitated by some locally uniform (w.r.t. θ0) extension of
the results in Andrews [1] that moreover enables local quadratic approximations of the likelihood
function, without the use of derivatives. Hence it could also enable the incorporation in the
asymptotic theory of θ0 that correspond to conditional homoskedasticity or non random time
varying volatility processes.

5Notice that we could also have examined the asymptotic properties of the infeasible QMLE defined as
an approximate minimizer of the ergodic likelihood function. It is easy to see that our assumption framework
establishes (without the need of assumption A.4 for this case) that it is asymptoticaly equivalent to the case
examined.
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Appendix

This section contains a sequence of intermediate technical lemmas used in the proofs of the
main results of the paper. They are grouped according to their initial use in the establishment
of the basic results in the paper. Some of them are actually used in more than one parts of the
asymptotic theory. Lemma 3.6 in the main body of the paper enables the partial (possibly one
sided) differentiation of any of the volatility filters over Θ. We denote the relevant mathematical
entities according to the notation introduced in paragraph 3.2. In the following K∗ denotes
an arbitrary non empty subset of Θ. Moreover the notation ‖·‖K∗ denotes supK∗ ‖·‖. Notice
that separability and compactness of K∗ imply measurability of supK∗ ‖·‖ (apply the Theorem
of Measurable Projections in van der Vaart and Wellner [12], example 1.7.5 p. 47). Furthermore
for ε > 0, B (θ, ε) denotes the closed ball in R4 of radius ε, centered at θ.

Lemmas enabling the establishment of the rate of convergence of the ergodic
QMLE.

Lemma 4.1 E
∥∥∥h′t(θ)ht(θ)

∥∥∥δ
K∗

<∞ for all δ > 0.

Proof. Remember that ht depends on θ0 through yt−1, yt−2,... From lemma 3.1 we have that
P a.s.

h′t (θ) =

(
1

1−β , −
γ2

4α2(1−β)
+
∞∑
i=0

βiy2
t−i−1,

γ
2α(1−β)

+
∞∑
i=0

βiyt−i−1,

ω

(1− β)2 +
∞∑
i=0

iβi−1α
(
yt−i−1 +

γ

2a

)2
)′

The first element of the vector h
′
t(θ)

ht(θ)
clearly uniformly bounded. For the second element note

that ∀θ ∈ K there exist positive constants C1, C2 (possibly dependent on θ) so that y2
t−i−1 ≤

C1+C2α
(
yt−i−1 + γ

2α

)2
for all i. This implies boundedness for the third element as well, observing

that |yt−i−1| ≤ 1 + y2
t−i−1. Due to compactness of K

∗ these bounds can be made uniform. As
for the fourth element see Lemma 4.4.

Lemma 4.2 E
∥∥∥h′′t (θ)

ht(θ)

∥∥∥δ
K∗

<∞ for all δ > 0.

Proof. Notice first that continuity of the second order (possibly one sided) derivatives implies
Young’s theorem (see the proof of Theorem 6 of Andrews [1]). The result follows readily from
Lemma 4.1 and Lemma 4.4 as P a.s.

∂2ht(θ)

∂θ∂θ′
=



0 0 0 1
(1−β)2

γ2

2a3(1−β)
− γ

2a2(1−β)
− γ2

4a2(1−β)2
+ 1

1−β

∞∑
i=0

βiy2
t−i−1

1
2a(1−β)

γ

2a(1−β)2
+ 1

1−β

∞∑
i=0

βiyt−i−1

2ω
(1−β)3

+
∞∑
i=0

i (i− 1) βi−2α
(
yt−i−1 + γ

2a

)2


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Lemma 4.3 E (z2
0)
γ
<∞, for some γ and

lim
t→0

t−µP
(
z2

0 ≤ t
)

= 0, for some µ > 0

then for any 0 < ν < γ and some small enough ε > 0

E
∣∣∣∣ σ2

t

ht (θ)

∣∣∣∣ν
Θ∩B(θ0,ε)

<∞.

Proof. Using γ0yt−1 ≤ −γ0

(
1 + y2

t−1

)
we have

σ2
t

ht (θ)
≤

ω0−γ0+
γ20
4a0

σ2t−1
+ (a0 − γ0) z2

t−1 + β0

ω+ γ2

4a

σ2t−1
+ az2

t−1 + γzt−1
σt−1

+ β ht−1(θ)

σ2t−1

≤
C0 + (a0 − γ0) z2

t−1

inf
σt−1∈

[√
ω0/(1−β0),+∞

)
(
ω+ γ2

4a

σ2t−1
+ γzt−1

σt−1
+ az2

t−1

)
+ β ht−1(θ)

σ2t−1

whereC0 =
ω0−γ0+

γ20
4a0

inf σ2t−1
+β0 =

ω0−γ0+
γ20
4a0

ω0/(1−β0)
+β0. Also inf

σt−1∈
[√

ω0/(1−β0),+∞
)
(
ω+ γ2

4a

σ2t−1
+ γzt−1

σt−1
+ az2

t−1

)
=

inf
x∈
(

0,
√

(1−β0)/ω0
)
[(
ω + γ2

4a

)
x2 + (γzt−1)x+ az2

t−1

]
=

az2t−1(
1+ γ2

4ωa

) . Therefore we can write

σ2
t

ht (θ)
≤
C0 + (a0 − γ0) z2

t−1

C1z2
t−1 + β ht−1(θ)

σ2t−1

where C1 = inf
θ∈K∗

a(
1+ γ2

4ωa

) > 0. Now if β0 = 0 choose ε arbitrarily and obtain that sup
θ∈K∗

σ2t
ht(θ)

≤
C0+(a0−γ0)z2t−1

C1z2t−1
so then skip to equation 4 setting M = 1 and the result follows using the same

arguments. Now when β0 > 0 choose ε small enough so that Θ ∩ B (θ0, ε) does not contain
elements of Θ for which β = 0. This is always possible due to the fact that θ0 ∈ K∗ by
assumption. Then there exists K1 > 0 independent of θ so that

σ2
t

ht (θ)
≤

K1

(
1 + z2

t−1

)
z2
t−1 +

(
σ2t−1
ht−1(θ)

)−1 .

But (
σ2
t−1

ht−1(θ)

)−1

≥
z2
t−2 +

(
σ2t−2
ht−2(θ)

)−1

K1

(
1 + z2

t−1

) .
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So, substituting

σ2
t

ht (θ)
≤

K2
1

∏2

i=1

(
1 + z2

t−i
)

K1z2
t−1 +K1z2

t−1z
2
t−2 + z2

t−2 +
(

σ2t−2
ht−2(θ)

)−1

≤
K2

1

∏2

i=1

(
1 + z2

t−i
)

K1z2
t−1 + z2

t−2 +
(

σ2t−2
ht−2(θ)

)−1

Hence recursively

σ2
t

ht (θ)
≤
KM

1

∏M

i=1

(
1 + z2

t−i
)

K2

∑M

i=1
z2
t−i

, for any M ≥ 1 (4)

where K2 some constant dependent on K1 and M . Finally following the remaining steps of
Lemma 5.1 of Berkes et al. [2] we obtain the result.

Lemma 4.4 E

∥∥∥∥∥∥
∞∑
i=0

i3βiy2t−i−1

1+
∞∑
i=0

βiy2t−i−1

∥∥∥∥∥∥
v

K∗

<∞ for any v > 0.

Proof. First notice that the results of lemma 3.4 would hold even if the ergodic θ0 did not belong
to the examined compact subset of Θ. From this lemma there exists δ > 0 so that E (y2

0)
δ
<∞.

Then, along the lines of the proof of Lemma 5.2 of Berkes et al. [2], replacing ci (u) with βi and
noting that we can choose β < ρ∗ < 1 ∀β ∈ K∗ and M ≥M0 (ρ) large enough so that iβi < ρi

for i ≥M . For any M ≥ 1, the result follows.

Lemma 4.5 For ε as in the previous lemma, if E (z2
0)
δ
< +∞ for some δ > 1 then for all γn → 0

sup
θ∈Θ∩B(θ0,ε):‖θ−θ0‖≤γn

‖c′′n (θ)− E`′′0 (θ)‖ = op (1) .

Proof. We have that with P probability one

c′′n (θ) =
1

n

n∑
t=1

[(
2y2

t

ht(θ)
− 1

)
h′t (θ) [h′t (θ)]T

(ht(θ))
2 +

(
1− y2

t

ht(θ)

)
h′′t (θ)

ht(θ)

]
.

By Straumann [9] Propositions 5.2.12, 5.5.1 and 5.5.2 together with Proposition 2.1.1, (c′′n) is a
stationary ergodic sequence of random elements with values in C

(
Θ ∩B (θ0, ε) ,R4×4

)
, with

‖`′′0 (θ)‖Θ∩B(θ0,ε)
≤
∥∥∥∥h′0h0

∥∥∥∥2

Θ∩B(θ0,ε)

(
2

∣∣∣∣y2
0

h0

∣∣∣∣
Θ∩B(θ0,ε)

+ 1

)
+

∥∥∥∥h′′0h0

∥∥∥∥
Θ∩B(θ0,ε)

(
1 +

∣∣∣∣y2
0

h0

∣∣∣∣
Θ∩B(θ0,ε)

)

By an application of the Hölder inequality together with Lemmas 4.1, 4.2, 4.3 enabled by E (z2
0)
δ
<

+∞ we have that E ‖`′′0 (θ)‖Θ∩B(θ0,ε)
< +∞ and the fact that Θ ∩ B (θ0, ε) is compact. Then

by the stationarity-ergodicity of (`′′t (θ))t∈Z, we apply Theorem 2.2.1 of Straumann [9] to obtain
the result.
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Lemma 4.6 Under assumption A.2 J=E [`′′0 (θ)] = E
[
h′0(θ0)(h′0(θ0))

T

σ40

]
is a positive definite ma-

trix.

Proof. Using Straumann’s [9] Lemma 5.6.3, we require that the components of the vector(
1,− γ2

4a2
+ y, y0, σ

2
0

)′
are linearly independent random variables. Suppose not, i.e. there exist

λ1, λ2, λ3, λ4 ∈ R where (λ1, λ2, λ3, λ4)′ 6= 04×1 such that:

λ1 −
λ2γ

2

4a2
+ λ2y

2
0 + λ3y0 + λ4σ

2
0 = 0.

By Lemma 3.3, the only solution to this equation is the zero vector.

Lemmas enabling the establishment of the asymptotic equivalence between the
ergodic and the non-ergodic QMLE. In the following the symbol e.a.s.→ denotes experientially
almost sure convergence (w.r.t. P ) as defined in Section 2.5 of Straumann [9]. For economy of
space we also denote with a.s.→ almost sure convergence (w.r.t. P ).

Lemma 4.7 ‖h′t(θ)− h′∗t (θ)‖K∗
e.a.s.→ 0.

Proof. We proceed elementwise. We identify the SRE that each (possibly one sided) partial
derivatives satisfy and then use Proposition 5.2.12. of Straumann [9].

• For ω we have that ∂ht
∂ω

= 1 + β ∂ht−1
∂ω

=
m∑
i=0

βi + βm+1 ∂ht−m−1
∂ω

m→∞→ 1
1−β P a.s., hence the

SRE st+1 = Φ (st) , t ∈ Z for which [Φ (s)] (β) = 1 + βs, log+ Λ (Φ) = log+ β <∞ and
E log Λ (Φ (s)) = log β < 0, E log+ ‖Φ (s) (ς2

0)‖K∗ = E log+ ‖1− βς2
0‖K∗ <∞. Then, by

Proposition 5.2.12. of Straumann [9] we have that∥∥∥∂h∗t (θ)

∂ω
− ∂ht(θ)

∂ω

∥∥∥
K∗

e.a.s.→ 0 and ∂ht
∂ω

= 1
1−β P a.s.

• For a we have that ∂ht
∂a

= y2
t−1 − γ2

4a2
+ β ∂ht−1

∂a
=
∞∑
i=0

βi
(
− γ2

4a2
+ y2

t−i−1

)
= −

∞∑
i=0

βi γ
2

4a2
+

∞∑
i=0

βiy2
t−i−1 = − γ2

4a2(1−β)
+
∞∑
i=0

βiy2
t−i−1

P a.s., hence the SRE: st+1 = Φt (st), where [Φt (s)] (β) = y2
t−1 − γ2

4a2
+ βs and

log+ Λ (Φt) = log+ β < ∞, E log Λ (Φt) = E log β = log β < 0, E log+ ‖Φt (ς2
0)‖ =

E log+
∥∥∥y2

t−1 − γ2

4a2
− βς2

0

∥∥∥
K∗

< ∞. So, by Proposition 5.2.12. of Straumann [9] we have
that∥∥∥∂h∗t (θ)

∂a
− ∂ht(θ)

∂a

∥∥∥
K∗

e.a.s.→ 0 and ∂ht(θ)
∂a

= − γ2

4a2(1−β)
+
∞∑
i=0

βiy2
t−i−1 P a.s.

• For γ we have that ∂ht(θ)
∂γ

= γ
2a(1−β)

+
∞∑
i=0

βiyt−i−1 P a.s., hence the SRE: st+1 =

Φt (st), for which log+ Λ (Φt) = log+ β < ∞ and E log Λ (Φt) = E log β = log β < 0,
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E log+ |Φt (ς2
0)| = E log+

∣∣yt−1 − γ
2a
− βς2

0

∣∣
K∗
≤ log 2+E log+ |yt−1|+E log+

∣∣ γ
2a

+ βς2
0

∣∣
K∗

<
∞. So, by Proposition 5.2.12. of Straumann [9] we have that∥∥∥∂h∗t (θ)

∂γ
− ∂ht(θ)

∂γ

∥∥∥
K∗

e.a.s.→ 0 and ∂ht(θ)
∂γ

= γ
2a(1−β)

+
∞∑
i=0

βiyt−i−1 P a.s.

• For β we have that ∂ht(θ)
∂β

= ht−1 (θ) + β ∂ht(θ)
∂β+

=
∞∑
i=0

βiht−i−1(θ) P a.s., hence the SRE:

st+1 = Φ (st), for which log+ Λ (Φ) = log+ β <∞ and E log Λ (Φ) = E log β = log β < 0,
E log+ |Φ (ς2

0)| = E log+
∣∣h∗t−1 (θ) + βς2

0

∣∣ ≤ log 2 + E log+
∣∣h∗t−1 (θ)

∣∣ + log+ βς2
0 < ∞.

So, by Proposition 5.2.12. of Straumann [9] we have that
∥∥∥∂h∗t (θ)

∂β
− ∂ht(θ)

∂β

∥∥∥
K∗

e.a.s.→ 0

and ∂ht(θ)
∂β

= ht−1 (θ) + β ∂ht(θ)
∂β

=
∞∑
i=0

βiht−i−1(θ) a.s. Then using Proposition 2.5.1 of

Straumann [9], since βi e.a.s.→ 0 as i → ∞ (choose e.g. γ = β−
1
2 > 1 to see that γiβi a.s.→

0) and y2
t−i−1,yt−i−1, ht−i−1(θ) are ergodic with log+ y2

t−i−1 < ∞, log+ |yt−i−1| < ∞,
log+ ht−i−1(θ) <∞ we have that

∞∑
i=0

βiy2
t−i−1,

∞∑
i=0

βiyt−i−1,
∞∑
i=0

βiht−i−1(θ) converge e.a.s.

Thus, ∂ht(θ)
∂θ

is well defined.

Lemma 4.8 ‖h′′t (θ)− h′′∗t (θ)‖K∗
e.a.s.→ 0

Proof. We proceed elementwise as in the previous proof. For economy of space we present only
two cases. The others follow analogously. Consider first the ∂2ht(θ)

∂a∂ω
= β ∂

2ht−1(θ)
∂a∂ω

. We have the
SRE: st+1 = Φ (st), for which log+ Λ (Φ) = log+ β <∞ and E log Λ (Φ) = E log β = log β < 0.
E log+ ‖Φ (ς2

0)‖K∗ = E log+ ‖βς2
0‖K < ∞. So, by Proposition 5.2.12. of Straumann we have

that
∥∥∥∂2h∗t (θ)

∂a∂ω
− ∂2ht(θ)

∂a∂ω

∥∥∥
K∗

e.a.s.→ 0. Consider finally ∂2ht(θ)
∂a∂β

. We obtain that

∥∥∥∥∂2h∗t (θ)

∂a∂β
− ∂2ht(θ)

∂a∂β

∥∥∥∥
K∗

=

∥∥∥∥∂h∗t−1(θ)

∂a
− ∂ht−1(θ)

∂a
+ β

∂h∗t−1(θ)

∂a∂β+ − β
∂ht−1(θ)

∂a∂β+

∥∥∥∥
≤

∥∥∥∥∂h∗t−1(θ)

∂a
− ∂ht−1(θ)

∂a

∥∥∥∥+ β

∥∥∥∥∂h∗t−1(θ)

∂a∂β+ −
∂ht−1(θ)

∂a∂β+

∥∥∥∥
≤

∞∑
i=0

βi
∥∥∥∥∂h∗t−i−1(θ)

∂a
− ∂ht−i−1(θ)

∂a

∥∥∥∥ e.a.s.→ 0.

Lemma 4.9
∥∥∥h∗′t (θ)h∗′t (θ)T − h′t (θ)h′t (θ)T

∥∥∥
K∗

e.a.s.→ 0

Proof. Trivial.

Lemma 4.10 n ‖c′∗n (θ)− c′n (θ)‖K∗ converges P a.s.
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Proof. By an application of the mean value theorem to the function f (a, b) = a
b

(
1− y2t

b

)
, a ∈

R, b > 0, due to remark R.4, we obtain

∥∥`∗t ′(θ)− `′t(θ)∥∥K∗ =

∥∥∥∥(1− y2
t

h∗t

)
h∗′t
h∗t
−
(

1− y2
t

ht

)
h′t
ht

∥∥∥∥
K∗

≤ c
(
1 + y2

t

)
[‖ht − h∗t‖K∗ + ‖h′t − h∗′t ‖K∗ ]

for some c > 0. Then, by Proposition 5.2.12 of Straumann [9], ‖ht−h∗t‖K
e.a.s.→ 0, and by lemma

4.7 ‖h′t − h∗′t ‖K
e.a.s.→ 0 so [‖ht − h∗t‖K + ‖h′t − h∗′t ‖K ]

e.a.s.→ 0. Then, lemma 3.4 implies that
E log+ [c (1 + y2

t )] <∞ by Lemma 2.5.3 of Straumann [9]. Then

n ‖c′∗n (θ)− c′n (θ)‖K∗ ≤
∞∑
t=1

∥∥`∗t ′(θ)− `′t(θ)∥∥K∗ <∞
and the result is obtained by an application of Proposition 2.5.1 of Straumann [9].

Lemma 4.11 ‖c∗′′n (θ)− c′′n(θ)‖K∗
a.s.→ 0.

Proof. Using the definitions of the second order (possibly one sided) derivatives, the triangle
inequality By an application of the mean value theorem to the functions f (a, b) = a

b

(
1− y2t

b

)
and g (a, b) =

(
2y2t
a
− 1
)

b
a2
, we obtain

‖`∗′′t (θ)− `′′t (θ)‖K∗

≤
∥∥∥∥(1− y2

t

h∗t

)
h∗′′t
h∗t
−
(

1− y2
t

ht

)
h′′t
ht

∥∥∥∥
K∗

+

∥∥∥∥(2y2
t

h∗t
− 1

)
1

(h∗t )
2h
∗′
t (h∗′t )

T −
(

2y2
t

ht
− 1

)
1

(ht)
2h
′
t (h′t)

T

∥∥∥∥
K∗

≤ c1

(
1 + y2

t

)
[‖ht − h∗t‖K∗ + ‖h∗′′t − h′′t ‖K∗ ]

+c2

(
1 + y2

t

) [
‖ht − h∗t‖K∗ +

∥∥∥h∗′t (h∗′t )
T − h′t (h′t)

T
∥∥∥
K∗

]
for some c1, c2 > 0 which exist due to compactness of K∗ and the uniform boundedness of the
volatility filters away from zero. Then, by Proposition 5.2.12 of Straumann [9], ‖ht−h∗t‖K∗

e.a.s.→ 0,

by Lemma 4.8 ‖h′′t − h∗′′t ‖K∗
e.a.s.→ 0 and by Lemma 4.9

∥∥∥h∗′t (h∗′t )T − h′t (h′t)
T
∥∥∥
K∗
, so analogously

to the proof of Lemma 4.10 we obtain

n ‖c′′n(θ)− c∗′′n (θ)‖K∗ ≤
∞∑
t=1

‖`′′t (θ)− `∗′′t (θ)‖K∗ <∞.
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