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Abstract

We provide su¢ cient conditions for the de�nition and the existence
of strongly consistent indirect estimators when the binding function
is a compact valued correspondence. These are generalizations of the
analogous results in the relevant literature, hence permit a broader
scope of statistical models. We provide simple examples involving
Levy or ergodic conditionally heteroskedastic processes.
KEYWORDS: Indirect estimator, lower semicontinuous function,

random set, normal integrand, upper topology, Fell topology, epi con-
vergence, binding correspondence, cluster points, indirect identi�ca-
tion, linear model, Levy processes, ergodicity, conditional heteroskedas-
ticity, ARCH model, QARCH model.

1 Introduction
Indirect estimators (henceforth IE) are optimization based estimators de�ned
in the context of (semi-) parametric statistical models, associated with the
requirement that their derivation involves strictly more than one optimiza-
tion procedures. They are minimizers of criteria (inversion criterion) that are
functions of an auxiliary estimator, itself derived as an extremum estimator.
The latter minimizes a criterion function (auxiliary criterion) that partially
re�ects the structure of a possibly misspeci�ed auxiliary statistical model.
The inversion criterion depends on the auxiliary estimator, as well as on a
function de�ned on the parameter space of the statistical model that "ap-
proximates" properties of the aforementioned estimator. The latter is usually
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termed binding function. Minimization of the inversion criterion, which usu-
ally has the form of a stochastic norm, essentially inverts the binding function
thereby obtaining the indirect estimator.1

Indirect inference algorithms were initially employed in [28], formally in-
troduced by [18], complemented by [14] and extended by [6]. Furthermore,
applications of these estimators have become increasingly popular. They have
been applied to stochastic volatility and equity return models (e.g. [12], [15],
[1]), exchange rate models (e.g. [4], and [9]), commodity price and storage
models (e.g. [23]), dynamic panel data (e.g. [19]), stochastic di¤erential
equation models (e.g. [13] and [17]), and in ARMA models (e.g. [8], [16],
[10], and [26]).
In the present paper, we are concerned with the issue of the existence of

strongly consistent IE allowing for cases where the aforementioned function
is compact valued (hence possibly multivalued). Therefore we perform our
study in a more general framework than the ones employed in the relevant
literature.
Our generalization is threefold. First, using mild assumptions on the

structure of the aforementioned criterion functions, we are occupied with a
weaker notion of convergence (in comparison to the uniform) of the relevant
sequence of criterion functions, that essentially concerns the almost sure as-
ymptotic behavior of their epigraphs and is suitable for the study of the
asymptotic behavior of their minimizers.
Secondly, we allow for the analogous limit functions to have values on

the extended real line. This also generalizes the set of the statistical models
that are in accordance with these conventions, hence the analogous set of
estimators under this scope.
Finally, we allow for the set of minimizers of the relevant limit functions

to be generally non empty and compact valued and therefore, we are con-
cerned with the issue of the de�nition and the asymptotic behavior of indirect
estimation procedures, when the aforementioned binding function is actually
a compact valued correspondence. This is essentially the representation of
a function de�ned on the parameter space of the statistical model at hand,
with values on the hyperspace of the compact subsets of the parameter space
of the auxiliary model.
The structure of the paper is as follows. We �rst describe brie�y some

general notions that are essentially used in the sequel and formulate our
general set up. Next, we de�ne and study the asymptotic behavior of the

1The set of IE can be enlarged when the binding function itself, in the inversion cri-
terion, is approximated in some relevant sense by a possibly random function de�ned on
the parameter space of the statistical model.
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auxiliary estimator, the binding correspondence and �nally of the IE. We
then exhibit some of our results by a set of simple examples. We conclude
posing some questions for future research.

2 Some General Notions
Fell and Upper Topology

Let (E; �E) denote a general topological space. We identify the space with E
when there is no risk of confusion. We denote with F0 (E) the set of closed
non empty subsets of E. We next describe two topologies on F0 (E) using
�E and the inclusion partial order on 2E.

De�nition D.1 The upper topology TU on F0 (E) is generated by the subbase
consisting of

[�; G] = fz closed : z � Gg ;8G 2 �E, non empty

The upper topology is extremely useful for the analysis of the asymptotic
behavior of sequences of sets of minimizers. If �E is generated by a metric
(say d) w.r.t. which E is compact then TU is hemimetrizable (see Proposition
4.2.2 of [21]) by �u : F0 (E) � F0 (E) ! R [ f+1g, de�ned by �u (A;B) =
inf f" > 0 : B � N" (A)g where N" (A) = fx 2 E : d (x;A) < "g.2 Obviously,
when B � A then �u (A;B) = 0.

Lemma 2.1 �u (A;B) = 0 i� B � A.

Proof. Since A is closed if x 2 B and x =2 A, then d (x;A) = � > 0. But
then B * N�=2 (A) and therefore �u (A;B) > �

2
.

Lemma 2.2 �u is a lower semicontinuous (lsc) real function w.r.t. the �rst
argument.

Proof. If An ! A with respect to the upper topology on F0 (E), then
�u (A;B) � �u (A;An) + �u (An; B), hence lim infn �u (An; B) � �u (A;B).

Lemma 2.3 �u is an upper semicontinuous (usc) real function w.r.t. the
second argument.

2where d (x;A) + inf
y2A

d (x; y) < ".
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Proof. If Bn ! B with respect to the upper topology on F0 (E), then
�u (A;Bn) � �u (A;B) + �u (B;Bn) establishing that lim supn �u (A;Bn) �
�u (A;B).
The second topology on F0 (E), known as the Fell topology, is de�ned by

the use of the following subbase (see [24], paragraph 1.1, and [21], De�nition
4.5.1).

De�nition D.2 The Fell topology, say TF , is the smallest topology on F0 (E)
consisting of both

1. FG = fz closed : z \G 6= ?g, 8G 2 �E, non empty and

2. FK = fz closed : z \K = ?g, 8K � E non empty and compact.

From Theorems 4.5.3-5 of [21] we have that when E is locally compact and
Hausdor¤ then (F0 (E) ; TF ) is locally compact and, zn ! z with respect
to the Fell topology i¤ z = lim infnzn = lim supnzn.3 Hence, in this case
this type of convergence coincides with the Painleve-Kuratowski convergence
(see among others, Appendix B of [24], or De�nition 3.1.4. of [21]). If E
is also separable then the Fell topology is metrizable. If furthermore E is
compact and metrized by d, then the Fell topology is actually metrized by
� (A;B) = max f�u (A;B) ; �l (A;B)g where �l (A;B) + �u (B;A). In this
case we can prove the following lemma.

Lemma 2.4 If E is compact and metrized by d, then �u is a lower semi-
continuous (lsc) real function w.r.t. the product topology on F0 (E)�F0 (E),
when the �rst factor is endowed with TU and the second with TF .

Proof. If (An; Bn) ! (A;B) with respect to the aforementioned product
topology on F0 (E) � F0 (E), then �u (A;B) � �u (A;An) + �u (An; Bn) +
�l (B;Bn) establishing that lim infn �u (An; Bn) � �u (A;B).

Epigraphs of Semicontinuous Functions and Epiconvergence

Consider now the case where E is locally compact and Hausdor¤, let R
denote the two point compacti�cation of R, equipped with the �nal topology
that makes the relevant inclusion continuous, i.e. the extended real line,
and c : E ! R. Call c proper, if it does not assume the value �1 and
its image contains at least a real number, and inf-compact, if its level sets
(Level�a (c) + fx 2 E : c (x) � ag for a 2 R) are compact. Inf-compactness
follows trivially when c is lsc and E is itself compact.

3 lim infnzn is the set comprised of the limit points of any possible sequence (xn) such
that xn 2 zn, and lim supnzn is the one comprised of the analogous cluster points.
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De�nition D.3 The epigraph of c is

epi (c) = f(x; t) 2 E � R : c (x) � tg

Note that despite the fact that the image of c may include non real num-
bers, epi (c) is by de�nition a subset of E � R. If c is lower semicontinuous
(lsc) we have that due to Proposition A.2 of [24], epi (c) 2 F (E � R) with
respect to the obvious product topology. Hence any relevant lsc function can
be identi�ed with its epigraph, which in turn lies in a space endowed with
Fell topology, which in turn implies a notion of convergence.

De�nition D.4 A sequence (cn) of lsc functions epiconverges to c (cn
e! c)

i� epi (cn)! epi (c) with respect to the Fell topology.

It is easy to see that uniform convergence implies epiconvergence. This
notion is particularly suitable for the description of the asymptotic behavior
of the set of minimizers of sequences of lsc functions (see Theorem 3.4 of [24]
along with Theorem 7.1.4 of [21], De�nition D.1 and Proposition D.2 of [24]).

Closed and Compact Valued Correspondences-Random Closed Sets

A closed valued correspondence is by de�nition a representation of an under-
lying function c from a set X to F0 (E) (i.e. a closed valued multifunction
with domain the set X), when this is considered as a relation in X � E.
A correspondence is usually abbreviated as cor :X � E, while the bene-
�t of not directly considering the underlying function, is the fact that we
can consider the graph of cor as the set f(x; y) : y 2 c (x)g which resides in
X �E instead of the set f(x;z) : z = c (x)g inside X � F0 (E). When c (x)
is compact for any x, then the correspondence in obviously termed as com-
pact valued. In this sense, epi (cn) de�ned in the previous paragraph, can
be identi�ed by a closed valued correspondence that is compact valued when
inf-compactness holds. In the following we do not make explicit distinction
between the correspondence and the underlying multifunction.
The Borel algebra on F0 (E) generated by TF will be abbreviated by

B (TF ) and is usually termed E¤ron algebra (see Paragraph 1.1 of [24]). If
(
;J ) is a measurable space, then c is a random closed set i¤ f! 2 
 : c (!) 2 zg 2
J for any z 2 B (TF ). Analogously we abbreviate by B (TU) the Borel al-
gebra on F0 (E) generated by TU and by B (TU � TF ) the Borel algebra on
F0 (E)� F0 (E) generated by the product topology described in lemma 2.4.
Finally denote with B (R) the Borel algebra of the real numbers with respect
to the usual topology.
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Lemma 2.5 If E is compact, separable and metrized by d, then �u is B (R) =B (TU)

B (TF ) measurable.

Proof. The separability of E implies the separability of (F0 (E) ; TU) and
(F0 (E) ; TF ) for if fxn; n = 0; 1; : : :g is dense in E then the countable subset
of F0 (E), ffxng ; n = 0; 1; : : :g intersects any basic open set w.r.t. to either
topology. This implies the separability of F0 (E) � F0 (E) when equipped
with the topology discussed in lemma 2.4. This in turn implies that the
Borel algebra w.r.t. to the product topology on F0 (E) � F0 (E) coincides
with B (TU) 
 B (TF ) by Lemma 1.4.1. of [30]. The rest follows by lemma
2.4 along with the fact that the subbasic sets of the upper topology on R
generate B (R).

3 Assumptions and Main results
General Set Up-Existence of the Auxiliary Estimator

We are now ready to state our framework and describe the underlying statis-
tical problem. Let the triad (
;J ; P ) denote a complete probability space.
Let also (�; d�) and (B; dB) denote two compact separable metric spaces,
and the relevant metric topologies by �� and �B analogously. Let B (�),
B (B) denote the corresponding Borel algebras respectively, and denote with
B
�
R
�
the Borel algebra of the extended real numbers with respect to the

usual topology.
Consider a function cn (!; �; �) : 
 � � � B ! R. In our context cn is

usually of the form qn (yn; �) with qn : Kn � B ! R, for yn : 
 � � ! Kn,
for Kn some appropriate space. qn usually re�ects part of the structure of an
auxiliary model, a statistical model de�ned onKn, with B as its parameter
space (e.g. it can be a likelihood function or a GMM type criterion-see section
4).4 When yn (�; �) is measurable for all �, then the underlying statistical
model is the set fP � y�1n (�; �) ; � 2 �g. These two models need not coincide.
Hence, cn (!; �; �) is usually termed as the auxiliary criterion.
We abbreviate with P a.s. any statement that concerns elements of J

of unit probability. We note that separability and sequential completeness of
� and B and completeness of the underlying probability space enables the
appropriate measurability of inf, sup, argmin etc.

Assumption A.1 Let the following hold:
4Which in general is a correspondence B � P (Kn), with P (Kn) the set of probability

measures on Kn.

6



1. cn is B
�
R
�
=J 
 B (�)
B (�) measurable.

2. cn (!; �; �) : B ! R is lower semicontinuous and proper P a.s., 8� 2 �.

Remark R.1 The joint measurability and the pointwise semicontinuity im-
ply that cn (�; �; �) is a normal integrand (see De�nition 3.5 and Proposition
3.6 of [24]). argminB cn (!; �; �) is non empty and compact due to theorem
1.9 of [27], P a.s. 8� 2 � due to the fact that cn is inf-compact P a.s.
8� 2 �.

We are now ready to de�ne and explore properties of the auxiliary esti-
mator.

De�nition D.5 The auxiliary correspondence �#n (!; �; "n) satis�es

�#n (!; �; "n) = "n- argmin
B
cn (!; �; �)

+
n
� 2 B : cn (!; �; �) � inf

B
cn (!; �; �) + "n

o
where "n is a non-negative random variable de�ned on 
.

Lemma 3.1 Under assumption A.1 �#n (!; �; "n) is B (TF ) =J 
 B (�)-measurable,
hence B (TF ) =J -measurable 8� 2 �, and P a.s. non empty-compact valued
8� 2 �.

Proof. First �#n (!; �; "n) is non empty due to A.1. Second, from separability
of B and the joint measurability of cn due to assumption A.1, the result fol-
lows from Proposition 3.10.(i) of [24] which itself applies due to the fact that
infB cn (!; �) is a random variable due to separability of B and the joint mea-
surability of cn, and Proposition 3.10.(i)) that guarantees compactness and
measurability for a = infB cn (!; �) in the �rst case and a = infB cn (!; �)+"n
in the second. Pointwise measurability then follows.
Obviously �#n (!; �; 0) = argminB cn (!; �; �) P a.s. In the following, de-

pendence on 
 will henceforth be suppressed (where possible) for notational
simplicity. Dependence on B, � and the "optimization error" "n will be
kept.5

5The fundamental selection theorem (Theorem 2.13 of [24]) implies the existence of a
measurable selection, i.e. a B (B) =J 
 B (�)-measurable random element ��n : 
��! R
termed as auxiliary selection, de�ned by

cn (!; �; �
�
n (�)) � inf

B
cn (!; �; �) + "n

We will not use selections to de�ne and explore the subsequent de�nition of the IE since
this would imply stricter conditions for identi�cation.
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Epi-Limits and Existence of a Fell Consistent Auxiliary Correspondence

The following assumption facilitates the investigation of the issue of (pseudo-)
consistency for the auxiliary correspondence. It indicates the almost sure epi-
convergence of the auxiliary criterion to a proper, semicontinuous asymptotic
counterpart. It enables the use of the fact that the argmin correspondence
is upper continuous as a function de�ned on the relevant space of lsc func-
tions. Analogous assumptions have been used for the establishment of strong
consistency of various estimators. See among others [11], [20], [22] and [25].

Assumption A.2 There exists a function c : ��B ! R such that

1. 8� 2 �, cn
e! c P a.s., and

2. c (�; �) is proper 8� 2 �.

Remark R.2 Following [22] the analogous sequential characterization dic-
tates that for any �; �:

1. lim infn!1 cn (!; �; �n) � c (�; �) P a.s., for all �n such that �n ! �,
and

2. lim supn!1 cn (!; �; �n) � c (�; �) P a.s., for some �n such that �n !
�.

It is easy to see that 8� 2 �, c (�; �) : B ! R is lower semicontinuous (see
proposition 7.4.a of [27]). In the case that cn is an integral w.r.t. an empirical
measure of some ergodic random function (say ci, i 2 Z) then the assumed
epiconvergence would follow if for any � there exists a �nite open cover of B,
such the random variable inf�2A c0 (!; �; �) is P -integrable, for any A in the
cover (condition C0 and Theorem 2.3 of [7]). Properness is actually an ad
hoc consideration (see, for example, in [29] Part 1, (ii) in association with
Part 2 of the proof of Theorem 5.3.1, where cn is a quasi likelihood function
and � coincides with B). Inf-compactness follows from the compactness of
�. Hence infB c (�; �) = minB c (�; �) 2 R. Finally, assumptions A.1, A.2
along with theorem 2.3.5 of [24], the separability and sequential completeness
of B and the completeness of the underlying probability space imply that:

1. lim infn!1 cn (!; �; �n (!)) � c (�; �) P a.s., for all measurable �n such
that �n ! � P a.s., and

2. lim supn!1 cn (!; �; �n (!)) � c (�; �) P a.s., for some measurable �n
such that �n ! � P a.s.
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Proposition 3.2 Under assumptions A.1, A.2 the binding correspondence
b (�) + argminB c (�; �) is non empty-compact valued 8� 2 �.

Proof. It follows from R.2.
Both the auxiliary and the binding correspondence, will be used for the

de�nition of the IE. The following result explores their asymptotic relation.
We denote by Ls (�) and Li (�) the sets of the P a.s. cluster and limit points
respectively, of any sequence of sets in F0 (B). Its �rst and last implica-
tions are already known. Its second implication is a partial generalization of
Theorems 7.30, 7.32 of [27] in our setting.

Lemma 3.3 Under assumptions A.1, A.2:

1. for any "n such that "n ! 0 P a.s. then Ls
�
�#n (�; "n)

�
� b (�) P a.s.,

2. there exists a non negative random variable, "�n such that "
�
n ! 0 P

a.s. and Li
�
�#n (�; "

�
n)
�
= b (�) P a.s.,

3. if b (�) is singleton then for any "n such that "n ! 0 P a.s. then
Li
�
�#n (�; "n)

�
= b (�) P a.s.

For the proof of the previous lemma, we will need the following proposi-
tions.

Proposition 3.4 Under assumptions A.1, A.2

lim sup
n
inf
B
cn (�; �) � inf

B
c (�; �) P a.s.

Proof. Consider the family of �-parametrized correspondences epin (!; �) +
epi (cn (!; �; �)). Due to the fact that B is locally compact, epin (!; �) is a
random closed set in the sense of the previous paragraph, i.e. a B (F (B)) =J 
 B (�)-
measurable correspondence. Hence epin (!; �) is an B (F (B)) =J -measurable
correspondence due to the measurability of the relevant projection. Analo-
gously let the epigraph correspondence of c be denoted as epi (�) = epi (c (�; �)).
By de�nition we have that epin (!; �) ! epi (�) in the Fell topology P a.s.
Hence for all ! 2 
1 (�), with P (
1 (�)) = 1, lim infn epin (!; �) � epin (�).
Let a� = infB c (�; �). Also from section 2 we have that for large n, epin (!; �)\
B�(a;+1) 6= ? since B�(a;+1) is open in the relevant product topology.
Hence infB cn (�; �) � infB c (�; �) for all ! 2 
1 (�).
The next result will be used for the proof of 3.3.2-3.
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Proposition 3.5 Under assumptions A.1, A.2 there exists a sequence of
random variables de�ned on 
, say a�n, such that a

�
n ! infB (c (�; �)) P a.s.

and
Li
�
Level�a�n (cn (�; �))

�
� b (�) P a.s.

Proof. Let again a� = infB c (�; �). From the sequential implication of
epiconvergence in remark R.2, we have that for any x 2 b (�), there exists
a measurable xn such that xn ! x P a.s. Obviously for an;x = cn (�; xn)
which is measurable, we have that xn 2 Level�an;x (cn (�; �)). Since b (�)
is compact, it is totally bounded and therefore for any " > 0, there ex-
ists an m (") 2 N and fyi; i = 1; :::;m (")g � b (�), such that the collection
of balls (in B) O

�
yi;

"
2

�
covers b (�). Extract analogous (to the aforemen-

tioned xn) sequences yi;n ! yi P a.s. and de�ne an;yi = cn (�; yi;n) and
n� = min fn : jan;yi � a�j � "; P a.s. for all i = 1; :::;m (qn)g which well de-
�ned due to �niteness and Egoro¤�s theorem, and
a�n = max fan�;yi ; i = 1; :::;m (qn)g for all (n� 1)

� < n � n� which is measur-
able and a�n ! a� P a.s. It follows that for any x 2 b (�), for any " > 0, there
exists an n and a measurable xn 2 Level�a�n (cn (�; �)) such that d (xn; x) < "
P a.s.
Proof of Lemma 3.3. For 1. we have �rst that for any measurable non
negative "n that need not converge to zero if xn 2 �#n (�; "n) measurable,
such that a subsequence xnk ! x P a.s.

c (�; x) � lim inf
n
cn (�; xn) P a.s.

� lim inf
n
cn (�; xn) + "n P a.s.

� lim sup
n
cn (�; xn) + "n P a.s.

� lim sup
n
inf
B
cn (�; xn) + "n P a.s.

� inf
B
c (�; x) + "n P a.s.

where that last inequality follows from proposition 3.4. This establishes that
for any non negative random variable "n

Ls
�
�#n (�; "n)

�
� "n- argmin

B
c (�; �) P a.s.

Now 1. follows from the fact that "-argminB � "0-argminB if " � "0. For
2. notice that from the de�nition of the Fell topology in section 2 for any
" > 0, we have that for large n, epin (!; �) \B � [a� "; a� 2"] = ? P a.s.
since B � [a� "; a� 2"] is compact in the relevant product topology. This
implies that lim infn infB cn (�; �) � a� P a.s. and in conjunction with 3.4
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that infB cn (�; �) ! a P a.s. Then using proposition 3.5 set "�n = a�n �
infB cn (�; �) which is obviously measurable and converges to zero P a.s. 3.
follows from the proof of proposition 3.5 since a�n = an;y where for b (�) = fyg.

Remark R.3 Obviously 3.3.1 is equivalent to �u
�
b (�) ;Ls

�
�#n (�; "n)

��
= 0

P a.s.

Upper Continuity of the Binding Correspondence

The following assumption concerns the behavior of the binding correspon-
dence. It will facilitate both the existence and the strong consistency of the
IE to be de�ned.

Assumption A.3 b is TU=��-continuous.

The following lemma provides with su¢ cient conditions for this to hold.
It essentially strengthens assumption A.2 in that it requires that the relevant
P a.s. epiconvergence is continuous with respect to �.

Lemma 3.6 Suppose that for any �; �, and any �n ! �:

1. lim infn!1 cn (!; �n; �n) � c (�; �) P a.s., for all �n such that �n ! �,
and

2. lim supn!1 cn (!; �n; �n) � c (�; �) P a.s., for some �n such that �n !
� (independent of �n), then

assumption A.3 holds.

Proof. Suppose that DF0 metrizes TF on F0 (B) (see section 2). Then it is
obvious that 3.6 1-2 are equivalent to the requirement that for any �, and any
�n ! �, DF0 (epin (!; �n) ; epi (�)) converges to zero P a.s. Then, for any �,
and any �n ! �, c (�n; �) epiconverges to c (�; �) (DF0 (epi (�n) ; epi (�))! 0),
i.e. c (�; �) is epicontinuous on �. This is due to the following standard argu-
ment: for an arbitrary �, and " > 0, we have that
DF0 (epin (!; �0) ; epi (�)) < "

2
P a.s. for any �0 in some open neighbor-

hood of � due to the assumed form of convergence and Egoro¤�s Theorem.
By the same reasoning DF0 (epin (!; �0) ; epi (�0)) < "

2
P a.s. for any such

�0. The result follows from the fact that epi (�) is independent of 
. This
along with equation 3.1 of Theorem 5.3.4 and proposition Appendix.D.2 of
[24] implies that the composite mapping � ! c (�; �) ! argminB c (�; �) is
TU=��-continuous.
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Remark R.4 3.6.1-2 would obviously be implied if cn (!; �; �) is P a.s.
jointly continuous and converges jointly uniformly P a.s. to c (�; �).6 The
following lemma provides with a set of weaker su¢ cient conditions in the case
that cn is an integral w.r.t. an empirical measure of some ergodic random
function (see also remark R.2). The required joint measurability of cn is not
explicitly described.

Lemma 3.7 Suppose that cn (!; �; �) = 1
n

Pn
i=1 ci (!; �; �), (ci) is ergodic,

and:

1. cn (!; �; �) : ��B ! R is lower semicontinuous P a.s., and there exists
a �nite open cover of ��B, such the random variable inf(�;�)2A c0 (!; �; �)
is P -integrable, for any A in the cover, and

2. for any �, cn (!; �; �) : �! R is P a.s. continuous, and there exists a
countable open cover of �, such the random variable sup�2A jc0 (!; �; �)j
is P -integrable, for any A in the cover, then

assumption A.3 holds.

Proof. It su¢ ces that conditions 3.6.1-2 hold. The �rst follows from the fact
that 3.7.1 implies condition C0 and thereby Theorem 2.3 of [7], which implies
the joint P a.s. epiconvergence of cn to Ec0. 3.7.1 implies condition C 00 and
thereby Theorem 2.5 of [7], which implies the P a.s. uniform convergence of
cn (!; �; �) to Ec0 (�; �) for any �. This implies 3.6.2 for �n = �.

Definition, Existence and Consistency of the Indirect Estimator

We are now ready to de�ne the indirect estimator (IE) and explore the is-
sues of its existence and consistency. Remark R.3 allows us concentrate on
properties of the real function on 
��, �u

�
b (�) ; �#n (�0)

�
for �0 2 �, which

enables the following de�nition. Again an almost surely non-negative ran-
dom variable will assume the role of the "optimization error" in the second
step of the estimation procedure.

De�nition D.6 The indirect correspondence �#n (!; �; "n) satis�es

�#n
�
!; �0; "n; "

#
n

�
= "#n - argmin

�
�u
�
b (�) ; �#n (�0; "n)

�
+

n
�� 2 � : �u

�
b (��) ; �#n (�0; "n)

�
� inf

�
�u
�
b (�) ; �#n (�0; "n)

�
+ "#n

o
where "#n is a non-negative random variable de�ned on 
.

6Since we allow cn and/or c to assume extended real values, the relevant notion of
uniform convergence must also be extended as in de�nition 7.12 of [27].
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We are initially concerned with the question of existence of the IE. We
again suppress the dependence of �n on 
 when there is not a risk of confu-
sion.

Lemma 3.8 Under assumptions A.1 and A.3 �#n is B (TF ) =J -measurable,
P a.s. non empty, compact valued correspondence.

Proof. First, notice that due to 2.5, 3.1 (implied by A.1), A.3 and the facts
that �#n (�0; "n) is independent of � and b (�) is independent of !, we obtain
that �u

�
�#n (�0; "n) ; b (�)

�
is B (R) =B (TF )
 J -measurable. Due to 2.3 and

3.1 �u
�
�#n (�0; "n) ; b (�)

�
is P a.s. lsc and therefore a normal intergrand.

It is also obviously proper hence the result follows from lemma 3.1 where
cn = �u

�
�#n (�0; "n) ; b (�)

�
, when we consider B = � and � = f�0g (the left

hand sides correspond to the notation of the latter lemma).
The fundamental selection theorem (Theorem 2.13 of [24]) would also

enable the de�nition of the IE as a measurable function with values in �.
Having established the existence of the IE, we turn to the issue of consistency.
We need the following assumption that facilitates this investigation.

Assumption A.4 If � 6= �0 ) b (�0)� b (�) 6= ?.

Remark R.5 Notice that this condition is weaker that a condition of the
form "If � 6= �0 ) b (�0) \ b (�) = ?" and stronger that a condition of the
form "If � 6= �0 ) b (�0) 6= b (�)". The latter cannot be used due to the
properties of �u upon which the de�nition of the IE is based. In the case that
the binding correspondence is single valued, these become equivalent.

The main result of the current section follows. It concerns the existence of
strongly consistent IE. Denote with � (�0) the argmin� �u (b (�) ; b (�0)) which
is non empty and compact due to the compactness of �, the properness of
�u and lemma 2.2. Obviously, �0 2 � (�0), while f�0g = � (�0) i� assumption
A.4 holds.

Lemma 3.9 Under assumptions A.1, A.2, A.3, and if "#n ! 0 P a.s. then:

1. �u
�
� (�0) ; �

#
n

�
!; �0; "

�
n; "

#
n

��
! 0 P a.s. where "�n is de�ned in lemma

3.3.2,

2. if b (�0) is singleton then �u
�
� (�0) ; �

#
n

�
!; �0; "n; "

#
n

��
! 0 P a.s. for

any "n ! 0 P a.s.,

if furthermore A.4 holds then

13



1� �
�
f�0g ; �#n

�
!; �0; "

�
n; "

#
n

��
! 0 P a.s. where "�n is de�ned in lemma

3.3.2, and

2� if b (�0) is singleton then �
�
f�0g ; �#n

�
!; �0; "n; "

#
n

��
! 0 P a.s. for

any "n ! 0 P a.s.

Proof. First notice that due to lemma 3.3.2, A.3 and lemma 2.4 we have
that for any � and �n ! �

lim inf
n
�u
�
b (�n) ; �

#
n (�0; "

�
n)
�
� �u (b (�) ; b (�0)) P a.s.

and that for any � and �n = �, due to lemma 2.3

lim sup
n
�u
�
b (�n) ; �

#
n (�0; "

�
n)
�
� �u (b (�) ; b (�0)) P a.s.

hence 1. follows from 3.3.1 for cn = �u
�
b (�n) ; �

#
n (�0; "

�
n)
�
and if we denote

with B (in the notation of this lemma) the � space and with � (in the
notation of this lemma) f�0g. 2. follows in the same manner if we replace
any invocation of 3.3.2 with 3.3.3. Finally, notice that if A.4 holds, then
� (�0) = f�0g establishing 1� and 2� via another use of 3.3.3.

4 Examples
In this section we consider four simple examples that represent some of the
previous results. The �rst concerns the case of a linear semi-parametric
model, the second a model comprised of Levy processes and the �nal two
emerge in the context of conditionally heteroskedastic ones. In any of these,
� is a compact subset of Rp and B a compact subset of Rq. In the second and
the fourth one the binding function is actually single valued (hence a fortiori
compact valued) and 1-1 enabling the direct application of 3.9.2�. The �rst
and second examples include cases in which the IE can be interpreted as
performing "inconsistency" correction to the auxiliary one.

Example Semi - Parametric Linear Model with Linear Auxiliary.
Consider the n� p and n� q dimensional random matrices X (!) and Z (!)
respectively, where n � q � p. Suppose that X0X

n
! MX0X , Z

0Z
n
! MZ0Z ,

Z0X
n

! MZ0X P a.s., where rank (MX0X) = rank (MZ0X) = p and p �
l + rank (MZ0Z) � q. For u (!) is a n� 1 random vector, let the underlying
statistical model be the set of "regressions" Y (!; �) = X (!) �+u (!), � 2 �.
For B a large enough compact and convex subset of Rq and any � 2 B, let
cn (!; �; �) =

1
n
(Y � Z�)0 (Y � Z�), which clearly satis�es assumption A.1

14



due to continuity with respect to � and the compactness of B. Obviously, cn
is constructed by the auxiliary set of regression w.r.t. Z. Lemma 3.1 ensures
the existence of �n which in the light of the previous can be interpreted as
an OLSE in the context of the auxiliary model. Let P : Rq !MZ0ZB be the
(generally non-linear) projection de�ned by the optimization problem

arg min
x2MZ0ZB

kx� yk

for y in Rq. P is well de�ned due to the compactness and the convexity of B
and the linearity and continuity of MZ0Z and continuous. Furthermore, for
any y in the column space of MZ0Z , consider the linear system MZ0Zx = y,
which is always satis�ed by any member of the coset Ky + Hq�l, where
K is a matrix of rank l and Hq�l is a q � l-dimensional subspace of Rq,
which is trivial if and only if l = q whereas K = M�1

Z0Z , and maximal in the
case that l = p. Suppose that B contains the closed ball O (0q; �) for � >
sup�2� kKP (MZ0X� �MZ0u)k which is well de�ned due to the compactness
of � and the continuity of P. Let also MX0u;MZ0u;Mu0u 2 R and assume
that X0u

n
! MX0u, u

0u
n
! Mu0u and Z0u

n
! MZ0u P a.s. The previous imply

the joint uniform P a.s. convergence of cn to

c (�; �) = �0MX0X� � 2�0MZ0X� + �
0MZ0Z� + 2�

0MX0u � 2�0MZ0u +Mu0u

which implies both assumptions A.2, A.3 (via lemma 3.6 and R.4):Notice
that

b (�) = B \ (KP (MZ0X� �MZ0u) +Hq�l)

due to the convexity of c (�; �) w.r.t. � for any � and the de�nition of
B. If P (MZ0X�0 �MZ0u) 6= P (MZ0X� �MZ0u) and KP (MZ0X�0 �MZ0u)�
KP (MZ0X� �MZ0u) =2 Hq�l for any � 6= �0 then assumption A.4 applies.
Hence, lemma 3.9.1� implies the existence of a consistent IE for �0 2 �. In the
special case where X = Z then b (�) =

�
� �M�1

Z0ZMZ0u

	
and lemma 3.9.2�

implies that any IE de�ned by D.6 can be perceived as an "inconsistency
corrector" of the underlying OLSE.�

We know consider the case of the estimation of the drift of a continuous
time cadlag process.

Example The drift of a Levy Process with Bounded Jumps.
LetW denote a standard Wiener process and v a �nite measure on the Borel
algebra of R�f0g, such that v (A) = 0 when A � (�1;�C2)[ (�C1; C1)[
(C2;+1) for 0 < C1 < C2. Obviously v is a Levy measure (see paragraph
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1.2.4 of [2]). For p = 1 consider the stochastic process on R+ de�ned by the
following Levy-Ito decomposition (see Theorem 2.4.16 of [2])

Xt (!) = �t+Wt (!) +

Z
jxj2[C1;C2]

xN (t; dx) (!)

where N denotes the independent to W Poisson random measure on R+ �
([�C2; C1] [ [C1; C2]) the existence of which is established by Theorem 2.3.6
of [2]. Let the underlying statistical model be the set of the previous stochas-
tic processes and for B a large enough compact subset of R and any � 2 B,
let cn (!; �; �) = 1

n

Pn
t=1 (yt � �)

2, where yt = exp (Xt �Xt�1)� 1. This can
be perceived to emerge as an approximate likelihood function of the auxiliary
model that contains the relevant discretizations of the processes that satisfy
the SDE

dyt = �ytdt+ ytdWt

for each � 2 B. Obviously assumption A.1 is satis�ed, due to continuity with
respect to � and the compactness of B. Lemma 3.1 ensures the existence of
�n which in the light of the previous can be interpreted as an (approximate)
MLE in the context of the auxiliary model. Furthermore since����Z
jxj2[C1;C2]

x (N (t; dx)�N (t� 1; dx))
���� �

Z
jxj2[C1;C2]

jxj (N (t; dx)�N (t� 1; dx))

� C2 (N (t; [C1; C2])�N (t� 1; [C1; C2]))

and N (t; [C1; C2])�N (t� 1; [C1; C2])
i:i:d:s Poiss (v ([C1; C2])) independent of

W , we have that

E exp (Xt �Xt�1) = exp

�
� +

1

2

�
C

for
0 < C � exp (�v ([C1; C2]) (1� exp (C2)))

and
E (exp (Xt �Xt�1))

2 = exp (2 (� + 1))C�

for
0 < C� � exp (�v ([C1; C2]) (1� exp (2C2)))

Due to the de�nition of X the process y is i.i.d. and this along with the
compactness of �, and B and the existence of the previous moments imply
the joint uniform P a.s. convergence of cn to

c (�; �) = exp (2 (� + 1))C� � 2 exp
�
� +

1

2

�
C (1 + �) + (1 + �)2
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which implies both assumptions A.2, A.3 (via lemma 3.6 and R.4): If B �
exp

�
�+ 1

2

�
C � 1 then

b (�) =

��
exp

�
� +

1

2

�
C � 1

��
In this case assumption A.4 applies and therefore lemma 3.9.2� implies that
any IE de�ned by D.6 is consistent for any �0 2 �. When v ([C1; C2]) =
0 (and therefore v = 0) whereas C = 1 the IE can be perceived as an
"inconsistency corrector" of the underlying MLE for the estimation of the
drift of a geometric Brownian motion (see for example paragraph 6.1.1 of
[17]).�
For the last pair of examples, let z : 
 ! RZ be an i.i.d. sequence of

random variables, with Ez0 = 0, and Ez20 = 1. Consider a random element
�2 : ��
! (R+)Z, with the product space ��
 equipped with B (�)
J
with �2t (�) independent of (zi)i�t, 8t 2 Z, 8� 2 �. Analogously, de�ne the
random element y : �� 
! (R)Z as

(yt (!) (�))t2Z;�2� =

�
zt (!)

q
�2t (!) (�)

�
t2Z;�2�

Then 8� 2 �, (yt (�))t2Z is called a conditionally heteroskedastic process,
while the random element (yt (!) (�))t2Z;�2� a conditionally heteroskedastic
model. Our examples will solely concern ergodic heteroskedastic models.7

Example IV Estimation in Regressions on Squared ARCH(1) processes.
Let �4 = Ez40 < +1 and 0 < � < 1p

�4
. Suppose that a 2 � = [0; �] and

consider the stochastic di¤erence equation

�2t (a) = 1 + az
2
t�1�

2
t (a)

Due to the fact that �4 > 1 Theorem 5.2.1. of [29] implies that for any
� 2 � the equation admits a unique ergodic solution de�ning the analogous
ARCH (1) process. Consider the random vector Y (a) = (y2t (a))t2f1;:::;ng, and
the n� 2 dimensional random matrices

Z (a) =

0B@ 1 y2�1 (a)
...

...
1 y2n�2 (a)

1CA ; X (a) =
0B@ 1 y20 (a)
...

...
1 y2n�1 (a)

1CA (1)

7The establishment of the ergodicity is initiated by the analogous establishment for�
�2t (�)

�
t2Z 8� 2 �. Su¢ cient conditions for that are described and employed in a variety

of heteroskedastic models in chapter 5 of [29] via Theorem 5.2.1. Then the ergodicity of
(yt (�))t2Z and

�
y2t (�)

�
t2Z 8� 2 � follow from the de�nition of z; y, the previous assump-

tion and Proposition 2.2.1 of [29].
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jointly measurable with respect to J 
 B (�), where n > 2 and ergodic for

any a 2 �. For � =
�
�1
�2

�
2 B = [1; 1 + �] � [��; �], let cn (!; a; �) =

 1

n
Z 0 (a) (Y (a)�X (a) �)



 which clearly satis�es assumption A.1 due to
joint continuity with respect to (a; �) the compactness of B, the joint mea-
surability and the fact that cn is de�ned via composition with a norm.8 This
consideration is motivated from the AR(1) representation of the ARCH (1)
process with respect to the martingale di¤erence noise vt = (z2t � 1)�2t (a)
(see, for example, [5]) and cn can be perceived to emerge from an auxiliary
model that is consisted of the set of "auxiliary" regression functions of Y
on X�, along with the instrumental variables appearing in the columns of
Z where obviously the ith element in any column is clearly orthogonal to
vt for i � t. Lemma 3.1 assures the existence of �n which in the light of
the previous sentence can be interpreted as an IV estimator in the context
of the auxiliary model. Due to the compactness of B, the de�nition of the
ARCH (1) model and the de�nitions of � and �4 we have that

E sup
a;�





 1nZ 0 (a) (Y (a)�X (a) �)






� C1







 

1 1
1��

1
1��

1

(1��)(1��2�4)

!




+ C2






 

1
1��
1+�

(1��)(1��2�4)

!




 < +1
for C1; C2 > 0 which along with (the uniform version of) Birkho¤�s Ergodic
Theorem (see for example [29], Theorem 2.2.1) implies both assumptions A.2,
A.3 (via lemma 3.6 and R.4) for

c (a; �) =





� 1 1
1�a

1
1�a

1
(1�a)(1�a2�4)

��
�1
�2

�
�
� 1

1�a
1+a

(1�a)(1�a2�4)

�




In fact a simple calculation shows that

b (a) =

8<:
��

1
a

��
, a 2 (0; �]

[1; 1 + �]� [��; 0] , a = 0
8For expositional reasons and in the context of the �rst paragraph of section 3, we have

that Kn = (R+)Z � (R+)Z � (R+)Z and yn =

0BBBBBB@

...
...

...
0 0 0

Y (a) Y�1 (a) Y�2 (a)
0 0 0
...

...
...

1CCCCCCA (in block

form) where Y�1 and Y�2 denote the second columns of X and Z respectively. In all the
other examples the analogous representations are not explicitely derived or presented for
reasons of economy of space.
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which clearly implies assumption A.4. Hence Lemma 3.9.2� implies that any
IE de�ned by D.6 is consistent if a0 2 (0; �], and Lemma 3.9.1� implies the
existence of an analogously consistent IE when a0 = 0.�

The �nal example is about an asymmetric heteroskedastic process.

Example �cn is the Quasi-Likelihood Function of an Approximate
to QARCH (1) Model. Let & = E jz0j < 1 suppose that P (z0 = 0) = 0,
and consider for 
 2 � = [��; 0] where � < 2

p
!0 (exp (�E ln jzj)� a0&),

$0; a0 > 0, and $ = $0 +
�2

4a0
, the stochastic di¤erence equation

�2t (
) = $ + a0z
2
t�1�

2
t (
) + 
zt�1�t (
)

For any 
 2 �, the previous represent a well de�ned ergodic QARCH (1)
process, due to the fact that infz (a0z2x+ 
z

p
x) = � 
2

4a0
, which implies the

P a.s. positivity of the volatility process and the subsequent well de�nition
of (yt (
))t2Z, as well as that inft;
 �

2
t (
) � $0 which in turn along with

the bound on �, and Jensen�s inequality, imply that E ln
���a0z20 + 
z0

2
p
$0

��� < 0
which establishes the ergodicity via Theorem 5.2.1. of [29]. Notice that since
exp(�E lnjzj)

&
> 1, a0 can assume the value 1 which in turn implies that in this

model ergodicity is possible even when E�2t (
) = +1. For 
� 2 B = [0; �]
consider the process de�ned by

ht (
; 

�) = $ + a0y

2
t�1 + 


� jyt�1j 1yt�1<0 (2)
P a.s.
= $ + a0y

2
t�1 + 


� jyt�1j 1zt�1<0

ht (
; 

�) is well de�ned due to the de�nition of B and it is ergodic due to the

ergodicity of the QARCH (1) and Proposition 2.1.1. of [29]. Now consider

cn (!; 
; 

�) + 1

n

nX
i=1

li (!; 
; 

�)

li (!; 
; 

�) + � ln y2i (
)

hi (
; 
�)
+

y2i (
)

hi (
; 
�)

�cn can be considered as an approximation of (a monotonic transformation
of) the conditional quasi likelihood function of the auxiliary conditionally
heteroskedastic model de�ned by 2 and B. Also the ergodicity of (cn) for any
(
; 
�) follows from the previous and Proposition 2.1.1. of [29].9 Assumption
A.1 follows readily from the form of cn and the P a.s. continuity with

9In practice cn (!; 
; 
�) is unknown but approximated by an analogous bcn (!; 
; 
�)
19



respect to (
; 
�). Hence �n is well de�ned and can be interpreted as an
approximate QMLE in the context of the auxiliary model. Now, consider an
arbitrary �nite open cover of B and notice that

E inf
A\B

�
� ln $ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

+ z20
$ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

�
� E inf

A\B

�
� ln $ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

�
+ E inf

A\B

�
$ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

�
� �E sup

A\B
ln

$ + a0y
2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

+ E

�
$ + a0y

2
0 + 
y0

$ + a0y20 + � jy0j 1z0<0

�
� �E ln

��
1 +


y0
$ + a0y20

�
1z0<0

�
+ E

��
1 +


y0
$ + a0y20

�
1z0�0

�
> �1

and that

E inf
A\B

�
� ln $ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

+ z20
$ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

�
� �E ln $ + a0y

2
0 + 
y0

$ + a0y20 + � jy0j 1z0<0
+ E

�
$ + a0y

2
0 + 
y0

$ + a0y20

�
� 1� E

�
ln

�
1 +


y0
$ + a0y20

��
1z0�0 + E

�
1 +


y0
$ + a0y20

�
< +1

for A an arbitrary member of the partition. Notice also that �2E ln jzj �
E

$+a0y20+
y0
$+a0y20+


�jy0j1z0<0
+ E

$+a0y20+
y0
$+a0y20+


�jy0j1z0<0
> �1 for all (
; 
�) due to the fact

that

E ln
$ + a0y

2
0 + 
y0

$ + a0y20 + 

� jy0j 1z0<0

� E ln
�
1 +


y0
$ + a0y20

�
> �1

Hence, remark R.2 implies that assumption A.2 holds with c (
; 
�) = �2E ln jzj�
E ln

$+a0y20+
y0
$+a0y20+


�jy0j1z0<0
+ E

$+a0y20+
y0
$+a0y20+


�jy0j1z0<0
. Notice that c (0; 
�) is uniquely

minimized at 
� = 0 (see for example the Part 1. of the proof of Theorem
5.3.1. of [29] to obtain the analogous arguments along with the fact that

$+a0y20
$+a0y20+


�jy0j1z0<0
P a.s.
= 1 i� 
� = 0). When 
 6= 0 then c (
;�
) < c (
; 0)

dependent on non ergodic solutions of the stochastic di¤erence equation that de�nes h
based on arbitrary initial conditions. In this case, due to ergodicity, Proposition 5.2.12
of [29] can be employed in order to ensure that supB jcn (!; �; �)� bcn (!; �; �)j converges
almost surely to zero for any � 2 � (see the �rst part of the proof of Theorem 5.3.1 of [29]),
thereby facilitating the asymptotic analysis of minimizers of bcn (!; �; �) by the analogous
analysis of minimizers of cn (!; �; �).
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due to the fact
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and that when x > 0, then ln (1 + x) < x. Furthermore, using the fact that
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as well as dominated convergence, we have that
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which is zero i� 
� = �
, and
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establishing along with the previous that b (
) = f�
g. This validates si-
multaneously both assumptions A.3 and A.4. Hence Lemma 3.9.2� implies
that any IE de�ned by D.6 is consistent for any 
0 2 [��; 0].�

5 Conclusions
In this paper we have generalized the de�nition of IE and were occupied with
the questions of their existence and strong consistency, allowing for cases
where the binding function is a compact valued correspondence. We have
used conditions that concern the asymptotic behavior of the epigraphs of the
criterion functions involved in the relevant procedures, a relevant notion of
continuity for the correspondence as well as an indirect identi�cation condi-
tion that restricts the behavior of the aforementioned correspondence. These
results are generalizations of the analogous ones in the relevant literature,
hence permit a broader scope of statistical models.
We leave for future research the questions of the de�nition and consistency

of IE when the binding correspondence can only be appropriately approxi-
mated. Consider for example the case where b (�) is replaced byE

�
�#n (�; "n)

�
in de�nition D.6 where the latter is interpreted as some sort of integral of �#n
(see for example [3]) or by some stochastic approximation of it. The same
holds for the issues of the establishment of the rates of convergence, and the
asymptotic distribution of the IE in this general framework.
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