ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

DEPARTMENT OF ECONOMICS

WORKING PAPER SERIES 13-2014

LIMIT THEORY OF THE Q
STATIONARY ARCH(1) MO

STELIOS ARVANITIS
AND
ALEXANDROS LOUKA

76 Patission Str., Athens 104 34, Greece
Tel. (++30) 210-8203911 - Fax: (++30) 210-8203301
WWW.econ.aueb.gr



http://www.econ.aueb.gr/

LIMIT THEORY OF THE QMLE IN THE NON-STATIONARY ARCH(1) MODEL

STELIOS ARVANITIS?PC AND ALEXANDROS LOUKABC

Abstract: In this note we extend the standard results for the limit theory
of the popular QMLE in the context of the non-stationary ARCH(1) model by
allowing the innovation process not to possess fourth moments. Depending on
the value of the index of stability, we either derive a-stable weak limits with
non-standard rates or inconsistency and non-tightness. We obtain the limit
theory by the derivation of a CLT for multiplicative “martingale” transforms
with limits mixtures of a-stable distributions for any « € (0, 2].

KEYWORDS: «-stable distribution, slow variation, domain of attraction, CLT
with mixed limit, non stationary ARCH(1), QMLE, inconsistency, non-tightness.

1. INTRODUCTION

In this note we study the limit theory of the QMLE in the non stationary ARCH(1) model.
We extend the results of Jensen and Rahbek [10] by allowing the innovation process not to
possess fourth moments. Since this process is comprised by iid random variables, we do so
by allowing the stationary distribution of their squares to belong to the domain of attraction
of an a-stable law. When o« > 1, or « = 1 and the second moment exists, we obtain as
limiting distribution an a-stable law with non-standard rates. When o = 2 and the fourth
moment exists, we recover the result of Jensen and Rahbek [10], i.e. asymptotic normality
with the usual \/n rate, albeit via the use of a different methodology. When o = 2 but
the fourth moment does not exist, we obtain again asymptotic normality with non-standard
and slower rate. Finally, when @ < 1 we obtain inconsistency and furthermore asymptotic
non-tightness for the estimator, a result that is completely novel in the relevant literature.

We show that we can obtain the limit theory by deriving an auxiliary CLT for multiplica-
tive “martingale” transforms with limits mixtures of a-stable distributions for any a € (0, 2].
Similar CLT’s, yet with non-mixed limits, have been, directly or indirectly, derived by Hall and
Yao [6] and Mikosch and Straumann [15] for the cases where oo > 1. They were concerning
stationary and ergodic transforms, and applied to the asymptotic behavior of the quasi score
in the context of the ergodic GARCH model. Given the application that we have in mind, we
do not require stationarity for the transform, but we require the existence of an almost sure
limit for the conditionally “scaling sequence”. When o < 1 we apply the CLT to the likeli-
hood function itself in order to obtain the result. Furthermore, we derive the CLT using the
so-called “Principle of Conditioning” of Jakubowski [9] and avoid many of the complexities
appearing in the relevant proofs of the aforementioned paper.

The structure of the note is as follows. In the second section we present the probabilistic
framework and derive the CLT. In the third we apply it to obtain the asymptotic behavior of
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2 S. ARVANITIS AND A. LOUKA

the QMLE. We finally discuss some parallel and future similar research and possible exten-
sions. We gather all proofs in the Appendix.

2. ACLT WITH MIXED STABLE LIMITS

Our framework is built around a complete probability space (2, G,P). In what follows
the abbreviation P a.s. stands for an almost sure argument with respect to the underlying
measure. We denote convergence in distribution with «». We are interested in the asymp-
totic behavior of the properly translated and scaled partial sums of a process of the form
(&V3) o Which due to the properties of the constituent processes (£;),, and (V;),_ can
be abusively perceived as a multiplicative “martingale transform”.! This transform is directly
related to characteristics of the Quasi-Likelihood function in GARCH-type models. The fol-
lowing assumptions describe those properties. The first one specifies the first factor as an iid
sequence with stationary distribution closely related to an a-stable law.

AssuMPTION 1 (&,),cy is an iid sequence, and the log-characteristic function of the distri-
bution of &, has the following local representation around zero:

(2.1) yit — c|t|*h(1/1t) (1 — i sgn(t) tan (3ma)) ya € (0,1)U(1,2]
' (v + H(Y/11)) it — clt|h(1/1e)) (1 — 2CiZ sgn(t)) ,a=1
where h is slowly varying function at infinity, H(\) = fo’\ %daz pel-1,1,ce R,

~v € Rand —C'is the Euler-Mascheroni constant.

REMARK 1 The representations appearing in 2.1 are equivalent to that the distribution of
&y lies in the domain of attraction of an « -stable law, due to Theorem 2.6.5 of Ibragimov
and Linnik [7] for & # 1 and Theorem 2 of Aaronson and Denker [1] for « = 1, i.e. when
appropriately translated and then scaled, the partial sums of (§;)I" , weakly converge to
a-stable random variables (see inter alia Remark 2 of the latter paper). This law has in-
dex of stability equal to «, skewness parameter equal to S and scale parameter equal to
c. The parameter y appearing in the local representations corresponds to location and it is
equal to ££; when a > 1. The aforementioned theorems (that are of Tauberian type) imply
that « and the slowly varying function h represent the asymptotic behavior of the tails of
the distribution of £,. Hence they determine the form of the scaling in order to obtain the

aforementioned weak limit. More precisely the scaling factor is of the form m where

(nr,)"Y* =infx > 0: 2%h(z~ ') = (1/n) which implies that r, = h*(n) for all n where
h* is also slowly varying, i.e. r,, defines a slowly varying sequence (see Paragraph 2.2 of
Ibragimov and Linnik [7] and Paragraph 1.9 of Bingham et al. [3]). When h converges then
the distribution of & is said to belong to the domain of normal attraction to the relevant a-
stable law. Notice that when o < 2 the possibility of A(z) — 0 as x — 400 is also allowed,
something that permits the consideration of cases where E |{,| < +oc which is precisely

1The term is in some cases abusive due to the non-existence of appropriate moments for any or both the
random variables appearing in the product. We adopt it in the spirit of Mikosch and Straumann [15].
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true if and only if f+°° M2) 4a: converges, e.g. h(z) = log 2(z). H is closely related to the
truncated a-moment of £, (see Remark 1 of Aaronson and Denker [1]). The location param-
eter alone when « # 1 and all the aforementioned parameters along with H and C when
o = 1 determine the form of the translating constants.

NOTATION 1  In what follows S, (3, ¢,y) denotes an a-stable distribution with parameters
f3, ¢, 7.2 Furthermore the notation ES,, (3, ¢, y) denotes the mixture of the distributions of
S, (B, c,v) w.rt. P given that we allow (for some of) those parameters to be G-measurable
non-constant functions defined on 2.

The second assumption describes part of the dependence structure between the two con-
stituent processes. It enables the characterization of the martingale transform as a process
of random variables that are conditionally independent, yet conditionally inhomogeneous,
that belong to the domain of attraction of a-stable laws (with o and h being constant with
respect to the conditioning o-algebras), and where the (Vi)iew process determines the lo-
cation, scaling and skewness parameters of those conditional distributions. The assumption
finally specifies the asymptotic behavior of the aforementioned process.

ASSUMPTION 2 There exists a filtration (7,), _, such that, for any t, (V})c\ is measurable
w.rt., and &, is independent of, F ,. Furthermore

(22) V,—=wv, Pas.ast— 400
where v is a random variable assuming non-zero values P a.s.

REMARK 2 In cases such as the one considered in the following section
F, = oc{&_ i, Vi_i, k> 0}. More particularly for the quasi likelihood theory of the non-
stationary ARCH(1) process V, is a ratio of volatilities or of derivatives of volatilities with
volatilities, etc. and satisfies 2.2 due to the asymptotic behavior of the conditional variance
process. Besides this, Assumption 2 is trivially satisfied when V, is independent of ¢, or more
generally when there exists a filtration <‘9t)teN w.r.t. which the process is a (super/sub-) mar-
tingale and such that sup, , £ V.| < +oo for p > 1 whereas 2.2 follows from results such
as Doob’s convergence theorem for discrete time martingales. Notice that the previous en-
able the possibility that the <Vi)iew process is non-stationary.

We are now ready to investigate the issue of the weak limiting behavior of Z?: &V, . The
following is the main result of the section. The essential notion for the derivation of the result
is the so called “Principle of Conditioning” of Jakubowski [8].

THEOREM 1  Under Assumptions 1, 2 if a # 1 then

n

> (& =) V; @ ES,, (Bsgn(v), clv]*,0)

(23) ——
nl/a'f’»}/a i—1

ZNotice that when o = 2, necessarilly 3 = 0 and the resulting distribution is the N (v, 2¢).
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where —L— 37" ~V; can be omitted if o < 1, and whena = 1 then
Tn -

nl/e

24) ({6~ — Hinr,)) Vi —2Beon (€ — log|v]) » ES, (5san(v), clu],0)

n =1
where r,, is as specified in Remark 1.3

REMARK 3  Notice the following:

1. In the case of a < 1, the term Wﬁy Z?:1 V. can be omitted from 2.3 since it
converges to zero P a.s. This is due to Anssumption 2, the Cesaro Theorem and the fact
that r,, is slowly varying. This cannot hold in the other cases.

2. When a = 1 and 3 = 0 (symmetry) the terms H(nr,,) and 23cvr ! (C' — log |v|)
vanish from 2.4.

3. The result encompasses the classical theory (see inter alia see Remark 2 of Aaronson
and Denker [1]) obtained when V, =1 P a.s.

4. To our knowledge, the limiting mixtures are novel results attributed to the “stochastic-
ity” of u. When the latter is constant the mixtures are obviously trivial. In this case the
weak limits are a-stable distributions. Notice that as expected (see the previous re-
mark) the properties of the (Vi)iew process do not affect either the scaling sequences,
which depend only on the tail behavior of the distribution of £, nor the index of sta-
bility of the limit. Those properties affect the translating sequence when oo = 1 as well
as the remaining parameters of the limit in any case.

5. The result can be easily extended when V/ is R?-valued for d > 1 using the Cramer-
Wold device. Then the limits would be mixtures of multivariate a-stable distributions
where the (random) spectral measures (for their definition see Paragraph 2 of Mikosch
and Straumann [15]) are characterized via linear transformations due to Theorem 2.3
of Gupta et. al. [5].

6. When o« = 2 and h converges then we obtain asymptotic mixed-normality with rate
v/ and stochastic variance 2cv?p? where p = lim h. On the other hand when h di-
verges to +0o then we obtain again mixed-normality with stochastic variance cv? al-
beit at the slower rate \/% For example when £, ~ t, then a simple calculation
of the truncated second moment implies that r,, = logn. This is obviously a major
generalization of the results in Abadir and Magnus [14].

7. When o < 1, the support of ; is bounded from above (below) and V; > 0 P a.s. then
the support of the limiting distribution is (—oo, 0] ([0, +00)).

Before establishing our main use of the limit theorem in the following section, we conclude
the current one with a simple example in the context of a linear model.

3The form of the result would remain essentially the same had we allowed v to assume the value zero with
positive probability. The proof of such an extension would make use of the concept of the Potter bounds (see
inter alia Theorem 1.5.6 in Bingham et al. [3]) and the Cesaro Theorem. Since this is not relevant to the appli-
cation that we have in mind, we do not present this extension for economy of space.
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ExaMPLE 1  Consider the simple linear regression model y, = Bz, + €, where ¢, = &,
where (&,) satisfy Assumption 1 with zero mean when E|{,| < oc. Let F, be a filtration of
the underlying probability space (€2, G,P) such that &, is independent of &, u, and z, are
adapted to 7. Furthermore suppose that u,, z, are martingales w.r.t. some (9t)tew andsuch
thatsup, [E]'%H—suptaN E|z,| < oo.Then by Doob’s theorem for discrete time martingales
there exist random variables u, z such that u,, — vand z,, — x asn — oo [P a.s. where we
further assume that u, z # 0 P a.s. Then we may obtain the asymptotic distribution of the
OLS estimator 3, since L Z:zl x? — x? P a.s. asn — oo by the Cesaro mean theorem and
x,u, satisfies Assumption 2. A simple extension of Theorem 1 that handles joint convergence
along with the Continuous Mapping Theorem implies that

n & 1 & T y
2

— (B, —By) = | = th 1 thxt“t =

T N3 nary =1 z

where y~ ES,, (Bsgn(u), clu|*,0) when o #+ 1 and

1 1 T y
— (B, — Bo) — (v + H(nry,)) (‘ xf) thut =
T, n x
where y~ ES; (8sgn(u), cul,2Bcurt (C' —log |u|))when a = 1. Notice that the first
result implies the inconsistency and the asymptotic non-tightness of the OLSE when o < 1.

3. LIMIT THEORY FOR THE QMLE OF THE NON-STATIONARY ARCH(1)

We are now employing the previous result to the QMLE for the non-stationary ARCH(1)

model. Define the ARCH(1) process by

Yy = 0%, 120

07 = wytagy?,, t>0
and some initial value o3, where (Zt)teZ is iid with Ez, = 0 and such that 23 lies in the
domain of attraction of an (non-degenerate) a-stable distribution. Thereby we henceforth
assume the validity of 1 for &, = 22 — 1. We furthermore suppose that when o > 1 then
Ez3 = 1. We assume that the constant w, > 0 is known while the true ARCH parameter
ag > exp(—EInz?) is unknown.* This implies the non-stationarity (either strict or second
order) of the process by (inter alia) Theorem 2.1 of Francq and Zakoian [4]. The statistical
model is defined as the collection of ARCH(1) processes with ARCH parameter belonging to
the parameter space © = [a,,a*| where 0 < a, < a* or © = [a,, +00) and in any case such
that a, € ©. We study the asymptotic properties for the QMLE for the unknown parameter
via the use of the limit theorem of the previous section. To this purpose we assume the
availability of the random variables ¥, y;, ... , y,, from the process whereas the minus quasi
likelihood function is defined by

n 2

fula) =" [logh(a) + 2.

t=1

It is easy to see from the results of Jensen and Rahbek [10] that had wq be unknown, it would also be non
identifiable.
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with h,(a) = wy +ay? , fort = 1,...,n and the QMLE (say a,,) for the unknown parameter
ay satisfies

ty(a,) <infl,(a) +2,

wheree,, = op(l).5 The existence of the QMLE is straightforwardly verified by standard ar-
guments of continuity and compactness for the first case of parameter space. For the second
case, existence follows due to the fact that O is closed and bounded from below, /,, is P a.s.
continuous, and it P a.s. diverges to +00 as a — +o0c. The following theorem is the main re-
sult of the present section. It among other things makes use of the limit theorem developed
in the previous section in order to derive the asymptotic properties of the QMLE in several
cases.

THEOREM 2 For the ARCH(1) model described above suppose that €,, = o (n(l‘“)/argl/").
1. leta € [1,2] and ay € Int ©.

(a) If « > 1then

p

n(a_l)/a

(an - aO) v Sa (67 CQ%,O) :

1
rn/ ¢

(b) Ifa =1and E|&;| < oo then

, ) 82f ~ —1 1 n y2
1 B 1 Jo n(p - L e S
Tn (a” aO) Tn h " (nrn)] [ da” ( n)} = %o - aoytal

S (5; cag, 250%7T_1 (C + log ay — 2a, log ao))

2. Lleta € (0,1).

(a) If © = [a,,a*] then a,, ~» a*and thereby the QMLE is inconsistent unless a, =
a*

(b) If © = [a,,+00) then the QMLE is asymptotically non-tight.

REMARK 4 Notice the following:

1. The results above are obvious generalizations of those of Jensen and Rahbek [10]
since they form an almost exhaustive consideration of cases where for the behavior
of the fourth moment of z; in the context of the non-stationary ARCH(1). In some
sense they generalize the results of Mikosch and Straumann [15] for the stationary
and ergodic GARCH(1,1) and the results of Hall and Yao [6] for the covariance station-
ary GARCH(p,q) since they obtain asymptotic results for the QMLE allowing for o« < 1.
Furthermore, the results of Hall and Yao for the case where &« = 1 where obtained
via the imposition of a further restriction on the tail behavior of the distribution of 22

>It is easy to see that the results that follow would also hold if v, is chosen as an arbitrary constant.



THE QMLE IN THE NON-STATIONARY ARCH(1) 7

which is not needed here. When we impose the same restriction, we obtain a similar to
the aforementioned paper, form for the translating sequence (see Proposition 1 that
follows). The results of Mikosh and Straumann for the case where o = 1 are restricted
to 8 = 0 something that is not useful for the consideration of the asymptotic behavior
of the QMLE in GARCH-type models.

2. When a = 2 and h converges we recover the results of Jensen and Rahbek [10], i.e.
the rate is /n and the limitis N (0, E (25 — 1) a2). When o = 2 but h diverges we
obtain asymptotic normality but with slower rate. For example if \/520 ~ t, then
\/% (a, —ag) ~» N (0, $a3), which as implied above, is novel in the context of the
non-stationary ARCH(1) model.

3. The use of Theorem 5.5 of Arvanitis and Louka [2] enables the generalization of the
results of 1.(a) in cases where a, is a boundary point. For example it is easy to see that if
ay = a, then we would obtain the limit distribution as a “projection” of the current a-
stable to [0, +00), i.e. it would be supported on the latter interval, with an atom at zero
of probability equal to the one attributed by the current distribution on (—o0, 0]. The
dual case would be analogous. When o = 1 the fact that 8 #* 0 implies the presence
of the translating sequence, renders the aforementioned result inapplicable. Hence
the boundary cases when o = 1 cannot be handled via the present methodology and
thereby constitute an open question.

4. Open is also the question about the relevant limit theory when @ = 1 and lim h
0. This cannot be handled by the present methodology and it was analogously not
considered by the relevant results of Hall and Yao [6]. We suspect that in this case the
estimator is generally inconsistent (see also Example 2 that follows).

5. The results for the case where o« < 1 are also novel in all the aforementioned relevant
literature concerning the limit theory of the QMLE. They are obtained by the use of
the concept of epi-convergence (see inter alia Knight [12]) via reductio ad absurdum.
They are consistent with a “heuristic” argument that says that multiplication with the

rate n /e implies asymptotic tightness in all o # 1 cases. This argument essentially

1
works %oth in Example 1 in the previous section as well as in a special case of the
considered QMLE presented in Example 2 that follows. The question of whether we
obtain generally asymptotic tightness by multiplication with the previous rate as well
as a limit distribution such as the ones appearing in the examples remains also open.

As noted above, the translating sequence appearing in the case of « = 1 can obtain a less
complex form if a Hall and Yao [6] type of condition (see Theorem 2.1) for the complement
of the truncated second moment of z is enforced. This is established in the following Propo-
sition. In such a case the “centering constants” assume a form that is similar to the classical
theory for the iid case.

PROPOSITION 1 Let the conditions of Theorem 2 hold for the case where o = 1 and addi-
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tionally assume that ;X [H (nr,,) +~]° — 0. Then

(4 —ag) — [y + H(nr, )] ag

Tn n

S (B, cay, QBCCLOW*1 (C +logay — 2a, log ao))

We conclude this section with the case of w; = 0. Then the estimator assumes a known
functional form from which we can derive its limit theory even when oo = 1 and the analo-
gous first moment does not exist, or find an appropriate rate and obtain a limit distribution
when o < 1 even in the presence of non-tightness.

EXAMPLE 2 Let @ < 1 and wy, = 0 and suppose that © = (0, +o0). It is easy to see

that —oco < inf (g o) €y (@) < o0 P ass., so that argzero (o )0 (a) = % Z: . ny—% =
) ’ = t—1

n

ag Z?Zl 22 is the QMLE P a.s. which is clearly non-tight when o < 1 or when o = 1 and

f+oo @daz diverges. Using 1 we have that when o # 1

n@ Ve

W (an - &0) o Sa <ﬁ7 Ca87 0)
and whena =1
1
= (a, —ag) = =2 (y+ H(nr,,)) = 2Bcagn (C —logay) » S, (8, cap, 0).

Hence when v < 1 orwhen a = 1 and the second moment of z, does not exist the estimator
is asymptotically non tight.

4. PARALLEL AND FURTHER RESEARCH

In this note we have demonstrated how the derivation and use of a CLT with mixed sta-
ble limits can widely extend standard results for the limit theory of the popular QMLE in
the context of a simple example, i.e. the non-stationary ARCH(1) model. Given the exposi-
tory character and the limited applicability of our derivation, we are currently working on
a similar CLT involving stationarity, that avoids many of the strict conditions and limitations
appearing in the analogous results of Hall and Yao [6] and Mikosh and Straumann [15], and
is applicable to more classes of conditionally heteroskedastic models beyond the standard
stationary GARCH, along with potentially interesting statistical applications such as the ro-
bustification of Wald tests.® We are also working towards coping with the open questions
raised above, such as the relevant limit theory when a = 1, yet [Ezg = oo and/or the
parameter is on the boundary, etc. We are also interested in the obvious extension of the
relevant results of Wang [18], something that would drastically widen the scope of potential
applications including non-linear cointegration, and possibly allowing for the consideration
of the limit theory of the QMLE in non-stationary versions of more complex models, e.g. the
EGARCH. This however would require a non-trivial extension of our methodology and we
leave it for future research.

81t could also be used in the non-stationary GARCH(1,1) model in conjunction with the results in Jensen and
Rahbek [11].
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APPENDIX

This first part of the appendix contains the proofs of the main results. The second part
contain auxiliary results used in the proof of Theorem 1.

Main Proofs

PROOF OF THEOREM 1: By the “Main Lemma for Sequences” of Jakubowski [9] the result
would follow if we prove that for all ¢t € R

(41) ﬁ E (exp ( ! 1 —— a) /‘r]rz>
i=1

7’L0<’f'n

converges in probability to the characteristic function of S, (8sgn(v), c[v|*,0), with p; , =

V)V ,a#l . I
{[ (€, —v— }{aj; WVil—r, 2Bevm1 (C—log|v]),a—1 - ASSUME that the representation described in As-
sumption 1 holds for all ¢ € (—to,ty), and some t, > 0. Then notice that for any ¢ # 0 by

defining the event
1 .
Ch k= {w eQ:|V|<K,(nr,)* ,Vi= 1,...,n}
where K, < Yo and using the same argument as in the proof of Lemma 1, we have that

It]
P(Ch k) =P (maX1g¢gn V.| > Ktm%n%) — 0. For the case of a # 1 due to Assumptions

1-2,ifw € C),  then zyzl log E (exp <z’t L (& —) Vk> /9n) equals

nory

t|e & o B 1
CH Zlvl h (ner Vi) (1—¢ﬁsgn<tm)tan (EMD

Itl a apl/o -
== S (e )

|t|a . 1 - «a 1/ 1/ -1
—I—n—rnzﬁcsgn(t) tan <§7Ta> Z \V.|" h (n o V| )sgn(Vi)

i=1
which by Lemma 1 converges P a.s. to —c[t|*|v|* (1 — i sgn(tv) tan (I7a)).
For the case where a = 1, again due to the relevant parts of Assumptions 1-2, if w € Cn,K

then Z:‘:l log E (exp ( - (§ —~v— H(nr,)) Vi) /gn) analogously has a local to zero
representation due Theorem 2 of Aaronson and Denker [1] as

S 1\ | j98en—1Ct— 1
(4.2) c\t|nrn2|m!h(nrn|tm| ) +i2Bcm Ctmnz‘wnrn\tm )

it SV [ (o, ;) = HOor,)
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where, by Lemma 1, 71 3" [V; | (nr, [tV;[7') — [v] and 7 S Vih (nr, [tV 1) — v P
a.s. Furthermore, using Lemma 2 we have that

L v [H (nrn |tVZ-]_1) - H(nrn)]

nr,

_ h(nr,) . 11 h(nr,) 1

n

1
—2Ber v (log W log ]v\) P a.s.

Therefore 4.2 becomes —c|v||t| [1 —i2Bcntsgn(tv) log \Tl|] +it28cvnt (C — vlog |v]) and

the result follows. Q.E.D.
PROOF OF THEOREM 2: For 1 we first have to establish consistency. First notice that 6,, will
also satisfy 07 (0,,) < inf, £ (0)+¢,, where £7(0) = £,,(0)—L > logo? = L Zt . logh i
Then observe that V6 € © £;,(0) = 1> 1{ —log 7765 ] =130 1%%—

L 2:211 % 23 20 —log % by 3 and the Cesaro mean theorem, which is uniquely

w0+ayt 1
minimized at a,. In order to show that ¢, converges locally uniformly to the above limit, it

suffices to show that /;, is stochastically equicontinuous. We have that

n

ORAGIEESS

=1

1 n
2 /
y Y +—E log h,(a) —logh,(a”)|.
ht(a) ht(a) t nz. 1| t< ) t< )|

But the first term of the right hand side of the above display equals |[a—a’| 1 " v vt

i=1 (wo+a’y7 1) (wotayi 1) —

/ .
|“ a1 vi .y l9=0| Also the second term by the mean value theorem is lower
=1 wo—i-ayt 1 aa

a.s.

1 Y — la—a’| i
or equal tola—a'|k ZZ L Gy Fmmte T = minaary 1€ result follows easily.

1.(a) First we show that for any a; v q

Tl gy L
da? " " ag’

Trivial calculations show that

82£n (0,* ) _ 2 S <w0 + a’Oy?fl) yjflfl 22 o l yf—l
da2 "™ n 2 V3 Tt w2 )2
t=1 (wo + anyt—l) (wo + anyt—l)

The second term of the latter converges P a.s. to a%, since by an application of the mean
0

(4.3)

value theorem we have that

1 . _9
. ny—l [(Wo +ayyig) T — (wo +agyig) ] < 2|ay, — ag Z z w0
n (wo + a7 1)
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Pa.s.
by the Cesaro mean theorem since ( y?*g % 2%, 1 andthe fact that a* ~» ay. Further-
Wota, Yy *

more, regarding the first term of 4.3 we have that

2 o (wo +agyi 1) Yia 2 2 1 Z (wo + ag¥7 1) Y1 (22 1)
P (ot etk T (et ay)t
n 2 ¢ (wo + agyiy) yfq'
" (wo + azy? )’

Now by employing Theorem 1, we can show that the first term of the right hand side is
o 1 .
O, (anr;;) = 0,(1). The second term converges to a%o P a.s. since

zzy? 1 (wo + aoyi1) ! - !

- - 3 3
n (wo +apyi 1) (wo + agyi 1)
<\a2—a0\ﬁz Y1 40

by the Cesaro mean theorem since % R a-and the fact that aj, 4+ a,. Further-
WotTaoYi1
more by Theorem 1,

a1 —100,(6, Yi 1 ¢
—n T, T —= = — S ,— .
" Oa Z Wo +agy; o\ ag

narn 1=

2(a—1)
(e
p

. 1
Henceife, = o (rﬁ; n- ) then

a—1

nOL

(971_00)"\")&0 (67 Ca> - a(ﬁ?cag)'
Qg

1
ri

1.(b) Note that the previous result concerning the asymptotic behavior of the Hessian still
holds as

2 wo + agyZ )yt r wo + agy?_ 1) Y
- (0 O*t ;) t312t2 _ n: (0 O*t ;) tgl(zf—l—’y—H(nrn))
(Wo + anyt—l) n (Wo + anyt—1>
2 (Wo + aoyf—1>yf—1

+ (I1+~v+H(nr,)) — 3
n (wo +akyi )

where the first term on the right hand side is O,,(r,,) = 0,(1) by Theorem 1 and the second
term converges almost surely to (1 + v + lim,, , H(nr )) 2 = 2 using the Cesaro mean
0 0

theorem and the sandwich theorem as previously and the fact that v + lim,, , . H(nr,,) =
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Ez3 — 1 = 0. Therefore

0%, , .
o)

_ l Z (wo + aoyt271) Yy
- 3
n (wo +a3y? 1)

+ (1+~v+ H(nr,)) - > <QEZ; joaity? y)tg -
0 ndt—1

(2 =1—~—H(nr,))

iy
n x22 2 a?’
(wo + a7 1) 0

By Theorem 1 we obtain that

1 « 2
o D Ly Hlnr,) - 2 8, (5, caq!, 20ea 7 (C + logay)).
n j=1 t—1

But
1 0¢ 1 & 2 H " 2

_ n(a0) — Z(zg_l_,y_H(nrn» Y1 - +7+ (TL?“n> Y1 —
r, Oa nr, Wy + aoYs_ 4 nr, — wy + agy;

Furthermore, note that since ¢,, = 0,(r,,) we have that ‘%%—(fn) = 0,(r,). Thus

82£n _ 1 1 0¢,(ay)
[WW”)] a(an —ag) = —ET
IS y7 v+ H(nr,) 1 & y2

= ) (a1 Hor, ) Lol TEIUI LS v

My 5= wo + ag¥i_q T n = Wy + oYy

Therefore

1 1 521 IS 2
. _ _ H n (= - t—1
r, (an aO) r, h/ + (TLT‘n)] [ aag (an):| n ; W 4+ aoygil

9%( &, y?
= "(a i —1—-~—H — =1

G| o Sty )

5y <5a Cayg, QBC%W_I (C +logay — 2a,log ao))

for some a,, “between” a,, and a,,.

2.(a) Let
* 1 - 2 n
6, = —1 Zlog oi — ——={,(a)
nary =1 nary
1 - 2 1 - 2
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so that a,, is an approximate maximizer of the latter where now the approximation error
equals —¢,,. Now notice that, due to the Cesaro mean theorem

- Zlog h —> 0 [Pa.s. locally uniformly

O‘nzl

since
su—iloa—t2 log 2| < Clsu Zt_ 2o
ap ) g ht g - n ap ht a
1 awy + aagy? , — agwy — aayY2
< Csup— 0 0Yt—1 0%o 0Yt—1
- ap n Z ah,
1 1
= Cla* — aplwy— _
000 Z wo + a,y? 4
— 0 Pas.
Theorem 1 applies for — 7 ZZ . h"(t )zt since Assumptions 1 and 2 hold as - (a) —- 2
Thereby

0 (a) » =S, (1,0 (%>a>

locally uniformly. Notice that by construction the support of S, must be [0, c0) hence 5 = 1.
Now S, (1,0(%0)a) =—%gS (1,C)and S,(1,C) cannot assume negative values. Hence
due to the argmax a,, «» argmax (—%S (1,C)) = argmin (%S5, (1,C)) = a* P a.s.
Hence a,, is inconsistent unless a, = a*.

2.(b) Locally uniform (on compacta) weak convergence of nlférﬁéfn(a) to the previously
established limit also holds. This implies that the former weakly epiconverges to the latter
(see Knight [12]). Both are lower semi-continuous (Isc) P a.s. and the space of lower semi-
continuous functions with the topology of epiconvergence can be metrized as complete and
separable (see again Knight [12]). Suppose now that (a,,) is asymptotically tight. Then by
Prokhorov’s Theorem, there exists arandom element a : a;, ~» a along some subsequence.
Due to separability and Skorohod representation there exists a suitable probability space

d d o —1
and random elements £, = n! arnaf = 28,(8,cag), €, = o, (n_lTrn“) and

*

d d
E*—>£*|P*as and 0 = ¢} —argmax{; = a; ,a —andak — a* P a.s. But
due to the arg max theorem of Molchanov a* € arg max £*. Since a* has a well defined

d
distribution, there exists a measurable selection say 7" : a* = T o arg max of*. Hence a =

*

a* = T (argmax(£*)) 4 T (argmax(?)). Thereby a 2 2 for some z € arg max /. But
argmax ¢ = (). Q.E.D.

PROOF OF PROPOSITION 1:  Theorem 2 implies that M (a,, — ag) -+ 0.Using the mean

value theorem (MVT) and the Cesaro mean " theorem we can show that

2 - 4 « e .
% 2(0,) = 2> m + O(la,, — ag|), P a.s. Then by the MVT this implies that
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2, g\t _ [iy Yi - — '
[W(ﬁn)] = [ﬁ >y CrE— + O(la,, — ay|) P a.s. Then notice that
LSyl 1| < Wy 1 ]
’ﬁ Ei:l m ag| < avm 2y e Furthermore, a few calculations show that
the distance of 1 >™" ?421—712 from its limit is of the same order of magnitude. Then if

t=1 (wo+aoys_1)
we showed that 2?_1 y+ converges P a.s. together with the MVT the result would follow.
- t—1
But, when [ log aozg > () we can use analogous arguments as in the proof of Theorem 2 of
Nelson [16] to show that at2 — oo exponentially fast P a.s. in the sense that there exists 0 <
v < 1suchthaty?c? — oo P a.s. Furthermore we have that Elog™ 252 = —Elog 221{23 <
1} < oosinceElogz2 = Elogz21{z2 < 1} + Elog221{z2 > 1} < oc. Then Proposi-
tion 2.5.1 of Straumann [17] applies to show that le y+ converges P a.s. In the case
- t—1
where Elogayz2 = 0 note that due to the law of iterated logarithm we have that P a.s.

limsup, , exp(—v1t)o? > w, [lim sup, , Vit <log logtﬁ S logagzd — 1>] =
0. Also E (log* z52)” = —E (log 221{22 < 1})” < oo since fol (log z)* dz < oo. Then, by

using a modified version of Lemma 2.5.2 (replacing p’ by pﬁ) of Straumann [17] Proposition

2.5.1 therein can be applied to show that Z?_l y21 converges [P a.s. as well. Q.E.D.
- t—1

Auxiliary Results

LeMMA 1l 137" sgn(V;)|V[*R (ném% \Vi\_l> — sgn(v)|v]|* P a.s.

nr,

PROOF: First notice that due to Assumption 2 and with no loss of generality in assuming
that V; # 0Vi € N, for any w contained in a subset of {2 of PP probability 1 we have 0 <
inf;e Vi(w) < sup,_ V;(w) < oo so that V;(w) is contained in a compact set dependent

on the choice of w Vi € N. Furthermore, using the fact that r;lh (n%r%) — 1, we have
that

1 & [ R (ndri Vil o
52[ (h(néri) by sen(Vi)lVi
h(ndri V) 1@
§1S§lz‘1£n <h(n%ri) >_1ﬁ;’v¢’a—>0 Pa.s.

by the Uniform Convergence Theorem for slowly varying functions and the Cesaro mean
theorem. The result follows as Z?:l sgn(V,)|V,|® — sgn(v)|v|* P a.s. by the Cesaro mean
theorem. Q.E.D.

LEMMA 2 For any compact subset K of R, ., we have that

2161[13 |H (kX)) — H(X) — h(X) log k| = o(h()N))

as A — oo.
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PROOF: We have that H(k)\) — H()\) = fA’“ ﬁfﬁ 2)d But [ he)dy — f;“ @dm =

_ [ _h@) — k' h(az) — S W— Aw)
show that the supremum of the latter over k € K is o(h(A)) by applylng the bounded con-

vergence theorem. Next notice that f hAz) gy — h(X) logk = h()\) f 1 [% — ] dz,
so its supremum over k& € K will also be o(h()\)). Q.E.D.
LEMMA 3 Suppose that « > 1 or « = 1 and E|§;| < oo together with assumptions 1 and

2.Then 1 " &V; —5 o€,

PROOF: For the case where a > 1 we have thatl 2?21 &Vi = = Z?Zl & —E)V +

E¢ & >°"  V;.ButbyTheorem1,3°" (¢, —E&)V; =0, (n%TT%),thus A3 (G -Ey) V=

0,(1). Using the Cesaro mean theorem the result follows. For the case where o = 1 we have
1 n _ 1 n o o n .

that >, fiV;'L =32, (&G—r—H(nr,))Vi+ (v+ H(m“ ) % >_;_, Vi- Again, by

Theorem1, £ >°" (& —~v—H(nr,))V;=Oy(r,).Thus, £ 32" (§—v— H(nr )V, =

0,(1) since r, — 0. Furthermore, by the Cesaro mean theorem together with the fact that

v+ lim,,_, . H(nr,) = E& the result follows. Q.E.D.
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