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Abstract

This paper suggests an a¢ ne term structure model of real interest rates to predict changes in real consumption

growth. The model is estimated, jointly, by real interest rates and consumption data, and it is found to be

consistent with the consumption smoothing hypothesis. The paper shows that the real term structure is spanned

by two common factors, which can be given the interpretation of the level and slope factors, respectively. The risks

associated with these factors are priced in the market. Both of these factors can explain the information content

of the short-term real interest rate and its term spread with longer term interest rate in forecasting future real

consumption growth, over di¤erent periods ahead.

JEL classi�cation : G12, E21, E27, E43

Keywords: Real term structure of interest rates, Gaussian a¢ ne term structure models, price of risks, principal

component analysis, consumption forecasting.

1 Introduction

There are few studies in the literature estimating term structure models of real interest rates, in contrast to the vast

amount of studies on the nominal term structure models (see, e.g., Dai and Singleton (2002), Ang et al (2006), for

a survey). This may be attributed to the lack of availability of real interest rates, for di¤erent maturity intervals.
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Estimating real term structure models is useful for two main reasons. First, it can indicate the number of factors

spanning the real term structure and it will estimate their mean reversion and associated prices of risk. The results of

this analysis can be compared to those on the nominal term structure of interest rates. Second, it can explain if the

real term structure contains information about future real consumption growth.

The information content of the real term structure of interest rates about real consumption growth has been studied

in a number of studies in the literature (see, e.g., Harvey (1988), Plosser and Rouwenhorst (1994), Chapman (1997),

Rendu de Lint and Stolin (2003), Berardi and Torous (2005), Tsang (2008)).1 These studies show that the term

spread between long and short-term real (or nominal) interest rates appear to contain information about future real

consumption growth and economic activity, at short or long horizons. As noted by Harvey (1988), this information of

the term spread can be attributed to the desire of investors to smooth their consumption over time. This is consistent

with the predictions of the consumption capital asset pricing. In addition to the term spread, evidence suggests that

the level of real (or nominal) short-term real interest rate also contains information about the future real consumption

growth beyond that implied by the term spread.

This paper contributes into the above literature on many fronts. First, using real consumption and term structure

data, instead of nominal, it estimates an empirically tractable Gaussian dynamic term structure model and derives

estimates of the underlying unobserved factors spanning the term structure of real interest rates. Then, it examines

if this model �ts satisfactorily into the data and tests its cross-section restrictions implied by no-pro�table arbitrage

conditions in the bond market. This is done based on an econometric framework, which apart from real interest rates

and excess holding period returns, it also includes consumption data. Second, it employes the model to investigate if

the short-term real interest rate and its spread with real long-term interest rates can predict future real consumption

growth, over di¤erent horizons ahead. To this end, the paper derives closed form formulas of the slope coe¢ cients of

these two variables in consumption growth regressions, where they are regressors.

The results of the paper lead to a number of interesting conclusions. First, they show that our term structure

model is consistent with the consumption smoothing hypothesis. Second, it �nds that there are two common factors

which can explain almost all of variation of the term structure of real interest rates. These factors are closely correlated

with their estimates retrieved from the data based on principal component analysis. The parameter estimates of the

real term structure model indicate that the �rst of the two factors spanning the real term structure exhibits very slow

1Note that there is also a close related literature which studies and con�rms the leading indicator property of the term structure for

real economic activity and consumption growth and, in particular, of the term spread between the long and short term interest rates (see,

e.g., Stock and Watson (1989), Estrella (1997) and Jardet (2004)). These papers however rely on the term spread between nominal interest

rates, following Donaldson et al (1990).
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mean reversion, while its associated price of risk is very small. This factor can explain level shifts in real interest rates.

The opposite happens for the second factor, which determines the slope of the term structure. This factor has a much

higher mean-reversion and price of risk than the �rst factor, and it can explain the ability of the real term spread to

forecast future real consumption growth over di¤erent horizons ahead.

The paper is organized as follows. Section 2 presents the real term structure of interest rates and derives closed

form solutions of the slope coe¢ cients of the consumption growth regression model, using the short-term interest rate

and its spread with a long-term interest rate as regressors. Section 3 carries out the empirical analysis. This section

also includes unit root tests and principal component analysis for real interest rates. The unit root tests can con�rm

if real interest rates constitute stationary series, as it is assumed by a¢ ne term structure models. The principal

component analysis can indicate the number of unknown factors spanning the real term structure of interest rates.

Our empirical analysis is based on data from the US economy. Section 4 concludes the paper and summarizes some of

its more important results.

2 Model setup

Consider an economy with production and stochastic investment opportunity sets (see, e.g., Cox, Ingersoll and Ross

(CIR) (1985a, 1985b), or Longsta¤ and Schwartz (1992)). The investment opportunity set consists of contingent

claims (e.g., zero-coupon bonds), a riskless asset and a stochastic production process. We assume that this economy is

characterized by K state variables, denoted as xit, at time t, where i = 1; 2; :::;K. These variables obey the following

uncorrelated Gaussian processes:2

dxit = ki(�i � xit)dt+ �idWit, i = 1; 2; :::;K, (1)

where Wit denotes a Wienner process, ki and �i are the mean-reversion and volatility parameters of processes xit,

while �i are their long-run means. These state variables constitute common factors which determine real consumption

Ct in the economy. If in�ation is a constant rate (see, e.g., Harvey (1988), it can be proved that real consumption

growth dCt
Ct

obeys the following process:

dCt
Ct

=

�XK

i=1
xit � c

�
dt+ �cdWct, (2)

2See also Vasicek (1977), Dai and Singleton (2002), Ahn (2004), Berardi and Torous (2005).
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where c is a constant which depends on in�ation rate and the proportion between consumption and wealth, and Wct is

a Wienner process. By solving forward equation (2), it can be shown that the expected growth rate of real consumption

from current period t to a future period t+ � (i.e., � -horizons ahead) is given as

Et [�� ct+� ] =  0(�) +
XK

i=1
 1i(�)xit, (3)

where �� ct+� = ln(Ct+�=Ct) and  1i(�) = (1� e�ki� )(ki)�1.

In the above economy, the real price of a zero-coupon bond with a � -period maturity, denoted as Pt(�) and, hence,

its associated real interest rate, denoted as Rt(�), can be derived by solving the following pricing kernel relationship:

Pt(�) = Et

�
Mt+�

Mt

�
, (4)

where Mt+�

Mt
is the pricing kernel. This is assumed that is given as

dMt

Mt
= �rtdt�

XK

i=1
�itdWit, (5)

where rt is the instantaneous real interest rate or short - term rate and �it are the risk pricing functions, for i =

1; 2; ::;K. For short-term rate rt, it is assumed that

rt = A(0) +
XK

i=1
Bi(0)xit. (6)

The risk pricing functions �it evaluate the K-independent sources of risk associated with factors xit. Following Du¤ee

(2002), we will assume that functions �it are linear in factors xit, i.e.

�it = ��1i

�
�
(0)
i +

XK

i=1
�
(1)
i xit

�
: (7)

Substituting equations (1), (5), (6) and (7) into pricing kernel equation (4) yields the following zero-coupon real bond

pricing formula:

Pt(�) = e�A(�)�B(�)
0Xt , (8)

where Xt is a (KX1)-dimension vector collecting all state variables (factors) xit, i.e. Xt = (x1t, x2t,...,xKt)0, A(�) is a

scalar function and B(�) is a (KX1)-dimension vector of valued functions, de�ned as B(�) = (B1(�), B2(�),...,BK(�))0,

which collects the loading coe¢ cients of factors xit on bond pricing formula (8). From this, we can obtain a pricing

formula for real interest rates of zero-coupon bonds Rt(�), with maturity interval � , as
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Rt(�) = (1=�) [A(�) +B(�)
0Xt] , for � = 1; 2; :::N (9)

Closed form solutions of value functions Ai(�) and Bi(�) can be obtained by solving a set of ordinary di¤erential

equations under no arbitrage pro�table conditions (see Du¢ e and Kan (1996)). For our Gaussian dynamic term

structure model (GDTSM), described above, these solutions for Bi(�) are analytically given as follows:3

Bi(�) = Bi(0)(1� e�
eki� )(eki)�1, where eki = ki + �

(1)
i , (10)

where eki constitutes a risk-neutral measure of mean-reversion parameter ki. These solutions imply a set of cross-section
restrictions on the term structure loading coe¢ cients Bi(�), for all i, which can be tested, in practice.

The above GDTSM of real interest rates implies that the expected excess holding period real return of a � -period

to maturity zero-coupon bond over short-term interest rate rt, referred to as term premium (see, e.g., Tzavalis and

Wickens (1997), Bolder (2001) and Du¤ee (2002)), is given as as follows:

Et [ht+1(�)� rt] = �
XK

i=1
Bi(�)�i�it (11)

= �
XK

i=1
Bi(�)�

(0)
i �

XK

i=1
Bi(�)�

(1)
i xit.

Joint estimation of the last relationship and interest rates formula (9) (with, or without, cross-section restrictions

(10)) will enable us to identify the price of risk slope coe¢ cients �(i)i , which determine the time-varying part of

the term premium. To calculate excess return ht+1(�) � rt in discrete-time, we consider the one-period (e.g., one-

month) interest rate as short-term interest rate, rt, and we assume continuously compounded interest rates, implying

Rt(�) = � 1
� logPt(�). Then, ht+1(�)� rt can be written as follows:

ht+1(�)� rt = log
�
Pt+1(� � 1)

Pt(�)

�
� rt = �(� � 1) [Rt+1(� � 1)] + �Rt(�)� rt.

2.1 Term structure forecasts of consumption growth

The forecasting implications of the term structure of real interest rates Rt(�) about future consumption growth

��periods ahead, de�ned as �� ct+� where ct = logCt, can be investigated by equations (3), (9) and (6). These

equations show that both�� ct+� and Rt(�), for all � , are driven byK common unobserved factors xit, for i = 1; 2; ::;K.

3See, e.g., Dai and Singleton (2002), Kim and Orphanides (2012).
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Substituting out these factors from relationships (3) and (9) implies that �� ct+� can be written as a linear function

of short-term rate rt and its spreads with long-term interest rates, de�ned as Spt(�L) � Rt(�L) � rt, where Rt(�L)

denotes a long-term interest rate with maturity interval �L. To see this more rigorously, assume that the number of

common factors xit are K = 2, as will be con�rmed by our empirical analysis in the next section. Then, equations (9)

and (6) imply the following system of equations for short-term interest rate rt and spread Spt(�L):

Zt �
�

rt
Spt(�L)

�
=

�
A(0)

(1=�L)A(�L)�A(0)

�
+

�
B1(0) B2(0)

(1=�L)B1(�L)�B1(0) (1=�L)B2(�L)�B2(0)

� �
x1t
x2t

�
,

which can be written in a more compact notation as

Zt = A� +B�Xt, (12)

where A� �
�

A(0)
(1=�L)A(�L)�A(0)

�
, B� �

�
B1(0) B2(0)

(1=�L)B1(�L)�B1(0) (1=�L)B2(�L)�B2(0)

�
and Xt = (x1t; x2t)

0.

Based on equation (12), we can derive the following relationship:

Et [�� ct+� ] =  0(�)�	1(�)0B��1A� +	1(�)0B��1Zt, (13)

where 	1(�)0 � ( 11(�);  12(�)) (see (3)). This can be done by writing equation (3) in a matrix form and substituting

out the vector of common factors Xt from it. This relationship indicates that term spread Spt(�L) and short-term rate

rt contains information about future consumption growth �� ct+� , over di¤erent horizons � . Thus, it can theoretically

justify the use of the following linear regression model to forecast consumption growth �� ct+� :

�� ct+� = const+ 
1(�)rt + 
2(�)Spt(�L) + ut+� , (14)

where ut+� denotes a disturbance (error) term. According to (13), the slope coe¢ cients of this regression model 
1(�)

and 
2(�) are given in closed form as


1(�) =
 11(�)[B2(�L)�B2(0)]�  12(�)[B1(�L)�B1(0)]
B1(0)[B2(�L)�B2(0)]�B2(0)[B1(�L)�B1(0)]

(15)


2(�) =
 12(�)B1(0)�  11(�)B2(0)

B1(0)[B2(�L)�B2(0)]�B2(0)[B1(�L)�B1(0)]
(16)
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where Bi(�L) = (1=�L)Bi(�L) and Bi(�L) = Bi(0)(1� e� eki�L)(eki)�1, for � = �L.

The analytical solutions of slope coe¢ cients 
1(�) and 
2(�), given by formulas (15) and (16), indicate that the

degree of information contained in rt and Spt(�L) about �� ct+� depends on the values of loading coe¢ cients Bi(0), the

mean-reversion and price of risk parameters ki and �
(1)
i , respectively, or the risk-neutral mean reversion parameter ~ki,

as well as maturity interval � . Next, we analyze the e¤ects of ki on 
1(�) and 
2(�), assuming for analytic convenience

that �(i)i = 0. The results of this analysis can be used to explain the pattern of the estimates of 
1(�) and 
2(�) with

� , observed in practice.

First, consider the case of B1(0)=B2(0)=1:00 (as assumed in many theoretical studies, see Kim and Orphanides

(2012), inter alia). In this case, formulas (15) and (16) indicate that, if both ki become very close to zero (i.e., k1 ! 0

and k2 ! 0), we have:  i(�) ! � and Bi(�L) ! 1, for i = f1; 2g, and, hence, [Bi(�L) � Bi(0)] ! 0 and 
i(�) ! 0.

This means that rt and Spt(�L) do not have information about �� ct+� , for all � , which is not consistent with empirical

evidence showing that both 
1(�) and 
2(�) are positive. If one of k
0
is is di¤erent than zero, e.g. k2 6= 0, and the

other is very close to it (i.e., k1 ! 0), then 
1(�) ! � and 
2(�) !
 12(�)��
B2(�L)�1

, since [B1(�L) � B1(0)] ! 0 and

[B2(�L)�B2(0)]=B2(�L)�1. This case predicts that 
2(�) is close to zero, which is not also consistent with evidence

provided in the literature (see introduction).

Second, consider the case where B1(0)=1:00 and B2(0)=�1:00; which are close to our estimates of Bi(0) reported

in Section 3.2. Then, formulas (15) and (16) imply that, for k1 ! 0 and k2 ! 0, we have:  i(�)! � and Bi(�L)! 1

(as above) and, hence, [B1(�L) � B1(0)] ! 0 and [B2(�L) � B2(0)] ! 2, implying that 
i(�) ! � , for all i These

results mean that the forecasting ability of rt and Spt(�L) about consumption growth �� ct+� increases linearly with

� , when ki ! 0. This can be attributed to the fact that shocks to factors xit tend to have permanent e¤ects on the

level of interest rates and real consumption, due to their high persistency. These e¤ects are not o¤set each other in the

term spread Spt(�L). This can be con�rmed by Figure 1, which presents values of 
1(�) and 
2(�) for di¤erent values

of k1 and k2, when B1(0)=1:00 and B2(0)=�1:00. For this case of Bi(0)0s, the graphs of the �gure indicate that rt

and Spt(�L) have forecasting power on �� ct+� . This happens for a wide spectrum of values of 
1(�) and 
2(�). Note

that both coe¢ cients 
1(�) and 
2(�) take their higher values in the case where k1 and k2 are mean reverting. In the

case of ki ! 0 and k2 > 0, which is consistent with our estimates of Section 3, we have 
2(�)>
1(�). These results

imply that mean reversion increases the forecasting power of both of rt and Spt(�L) on �� ct+� , as is expected by the

theory.
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Figure 1. The slope coe¢ cients 
1(�) and 
2(�) as shown in (15) for
B2(0) < 0; calculated for di¤erent mean reversion coe¢ cient values of the

underlying factors.

3 Empirical analysis

Based on data on real interest rates and real consumption, in this section we estimate and test the GDTSM presented

in the previous section and we examine if this term structure model can explain the pattern of the slope coe¢ cients

of short-term interest rate rt and spread Spt(�L), 
1(�) and 
2(�), respectively, observed in reality.

Our empirical analysis is based on monthly US real interest rates of zero-coupon bonds covering the period from

1997:07 to 2009:10. These series are taken from the archive of J. Huston McCulloch (Economics Department, Ohio

University).4 Our consumption data set consists of monthly observations of seasonally adjusted personal real consump-

tion expenditures for the above period, taken from the Federal Reserve Economic Data (FRED) (see code PCEC96).

Figure 2 plots all real interest rates series used in our empirical analysis, covering a wide spectrum of maturity in-

tervals from one month to �ve years (i.e. � = 60 months). This very broad set of real interest rates will be used in

our analysis to examine the number of factors spanning the real term structure and to consider alternative maturity

interval long-term spreads Spt(�L) as regressors in (14).

4http://www.econ.ohio-state.edu/jhm/ts/ts.html
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As it can be seen from Figure 2, the real term structure of interest rates does not exhibit substantial volatility

neither over their cross-section (maturity) dimension nor over the time interval of our data, with the exception of

period 2001-2003 and year 2008. Between January 3, 2001 and June 25, 2003, which covers the �rst period, the Fed

lowered its lending, short-term interest rate from 6.5% to 1.0%, which constitutes its lowest level since year 1996. This

is done by the Fed to avoid a further slowing down of the US economy and to boost the stock market. Note that,

during this period, the US stock market was in the bear regime due to the terrorist attack of September 11, 2001 and

the collapses of the Enron and WordCom companies in year 2002 (see, e.g., Ghosh and Constantinides (2010), and

Dendramis et al (2012)). In year 2008, which is the second period of a bond market turmoil during our sample, the

recent �nancial crisis, associated with the collapse of Lehman Brothers in September 16, 2008, began. In this year, the

US nominal interest rates increased substantially to re�ect the higher credit risk levels of the US economy, compared

to those in previous years.

Figure 2. The term structure of real interest rates in the US.

Our empirical analysis has the following order. First, we carry out unit root tests for all real interest rates Rt(�)

employed in our estimation and testing procedures. These tests are critical in choosing the correct econometric

framework for estimating and testing our GDTSM, avoiding any spurious regression e¤ects. The latter can appear in

estimating (14), if interest rate rt or spread Spt(�L) are integrated series of order one. Second, we conduct principal

component (PC) analysis with the aim of determining the maximum number of common factors (state variables) K
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which explain the total variation of Rt(�) in our sample. Since principal component factors constitute well diversi�ed

portfolios of interest rates which are net of measurement or pricing errors e¤ects in Rt(�), they can be employed

as instruments in the estimation of the GDTSM to minimize the bias e¤ects of the above errors on the parameter

estimates of the model (see, e.g., Argyropoulos and Tzavalis (2012)). Third, we estimate and test the GDTSM, with

and without consumption data. The estimates of the model are then used to examine if the pattern of slope coe¢ cients


1(�) and 
2(�) observed in reality is consistent with that predicted by the theory. In this part of the paper, we also

examine if the random walk model of real consumption constitutes a better forecasting model than (14).

3.1 Unit root tests

To test for a unit root in the level of real interest rates Rt(�),5 we carry out a second generation ADF unit root test,

known as e¢ cient ADF (E-ADF) test (see, e.g., Elliott et al. (1996), Elliott (1999), and Ng and Perron (2001)). This

test is designed to have maximum power against stationary alternatives to unit root hypothesis which are local to

unity. Thus, it can improve the power performance of the standard ADF statistic often used in practice to test for a

unit root in Rt(�):6

Values of E-ADF unit root test statistic are reported in Table 1. This is done for real interest rates Rt(�), with

maturity intervals � ={1, 3, 6, 12, 24, 36, 48, 60} months. Note that, in addition to E-ADF, the table also presents

values of PT unit root test statistic, suggested by Elliott et al. (1996) as alternative to E-ADF. To capture a possible

linear deterministic trend in the levels of Rt(�) during our sample, both statistics E-ADF and PT assume that the

vector of deterministic components Dt employed to detrend Rt(�) contains also a deterministic trend, i.e. Dt = [1; t].

The results of the table clearly indicate that, despite the fact that the values of the autoregressive coe¢ cients � are

close to unity, the unit root hypothesis for Rt(�) is rejected against its stationary alternative, for all � considered. This

is true at 5%, or 1% signi�cance levels. The estimates of the autoregressive coe¢ cient � reported in the table indicate

that Rt(�) exhibit a slow mean reversion towards their long-run mean, especially those of longer maturity intervals of

36 and 60 months.

5Evidence of high persistency in real intrest rates can be found in Neely and Rapach (2008).
6Evidence provided in the literature on unit root tests for interest rates series is mixed. Earlier studies based on single time series unit

root tests, such as the standard ADF test, can not reject the null hypothesis of a unit root (see, e.g., Hall et al. (1992)). On the other

hand, more recent studies based on panel data tests or Bayesian panel data methods tend to reject this hypothesis (see, e.g. Constantini

and Lupi (2007) and Meligotsidou et al (2010)).
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Table 1: E¢ cient unit root tests of real interest rates Rt(�)

� : 1 3 6 12 24 36 48 60
�� 1 -0.14 -0.14 -0.14 -0.13 -0.10 -0.09 -0.08 -0.09

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
� 0.86 0.86 0.86 0.87 0.90 0.91 0.92 0.91
E-ADF -4.22** -4.18** -4.10** -3.92** -3.47* -3.05* -2.89* -2.95*
PT 2.56** 2.61** 2.70** 2.94** 3.71** 4.78* 5.32* 5.14*

Notes: Standard errors are in parentheses. E-ADF and PT are the e¢ cient unit root test statistics suggested by Elliott et al.

(1996). To carry out E-ADF test, we rely on the following auxiliary regression: �Rt(�)
d
= (�� 1)Rt�1(�)

d
+
Pp
l=1 #l�Rt�1(�)

d
+"t,

where Rt(�)
d� Rt(�)�D0

t
b�GLS(�), Dt=[1; t] is the detrended interest rate series Rt(�). b�GLS(�) is the GLS estimator of

the quasi di¤erences of interest rates, de�ned as d(Rt(�)j��) =Rt(�)� ��Rt�1(�) at the value of local parameter �� = 1� 13:5=T ,

on vector of deterministic components Dt=[1; t]. PT is de�ned as PT=
(SSR(�)��SSR(1))b!2 , where SSR(�) =

Pb�2t (�) is the
sum of squared residuals b�t(�) = d(Rt(�)j��)�D0

t
b�GLS(�) and b!2is an estimator of the residual spectrum at frequency zero.

Critical values of test statistics E-ADF and PT are provided by Elliott et al. (1996):The lag-order of the auxiliary regressions

p used to carry out the tests are chosen based on the SIC criterion. This is found to be p = 1, for all maturity intervals �

examined. (*) and (**) mean signi�cance at 5% and 1% levels, respectively.

3.2 Principal component analysis

Principal components (PC) analysis can retrieve a K number of common factors spanning the term structure of real

interest rates Rt(�) (or their �rst di¤erences �Rt(�)), denoted as pcit, for i = 1; 2; ::;K. This can be done by the

spectral decomposition of the variance-covariance matrix of Rt(�), for � = 1; 2; :::; N , denoted as �R, i.e.

�R = 
�

0;

where N > K, � is a diagonal matrix of dimension (N �N).7 The elements of � are the eigen values of matrix �R.


 is a (N �N)-dimension orthogonal matrix whose columns are the eigen vectors corresponding to the eigen values of

matrix �R. Given estimates of 
 and �, the (K � 1)-dimension vector of principal component factors pcit, de�ned as

PCt = (pc1t; pc2t;:::; pcKt)
0, can be retrieved from the (N � 1)-dimension vector of interest rates series Rt(�), denoted

as Rt, as follows:

PCt = 

0(Rt � �R),

where �R is the sample mean of vector Rt. Note that, due to the rotation problem of PC analysis, pcit may not

correspond one-to-one to unobserved factors xit, for all i. However, they will be very highly correlated with xit, as

7As shown in Bai and Ng (2002), and Bai (2003) consistent estimates of principal component factors can be obtained by PC analysis of

interest rates Rt(�), if the following condition holds:
p
T
N

! 0, where T is the total number of interest rates Rt(�) observations and N is

their cross-section dimension across di¤erent maturity intervals � .
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they constitute portfolios of Rt(�). Furthermore, as is noted in Joslin and et al (2011), their estimates will diversify

away any measurement or pricing error in Rt(�).

Our PC analysis relies on a set of N = 60 real interest rates Rt(�), spanning a very wide maturity spectrum

from one month to �ve years (sixty months). This is a large cross-section set of Rt(�) which guarantees that the

retrieved by the PC analysis common factors pcit will e¢ ciently span the real term structure of interest rates and its

unobserved factors xit. Figure 3 graphically presents the estimates of pcit, for i = 1; 2, retrieved by our PC analysis.

These correspond to the �rst two largest in magnitude eigen values of matrix �R, which are found to explain 99.96%

(or 99.87%) of the total variation of the levels of Rt(�) (or their �rst di¤erences �Rt(�)), over all � , as shown in the

following table:8

total number of PCs 1 2

% variation explained in Rt(�) 94.83 99.96
% variation explained in �Rt(�) 92.83 99.87

The results of this table clearly indicate that the �rst two principal component factors pc1t and pc2t, obtained

through our PC analysis, explain almost all the variation of the term structure of real interest rates Rt(�).9 The

�rst factor pc1t explains the largest part of this variation, which is about 95% of the levels of Rt(�), or 93% of their

di¤erences �Rt(�). Its remaining part, which is about 5% for Rt(�) (or 7%, for �Rt(�)), is explained by the second

factor pc2t. Although the proportion of the total variation of Rt(�) explained by pc2t is very small, this can explain

the slope of the real term structure. As can be seen by the graphs of pc1t and pc2t, given by Figure 3, most of the

variation of pc1t can be attributed to the turmoils of the US bond market in period 2001-2003 and year 2008. These

turmoils have caused shifts in the levels of Rt(�) (see also Figure 2). The second factor pc2t has been also a¤ected by

8Note that the relative variation of the �rst two pcit is calculated as

2P
i=1

vi

tr(V )
;

where vi is the eigen value of matrix �R and tr(V ) stands for the trace of the matrix of the eigen values of �R, denoted as V .
9Note that these two factors explain a total variation in real interest rates Rt(�) which is analogous in magnitude to that of nominal

interest rates captured by three factors (see, e.g., Litterman and Scheinkman (1991), and, more recently, Argyropoulos and Tzavalis (2012)).
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these events, but at a less extent. This factor oscillates less than pc1t over the whole sample.

Figure 3. The real term structure and the �rst two principal components.

To gain some economic insight of principal component factors pc1t and pc2t, in Figure 4 we graphically present

estimates of their loading coe¢ cients on the �rst di¤erences of interest rates �Rt(�). In Tables 2A and 2B we report

some useful descriptive statistics for them, including E-ADF and PT unit root test statistics.10 The results of these

tables allow us to investigate stochastic features of pcit, which have economic meaning. Table 2A also reports values

of the correlation coe¢ cients of pc1t and pc2t with the level of the two year long-term interest rate Rt(24) and the

spread between the �ve-year and one-month interest rates, denoted Spt(60) � Rt(60) � rt. These two variables are

found to have the maximum degree correlation with pc1t and pc2t, respectively.

10Similar graphs of the loading coe¢ cients of the �rst two pcit factors are obtained for the levels of interest rates Rt(�).
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Figure 4. Loading coe¢ cients of principal components on the real term
structure.

Table 2A : Summary statistics of interest rates PCs

Factors pc1t pc2t
Mean 0.00 0.00
Max. Value 26.05 15.42
Min. Value -25.67 -7.39
Variance 128.69 6.96
�1 0.93 0.87
�2 0.82 0.67
�3 0.73 0.51

Correlation coe¢ cients

Rt(24) 0.99
Spt(60) 0.75

Notes: Max stands for maximum, while Min. for minimum. �j are the autocorrelations of the principal components pcit,

i = 1; 2, of lag order j = 1; 2; 3

Table 2B: Unit root tests for interest rates PCs

pc1t pc2t

�i � 1 -0.11 -0.22
(0.03) (0.04)

�i 0.89 0.78
p 1 1
E-ADF -3.58** -5.05**
PT 3.49** 1.90**

Notes: Standard errors are in parentheses. E-ADF and PT are the e¢ cient unit root test statistics suggested by Elliott et
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al. (1996). See Table 1. The lag order p of the dynamic (�rst di¤erence) terms of the E-ADF regressions chosen are based on

the SIC criterion. (*) and (**) mean signi�cance at 5% and 1% levels.

The results of Table 2B clearly indicate that both principal component factors pc1t and pc2t constitute stationary

series. These results are consistent with those on unit root tests for real interest rates Rt(�), reported in Table 1.

Figure 4 indicates that the loading coe¢ cients of the �rst factor pc1t on �Rt(�) decays with maturity interval � , but

with a very slow rate. On the other hand, the loading coe¢ cients of the second factor pc2t on �Rt(�) increases with

maturity interval � , but with a much faster rate than that of �rst factor pc1t. These patterns of the loading coe¢ cients

of pc1t and pc2t on �Rt(�) are similar to those found in the empirical literature of the nominal term structure (see,

e.g., Litterman and Scheinkman (1991)). Thus, �rst principal component factor pc1t can be interpreted as a "level"

factor. This can explain almost parallel shifts in the whole term structure of real interest rates. This factor is found to

be highly correlated with the levels of real interest rates, e.g., the two-year interest rate Rt(24). The second principal

component factor p2t can be given the interpretation of a "slope" factor, since it determines the slope of the real

term structure. This factor is found to have maximum correlation with long-term spread Spt(60) (see Table 2A).

The very high values of correlation coe¢ cients of pc1t and pc2t with Rt(24) and Spt(60), respectively, reported in

Table 2A, means that, in the estimation of the GDTSM, variables Rt(24) and Spt(60) can be employed as appropriate

instruments (vehicles) to retrieve estimates of unobserved factors xit from our data, by inverting pricing relationship

(9).

The close relationship between xit and pcit, expected by the theory of Section 2, means that pcit can be also

employed to provide forecasts of consumption growth rate �� ct+� . Table 3 presents least squares (LS) estimates of the

slope coe¢ cients of the regression of �� ct+� on principal component factors pcit, for � = 1; 2; 3; 6; 9 and 12 months.

This can be thought of as an alternative consumption forecasting model to (13). Note that, in addition to the �rst

two principal component factors pc1t and pc2t, in this regression model we also include the third principal component

factor pc3t, as a regressor. This is done in order to examine if this factor, whose e¤ect on real term structure variation

is almost zero, has any signi�cant information about �� ct+� .

The results of Table 3 clearly indicate that pc1t and pc2t contain signi�cant information about �� ct+� , as expected

by the theory. This information tends to increase with � . Consistently with the results of our PC analysis, the third

factor pc3t is found to have no information about �� ct+� , for all � . Summing up, the results of this section imply

that two factors can su¢ ciently explain almost all the variation of the real term structure. The �rst two principal

component factors of the real term structure obtained by our PC analysis are found to have substantial forecasting

power on future consumption growth up to one year ahead.
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Table 3: Forecasting consumption by principal component factors

Model: �� ct+� = c0(�) + c1(�)pc1t + c2(�)pc2t + c3(�)pc3t + "t+�
� 1 2 3 6 9 12
c1(�) 0.006 0.01 0.02 0.04 0.05 0.08

(0:003) (0:004) (0:007) (0:02) (0:03) (0:03)
c2(�) 0.02 0.05 0.08 0.13 0.19 0.19

(0:01) (0:01) (0:02) (0:07) (0:11) (0:12)
c3(�) -0.18 -0.32 -0.33 -0.41 -0.01 1.27

(0:15) (0:26) (0:34) (0:76) (1:20) (1:93)
R2 0.06 0.13 0.18 0.21 0.23 0.25

Notes: Standard errors are in parentheses. These are corrected for heteroscedasticity and forward-looking moving average

serially correlated errors based on Newey�West method.

3.3 Estimation of the real term structure model

Having established good grounds to support that two common factors can explain almost all the variation of the real

term structure of interest rates, in this section we estimate the GDTSM presented in Section 2, assuming K=2. This

model consists of the following structural equations:

�Rt+1(�) = const+B1(�)Et[�x1t+1] +B2(�)Et[�x2t+1] + �t+1(�), � = 0; 1; 2; :::; N (17)

ht+1(�) = const� �(1)1 B1(�)x1t � �(2)1 B2(�)x2t + et+1(�), � = 1; 2; ::N (18)

�xit+1 = const+ (e�ki�t � 1)xit +$it+1, i = 1; 2 (19)

�ct+1 = const+  1(�)x1t +  2(�)x2t + vt+1 (20)

These correspond to the theoretical formulas (9), (11), (1) and (3) of the GDTSM, presented in Section 2. Note

that, for the real short-term rate rt, equation (17) assumes that �rt+1 = const + B1(0)Et[�x1t]+ B2(0)Et[�x2t],

which corresponds to formula (6). The expectation terms Et[�x1t] and Et[�x2t] are estimated through equation (19)

of the system. Apart from any possible mispeci�cation errors, the error term of equation (17) �t+1(�) can re�ect

measurement or pricing errors (see, e.g., Diebold et al (2006)). These can be attributed to the fact that long-term zero

coupon bond prices constitute approximations of coupon-bearing bond prices.

The above system of equations, in addition to equations (17) and (19) often used to estimate a¢ ne term structure

models of nominal interest rates (see, e.g., Dai and Singleton (2002), and Ang, Piazzesi and Wei (2006)), also includes

the set of excess return equations (18). As mentioned in Section 2, this set of equations helps to identify key parameters

of the term structure model from the data, like the mean reversion and price of risk parameters ki and �
(1)
i , respectively.

The latter determines the time-varying component of the term premium, as shown by equation (11).
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To estimate the system of equations (17)-(20), we employ the Generalized Method of Moments (GMM) (see Hansen

(1982)). This method can provide asymptotically e¢ cient estimates of the vector of parameters of the systems which

are robust to possible heteroscedasticity and/or serial correlation of error terms �t+1(�); et+1(�); $it+1 and vt+� (�).

In the estimation procedure, we impose the no-arbitrage restrictions given by equation (10) on loading coe¢ cients

Bi(�). The values of unobserved factors xit involved in the system will be obtained by inverting the following interest

rates pricing relationship (12), i.e.,

Xt = B��1 (Zt �A�) ;

following Pearson�s and Sun (1994) approach, where B� is de�ned by (12) and vector of series Zt consists of z1t = Rt(24)

and z2t = Spt(60). As shown in Table 2A, Rt(24) and Spt(60) are found to have the maximum degree of correlation

with the principal component factors pc1t and pc2t, respectively, and thus may be less a¤ected by measurement

errors. All constants of the system are left unrestricted in the estimation procedure, as they can re�ect possible

imperfections of the bond market. As Rt(�), real consumption growth �1ct+1 is given in percentage terms, i.e.

�1ct+1 � 100 ln[c(t+ 1)=c(t)], and is also annualized.

Tables 4 and 5 present GMM estimates of the mean-reversion and price of risk parameters of system (17)-(20) ki

and �(1)i , with and without including consumption growth equation (20) in it, respectively. Comparison of these two

di¤erent sets of estimates for ki and �
(1)
i can show if they remain robust to the inclusion of consumption data, when

estimating the GDTSM. To estimate both speci�cations of the above system based on the GMM, we use lagged values

of Rt(24) and Spt(60) as instrumental variables.

Each of Tables 4 and 5 present two di¤erent sets of estimates of ki and �
(1)
i . The �rst relies on values of unobserved

factors xit retrieved from the data through relationship Xt = B��1 (Zt �A�), often used in practice. See Panels

A of the tables. The second set is based on a procedure which slightly modi�es the above procedure, suggested by

Argyropoulos and Tzavalis (2012). This replaces the observed values of vector Zt in relationship Xt = B��1 (Zt �A�)

with their projected values of the elements Zt on principal component factors pc1t and pc2t. These are obtained based

on the following regressions:

zit = consti + di1pc1t + di2pc2t + &t, for i = 1; 2, (21)

which are estimated simultaneously with our system of equations (17)-(20). This procedure minimizes the e¤ects

of pricing, or measurement, errors of interest rates Rt(�) on retrieving estimates of unobserved factors xit through

Xt = B��1 (Zt �A�). This can be attributed to the fact that principal component factors pcit constitute well diversi�ed
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portfolios of interest rates Rt(�), if a large set of Rt(�) is used to retrieve them. Thus, they can eliminate the e¤ects

of measurement or pricing errors in Rt(�), or Spt(�), on the estimates of xit.

Table 4: GMM estimates of system (17)-(20)

�Rt+1(�) = const+
P2
i=1Bi(�)Et[�xit+1] + �t+1(�), � = f0; 1; 2; :::; Ng

ht+1(�)� rt = const�
P2
i=1 �

(1)
i Bi(�)xit + et+1(�)

�xit+1 = const+ (e�
eki�t � 1)xit +$it+1

�1ct+1 = const+
P2
i=1  1i(�)xit + vt+1(�)

where Bi(�) � Bi(0)(1� e� eki� )=eki� ; eki = ki + �
1
i ;  1i(�) = (1� e�

eki� )=eki
Panel A Panel B

x1t x2t x1t x2t
Bi(0) 0.52 -0.83 0.15 -0.75

(4� 10�4) (2� 10�4) (0.001) (0.001)
ki 0.12 1.38 0.26 2.08

(0.001) (0.002) (2� 10�4) (0.001)
�
(1)
i -0.07 -0.12 -0.06 -0.19

(0:01) (0:01) (1� 10�4) (5� 10�4)
d1i 0.20 -0.28

(5� 10�5) (1� 10�4)
d2i 0.05 0.46

(6� 10�5) (1� 10�4)
J(102) =126.50 (p-value=0.05) J(112) =135.32 (p-value=0.07)
Instruments: 1 (for constant); Rt(24); Spt(60); Spt�i(60), for i = 1; 2; 3; 4:

Notes: The table presents GMM estimates of parameters ki and �i of the system of equations (17)-(20), including consumption

growth equation. Panel A presents estimates of ki and �i, for i=1,2, based on the observed values of the variables of vector Zt

in inverting relationship (12), while Panel B presents GMM estimates of these parameters based on projected values of vector

Zt on principal component factors pc1t and pc2t (see equation (21)). The estimates of the slope coe¢ cients d1i and d2i of

this regression are also given in the table. Heteroscedasticity and autocorrelation consistent (Newey-West) standard errors are

shown in parentheses. J(:) is Sargan�s overidentifying restriction test, distributed as chi-squared with degrees of freedom given

in parentheses. These are equal to the number of orthogonality conditions employed in the GMM estimation procedure minus

that of the parameters estimated.
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Table 5: GMM estimates of system (17)-(19)

�Rt+1(�) = const+
P2
i=1Bi(�)Et[�xit+1] + �t+1(�), � = f0; 1; 2; :::; Ng

ht+1(�)� rt = const�
P2
i=1 �

(1)
i Bi(�)xit + et+1(�)

�xit+1 = const+ (e�
eki�t � 1)xit +$it+1

where Bi(�) = Bi(0)(1� e� eki� )=eki� and eki = ki + �
(1)
i .

Panel A Panel B
x1t x2t x2t x2t

Bi(0) 0.88 -0.63 0.15 -0.73
(5� 10�4) (3� 10�4) (0.001) (0.0008)

ki 0.06 2.18 0.26 2.10
(3� 10�4) (0.002) (2� 10�4) (0.001)

�
(1)
i -0.0005 -0.38 -0.06 -0.18

(1� 10�4) (8� 10�4) (1� 10�4) (5� 10�4)
d1i 0.20 -0.27

(5� 10�5) (1� 10�4)
d2i 0.05 0.45

(7� 10�5) (1� 10�4)
J(96) =121.37 (p-value: 0.05) J(106) =132.40 (p-value: 0.05)
Instruments: 1 (for constant); Rt(24); Spt(60); Spt�i(60), for i = 1; 2; 3; 4:

Notes: Panel A presents GMM estimates of parameters ki and �i of the system of equations (17)-(19), without including in it

consumption growth equation (20). These are based on observed values of vector Zt when inverting relationship (12). Panel

B presents GMM estimates of ki and �i of the above system based on projected values of vector Zt on principal component

factors pcit (see equation (21)). The estimates of the slope coe¢ cients d1i and d2i of this regression are also given in the table.

Heteroscedasticity and autocorrelation consistent (Newey-West) standard errors are reported in parentheses. J(:) is Sargan�s

overidentifying restriction test, distributed as chi-squared with degrees of freedom given in prostheses. These are equal to the

number of orthogonality conditions employed in the GMM estimation procedure minus that of the parameters estimated.

The results of Tables 4 and 5 lead to a number of interesting conclusions. First, they show that the speci�cation of

our two factor GDTSM, presented in Section 2, is consistent with the data, which supports the consumption smoothing

hypothesis. This is true independently of weather consumption growth equation (20) is included in the estimation of

system of equations (17)-(20), or not. This result can be justi�ed by the value of Sargan�s overidentifying restrictions

test statistic, denoted as J(:), reported in the table. At 5% signi�cance level, J statistic can not reject the orthogonality

conditions implied by the system of structural equations (17)-(20) and the instruments used by the GMM estimation

procedure of it. This implies that the cross-section restrictions imposed on loading coe¢ cients Bi(�) of the GDTSM

can not reject the no-arbitrage conditions (10) implied by the theory.

The estimates of parameters ki and �
(1)
i reported in Tables 4 and 5 are close to those found in many studies

estimating GDTSM based on nominal interest rates (see, e.g., Ang et al. (2003), and Du¤ee (2005)). In particular,

the estimates of ki imply a very slow mean reversion for the �rst unobserved factor x1t, which is very close to zero,

and a much faster for the second factor x2t. The reported values of mean-reversion parameter k2 imply values of the
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autoregressive coe¢ cient � of the descretized process (1) for x2t, which are much smaller than those implied by the

estimates of unit root auxiliary autoregressive models for Rt(�) and pcit. This can be obviously attributed to the fact

that Rt(�) and pcit constitute linear transformations of unobserved factors x1t and x2t, which exhibit di¤erent degree

of mean reversion.

Regarding the estimates of price of risk parameters �(1)i , the results of the tables indicate that these are signi�cant

for both factors x1t and x2t. This result means that time-varying risk premia e¤ects associated with both factors

x1t and x2t are priced in the bond market. According to (11), the negative values of �
(1)
1 and �(1)2 imply that term

premium embodied the real term structure is positive. Note that the estimate of �(1)2 , related to the second factor

x2t is bigger in absolute value than that of factor x1t. As will be seen latter on, this factor captures the slope of the

term structure. Its higher price in absolute terms reduces the mean-reversion parameter k2 of factor x2t under the risk

neutral measure, due to risk aversion e¤ects.

The di¤erent sets of values of parameters ki and �
(1)
i reported in Tables 4 and 5 are quite close between the

alternative systems of equations estimated, with and without consumption growth equation (20) (i.e., Tables 4 and 5),

and across the two methods employed to retrieve estimates of unobserved factors xit (see Panels A and B), i.e. based

on observed values of Zt or projected values of them on principal component factors pcit. The last set of estimates

provides more robust estimates of ki and �
(1)
i for both speci�cations of system (17)-(20), with and without consumption

growth equation. This may be attributed to the fact that the estimates of xit based on the projected values of Zt on

pcit are smoother than those based on the actual values of Zt.

To see if x1t and x2t are closely related to principal component factors pc1t and pc2t, in Figures 5 and 6 we

graphically present estimates of them vis-a-vis those of pc1t and pc2t presented in Figure 3. The estimates of x1t and

x2t presented in the �gures are based on the parameter estimates of system (17)-(20) relying on the projected values

of Zt, reported by Panel B of Table 4. Inspection of the graphs of the above �gures clearly indicate that, as was

expected, there is a very close relationship between the estimates of x1t and pc1t, and between x2t and pc2t. However,

there is no one-to-one correspondence between xit and pcit, for i=f1; 2g. The estimates of xit are smoother than those

of pcit, especially for factor x1t. These results imply that, in estimating GDTSMs, replacing unobserved factors xit

with estimates of principal component factors may lead to inaccurate estimates of the parameters of these models.
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Figure 5. Estimates of factor x1t versus principal component
factor pc1t .

Figure 6. Estimates of factor x2t versus principal component
factor pc2t:

3.4 Real term structure forecasts of consumption growth

In this section, we examine if the forecasting ability short-term real rate rt and term spread Spt(�L) about future

consumption growth �� ct+� , found in the literature (see related studies in the introduction), is in accordance with

the theory. Our analysis is mainly interested in examining if the estimates of the key parameters of the GDTSM ki

and �it can match the pattern of the LS estimates of the slope coe¢ cients of the consumption forecasting regression

model (14), 
1(�) and 
2(�), observed in practice. In addition to this, we also examine the out-of-sample forecasting

ability of model (14) relative to that implied by the random walk model of real consumption with drift, suggested by
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Hall (1978). As is noted in the literature (see, e.g. Du¤ee (2005) ), the latter is a hard model to beat in forecasting

real consumption level, or its growth rate.

Table 6A presents LS estimates of the slope coe¢ cients of regression model (14),

�� ct+� = const+ 
1(�)rt + 
2Spt(�L) + ut+� .

This is done for two di¤erent spreads of interest rates: Spt(60) = Rt(60) � rt and Spt(36) = Rt(36) � rt, and for

� = 1; 3; 6; 9,12 months ahead. Table 6B presents values of some metrics and test statistics evaluating the in-sample

and out-of-sample forecast performance of the above model for �� ct+� and that implied by the RW model with

drift for ct+� = logCt+� . These metrics include the mean square and absolute errors, denoted as MSE and MAE,

respectively. The test statistics employed are those of Diebold and Mariano (1995), denoted DM,11 and Giacomini

and Rossi (2005), denoted as GR. The latter is an out-of-sample forecast performance statistic which can test if the

forecasts of a model can break down, due to unforeseen breaks-events.12 To calculate the out-of-sample values of the

above metrics and statistics, we rely on recursive estimates of model (14) and the RW model for consumption after

period 2004:01, by adding one observation at a time and, then, re-estimating the models by the LS method until the

end of sample. The number of the out-of-sample observations used to calculate the above metrics and test statistics

are given as n � T � � �m+1, where m is our sample window. Note that, for model (14), the tables presents two sets

of results. The �rst employes spread Spt(60) � Rt(60)� rt as regressor, while the second uses Spt(36) � Rt(36)� rt.
11DM test statistic is based on the loss di¤erence dt = L(u

Model (14)
t+� ) � L(uRWt+� ): It is de�ned as DM = d

(c�d=T)1=2 , where c�d is a
consistent estimate of the asymptotic (long-run) variance of

p
Td:

12The GR statistic is based on the testing principle that, if the forecast performance of a model does not break down, then there should

be no di¤erence between its expected out -of -sample and in-sample performance. It is de�ned as GRm;n;t =
SLm;nb�2m;n=

p
n
, where SLm;n

is the average surprise loss given as SLm;n = n�1
t��P
t=m

(
(L(�� ct+� )� bft(
1(�),
2(�))�m�1

tP
j=t�m+1

L(�� ct+� ; bft(
1(�),
2(�)))
)
; for

t = m; ::; T � � , where n � T � � �m+1 is the number of out-of-sample observations and m is the sample window of our initial estimates.b�2m;n is given in Corollary 4 of Giacomini and Rossi (2005). GRm;n;t converges in distribution to a Standard Normal N(0; 1) as m; n!1.
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Table 6A: Real consumption growth forecasts

Model: �tct+� = const+ 
1(�)rt + 
2(�)Spt(�L) + ut+�

� 1 2 3 6 9 12
Spt(60) � Rt(60)� rt


1(�) 0.08 0.17 0.26 0.50 0.76 0.97
(0.03) (0.05) (0.07) (0.19) (0.34) (0.43)


2(�) 0.10 0.21 0.33 0.60 0.90 1.06
(0.05) (0.07) (0.10) (0.26) (0.44) (0.53)

R2 0.04 0.11 0.16 0.20 0.23 0.24
Spt(36) � Rt(36)� rt


1(�) 0.08 0.16 0.24 0.46 0.69 0.87
(0.02) (0.04) (0.06) (0.17) (0.31) (0.40)


2(�) 0.13 0.27 0.40 0.73 1.06 1.23
(0.05) (0.08) (0.12) (0.31) (0.52) (0.63)

R2 0.05 0.12 0.17 0.21 0.23 0.23

Notes: Newey-West standard errors corrected for heteroscedasticity and moving average errors up to � � 1 periods ahead are
reported in prostheses. R2 is the coe¢ cient of determination.

The results of Tables 6A and 6B indicate that short-term real interest rate rt and spread Spt(�) contains signi�cant

information about future consumption growth �� ct+� , for all � . This is true for both cases of term spread Spt(�)

considered. The values of R2, reported in Table 6A, imply that the forecasting ability of model (14) increases with

� . As was expected, the values of R2 are similar to those of principal component factors model forecasting future

consumption growth �� ct+� , reported in Table (3). The values of the MSE and MAE reported in Table 6B clearly

indicate that the forecast performance of model (14) is better than that of the RW model, for all � . This is true

for both the in-sample and out-of-sample exercises. The better performance of model (14) than the RW model is

also supported by the values of DM statistic. The negative values of this statistic indicate that this model provides

smaller in magnitude forecast errors than the RW model, especially as � increases. These values clearly reject the null

hypothesis that the two models have the same forecasting ability, at 5% signi�cance level. Further support for model

(14) in forecasting �� ct+� can be obtained by the GR test statistic. The values of this statistic reported in the table

indicate that this model can produce out-of-sample consumption growth forecasts which are stable and consistent with

its in-sample forecasts up to three-months ahead.
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Table 6B: Forecasting performance

� 1 2 3 6 9 12 1 2 3 6 9 12
In-sample Out-of-sample

Model: �tct+� = const+ 
1(�)rt + 
2(�)Spt(�L) + ut+�
Spt(�L) � Rt(60)� rt

MSE 0.17 0.27 0.39 1.12 2.20 3.42 0.14 0.32 0.53 1.75 3.47 5.52
MAE 0.30 0.40 0.49 0.83 1.22 1.54 0.29 0.42 0.56 0.97 1.37 1.68
DM -1.46 -2.18 -2.71 -2.72 -2.75 -3.02 -1.47 -2.18 -2.71 -2.71 -2.74 -3.02
GR -0.41 1.34 2.16 5.94 8.89 10.90

Spt(�L) � Rt(36)� rt
MSE 0.17 0.27 0.40 1.12 2.20 3.49 0.14 0.31 0.53 1.72 3.46 5.60
MAE 0.30 0.40 0.49 0.83 1.22 1.54 0.28 0.42 0.55 0.96 1.37 1.68
DM -1.57 -2.32 -2.83 -2.85 -2.80 -2.86 -1.58 -2.32 -2.38 -2.85 -2.80 -2.86
GR -0.44 1.29 2.06 5.88 8.84 11.05

Random Walk
MSE 0.18 0.31 0.47 1.42 2.86 4.62 0.16 0.38 0.54 2.20 4.51 7.28
MAE 0.31 0.43 0.53 0.88 1.23 1.55 0.31 0.47 0.62 1.06 1.48 1.87
GR 2.81 2.76 2.80 6.56 9.35 11.76

Notes: The table presents values of the MSE and MAE metrics and DM and GR statistics assessing the forecasting performance

of model �tct+�= const+ 
1(�)rt+
2(�)Spt(�L) + ut+� and that implied by the random walk (RW) model of the level of

real consumption with drift. DM and GR denote the Diebold-Mariano and Giacomini-Rossi test statistics, respectively. These

statistics follow the standard normal distribution. Note that the GR test statistic is an out-of-sample test statistic, which can

test the stability of the out-of-sample forecasts compared to the in-sample ones. To calculate the out-of-sample values of the

above metrics and statistics, we rely on recursive estimates of model (14) and the RW model for consumption after period

2004:01, adding one observation at a time and, then, re-estimating the models until the end of sample. The total number of

observations used in our out-of-sample forecasting exercise is n � T � � �m+1 = 69, where m is our sample sample window.

Another interesting conclusion that can be drawn from the results Table 6A is that the LS estimates of the slope

coe¢ cients 
1(�) and 
2(�) of model (14) increase with � . To examine if these estimates of 
1(�) and 
2(�) can match

those implied by the parameter estimates of the GDTSM, over di¤erent � , in Table 7 we present estimates of the latter

against the LS estimates. The estimates of 
1(�) and 
2(�) implied by the GDTSM are derived based on relationship

(15) and the estimates of parameters ki and �
(1)
i reported in Panels A and B of Table 4.

The results of Table 7 clearly indicate that the pattern of the LS estimates of coe¢ cients 
1(�) and 
2(�) with

maturity horizon � , reported in Table 6A, is consistent with that implied by the estimates of our GDTSM. The implied

by the GDTSM estimates of 
1(�) and 
2(�) are close to their LS estimates, even for the forecasting period of � = 12

months. These lie within the two standard deviations con�dence interval of the LS estimates of them. As is predicted

by the analysis of subsection 2.1, the estimates of slope coe¢ cient 
2(�) are bigger than those of 
1(�), since the

second factor x2t driving the real term structure is strongly mean reverting. This is true for both sets of implied values

of 
1(�) and 
2(�), reported in the table. These results are also consistent across the two di¤erent spreads Spt(� ; ),

i.e. Spt(60) = Rt(60)� rt and Spt(36) = Rt(36)� rt, considered in our analysis.
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Table 7: GDTSM versus LS estimates of 
1(�) and 
2(�)

Spt(�L) = Rt(60)� rt
Implied estimates by the GDTSM LS estimates

(Table 4, Panel A ) (See Table 4, Panel B) (see Table 6A)
� 
1(�) 
1(�) 
1(�) 
2(�) 
1(�) 
2(�)
1 0.06 0.13 0.06 0.15 0.08 0.10
2 0.13 0.26 0.14 0.30 0.17 0.21
3 0.20 0.39 0.22 0.43 0.26 0.33
6 0.43 0.73 0.51 0.82 0.50 0.60
9 0.67 1.05 0.82 1.18 0.76 0.90
12 0.92 1.30 1.13 1.52 0.97 1.06

Spt(�L) = Rt(36)� rt
Implied estimates by the GDTSM LS estimates

(Table 4, Panel A ) (Table 4, Panel B) (see Table 6A)
� 
1(�) 
2(�) 
1(�) 
2(�) 
1(�) 
2(�)
1 0.06 0.12 0.05 0.12 0.08 0.13
2 0.13 0.23 0.11 0.24 0.16 0.27
3 0.20 0.35 0.17 0.36 0.24 0.40
6 0.42 0.66 0.41 0.68 0.46 0.73
9 0.66 0.95 0.68 0.99 0.69 1.06
12 0.91 1.21 0.96 1.26 0.87 1.23

Notes: The table reports theoretical values of slope coe¢ cients 
1(�) and 
2(�) based on relationship (15) and the estimates

of the mean-reversion and risk price function parameters of our GDTSM ki and �
(1)
i , reported in Panels A and B of Table 4,

respectively. This is done against the LS estimates of these coe¢ cients, reported in Table 6A.

4 Conclusions

This paper suggests a Gaussian dynamic real term structure model to explain the ability of the short-term real interest

rate and its term spread with longer term real interest rates to forecast future changes in real consumption growth.

The paper �ts the model into real term structure and consumption data from the US economy, and it provides a

number of interesting results which are consistent with the consumption smoothing hypothesis.

First, it shows that two stationary common factors can explain most of the variation of the real term structure of

interest rates. The �rst of these two factors, which exhibits very slow mean reversion, can explain persistent shifts in

the levels of real interest rates. This factor is found to be a¤ected more strongly by the recent �nancial crisis and the

stock market crises of period 2001-2003, which also a¤ected the US bond market. The second factor, which has higher

degree of mean reversion, can explain the slope of the real term structure.

Second, the estimates of the price of risk parameters reported by the paper indicate that both of the above factors

are priced in the market and, thus, they can explain time variation of excess holding period returns of the market.

The estimates of the price of risk and mean-reversion parameters of the two term structure factors retrieved by our
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data are also found to be consistent with the cross-section restrictions of the real term structure model suggested by

the paper. These restrictions arise by ruling out pro�table arbitrage conditions of the market. They are tested based

on a structural system of equations consisting of real interest rates, excess holding period real returns, re�ecting term

premia e¤ects, and real consumption growth.

Finally, the paper rigorously shows that the forecasting ability of the short-term real interest rate and its spread

with long-term real interest rates about future real consumption growth, over di¤erent periods ahead, can be con-

sistently explained by the common factor representation of the real term structure and consumption growth. This

forecasting model of consumption growth is found to perform better than that implied by the random walk model of

real consumption level. The ability of the term spread to forecast future consumption growth can be attributed to the

high degree of mean reversion of the second common factor driving the real term structure of interest rates.
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