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LIMIT THEORY OF THE QMLE IN THE NON-STATIONARY ARCH(1) MODEL

Sã�½®ÊÝ AÙò�Ä®ã®Ýabc �Ä� A½�ø�Ä�ÙÊÝ LÊç»�ac

Abstract: In this note we extend the standard results for the limit theory
of the popular QMLE in the context of the non-staƟonary ARCH(1) model by
allowing the innovaƟonprocess not to possess fourthmoments. Depending on
the value of the index of stability, we either derive 𝛼-stable weak limits with
non-standard rates or inconsistency and non-Ɵghtness. We obtain the limit
theory by the derivaƟon of a CLT for mulƟplicaƟve “marƟngale” transforms
with limits mixtures of 𝛼-stable distribuƟons for any 𝛼 ∈ (0, 2].

K�ùóÊÙ�Ý: 𝛼-stable distribuƟon, slow variaƟon, domain of aƩracƟon, CLT
withmixed limit, non staƟonary ARCH(1), QMLE, inconsistency, non-Ɵghtness.

1. INTRODUCTION

In this note we study the limit theory of the QMLE in the non staƟonary ARCH(1) model.
We extend the results of Jensen and Rahbek [10] by allowing the innovaƟon process not to
possess fourth moments. Since this process is comprised by iid random variables, we do so
by allowing the staƟonary distribuƟon of their squares to belong to the domain of aƩracƟon
of an 𝛼-stable law. When 𝛼 > 1, or 𝛼 = 1 and the second moment exists, we obtain as
limiƟng distribuƟon an 𝛼-stable law with non-standard rates. When 𝛼 = 2 and the fourth
moment exists, we recover the result of Jensen and Rahbek [10], i.e. asymptoƟc normality
with the usual

√𝑛 rate, albeit via the use of a different methodology. When 𝛼 = 2 but
the fourth moment does not exist, we obtain again asymptoƟc normality with non-standard
and slower rate. Finally, when 𝛼 < 1 we obtain inconsistency and furthermore asymptoƟc
non-Ɵghtness for the esƟmator, a result that is completely novel in the relevant literature.
We show that we can obtain the limit theory by deriving an auxiliary CLT for mulƟplica-

Ɵve “marƟngale” transforms with limits mixtures of 𝛼-stable distribuƟons for any 𝛼 ∈ (0, 2].
Similar CLT’s, yet with non-mixed limits, have been, directly or indirectly, derived by Hall and
Yao [6] and Mikosch and Straumann [15] for the cases where 𝛼 ≥ 1. They were concerning
staƟonary and ergodic transforms, and applied to the asymptoƟc behavior of the quasi score
in the context of the ergodic GARCH model. Given the applicaƟon that we have in mind, we
do not require staƟonarity for the transform, but we require the existence of an almost sure
limit for the condiƟonally “scaling sequence”. When 𝛼 < 1 we apply the CLT to the likeli-
hood funcƟon itself in order to obtain the result. Furthermore, we derive the CLT using the
so-called “Principle of CondiƟoning” of Jakubowski [9] and avoid many of the complexiƟes
appearing in the relevant proofs of the aforemenƟoned paper.
The structure of the note is as follows. In the second secƟon we present the probabilisƟc

framework and derive the CLT. In the third we apply it to obtain the asymptoƟc behavior of
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2 S. ARVANITIS AND A. LOUKA

the QMLE. We finally discuss some parallel and future similar research and possible exten-
sions. We gather all proofs in the Appendix.

2. A CLT WITH MIXED STABLE LIMITS

Our framework is built around a complete probability space (Ω, 𝒢,ℙ). In what follows
the abbreviaƟon ℙ a.s. stands for an almost sure argument with respect to the underlying
measure. We denote convergence in distribuƟon with ⇝. We are interested in the asymp-
toƟc behavior of the properly translated and scaled parƟal sums of a process of the form
(𝜉𝑖𝑉𝑖)𝑖∈ℕwhich due to the properƟes of the consƟtuent processes (𝜉𝑖)𝑖∈ℕand (𝑉𝑖)𝑖∈ℕ can
be abusively perceived as a mulƟplicaƟve “marƟngale transform”.1 This transform is directly
related to characterisƟcs of the Quasi-Likelihood funcƟon in GARCH-type models. The fol-
lowing assumpƟons describe those properƟes. The first one specifies the first factor as an iid
sequence with staƟonary distribuƟon closely related to an 𝛼-stable law.

AÝÝçÃÖã®ÊÄ 1 (𝜉𝑡)𝑡∈ℕ is an iid sequence, and the log-characterisƟc funcƟon of the distri-
buƟon of 𝜉0 has the following local representaƟon around zero:

(2.1) {𝛾𝑖𝑡 − 𝑐|𝑡|𝛼ℎ(1/|𝑡|) (1 − 𝑖𝛽 sgn(𝑡) tan (1
2𝜋𝛼)) , 𝛼 ∈ (0, 1) ∪ (1, 2]

(𝛾 + 𝐻(1/|𝑡|)) 𝑖𝑡 − 𝑐|𝑡|ℎ(1/|𝑡|) (1 − 2𝐶𝑖𝛽
𝜋 sgn(𝑡)) , 𝛼 = 1

where ℎ is slowly varying funcƟon at infinity, 𝐻(𝜆) = ∫𝜆
0

𝑥2ℎ(𝑥)
1+𝑥2 𝑑𝑥, 𝛽 ∈ [−1, 1], 𝑐 ∈ ℝ++,

𝛾 ∈ ℝ and −𝐶 is the Euler-Mascheroni constant.

R�Ã�Ù» 1 The representaƟons appearing in 2.1 are equivalent to that the distribuƟon of
𝜉0 lies in the domain of aƩracƟon of an 𝛼 -stable law, due to Theorem 2.6.5 of Ibragimov
and Linnik [7] for 𝛼 ≠ 1 and Theorem 2 of Aaronson and Denker [1] for 𝛼 = 1, i.e. when
appropriately translated and then scaled, the parƟal sums of (𝜉𝑖)𝑛

𝑖=0 weakly converge to
𝛼-stable random variables (see inter alia Remark 2 of the laƩer paper). This law has in-
dex of stability equal to 𝛼, skewness parameter equal to 𝛽 and scale parameter equal to
𝑐. The parameter 𝛾 appearing in the local representaƟons corresponds to locaƟon and it is
equal to 𝔼𝜉0 when 𝛼 > 1. The aforemenƟoned theorems (that are of Tauberian type) imply
that 𝛼 and the slowly varying funcƟon ℎ represent the asymptoƟc behavior of the tails of
the distribuƟon of 𝜉0. Hence they determine the form of the scaling in order to obtain the
aforemenƟoned weak limit. More precisely the scaling factor is of the form 1

𝑛1/𝛼𝑟1/𝛼 where
(𝑛𝑟𝑛)−1/𝛼 = inf 𝑥 > 0 ∶ 𝑥𝛼ℎ(𝑥−1) = (1/𝑛) which implies that 𝑟𝑛 = ℎ∗(𝑛) for all 𝑛 where
ℎ∗ is also slowly varying, i.e. 𝑟𝑛 defines a slowly varying sequence (see Paragraph 2.2 of
Ibragimov and Linnik [7] and Paragraph 1.9 of Bingham et al. [3]). When ℎ converges then
the distribuƟon of 𝜉0 is said to belong to the domain of normal aƩracƟon to the relevant 𝛼-
stable law. NoƟce that when 𝛼 < 2 the possibility of ℎ(𝑥) → 0 as 𝑥 → +∞ is also allowed,
something that permits the consideraƟon of cases where 𝔼 |𝜉0| 𝛼 < +∞ which is precisely

1The term is in some cases abusive due to the non-existence of appropriate moments for any or both the
random variables appearing in the product. We adopt it in the spirit of Mikosch and Straumann [15].
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true if and only if ∫+∞
.

ℎ(𝑥)
𝑥 𝑑𝑥 converges, e.g. ℎ(𝑥) = log−2(𝑥). 𝐻 is closely related to the

truncated 𝛼-moment of 𝜉0 (see Remark 1 of Aaronson and Denker [1]). The locaƟon param-
eter alone when 𝛼 ≠ 1 and all the aforemenƟoned parameters along with 𝐻 and 𝐶 when
𝛼 = 1 determine the form of the translaƟng constants.

NÊã�ã®ÊÄ 1 In what follows 𝑆𝛼 (𝛽, 𝑐, 𝛾) denotes an 𝛼-stable distribuƟon with parameters
𝛽, 𝑐, 𝛾.2 Furthermore the notaƟon 𝔼𝑆𝛼 (𝛽, 𝑐, 𝛾) denotes the mixture of the distribuƟons of
𝑆𝛼 (𝛽, 𝑐, 𝛾) w.r.t. ℙ given that we allow (for some of) those parameters to be 𝒢-measurable
non-constant funcƟons defined on Ω.

The second assumpƟon describes part of the dependence structure between the two con-
sƟtuent processes. It enables the characterizaƟon of the marƟngale transform as a process
of random variables that are condiƟonally independent, yet condiƟonally inhomogeneous,
that belong to the domain of aƩracƟon of 𝛼-stable laws (with 𝛼 and ℎ being constant with
respect to the condiƟoning 𝜎-algebras), and where the (𝑉𝑖)𝑖∈ℕ process determines the lo-
caƟon, scaling and skewness parameters of those condiƟonal distribuƟons. The assumpƟon
finally specifies the asymptoƟc behavior of the aforemenƟoned process.

AÝÝçÃÖã®ÊÄ 2 There exists a filtraƟon (ℱ𝑡)𝑡∈ℕ such that, for any 𝑡, (𝑉𝑡)𝑡∈ℕ is measurable
w.r.t., and 𝜉𝑡 is independent of, ℱ𝑡. Furthermore

(2.2) 𝑉𝑡 → 𝑣, ℙ a.s. as 𝑡 → +∞

where 𝑣 is a random variable assuming non-zero values ℙ a.s.

R�Ã�Ù» 2 In cases such as the one considered in the following secƟon
ℱ𝑡 = 𝜎 {𝜉𝑡−𝑘, 𝑉𝑡−𝑘, 𝑘 > 0}. More parƟcularly for the quasi likelihood theory of the non-
staƟonary ARCH(1) process 𝑉𝑡 is a raƟo of volaƟliƟes or of derivaƟves of volaƟliƟes with
volaƟliƟes, etc. and saƟsfies 2.2 due to the asymptoƟc behavior of the condiƟonal variance
process. Besides this, AssumpƟon 2 is trivially saƟsfied when 𝑉𝑡 is independent of 𝑡, or more
generally when there exists a filtraƟon (𝒢𝑡)𝑡∈ℕ w.r.t. which the process is a (super/sub-) mar-
Ɵngale and such that sup𝑡∈ℕ 𝔼 |𝑉𝑡|𝑝 < +∞ for 𝑝 ≥ 1 whereas 2.2 follows from results such
as Doob’s convergence theorem for discrete Ɵme marƟngales. NoƟce that the previous en-
able the possibility that the (𝑉𝑖)𝑖∈ℕ process is non-staƟonary.

We are now ready to invesƟgate the issue of the weak limiƟng behavior of ∑𝑛
𝑖=1 𝜉𝑖𝑉𝑖. The

following is themain result of the secƟon. The essenƟal noƟon for the derivaƟon of the result
is the so called “Principle of CondiƟoning” of Jakubowski [8].

T«�ÊÙ�Ã 1 Under AssumpƟons 1, 2 if 𝛼 ≠ 1 then

(2.3)
1

𝑛1/𝛼𝑟1/𝛼
𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾) 𝑉𝑖 ⇝ 𝔼𝑆𝛼 (𝛽 sgn(𝑣), 𝑐|𝑣|𝛼, 0)

2NoƟce that when 𝛼 = 2, necessarilly 𝛽 = 0 and the resulƟng distribuƟon is the 𝑁(𝛾, 2𝑐).
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where 1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑𝑛

𝑖=1 𝛾𝑉𝑖 can be omiƩed if 𝛼 < 1, and when𝛼 = 1 then

(2.4)
1

𝑛𝑟𝑛

𝑛
∑
𝑖=1

[(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖] − 2𝛽𝑐𝑣𝜋−1 (𝐶 − log |𝑣|) ⇝ 𝔼𝑆1 (𝛽 sgn(𝑣), 𝑐|𝑣|, 0)

where 𝑟𝑛 is as specified in Remark 1.3

R�Ã�Ù» 3 NoƟce the following:
1. In the case of 𝛼 < 1, the term 1

𝑛1/𝛼𝑟1/𝛼
𝑛

𝛾 ∑𝑛
𝑖=1 𝑉𝑖 can be omiƩed from 2.3 since it

converges to zero ℙ a.s. This is due to AssumpƟon 2, the Cesàro Theorem and the fact
that 𝑟𝑛 is slowly varying. This cannot hold in the other cases.

2. When 𝛼 = 1 and 𝛽 = 0 (symmetry) the terms 𝐻(𝑛𝑟𝑛) and 2𝛽𝑐𝑣𝜋−1 (𝐶 − log |𝑣|)
vanish from 2.4.

3. The result encompasses the classical theory (see inter alia see Remark 2 of Aaronson
and Denker [1]) obtained when 𝑉𝑡 = 1 ℙ a.s.

4. To our knowledge, the limiƟng mixtures are novel results aƩributed to the “stochasƟc-
ity” of 𝑢. When the laƩer is constant the mixtures are obviously trivial. In this case the
weak limits are 𝛼-stable distribuƟons. NoƟce that as expected (see the previous re-
mark) the properƟes of the (𝑉𝑖)𝑖∈ℕ process do not affect either the scaling sequences,
which depend only on the tail behavior of the distribuƟon of 𝜉0, nor the index of sta-
bility of the limit. Those properƟes affect the translaƟng sequence when 𝛼 = 1 as well
as the remaining parameters of the limit in any case.

5. The result can be easily extended when 𝑉𝑡 is ℝ𝑑-valued for 𝑑 > 1 using the Cramer-
Wold device. Then the limits would be mixtures of mulƟvariate 𝛼-stable distribuƟons
where the (random) spectral measures (for their definiƟon see Paragraph 2 ofMikosch
and Straumann [15]) are characterized via linear transformaƟons due to Theorem 2.3
of Gupta et. al. [5].

6. When 𝛼 = 2 and ℎ converges then we obtain asymptoƟc mixed-normality with rate√𝑛 and stochasƟc variance 2𝑐𝑣2𝜌2 where 𝜌 = lim ℎ. On the other hand when ℎ di-
verges to +∞ then we obtain again mixed-normality with stochasƟc variance 𝑐𝑣2 al-
beit at the slower rate √ 𝑛𝑟𝑛

. For example when 𝜉0 ∼ 𝑡2 then a simple calculaƟon
of the truncated second moment implies that 𝑟𝑛 = log 𝑛. This is obviously a major
generalizaƟon of the results in Abadir and Magnus [14].

7. When 𝛼 < 1, the support of 𝜉0 is bounded from above (below) and 𝑉0 > 0 ℙ a.s. then
the support of the limiƟng distribuƟon is (−∞, 0] ([0, +∞)).

Before establishing ourmain use of the limit theorem in the following secƟon, we conclude
the current one with a simple example in the context of a linear model.

3The form of the result would remain essenƟally the same had we allowed 𝑣 to assume the value zero with
posiƟve probability. The proof of such an extension would make use of the concept of the PoƩer bounds (see
inter alia Theorem 1.5.6 in Bingham et al. [3]) and the Cesàro Theorem. Since this is not relevant to the appli-
caƟon that we have in mind, we do not present this extension for economy of space.



THE QMLE IN THE NON-STATIONARY ARCH(1) 5

Eø�ÃÖ½� 1 Consider the simple linear regression model 𝑦𝑡 = 𝛽𝑥𝑡 + 𝜀𝑡 where 𝜀𝑡 = 𝜉𝑡𝑢𝑡,
where (𝜉𝑡) saƟsfy AssumpƟon 1 with zero mean when 𝔼|𝜉0| < ∞. Let ℱ𝑡 be a filtraƟon of
the underlying probability space (Ω, 𝒢,ℙ) such that 𝜉𝑡 is independent of ℱ𝑡, 𝑢𝑡 and 𝑥𝑡 are
adapted toℱ𝑡. Furthermore suppose that𝑢𝑡,𝑥𝑡 aremarƟngalesw.r.t. some (𝒢𝑡)𝑡∈ℕ and such
that sup𝑡∈ℕ 𝔼|𝑢𝑡|+sup𝑡∈ℕ 𝔼|𝑥𝑡| < ∞. Then byDoob’s theorem for discrete ƟmemarƟngales
there exist random variables 𝑢, 𝑥 such that 𝑢𝑛 → 𝑢 and 𝑥𝑛 → 𝑥 as 𝑛 → ∞ ℙ a.s. where we
further assume that 𝑢, 𝑥 ≠ 0 ℙ a.s. Then we may obtain the asymptoƟc distribuƟon of the
OLS esƟmator 𝛽𝑛 since 1𝑛 ∑𝑛

𝑡=1 𝑥2
𝑡 → 𝑥2 ℙ a.s. as 𝑛 → ∞ by the Cesàro mean theorem and

𝑥𝑡𝑢𝑡 saƟsfies AssumpƟon 2. A simple extension of Theorem 1 that handles joint convergence
along with the ConƟnuous Mapping Theorem implies that

𝑛𝛼−1𝛼

𝑟 1𝛼𝑛
(𝛽𝑛 − 𝛽0) = ( 1

𝑛
𝑛

∑
𝑡=1

𝑥2
𝑡 )

−1
1

𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑡=1

𝜉𝑡𝑥𝑡𝑢𝑡 ⇝ 𝑦
𝑥

where 𝑦∼ 𝔼𝑆𝛼 (𝛽 sgn(𝑢), 𝑐|𝑢|𝛼, 0) when 𝛼 ≠ 1 and

1
𝑟𝑛

(𝛽𝑛 − 𝛽0) − (𝛾 + 𝐻(𝑛𝑟𝑛)) ( 1
𝑛

𝑛
∑
𝑡=1

𝑥2
𝑡 )

−1
1

𝑛𝑟𝑛

𝑛
∑
𝑡=1

𝑥𝑡𝑢𝑡 ⇝ 𝑦
𝑥

where 𝑦∼ 𝔼𝑆1 (𝛽 sgn(𝑢), 𝑐|𝑢|, 2𝛽𝑐𝑢𝜋−1 (𝐶 − log |𝑢|))when 𝛼 = 1. NoƟce that the first
result implies the inconsistency and the asymptoƟc non-Ɵghtness of the OLSE when 𝛼 < 1.

3. LIMIT THEORY FOR THE QMLE OF THE NON-STATIONARY ARCH(1)

We are now employing the previous result to the QMLE for the non-staƟonary ARCH(1)
model. Define the ARCH(1) process by

𝑦𝑡 = 𝜎𝑡𝑧𝑡, 𝑡 ≥ 0
𝜎2

𝑡 = 𝜔0 + 𝑎0𝑦2
𝑡−1, 𝑡 > 0

and some iniƟal value 𝜎2
0, where (𝑧𝑡)𝑡∈ℤ is iid with 𝔼𝑧0 = 0 and such that 𝑧2

0 lies in the
domain of aƩracƟon of an (non-degenerate) 𝛼-stable distribuƟon. Thereby we henceforth
assume the validity of 1 for 𝜉𝑡 = 𝑧2

𝑡 − 1. We furthermore suppose that when 𝛼 > 1 then
𝔼𝑧2

0 = 1. We assume that the constant 𝜔0 ≥ 0 is known while the true ARCH parameter
𝑎0 ≥ exp(−𝔼 ln𝑧2

0) is unknown.4 This implies the non-staƟonarity (either strict or second
order) of the process by (inter alia) Theorem 2.1 of Francq and Zakoian [4]. The staƟsƟcal
model is defined as the collecƟon of ARCH(1) processes with ARCH parameter belonging to
the parameter spaceΘ = [𝑎⋆, 𝑎⋆]where 0 < 𝑎⋆ < 𝑎⋆ orΘ = [𝑎⋆, +∞) and in any case such
that 𝑎0 ∈ Θ. We study the asymptoƟc properƟes for the QMLE for the unknown parameter
via the use of the limit theorem of the previous secƟon. To this purpose we assume the
availability of the random variables 𝑦0, 𝑦1, … , 𝑦𝑛 from the process whereas the minus quasi
likelihood funcƟon is defined by

ℓ𝑛(𝑎) = 1
𝑛

𝑛
∑
𝑡=1

[log ℎ𝑡(𝑎) + 𝑦2
𝑡

ℎ𝑡(𝑎)] ,

4It is easy to see from the results of Jensen and Rahbek [10] that had 𝜔0 be unknown, it would also be non
idenƟfiable.
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with ℎ𝑡(𝑎) = 𝜔0 + 𝑎𝑦2
𝑡−1 for 𝑡 = 1, … , 𝑛 and the QMLE (say 𝑎𝑛) for the unknown parameter

𝑎0 saƟsfies

ℓ𝑛(𝑎𝑛) ≤ inf
𝑎

ℓ𝑛(𝑎) + 𝜀𝑛

where 𝜀𝑛 = 𝑜𝑝(1).5 The existence of the QMLE is straighƞorwardly verified by standard ar-
guments of conƟnuity and compactness for the first case of parameter space. For the second
case, existence follows due to the fact that Θ is closed and bounded from below, ℓ𝑛 is ℙ a.s.
conƟnuous, and it ℙ a.s. diverges to +∞ as 𝑎 → +∞. The following theorem is the main re-
sult of the present secƟon. It among other things makes use of the limit theorem developed
in the previous secƟon in order to derive the asymptoƟc properƟes of the QMLE in several
cases.

T«�ÊÙ�Ã 2 For the ARCH(1) model described above suppose that 𝜀𝑛 = 𝑜𝑝 (𝑛(1−𝛼)/𝛼𝑟−1/𝛼
𝑛 ).

1. Let 𝛼 ∈ [1, 2] and 𝑎0 ∈ Int Θ.

(a) If 𝛼 > 1 then

𝑛(𝛼−1)/𝛼

𝑟1/𝛼
𝑛

(𝑎𝑛 − 𝑎0) ⇝ 𝑆𝛼 (𝛽, 𝑐𝑎𝛼
0 , 0) .

(b) If 𝛼 = 1 and 𝔼|𝜉1| < ∞ then

1
𝑟𝑛

(𝑎𝑛 − 𝑎0) − 1
𝑟𝑛

[𝛾 + 𝐻(𝑛𝑟𝑛)] [𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝜃𝑛)]

−1 1
𝑛

𝑛
∑
𝑖=1

𝑦2
𝑡−1

𝜔0 + 𝑎0𝑦2
𝑡−1

⇝ 𝑆1 (𝛽, 𝑐𝑎0, 2𝛽𝑐𝑎0𝜋−1 (𝐶 + log 𝑎0 − 2𝑎0 log 𝑎0))

2. Let 𝛼 ∈ (0, 1).
(a) If Θ = [𝑎⋆, 𝑎⋆] then 𝑎𝑛 ⇝ 𝑎⋆and thereby the QMLE is inconsistent unless 𝑎0 =

𝑎⋆.

(b) If Θ = [𝑎⋆, +∞) then the QMLE is asymptoƟcally non-Ɵght.

R�Ã�Ù» 4 NoƟce the following:
1. The results above are obvious generalizaƟons of those of Jensen and Rahbek [10]

since they form an almost exhausƟve consideraƟon of cases where for the behavior
of the fourth moment of 𝑧0 in the context of the non-staƟonary ARCH(1). In some
sense they generalize the results of Mikosch and Straumann [15] for the staƟonary
and ergodic GARCH(1,1) and the results of Hall and Yao [6] for the covariance staƟon-
ary GARCH(p,q) since they obtain asymptoƟc results for the QMLE allowing for 𝛼 < 1.
Furthermore, the results of Hall and Yao for the case where 𝛼 = 1 where obtained
via the imposiƟon of a further restricƟon on the tail behavior of the distribuƟon of 𝑧2

0
5It is easy to see that the results that follow would also hold if 𝑦0 is chosen as an arbitrary constant.
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which is not needed here.Whenwe impose the same restricƟon, we obtain a similar to
the aforemenƟoned paper, form for the translaƟng sequence (see ProposiƟon 1 that
follows). The results of Mikosh and Straumann for the case where 𝛼 = 1 are restricted
to 𝛽 = 0 something that is not useful for the consideraƟon of the asymptoƟc behavior
of the QMLE in GARCH-type models.

2. When 𝛼 = 2 and ℎ converges we recover the results of Jensen and Rahbek [10], i.e.
the rate is

√𝑛 and the limit is 𝑁 (0, 𝔼 (𝑧4
0 − 1) 𝑎2

0). When 𝛼 = 2 but ℎ diverges we
obtain asymptoƟc normality but with slower rate. For example if

√
2𝑧0 ∼ 𝑡4 then√𝑛√log 𝑛 (𝑎𝑛 − 𝑎0) ⇝ 𝑁 (0, 3

2𝑎2
0), which as implied above, is novel in the context of the

non-staƟonary ARCH(1) model.
3. The use of Theorem 5.5 of ArvaniƟs and Louka [2] enables the generalizaƟon of the

results of 1.(a) in caseswhere 𝑎0 is a boundary point. For example it is easy to see that if
𝑎0 = 𝑎⋆ then we would obtain the limit distribuƟon as a “projecƟon” of the current 𝛼-
stable to [0, +∞), i.e. it would be supported on the laƩer interval, with an atom at zero
of probability equal to the one aƩributed by the current distribuƟon on (−∞, 0]. The
dual case would be analogous. When 𝛼 = 1 the fact that 𝛽 ≠ 0 implies the presence
of the translaƟng sequence, renders the aforemenƟoned result inapplicable. Hence
the boundary cases when 𝛼 = 1 cannot be handled via the present methodology and
thereby consƟtute an open quesƟon.

4. Open is also the quesƟon about the relevant limit theory when 𝛼 = 1 and lim ℎ ≠
0. This cannot be handled by the present methodology and it was analogously not
considered by the relevant results of Hall and Yao [6]. We suspect that in this case the
esƟmator is generally inconsistent (see also Example 2 that follows).

5. The results for the case where 𝛼 < 1 are also novel in all the aforemenƟoned relevant
literature concerning the limit theory of the QMLE. They are obtained by the use of
the concept of epi-convergence (see inter alia Knight [12]) via reducƟo ad absurdum.
They are consistent with a “heurisƟc” argument that says that mulƟplicaƟon with the
rate 𝑛(𝛼−1)/𝛼

𝑟1/𝛼
𝑛

implies asymptoƟc Ɵghtness in all 𝛼 ≠ 1 cases. This argument essenƟally
works both in Example 1 in the previous secƟon as well as in a special case of the
considered QMLE presented in Example 2 that follows. The quesƟon of whether we
obtain generally asymptoƟc Ɵghtness by mulƟplicaƟon with the previous rate as well
as a limit distribuƟon such as the ones appearing in the examples remains also open.

As noted above, the translaƟng sequence appearing in the case of 𝑎 = 1 can obtain a less
complex form if a Hall and Yao [6] type of condiƟon (see Theorem 2.1) for the complement
of the truncated secondmoment of 𝑧0 is enforced. This is established in the following Propo-
siƟon. In such a case the “centering constants” assume a form that is similar to the classical
theory for the iid case.

PÙÊÖÊÝ®ã®ÊÄ 1 Let the condiƟons of Theorem 2 hold for the case where 𝛼 = 1 and addi-
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Ɵonally assume that 𝑟−1
𝑛 [𝐻(𝑛𝑟𝑛) + 𝛾]2 → 0. Then

1
𝑟𝑛

(𝑎𝑛 − 𝑎0) − 1
𝑟𝑛

[𝛾 + 𝐻(𝑛𝑟𝑛)] 𝑎0

⇝ 𝑆1 (𝛽, 𝑐𝑎0, 2𝛽𝑐𝑎0𝜋−1 (𝐶 + log 𝑎0 − 2𝑎0 log 𝑎0))
We conclude this secƟon with the case of 𝜔0 = 0. Then the esƟmator assumes a known

funcƟonal form from which we can derive its limit theory even when 𝛼 = 1 and the analo-
gous first moment does not exist, or find an appropriate rate and obtain a limit distribuƟon
when 𝛼 < 1 even in the presence of non-Ɵghtness.

Eø�ÃÖ½� 2 Let 𝛼 ≤ 1 and 𝜔0 = 0 and suppose that Θ = (0, +∞). It is easy to see
that −∞ < inf𝑎∈(0,∞) ℓ𝑛(𝑎) < ∞ ℙ a.s., so that arg zero𝑎∈(0,∞)ℓ′

𝑛(𝑎) = 1𝑛 ∑𝑛
𝑡=1

𝑦2
𝑡

𝑦2
𝑡−1

=
𝑎0 1𝑛 ∑𝑛

𝑡=1 𝑧2
𝑡 is the QMLE ℙ a.s. which is clearly non-Ɵght when 𝛼 < 1 or when 𝛼 = 1 and

∫+∞
.

ℎ(𝑥)
𝑥 𝑑𝑥 diverges. Using 1 we have that when 𝛼 ≠ 1

𝑛(𝛼−1)/𝛼

𝑟1/𝛼
𝑛

(𝑎𝑛 − 𝑎0) ⇝ 𝑆𝛼 (𝛽, 𝑐𝑎𝛼
0 , 0)

and when 𝛼 = 1
1
𝑟𝑛

(𝑎𝑛 − 𝑎0) − 𝑎0
𝑟𝑛

(𝛾 + 𝐻(𝑛𝑟𝑛)) − 2𝛽𝑐𝑎0𝜋−1 (𝐶 − log 𝑎0) ⇝ 𝑆1 (𝛽, 𝑐𝑎0, 0) .

Hencewhen𝛼 < 1 orwhen𝛼 = 1 and the secondmoment of 𝑧0 does not exist the esƟmator
is asymptoƟcally non Ɵght.

4. PARALLEL AND FURTHER RESEARCH

In this note we have demonstrated how the derivaƟon and use of a CLT with mixed sta-
ble limits can widely extend standard results for the limit theory of the popular QMLE in
the context of a simple example, i.e. the non-staƟonary ARCH(1) model. Given the exposi-
tory character and the limited applicability of our derivaƟon, we are currently working on
a similar CLT involving staƟonarity, that avoids many of the strict condiƟons and limitaƟons
appearing in the analogous results of Hall and Yao [6] and Mikosh and Straumann [15], and
is applicable to more classes of condiƟonally heteroskedasƟc models beyond the standard
staƟonary GARCH, along with potenƟally interesƟng staƟsƟcal applicaƟons such as the ro-
busƟficaƟon of Wald tests.6 We are also working towards coping with the open quesƟons
raised above, such as the relevant limit theory when 𝛼 = 1, yet 𝔼𝑧2

0 = +∞ and/or the
parameter is on the boundary, etc. We are also interested in the obvious extension of the
relevant results of Wang [18], something that would drasƟcally widen the scope of potenƟal
applicaƟons including non-linear cointegraƟon, and possibly allowing for the consideraƟon
of the limit theory of the QMLE in non-staƟonary versions of more complex models, e.g. the
EGARCH. This however would require a non-trivial extension of our methodology and we
leave it for future research.

6It could also be used in the non-staƟonary GARCH(1,1) model in conjuncƟon with the results in Jensen and
Rahbek [11].



THE QMLE IN THE NON-STATIONARY ARCH(1) 9

REFERENCES

[1] Aaronson, J., & Denker, M. (1998). CharacterisƟc funcƟons of random variables at-
tracted to 1-stable laws. Annals of probability, 399-415. 2, 3, 4, 10

[2] ArvaniƟs, S., & Louka, A. A CLT For MarƟngale Transforms With Slowly Vary-
ing Second Moments and the Limit Theory of the QMLE for CondiƟonally Het-
eroskedasƟc Models. Working paper 17/2013, Dept. of Economics, AUEB. url:
hƩp://www.econ.aueb.gr/uploadfiles/Alldp172013.pdf. 7

[3] Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1989). Regular variaƟon (Vol. 27). Cam-
bridge university press. 2, 4

[4] Francq, C., & Zakoian, J. M. (2011). GARCH models: structure, staƟsƟcal inference and
financial applicaƟons. John Wiley & Sons. 5

[5] Gupta, A. K., Nguyen, T. T., & Zeng, W. B. (1994). CondiƟons for stability of laws with all
projecƟons stable. Sankhyā: The Indian Journal of StaƟsƟcs, Series A, 438-443. 4

[6] Hall, P., & Yao, Q. (2003). Inference in ARCH and GARCH models with heavy–tailed er-
rors. Econometrica, 71(1), 285-317. 1, 6, 7, 8

[7] Ibragimov, I. A. (1971). Independent and staƟonary sequences of random variables. 2
[8] Jakubowski, A. (1986). Principle of condiƟoning in limit theorems for sums of random

variables. The Annals of Probability, 902-915. 3
[9] Jakubowski, A. (2012). Principle of CondiƟoning revisited. DemonstraƟo MathemaƟca,

45(2). 1, 10
[10] Jensen, S. T., & Rahbek, A. (2004). AsymptoƟc normality of the QMLE esƟmator of ARCH

in the nonstaƟonary case. Econometrica, 72(2), 641-646. 1, 5, 6, 7
[11] Jensen, S. T., and Rahbek, A. (2004). AsymptoƟc inference for Non StaƟonary GARCH.

Econometric Theory, 20, 1203–1226. 8
[12] Knight, K. (1999). Epi-convergence in distribuƟon and stochasƟc equi-semiconƟnuity.

Unpublished manuscript, 37. 7, 14
[13] Kwapien, S., & Woyczynski, W. A. (1992). Random series and stochasƟc integrals.

Birkhäuser.
[14] Magnus, J., & Abadir, K. (2004). The Central Limit Theorem for Student’s DistribuƟon.

Econometric theory, (6), 1261-1262. 4
[15] Mikosch, T., & Straumann, D. (2006). Stable limits of marƟngale transforms with appli-

caƟon to the esƟmaƟon of GARCH parameters. The Annals of StaƟsƟcs, 493-522. 1, 2,
4, 6, 8

[16] Nelson, D. B. (1990). StaƟonarity and persistence in the GARCH (1, 1) model. Econo-
metric theory, 6(03), 318-334. 15

[17] Straumann, D. (2005). EsƟmaƟon in condiƟonally heteroscedasƟc Ɵme series models
(Vol. 181). New York: Springer. 15

[18] Wang, Q. (2014). MarƟngale Limit Theory Revisited and Non Linear CointegraƟng Rela-
Ɵons. Econometric Theory, 30, 509–535. 8

http://www.econ.aueb.gr/uploadfiles/Alldp172013.pdf


10 S. ARVANITIS AND A. LOUKA

APPENDIX

This first part of the appendix contains the proofs of the main results. The second part
contain auxiliary results used in the proof of Theorem 1.

Main Proofs

PÙÊÊ¥ Ê¥ T«�ÊÙ�Ã 1: By the “Main Lemma for Sequences” of Jakubowski [9] the result
would follow if we prove that for all 𝑡 ∈ ℝ

(4.1)
𝑛

∏
𝑖=1

𝔼 (exp (𝑖𝑡 1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝜌𝑖,𝛼) /ℱ𝑖)

converges in probability to the characterisƟc funcƟon of 𝑆𝛼 (𝛽 sgn(𝑣), 𝑐|𝑣|𝛼, 0), with 𝜌𝑡,𝛼 =
{(𝜉𝑡−𝛾)𝑉𝑡,𝛼≠1

[(𝜉𝑡−𝛾−𝐻(𝑛𝑟𝑛))𝑉𝑡]−𝑟𝑛2𝛽𝑐𝑣𝜋−1(𝐶−log |𝑣|),𝛼=1 . Assume that the representaƟon described in As-
sumpƟon 1 holds for all 𝑡 ∈ (−𝑡0, 𝑡0), and some 𝑡0 > 0. Then noƟce that for any 𝑡 ≠ 0 by
defining the event

𝐶𝑛,𝐾 ∶= {𝜔 ∈ Ω ∶ |𝑉𝑖| ≤ 𝐾𝑡 (𝑛𝑟𝑛) 1𝛼 , ∀𝑖 = 1, … , 𝑛}

where 𝐾𝑡 < 𝑡0
|𝑡| and using the same argument as in the proof of Lemma 1, we have that

ℙ(𝐶𝑐
𝑛,𝐾) = ℙ (max1≤𝑖≤𝑛 |𝑉𝑖| > 𝐾𝑡𝑟

1𝛼𝑛 𝑛 1𝛼 ) → 0. For the case of 𝛼 ≠ 1 due to AssumpƟons

1-2, if 𝜔 ∈ 𝐶𝑛,𝐾 then ∑𝑛
𝑖=1 log 𝔼 (exp (𝑖𝑡 1

𝑛 1𝛼 𝑟
1𝛼𝑛

(𝜉𝑘 − 𝛾) 𝑉𝑘) /𝒢𝑛) equals

−𝑐|𝑡|𝛼
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑉𝑖|−1) (1 − 𝑖𝛽 sgn(𝑡𝑉𝑖) tan (1

2𝜋𝛼))

= − 𝑐|𝑡|𝛼
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑉𝑖|−1)

+ |𝑡|𝛼
𝑛𝑟𝑛

𝑖𝛽𝑐 sgn(𝑡) tan (1
2𝜋𝛼)

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑉𝑖|−1) sgn(𝑉𝑖)

which by Lemma 1 converges ℙ a.s. to −𝑐|𝑡|𝛼|𝑣|𝛼 (1 − 𝑖𝛽 sgn(𝑡𝑣) tan (1
2𝜋𝛼)).

For the case where𝛼 = 1, again due to the relevant parts of AssumpƟons 1-2, if 𝜔 ∈ 𝐶𝑛,𝐾
then ∑𝑛

𝑖=1 log 𝔼 (exp (𝑖𝑡 1𝑛𝑟𝑛
(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖) /𝒢𝑛) analogously has a local to zero

representaƟon due Theorem 2 of Aaronson and Denker [1] as

(4.2) − 𝑐|𝑡| 1
𝑛𝑟𝑛

∑ |𝑉𝑖|ℎ (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) + 𝑖2𝛽𝑐𝜋−1𝐶𝑡 1
𝑛𝑟𝑛

∑ 𝑉𝑖ℎ (𝑛𝑟𝑛|𝑡𝑉𝑖|−1)

+ 𝑖𝑡 1
𝑛𝑟𝑛

∑ 𝑉𝑖 [𝐻 (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) − 𝐻(𝑛𝑟𝑛)]
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where, by Lemma 1, 1𝑛𝑟𝑛
∑ |𝑉𝑖|ℎ (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) → |𝑣| and 1𝑛𝑟𝑛

∑ 𝑉𝑖ℎ (𝑛𝑟𝑛|𝑡𝑉𝑖|−1) → 𝑣 ℙ
a.s. Furthermore, using Lemma 2 we have that

1
𝑛𝑟𝑛

∑ 𝑉𝑖 [𝐻 (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) − 𝐻(𝑛𝑟𝑛)]

=ℎ(𝑛𝑟𝑛)
𝑟𝑛

2𝛽𝑐𝜋−1 log 1
|𝑡|

1
𝑛 ∑ 𝑉𝑖 − ℎ(𝑛𝑟𝑛)

𝑟𝑛

1
𝑛 ∑ 𝑉𝑖 log |𝑉𝑖| + 𝑜(1)

→2𝛽𝑐𝜋−1𝑣 (log 1
|𝑡| − log |𝑣|) ℙ 𝑎.𝑠.

Therefore 4.2 becomes−𝑐|𝑣||𝑡| [1 − 𝑖2𝛽𝑐𝜋−1 sgn(𝑡𝑣) log 1
|𝑡|]+𝑖𝑡2𝛽𝑐𝑣𝜋−1 (𝐶 − 𝑣 log |𝑣|) and

the result follows. Q.E.D.

PÙÊÊ¥ Ê¥ T«�ÊÙ�Ã 2: For 1 we first have to establish consistency. First noƟce that 𝜃𝑛 will
also saƟsfy ℓ∗

𝑛(𝜃𝑛) ≤ inf𝜃 ℓ∗
𝑛(𝜃)+𝜀𝑛 where ℓ∗

𝑛(𝜃) = ℓ𝑛(𝜃)− 1𝑛 ∑log𝜎2
𝑡 = 1𝑛 ∑𝑛

𝑡=1 [ 𝑦2
𝑡

ℎ𝑡(𝜃) − log 𝜎2
𝑡

ℎ𝑡(𝜃)].
Then observe that ∀𝜃 ∈ Θ ℓ∗

𝑛(𝜃) = 1𝑛 ∑𝑛
𝑡=1 [ 𝑦2

𝑡
ℎ𝑡(𝜃) − log 𝜎2

𝑡
ℎ𝑡(𝜃)] = 1𝑛 ∑𝑛

𝑡=1
𝜔0+𝑎0𝑦2

𝑡−1
𝜔0+𝑎𝑦2

𝑡−1
𝑧2

𝑡 −
1𝑛 ∑𝑛

𝑡=1 log 𝜔0+𝑎0𝑦2
𝑡−1

𝜔0+𝑎𝑦2
𝑡−1

⇝ 𝑎0𝑎 − log 𝑎0𝑎 by 3 and the Cesàro mean theorem, which is uniquely
minimized at 𝑎0. In order to show that ℓ∗

𝑛 converges locally uniformly to the above limit, it
suffices to show that ℓ∗

𝑛 is stochasƟcally equiconƟnuous. We have that

|ℓ∗
𝑛(𝑎′) − ℓ∗

𝑛(𝑎)| ≤ 1
𝑛

𝑛
∑
𝑖=1

∣ 1
ℎ𝑡(𝑎′) − 1

ℎ𝑡(𝑎)∣ 𝑦2
𝑡 + 1

𝑛
𝑛

∑
𝑖=1

|log ℎ𝑡(𝑎) − log ℎ𝑡(𝑎′)| .

But the first termof the right hand side of the abovedisplay equals |𝑎−𝑎′| 1𝑛 ∑𝑛
𝑖=1

𝑦2
𝑡−1𝑦2

𝑡
(𝜔0+𝑎′𝑦2

𝑡−1)(𝜔0+𝑎𝑦2
𝑡−1) ≤

|𝑎−𝑎′|
𝑎′

1𝑛 ∑𝑛
𝑖=1

𝑦2
𝑡

𝜔0+𝑎𝑦2
𝑡−1

⇝ |𝑎−𝑎′|
𝑎𝑎′ . Also the second term by the mean value theorem is lower

or equal to |𝑎 − 𝑎′| 1𝑛 ∑𝑛
𝑖=1

𝑦2
𝑡−1

𝜔0+min{𝑎,𝑎′}𝑦2
𝑡−1

𝑎.𝑠.−→ |𝑎−𝑎′|
min{𝑎,𝑎′} . The result follows easily.

1.(a) First we show that for any 𝑎∗
𝑛 ⇝ 𝑎0

𝜕2ℓ𝑛
𝜕𝑎2 (𝜃∗

𝑛) ⇝ 1
𝑎2

0
.

Trivial calculaƟons show that

𝜕2ℓ𝑛
𝜕𝑎2 (𝑎∗

𝑛) = 2
𝑛

𝑛
∑
𝑡=1

(𝜔0 + 𝑎0𝑦2
𝑡−1) 𝑦4

𝑡−1
(𝜔0 + 𝑎∗𝑛𝑦2

𝑡−1)3 𝑧2
𝑡 − 1

𝑛 ∑ 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)2 .(4.3)

The second term of the laƩer converges ℙ a.s. to 1
𝑎2

0
, since by an applicaƟon of the mean

value theorem we have that

1
𝑛 ∑ 𝑦4

𝑡−1 [(𝜔0 + 𝑎∗
𝑛𝑦2

𝑡−1)−2 − (𝜔0 + 𝑎0𝑦2
𝑡−1)−2] ≤ 2 |𝑎∗

𝑛 − 𝑎0| ∑ 𝑦6
𝑡−1

(𝜔0 + 𝑎⋆𝑦2
𝑡−1)3 ⇝ 0
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by the Cesàromean theorem since 𝑦6
𝑡−1

(𝜔0+𝑎⋆𝑦2
𝑡−1)3

ℙ𝑎.𝑠.−−→ 1𝑎⋆
and the fact that 𝑎∗

𝑛 ⇝ 𝑎0. Further-
more, regarding the first term of 4.3 we have that

2
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3 𝑧2

𝑡 = 2
𝑛𝛼−1𝛼 𝑟− 1𝛼𝑛

1
𝑛 1𝑎 𝑟 1𝛼𝑛

∑ (𝜔0 + 𝑎0𝑦2
𝑡−1) 𝑦4

𝑡−1
(𝜔0 + 𝑎∗𝑛𝑦2

𝑡−1)3 (𝑧2
𝑡 − 1)

+ 2
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3 .

Now by employing Theorem 1, we can show that the first term of the right hand side is
𝑂𝑝 (𝑛1−𝛼𝛼 𝑟 1𝛼𝑛 ) = 𝑜𝑝(1). The second term converges to 2

𝑎2
0

ℙ a.s. since

2
𝑛 ∑ 𝑦4

𝑡−1 (𝜔0 + 𝑎0𝑦2
𝑡−1) ∣ 1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3 − 1

(𝜔0 + 𝑎0𝑦2
𝑡−1)3 ∣

≤ |𝑎∗
𝑛 − 𝑎0| 6

𝑛 ∑ 𝑦6
𝑡−1

(𝜔0 + 𝑎⋆𝑦2
𝑡−1)3

𝑎.𝑠.−→ 0

by the Cesàro mean theorem since 𝑦4
𝑡−1

(𝜔0+𝑎0𝑦2
𝑡−1)2

𝑎.𝑠.−→ 1𝑎0
and the fact that 𝑎∗

𝑛 ⇝ 𝑎0. Further-
more by Theorem 1,

−𝑛𝛼−1𝛼 𝑟− 1𝛼𝑛
𝜕ℓ𝑛(𝜃0)

𝜕𝑎 = 1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑖=1

(𝑧2
𝑡 − 1) 𝑦2

𝑡−1
𝜔0 + 𝑎0𝑦2

𝑡−1
⇝ 𝑆𝛼 (𝛽, 𝑐

𝑎𝛼
0

) .

Hence if 𝜀𝑛 = 𝑜𝑝 (𝑟 1𝛼𝑛 𝑛− 2(𝛼−1)
𝛼 ) then

𝑛𝛼−1𝛼

𝑟 1𝛼𝑛
(𝜃𝑛 − 𝜃0) ⇝ 𝑎2

0𝑆𝛼 (𝛽, 𝑐
𝑎𝛼

0
) = 𝑆𝛼 (𝛽, 𝑐𝑎𝛼

0 ) .

1.(b) Note that the previous result concerning the asymptoƟc behavior of the Hessian sƟll
holds as

2
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3 𝑧2

𝑡 = 𝑟𝑛
𝑛𝑟𝑛

∑ (𝜔0 + 𝑎0𝑦2
𝑡−1) 𝑦4

𝑡−1
(𝜔0 + 𝑎∗𝑛𝑦2

𝑡−1)3 (𝑧2
𝑡 − 1 − 𝛾 − 𝐻(𝑛𝑟𝑛))

+ (1 + 𝛾 + 𝐻(𝑛𝑟𝑛)) 2
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3

where the first term on the right hand side is 𝑂𝑝(𝑟𝑛) = 𝑜𝑝(1) by Theorem 1 and the second
term converges almost surely to (1 + 𝛾 + lim𝑛→∞ 𝐻(𝑛𝑟𝑛)) 2

𝑎2
0

= 2
𝑎2

0
using the Cesàro mean

theorem and the sandwich theorem as previously and the fact that 𝛾 + lim𝑛→∞ 𝐻(𝑛𝑟𝑛) =
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𝔼𝑧2
0 − 1 = 0. Therefore

𝜕2ℓ𝑛
𝜕𝑎2 (𝑎∗

𝑛) = 1
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3 (𝑧2

𝑡 − 1 − 𝛾 − 𝐻(𝑛𝑟𝑛))

+ (1 + 𝛾 + 𝐻(𝑛𝑟𝑛)) 2
𝑛 ∑ (𝜔0 + 𝑎0𝑦2

𝑡−1) 𝑦4
𝑡−1

(𝜔0 + 𝑎∗𝑛𝑦2
𝑡−1)3

− 1
𝑛 ∑ 𝑦4

𝑡−1
(𝜔0 + 𝑎∗𝑛𝑦2

𝑡−1)2 ⇝ 1
𝑎2

0
.

By Theorem 1 we obtain that

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝑧2
𝑡 −1−𝛾 −𝐻(𝑛𝑟𝑛)) 𝑦2

𝑡−1
𝜔0 + 𝑎0𝑦2

𝑡−1
⇝ 𝑆1 (𝛽, 𝑐𝑎−1

0 , 2𝛽𝑐𝑎−1
0 𝜋−1 (𝐶 + log 𝑎0)) .

But

− 1
𝑟𝑛

𝜕ℓ𝑛(𝑎0)
𝜕𝑎 = 1

𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝑧2
𝑡 −1−𝛾−𝐻(𝑛𝑟𝑛)) 𝑦2

𝑡−1
𝜔0 + 𝑎0𝑦2

𝑡−1
+𝛾 + 𝐻(𝑛𝑟𝑛)

𝑛𝑟𝑛

𝑛
∑
𝑖=1

𝑦2
𝑡−1

𝜔0 + 𝑎0𝑦2
𝑡−1

.

Furthermore, note that since 𝜀𝑛 = 𝑜𝑝(𝑟𝑛) we have that 𝜕ℓ𝑛(𝑎𝑛)
𝜕𝑎 = 𝑜𝑝(𝑟𝑛). Thus

[𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝑎𝑛)] 1

𝑟𝑛
(𝑎𝑛 − 𝑎0) = − 1

𝑟𝑛

𝜕ℓ𝑛(𝑎0)
𝜕𝑎

= 1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝑧2
𝑡 −1−𝛾−𝐻(𝑛𝑟𝑛)) 𝑦2

𝑡−1
𝜔0 + 𝑎0𝑦2

𝑡−1
+𝛾 + 𝐻(𝑛𝑟𝑛)

𝑟𝑛

1
𝑛

𝑛
∑
𝑖=1

𝑦2
𝑡−1

𝜔0 + 𝑎0𝑦2
𝑡−1

.

Therefore

1
𝑟𝑛

(𝑎𝑛 − 𝑎0) − 1
𝑟𝑛

[𝛾 + 𝐻(𝑛𝑟𝑛)] [𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝑎𝑛)]

−1 1
𝑛

𝑛
∑
𝑖=1

𝑦2
𝑡−1

𝜔0 + 𝑎0𝑦2
𝑡−1

= [𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝑎𝑛)]

−1 1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝑧2
𝑡 − 1 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑦2

𝑡−1
𝜔0 + 𝑎0𝑦2

𝑡−1

⇝ 𝑆1 (𝛽, 𝑐𝑎0, 2𝛽𝑐𝑎0𝜋−1 (𝐶 + log 𝑎0 − 2𝑎0 log 𝑎0))

for some ̄𝑎𝑛 “between” 𝑎𝑛 and 𝑎0.
2.(a) Let

ℓ∗
𝑛 = 1

𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑖=1

log 𝜎2
𝑡 − 𝑛

𝑛 1𝛼 𝑟 1𝛼𝑛
ℓ𝑛(𝑎)

= 1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑖=1

log 𝜎2
𝑡

ℎ𝑡(𝑎) − 1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑖=1

𝜎2
𝑡

ℎ𝑡(𝑎)𝑧2
𝑡
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so that 𝑎𝑛 is an approximate maximizer of the laƩer where now the approximaƟon error
equals −𝜀𝑛. Now noƟce that, due to the Cesàro mean theorem

1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝑛
∑
𝑖=1

log 𝜎2
𝑡

ℎ𝑡(𝑎) → 0 ℙa.s. locally uniformly

since

sup
𝛼

1
𝑛 ∣

𝑛
∑
𝑖=1

log 𝜎2
𝑡

ℎ𝑡
− log 𝛼0

𝛼 ∣ ≤ 𝐶 1
𝑛 sup

𝛼
∑ ∣𝜎

2
𝑡

ℎ𝑡
− 𝑎0

𝑎 ∣

≤ 𝐶 sup
𝛼

1
𝑛 ∑ ∣𝑎𝜔0 + 𝑎𝑎0𝑦2

𝑡−1 − 𝑎0𝜔0 − 𝑎𝑎0𝑦2
𝑡−1

𝛼ℎ𝑡
∣

= 𝐶|𝑎⋆ − 𝑎0|𝜔0
1
𝑛 ∑ 1

𝜔0 + 𝑎⋆𝑦2
𝑡−1

→ 0 ℙ a.s.

Theorem 1 applies for 1
𝑛 1𝛼 𝑟

1𝛼𝑛
∑𝑛

𝑖=1
𝜎2

𝑡
ℎ𝑡(𝑎)𝑧2

𝑡 since AssumpƟons 1 and 2 hold as 𝜎2
𝑛

ℎ𝑛(𝑎) → 𝑎0𝑎 .

Thereby

ℓ⋆
𝑛(𝑎) ⇝ −𝑆𝛼 (1, 𝑐 (𝑎0

𝑎 )
𝛼

)

locally uniformly. NoƟce that by construcƟon the support of 𝑆𝛼 must be [0, ∞) hence 𝛽 = 1.
Now 𝑆𝛼 (1,𝐶 (𝑎0𝑎 )𝛼) = −𝑎0𝑎 𝑆𝛼(1, 𝐶) and 𝑆𝛼(1, 𝐶) cannot assume negaƟve values. Hence
due to the arg max 𝑎𝑛 ⇝ arg max (−𝑎0𝑎 𝑆𝛼(1, 𝐶)) = arg min (𝑎0𝑎 𝑆𝛼(1, 𝐶)) = 𝑎∗ ℙ a.s.
Hence 𝑎𝑛 is inconsistent unless 𝑎0 = 𝑎⋆.
2.(b) Locally uniform (on compacta) weak convergence of𝑛1− 1𝛼 𝑟− 1𝛼𝑛 ℓ𝑛(𝑎) to the previously

established limit also holds. This implies that the former weakly epiconverges to the laƩer
(see Knight [12]). Both are lower semi-conƟnuous (lsc) ℙ a.s. and the space of lower semi-
conƟnuous funcƟons with the topology of epiconvergence can be metrized as complete and
separable (see again Knight [12]). Suppose now that (𝑎𝑛) is asymptoƟcally Ɵght. Then by
Prokhorov’s Theorem, there exists a random element 𝑎 ∶ 𝑎𝑘𝑛

⇝ 𝑎 along some subsequence.
Due to separability and Skorohod representaƟon there exists a suitable probability space
and random elements ℓ∗

𝑛
𝑑= 𝑛1− 1𝛼 𝑟− 1𝛼𝑛 ℓ𝑛, ℓ∗ 𝑑= 𝑎0𝑎 𝑆𝛼(𝛽, 𝑐𝑎𝛼

0 ), 𝜀∗
𝑛 = 𝑜𝑝 (𝑛− 1−𝛼𝛼 𝑟− 1𝛼𝑛 ) and

ℓ∗
𝑛

𝑝
−→ ℓ∗ ℙ∗ a.s., and 𝜃∗

𝑘𝑛
∶= 𝜀∗

𝑘𝑛
− arg max ℓ∗

𝑘𝑛

𝑑= 𝑎𝑘𝑛
, 𝑎∗ 𝑑= and 𝑎∗

𝑘𝑛
→ 𝑎∗ ℙ a.s. But

due to the arg max theorem of Molchanov 𝑎∗ ∈ arg max ℓ∗. Since 𝑎∗ has a well defined
distribuƟon, there exists a measurable selecƟon say 𝑇 ∶ 𝑎∗ = 𝑇 ∘ arg max ∘ℓ∗. Hence 𝑎 𝑑=
𝑎∗ = 𝑇 (arg max(ℓ∗)) 𝑑= 𝑇 (arg max(ℓ)). Thereby 𝑎 𝑑= 𝑥 for some 𝑥 ∈ arg max ℓ. But
arg max ℓ = ∅. Q.E.D.

PÙÊÊ¥ Ê¥ PÙÊÖÊÝ®ã®ÊÄ 1: Theorem2 implies that 𝛾+𝐻(𝑛𝑟𝑛)
𝑟𝑛

(𝑎𝑛 − 𝑎0) ⇝ 0. Using themean
value theorem (MVT) and the Cesàro mean theorem we can show that
𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝜃𝑛) = 1𝑛 ∑𝑛

𝑡=1
𝑦4

𝑡−1
(𝜔0+𝑎0𝑦𝑡−1)2 + 𝑂(|𝑎𝑛 − 𝑎0|), ℙ a.s. Then by the MVT this implies that
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[𝜕2ℓ𝑛
𝜕𝑎2 ( ̄𝜃𝑛)]−1 = [ 1𝑛 ∑𝑛

𝑡=1
𝑦4

𝑡−1
(𝜔0+𝑎0𝑦𝑡−1)2 ]

−1
+ 𝑂(|𝑎𝑛 − 𝑎0|) ℙ a.s. Then noƟce that

∣ 1𝑛 ∑𝑛
𝑖=1

𝑦2
𝑡−1

𝜔0+𝑎0𝑦2
𝑡−1

− 1𝑎0 ∣ ≤ 𝜔0𝑎0
1𝑛 ∑𝑛

𝑡=1
1

𝜔0+𝑎0𝑦2
𝑡−1

. Furthermore, a few calculaƟons show that

the distance of 1𝑛 ∑𝑛
𝑡=1

𝑦4
𝑡−1

(𝜔0+𝑎0𝑦𝑡−1)2 from its limit is of the same order of magnitude. Then if
we showed that ∑𝑛

𝑡=1
1

𝑦2
𝑡−1

converges ℙ a.s. together with the MVT the result would follow.
But, when 𝔼 log 𝑎0𝑧2

0 > 0 we can use analogous arguments as in the proof of Theorem 2 of
Nelson [16] to show that 𝜎2

𝑡 → ∞ exponenƟally fast ℙ a.s. in the sense that there exists 0 <
𝛾 < 1 such that 𝛾𝑡𝜎2

𝑡 → ∞ ℙ a.s. Furthermore we have that 𝔼 log+ 𝑧−2
0 = −𝔼 log 𝑧2

01{𝑧2
0 ≤

1} < ∞ since𝔼 log 𝑧2
0 = 𝔼 log 𝑧2

01{𝑧2
0 ≤ 1} + 𝔼 log 𝑧2

01{𝑧2
0 > 1} < ∞. Then Proposi-

Ɵon 2.5.1 of Straumann [17] applies to show that ∑𝑛
𝑡=1

1
𝑦2

𝑡−1
converges ℙ a.s. In the case

where 𝔼 log 𝑎0𝑧2
0 = 0 note that due to the law of iterated logarithm we have that ℙ a.s.

lim sup𝑡→∞ exp(−
√

𝑡)𝜎2
𝑡 ≥ 𝜔0 [lim sup𝑡→∞

√
𝑡 (log log 𝑡 1√𝑡 log log 𝑡 ∑ log 𝑎0𝑧2

0 − 1)] =
∞. Also 𝔼 (log+ 𝑧−2

0 )2 = −𝔼 (log 𝑧2
01{𝑧2

0 ≤ 1})2 < ∞ since ∫1
0 (log 𝑥)2 𝑑𝑥 < ∞. Then, by

using a modified version of Lemma 2.5.2 (replacing 𝜌𝑡 by 𝜌
√

𝑡) of Straumann [17] ProposiƟon
2.5.1 therein can be applied to show that ∑𝑛

𝑡=1
1

𝑦2
𝑡−1

converges ℙ a.s. as well. Q.E.D.

Auxiliary Results

L�ÃÃ� 1 1𝑛𝑟𝑛
∑𝑛

𝑖=1 sgn(𝑉𝑖)|𝑉𝑖|𝛼ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 |𝑉𝑖|−1) → sgn(𝑣)|𝑣|𝛼 ℙ a.s.

PÙÊÊ¥: First noƟce that due to AssumpƟon 2 and with no loss of generality in assuming
that 𝑉𝑖 ≠ 0∀𝑖 ∈ ℕ, for any 𝜔 contained in a subset of Ω of ℙ probability 1 we have 0 <
inf𝑖∈ℕ 𝑉𝑖(𝜔) ≤ sup𝑖∈ℕ 𝑉𝑖(𝜔) < ∞ so that 𝑉𝑖(𝜔) is contained in a compact set dependent
on the choice of 𝜔 ∀𝑖 ∈ ℕ. Furthermore, using the fact that 𝑟−1

𝑛 ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 ) → 1, we have
that

1
𝑛

𝑛
∑
𝑖=1

[
ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 |𝑉𝑖|−1)

ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 )
− 1] sgn(𝑉𝑖)|𝑉𝑖|𝛼

≤ sup
1≤𝑖≤𝑛

∣
ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 |𝑉𝑖|−1)

ℎ (𝑛 1𝛼 𝑟 1𝛼𝑛 )
− 1∣ 1

𝑛
𝑛

∑
𝑖=1

|𝑉𝑖|𝛼 → 0 ℙa.s.

by the Uniform Convergence Theorem for slowly varying funcƟons and the Cesàro mean
theorem. The result follows as 1𝑛 ∑𝑛

𝑖=1 sgn(𝑉𝑖)|𝑉𝑖|𝛼 → sgn(𝑣)|𝑣|𝛼 ℙ a.s. by the Cesàromean
theorem. Q.E.D.

L�ÃÃ� 2 For any compact subset 𝐾 of ℝ++, we have that

sup
𝑘∈𝐾

|𝐻 (𝑘𝜆) − 𝐻(𝜆) − ℎ(𝜆) log 𝑘| = 𝑜(ℎ(𝜆))

as 𝜆 → ∞.
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PÙÊÊ¥: We have that 𝐻(𝑘𝜆) − 𝐻(𝜆) = ∫𝑘𝜆
𝜆

𝑥ℎ(𝑥)
1+𝑥2 𝑑𝑥. But ∫𝑘𝜆
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show that the supremum of the laƩer over 𝑘 ∈ 𝐾 is 𝑜(ℎ(𝜆)) by applying the bounded con-
vergence theorem. Next noƟce that ∫𝑘
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so its supremum over 𝑘 ∈ 𝐾 will also be 𝑜(ℎ(𝜆)). Q.E.D.

L�ÃÃ� 3 Suppose that 𝛼 > 1 or 𝛼 = 1 and 𝔼|𝜉1| < ∞ together with assumpƟons 1 and
2. Then 1𝑛 ∑𝑛

𝑖=1 𝜉𝑖𝑉𝑖
𝑝

−→ 𝑣𝔼𝜉1.

PÙÊÊ¥: For the case where 𝛼 > 1 we have that 1𝑛 ∑𝑛
𝑖=1 𝜉𝑖𝑉𝑖 = 1𝑛 ∑𝑛

𝑖=1 (𝜉𝑖 − 𝔼𝜉1) 𝑉𝑖 +
𝔼𝜉1 1𝑛 ∑𝑛

𝑖=1 𝑉𝑖. But by Theorem1,∑𝑛
𝑖=1 (𝜉𝑖 − 𝔼𝜉1) 𝑉𝑖 = 𝑂𝑝 (𝑛 1𝛼 𝑟 1𝛼𝑛 ), thus 1𝑛 ∑𝑛

𝑖=1 (𝜉𝑖 − 𝔼𝜉1) 𝑉𝑖 =
𝑜𝑝(1). Using the Cesàromean theorem the result follows. For the case where𝛼 = 1we have
that 1𝑛 ∑𝑛

𝑖=1 𝜉𝑖𝑉𝑖 = 1𝑛 ∑𝑛
𝑖=1 (𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖 + (𝛾 + 𝐻(𝑛𝑟𝑛)) 1𝑛 ∑𝑛

𝑖=1 𝑉𝑖. Again, by
Theorem1, 1𝑛 ∑𝑛

𝑖=1 (𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖 = 𝑂𝑝(𝑟𝑛). Thus, 1𝑛 ∑𝑛
𝑖=1 (𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖 =

𝑜𝑝(1) since 𝑟𝑛 → 0. Furthermore, by the Cesàro mean theorem together with the fact that
𝛾 + lim𝑛→∞ 𝐻(𝑛𝑟𝑛) = 𝔼𝜉1 the result follows. Q.E.D.
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