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Abstract

This paper suggests an empirically attractive Gaussian dynamic term structure model to retrieve

estimates of real interest rates and in�ation expectations from the nominal term structure of interest

rates which are net of in�ation risk premium e¤ects. The paper shows that this model is consistent with

the data and that time-variation of in�ation risk premium and real interest rates can explain the puzzling

behavior of the spread between long and short-term nominal interest rates to forecast changes in in�ation

rates, especially over short-term horizons. The estimates of in�ation risk premium e¤ects retrieved by

the model tend to be negative and signi�cant, which implies that investors in the bond market require

less compensation for holding nominal bonds compared to in�ation-indexed bonds. This is more evident

during the recent �nancial crisis.
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1 Introduction

There is recently growing interest in the literature in retrieving market expectations about in�ation and

in�ation risk premium based on the term structure of nominal and real interest rates (see, e.g., Christensen,

Lopez and Rudebusch (2010), D�Amico, Kim and Wei (2010), Grishchenko and Huang (2012)) or in�ation

swap rates (see e.g., Haubrich, Pennacchi and Ritchken (2012)). The real interest rates are obtained from

in�ation-indexed bonds, such as the treasury in�ation protected securities (TIPS) and/or in�ation swap rates.

Since in�ation-indexed bonds are available for long-term maturities (i.e., �ve years, or longer) and data on

in�ation swap rates start from 2003, the above studies are focused on retrieving in�ation expectations and

in�ation risk premia from term structure data over long-term horizons. Thus, little is known about market�s

in�ation expectations and risk premium e¤ects over short-term horizons (i.e., up to one-year ahead), which is

of great interest for monetary policy authorities on forecasting in�ation, accurately. Furthermore, estimates

of in�ation expectations obtained from in�ation-indexed bond markets are not net of the in�ation risk premia

e¤ects.

To provide estimates of expected future in�ation rates and in�ation risk premium e¤ects, especially over

short-term horizons, in this paper we estimate an arbitrage-free, a¢ ne Gaussian dynamic term structure

model (GDTSM) based on nominal interest rates, real consumption growth and in�ation rate. Our model

enables us to retrieve estimates for the real term structure of interest rates by �tting the GDTSM into nominal

term structure and real consumption data, simultaneously. Exploring information from real consumption

data can help in better capturing the dynamics of the real term structure of interest rates (see, e.g., Berardi

and Torous (2005)). As in the empirical literature (see, e.g., Litterman and Scheinkman (1991)) and, more

recently, Argyropoulos and Tzavalis (2012), our a¢ ne GDTSM assumes that nominal interest rates are

spanned by three common factors. Two of them are unobserved and are assumed that also span the real

term structure of interest rates and real consumption growth. The third factor, which spans the nominal

term structure, is taken to be the current in�ation rate, which is an observed variable. These assumptions

are often made in the empirical literature of the term structure (see Ang and Piazzesi (2003), Dewachter

and Lyrio (2006), Ang, Bekaert and Wei (2008)). Although there is little macroeconomic structure in our

model1 , we specify our factor dynamics in a general way which allows for feedback and/or contemporaneous

1Models with more structural macroeconomic speci�cation in the literature are found in Hordahl, Tristani and Vestin (2006)

, Rudebusch and Wu (2008), among others. Also, standard new keynesian macro-�nance models which encompass �nancial

and macro variables can be found in Hordahl and Tristani (2012).
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correlation e¤ects between in�ation and real interest rates. These speci�cations are in line with those assumed

by Diebold, Rudebusch and Aruoba (2006) and Christensen et al. (2010).

To retrieve estimates of the two unobserved factors spanning the nominal and real term structure of

interest rates, we rely on the approach of Pearson and Sun (1994). According to this, a number of zero-

coupon (discount) interest rates are used as instruments to obtain the unobserved factors. This can be done

by inverting the pricing relationship of zero-coupon bonds implied by the GDTSM. However, this approach

relies on the assumption that these zero-coupon bond instruments are priced without measurement errors,

which may not be true in practice. To overcome this problem, instead of observed values of interest rates,

we suggest employing their projected values on principal component factors spanning the term structure of

interest rates, across a very broad set of maturity intervals (see Argyropoulos and Tzavalis (2013)). Since it is

based on a very large set of di¤erent maturity interest rates, principal component (PC) analysis can provide

term structure factors which constitute well diversi�ed portfolios of interest rates (see also Joslin, Singleton

and Zhu (2011)). These can diminish the e¤ects of interest rate measurement errors on the estimates of the

unobserved factors of the nominal or real term structure of interest rates, considered by our model.

The results of the paper lead to a number of interesting conclusions. First, they show that our model can

provide estimates of real interest rates and expected in�ation rates which are very close to those provided in

the literature based on survey data and/or in�ation indexed bonds. Second, they indicate that in�ation risk

premia tend to be negative and more volatile over short-term horizons, compared to long-term ones. This

is more evident during the recent �nancial crisis, where the magnitude of in�ation risk premium is found to

considerably increase. These results challenge empirical approaches based on the di¤erence between nominal

and real yields (implied by in�ation-indexed bonds) to retrieve market expectations about future in�ation

rates. These expectations are not net of in�ation risk premia e¤ects. The negative sign of the in�ation risk

premium implies that investors would prefer to hold nominal bonds rather than in�ation-indexed bonds.

This can be attributed to the fact that the latter can be thought of as a more liquid category of assets than

the former one, especially during �nancial crisis.

Another interesting conclusion that can be drawn from the results of the paper is that, as the maturity

horizon increases, the volatility of in�ation risk premium to decline, considerably. A similar conclusion can

be drawn for the volatility of real interest rates, too. These results can explain the failure of the term spread

between nominal interest rates to forecast future changes in in�ation rates over short-term horizons, noticed

by many studies in the literature (see, e.g., Mishkin (1990), and Tzavalis and Wickens (1996)). By adjusting
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this term spread for time-varying real interest rates and in�ation risk premium e¤ects, the paper provides

clear cut evidence that we can successfully forecast future in�ation rates from the nominal term structure of

interest rates, as is predicted by the expectation hypothesis.

The paper is organized as follows. Section 2 presents the GDTSM and provides the closed form solution

of in�ation risk premia, implied by this model. In Section 3, we �t the model into the data and present

estimates of its parameters, as well as real interest rates, in�ation expectations and in�ation risk premia

e¤ects from the data. This section also examines if the nominal term structure can successfully forecast

future in�ation rates, after being adjusted for real interest rates and in�ation risk premium e¤ects. Finally,

Section 4 concludes the paper.

2 Model setup

2.1 Assumptions and basic relationships

In this section, we present the main assumptions and formulas of the Gaussian dynamic term structure model

(GDTSM) used in our analysis.

Consider that bond prices and interest rates in the economy are driven by K-state (unobserved) variables

at time t, denoted as xit; stacked into a K�dimension column vector Xt. These variables obey the following

uncorrelated Gaussian vector processes:2

dXt = k(� �Xt)dt+�dWt, (1)

where Wt denotes a K�dimensional Wiener process, k and � are (K �K)- dimension matrices of the mean

reversion speed and volatility and � is a K�dimensional vector of the long-run means of state variables xit.

In this economy, real consumption and price levels, denoted as Ct and Pt, respectively, obey the following

Gaussian processes:3

dCt
Ct

= #tdt+�cdWt (2)

and

dPt
Pt

= �etdt+�P dWt, (3)

where #t is the drift of the growth rate of real consumption and �t is the instantaneous expected in�ation

rate. In equilibrium, #t equals the instantaneous real interest rate, denoted as r
�
t . This is the return of a

2See also Vasicek (1977), Dai and Singleton (2002), Ang and Piazessi (2003), Ahn (2004), Berardi and Torous (2005).
3See, e.g., Boudoukh (1993), Veronesi (2000), Bansal and Yaron (2004), Berardi and Torous (2005), Berardi (2009).
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real bond paying one unit of consumption.4 The instantaneous real interest rate r�t and in�ation rate �
e
t are

both a¢ ne in the state variables, i.e.,

r�t = ��0 + �
�0
1 Xt (4)

and

�et = ��0 + �
�0
1 Xt, (5)

where ��0 and �
�
0 are scalars, and �

�
1 and �

�
1 are K�dimension column vectors of loading coe¢ cients of state

variables xit on r�t and �
e
t , respectively. The expected in�ation and real consumption growth rates from

current period t to future period t+ � , are also a¢ ne in state variables xit. These can be written as follows:5

Et [��Pt+� ] = g0(�) + g1(�)
0Xit (6)

and

Et [��Ct+� ] =  0(�) +  1(�)
0Xit (7)

where Et [��Pt+� ] = Et[ln(Pt+�=Pt)], Et [��Ct+� ] = Et[ln(Ct+�=Ct)], g0(�) and  0(�) are scalars, and

g1(�) and  (�) are K�dimension column vectors de�ned as follows:

g1(�) = (I � e�k
0� )(k0)�1��1 and  1(�) = (I � e�k

0� )(k0)�1��1:

In the above economy, the current, t-time price of a real bond, denoted as B�t (�); paying one unit of

consumption in future period t + � can be derived by the conditional expectation of the marginal rate of

substitution between periods t and t+ � , i.e.,

B�t (�) = Et

�
mt+�

mt

�
; (8)

where mt denotes the instantaneous stochastic discount factor (or pricing kernel) of one unit of real con-

sumption. mt, is assumed that obeys the following stochastic process:

dmt

mt
= �r�t dt� ��0t dWt;

where ��t is a (K�1) column vector of risk pricing functions associated with the innovations of each factor xit,

for all i. Under the assumptions of the vector of stochastic process Xt (see (1)), the conditional expectation

of dmt

mt
at time t, is given as Et

�
dmt

mt

�
= �r�t dt.

4See, e.g., Lucas (1978) and Veronesi (2000).
5See, e.g., Risa (2001), Berardi and Torous (2005).

5



The current price of a nominal bond with maturity interval � , denoted Bt(�); paying one dollar in period

t+ � is given as

Bt(�) = Et

�
mt+�

mt

Pt
Pt+�

�
= Et

�
Mt+�

Mt

�
; (9)

whereMt is the continuous time stochastic discount factor in nominal terms. Since real bonds can be thought

as nominal bonds which pay realized in�ation upon their maturity date, the real and nominal discount factors

mt and Mt, respectively, are linked through the following relationship:

Mt = mt=Pt.

Stochastic discount factor Mt is assumed that obeys the following Gaussian process:

dMt

Mt

= �rtdt� �0tdWt, (10)

where rt is the instantaneous nominal interest rate and �t is a K-dimension column vector consisting of the

risk pricing functions associated with state variables xit, for all i. As r�t , nominal rate rt is a¢ ne to state

variables xit, i.e.,

rt = �0 + �
0

1Xt (11)

where �0 is a scalar and �1 is a K-dimension column vector of loading coe¢ cients. Since the risk pricing

functions, collected in �t, evaluate K� independent sources of risk associated with state variables xit,

following Du¤ee (2002) we assume that �t is also a¢ ne in Xt, i.e.,

�t = �
�1 (�0 + �1X

0
t) , (12)

where �0 is a K-dimension column vector of scalars and �1 is a (K � K)-dimension diagonal matrix of

loading coe¢ cients, with elements �1;ii. The above assumptions of risk pricing functions imply that, under

risk neutral measure Q, the risk neutral dynamics of state vector Xt can be written as follows:

dXt = kQ(�Q �Xt)dt+�dW
Q
t , (13)

where kQ = k + �1 and �
Q = kQ

�1
(k� � �0).

Substituting (10), (11) and (12) into (9), and assuming that nominal bonds prices Bt(�) are exponentially

a¢ ne to vector of state variables xit, we can derive the following closed form solution of Bt(�):
6

Bt(�) = e�A(�)�D(�)
0Xt ; (14)

6See, e.g., Dai and Singleton (2002) and Fisher (2004).
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where A(�) is a scalar function and D(�) is a K-dimension column vector, de�ned as D(�) = (D1(�),

D2(�),..., DK(�))
0. This collects the loading coe¢ cients of factors xit on bond pricing formula (14). From

the last formula, we can obtain the corresponding pricing formula of nominal discount (zero-coupon) interest

rates Rt(�), with maturity interval � , as follows:

Rt(�) = (1=�) [A(�) +D(�)
0Xt] , (15)

de�ned as the nominal term structure of interest rates. Following similar steps to the above, we can derive

a pricing formula of real discount interest rates R�t (�), with maturity interval � , i.e.,

R�t (�) = (1=�) [a(�) + d(�)
0Xt] , (16)

referred to as real term structure of interest rates. Note that, in practice, the dimension of the vector of

state variables xit spanning real interest rates can be reduced by one, or a higher number, of variables, if

one assumes that real interest rates are spanned by a smaller number of factors than nominal interest rates.

The same is true for instantaneous real rate r�t . This is an empirical matter (see, e.g., Dewachter and Lyrio

(2006), Argyropoulos and Tzavalis (2012), or our empirical analysis in Section 3).

Closed form solutions of value functions A(�), D(�) and a(�), d(�) can be obtained by solving a set of

ordinary di¤erential equations under no arbitrage pro�table conditions (see Du¢ e and Kan (1996)). For our

Gaussian dynamic term structure model, described above, these solutions for the K-dimension vector D(�)

are given as follows:7

D(�) =
�
I � e�k

Q0�
� �
kQ0
��1

�1. (17)

These impose a set of cross-section restrictions on the loading coe¢ cients of xit on interest rates Rt(�), given

by relationship (15). Analogous to the above are the functional forms of the vector of loading coe¢ cients

d(�), for the real interest rates relationship (16).

The GDTSM, described above, enables us to derive an analytic solution for the expected excess holding

period return of a � -period to maturity discount bond over the short-term interest rate (here, instantaneous

rate rt). This return is referred to as term premium (see, e.g., Tzavalis and Wickens (1997), Bolder (2001)

and Du¤ee (2002)) and is given as follows:

Et [ht+1(�)� rt] = �D(�)0��t (18)

= �D(�)0�0 + �(�)0Xt, using (12), (19)

7See Risa (2001), Dai and Singleton (2002), Kim and Orphanides (2012).
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where �(�)0 = �D(�)0�1 and ht+1(�) constitutes the one-period return of buying a nominal discount bond at

time t and selling it one period after. To calculate return ht+1(�) in discrete-time, we can assume continuously

compounded interest rates, implying Rt(�) = �(1=�) logBt(�). Then, ht+1(�)�rt can be written as follows:

hprt+1(�) � ht+1(�)� rt = log
�
Bt+1(� � 1)

Bt(�)

�
� rt = �(� � 1)

�
Rt+1(� � 1)

�
+ �Rt(�)� rt. (20)

As noted by Argyropoulos and Tzavalis (2013), joint estimation of relationship (18) and interest rates formula

(15) helps to better identify from the data the mean reversion and price of risk parameters of the model,

collected in matrices k and �1, respectively. This happens because expected excess holding period returns

Et [ht+1(�)� rt] are linear in �1, as shown by (18).

2.2 The �-period Fisher equation and in�ation risk premia

Based on the relationships presented in the previous section, in this section we will derive the relationship

between nominal interest rates Rt(�), real interest rates R�t (�) and expected in�ation � -periods ahead, for

all maturity intervals � . This relationship is referred in the literature as � -period Fisher equation. In our

framework, it will be used to obtain an analytic relationship of in�ation risk premium in terms of state

variables xit underlying nominal and real term structures of interest rates. This can be proved very useful in

practice, as it can be employed to distinguish in�ation expectations from in�ation risk premium e¤ects. This

can not be done based on nominal interest rates and real interest rates implied by in�ation-indexed bonds.

The latter imply crude estimates of in�ation expectations, which are not net of in�ation risk premium e¤ects.

The � -Fisher equation can be derived by using equations (8) and (9). This implies the following relation-

ship between nominal and real bond prices:8

Bt(�) = Et

�
mt+�

mt

Pt
Pt+�

�
= Et

�
mt+�

mt

�
� Et

�
Pt
Pt+�

�
+ cov

�
mt+�

mt

;
Pt
Pt+�

�

= B�t (�)� Et
�

Pt
Pt+�

�
�

0@1 + cov
�
mt+�

mt
;
Pt
Pt+�

�
Et

�
mt+�

mt

�
� Et

�
Pt
Pt+�

�
1A

The last relationship can be written in a more compact form as

Bt(�) = B�t (�)Et(Pt=Pt+� )IPt(�), (21)

8See, e.g., Cochrane (2001), Kim and Wright (2005), Berardi (2009), Christensen et al (2010), D�Amico et al (2010).
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where

IPt(�) � 1 +
cov

�
mt+�=mt;Pt=Pt+�

�
Et
�
mt+�=mt

�
Et(Pt=Pt+� )

(22)

gives the de�nition of in�ation risk premium IPt(�), over maturity interval � . Taking logarithms of the last

relationship and multiplying by �(1=�) gives the � -period Fisher equation:9

Rt(�) = R�t (�) + �
e
t (�) + }t(�), (23)

where �et (�) � (1=�)Et [ln(��Pt+� )] = (1=�)Et ln
�
Pt+�=Pt

�
is the expected in�ation rate, at time t, for

� -periods ahead and }t(�) = �(1=�) ln (IPt) re�ects in�ation risk premium e¤ects.

Using relationships (15), (16) and (6), equation (23) implies the following closed form solution of in�ation

risk premium e¤ects:

}t(�) = (1=�) [A(�) +D(�)
0Xt]� (1=�) [a(�) + d(�)0Xt]� (1=�)[g0(�) + g1(�)0Xt]. (24)

This is a¢ ne to vector of state variables Xt, where a(�) and d(�) take analogous functional forms to A(�)

and D(�), respectively (see 17). Finally, from equations (23) and (24) it can be clearly seen that the break-

even-in�ation (BEI) rate, de�ned in the literature as the di¤erence between nominal and real rates, i.e.,

BEI(�) � Rt(�) � R�t (�) = �et (�) + }t(�), provides estimates of in�ation expectations of the bond market

which are not net of in�ation risk premium e¤ects.

3 Empirical analysis

In this section, we estimate the GDTSM presented in the previous section and retrieve in�ation expectations

from the nominal term structure of interest rates, Rt(�), adjusted for in�ation risk premium e¤ects. Our

analysis is organized as follows. First, we describe our data and carry out principal component (PC) analysis

to estimate the unknown common factors, denoted as pcit, spanning Rt(�), for all � . This analysis will also

determine the maximum number of state variables xit underlying Rt(�), for all � . This happens because

principal component factors pcit constitute portfolios of yields, driven by variables xit. Next, we present

e¢ cient unit root tests for Rt(�) to examine if these series contain a unit root in their autoregressive

component. These tests are crucial in setting up the appropriate econometric framework of estimating

our GDTSM from the data. Third, we estimate and test the model based on a rich set of data, which

9Note that in our analysis, we assume that Jensen�s inequality term �(1=�)[ln(Et(Pt=Pt+� )�Et(ln(Pt=Pt+� ))] is negligible

(see Buraschi and Jiltsov (2005), D�Amico et al (2010), inter alia).
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consists of nominal interest rates, real consumption growth rate, in�ation rate and excess holding period

returns. To retrieve estimates of unobserved state variables xit, underlying Rt(�), we modify Pearson�s

and Sun (1994) approach, denoted as P-S. According to this approach, estimates of xit are retrieved from

observed values of Rt(�), or transformations of them like term spread Rt(�)� rt, by inverting the discount

(zero-bond) interest rates relationship (15), implied by the GDTSM. Our modi�cation of this approach is

focused on minimizing the e¤ects of possible measurement errors in nominal interest rates Rt(�) on the

retrieved estimates of xit. This is done by inverting relationship (15) based on projected values of Rt(�), or

Rt(�) � rt, on principal component factors pcit. The latter constitute well diversi�ed portfolios of interest

rates (yields), as mentioned above, which diversify away measurement errors in Rt(�) on the estimates of

xit (see Argyropoulos and Tzavalis (2013)). Finally, our analysis compares the estimates of the real interest

rates and in�ation expectations obtained by our model to those implied by in�ation-indexed bonds and

survey data. This part of empirical work is focused on examining how important are in�ation risk premium

e¤ects in forecasting future in�ation rates over short and long-term horizons.

3.1 Data

Our data consists of discount (zero-coupon) interest rates of the US economy, calculated by zero coupon

or coupon-bearing bonds.10 These series are of monthly frequency and cover the period from 1997:7 to

2009:10. They span a very large cross-section set of di¤erent maturity intervals � , from one month to �ve

years (60 months). In�ation rate is calculated as the seasonally adjusted 12-month percentage change of

Consumer Price Index for All Urban Consumers (CPI-U), as is often assumed when pricing in�ation-indexed

bonds, known as TIPS (Treasury in�ation protected securities). The real consumption series Ct, used in

our analysis, is calculated based on the seasonally adjusted annual real personal consumption expenditures.

This series is taken from the federal reserve economic data archive (FRED, see code PCE96).

3.1.1 Principal component (PC) analysis

Our PC analysis is based on a large set of di¤erent maturity nominal interest rates Rt(�), ranging from 1 to

60 months maturity intervals. The results of our PC analysis are presented in Table 1. Table 2 presents some

descriptive statistics of the estimates of principal component factors pcit, obtained by our analysis. These

include correlation coe¢ cients of them with the long-term 5-years interest rate, de�ned as z1t � Rt(60), and

10They are obtained from the data archive of J. Huston McCulloch, http://www.econ.ohio-state.edu/jhm/ts/ts.html
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the term spread between this rate and the short-term one, de�ned as z2t � Rt(60)� rt. The latter is found

to be closely correlated with the second principal component factor spanning the nominal term structure,

referred to as slope factor (see, e.g., Ang and Piazzesi (2003), or bellow).

Table 1: Number of factors pcit 1 2 3

% variation explained in �Rt(�) 93.20 99.17 99.99
% variation explained in Rt(�) 98.48 99.95 99.99

Notes: The table presents the percentage (%) of the total variation of nominal rates Rt(�) explained by the

number of principal component factors pcit, for i ={1,2,3}. These factors are retrieved by PC analysis based on a

set of N=60 nominal rates, ranging from 1 to 60 months maturity intervals.

The results of Table 1 clearly indicate that three principal components pcit, for i = f1; 2; 3g; explain

99.99% of the total variation in the levels (or �rst di¤erences) of the nominal term structure of interest

rates Rt(�), for all � . The results of our PC analysis are consistent with those reported by Litterman and

Scheinkman (1991) and Bliss (1997). The �rst principal component factor, denoted as pc1t, explains the

largest part of the total variation in nominal rates Rt(�), i.e., 98.48%. This can be also con�rmed by the

variance and minimum (min) and maximum (max) values of this factor, reported in Table 2, which are

the biggest ones, in term of magnitude, among the three principal component factors. This factor is often

interpreted as level factor, as it can explain parallel shifts in Rt(�), across all maturity intervals � . Together

with the second principal component factor, pc2t, they explain the 99.95% of this variation. The remaining

percentage, which is actually, very small is explained by the third principal component factor pc3t. The

second and third principal component factors are referred in the literature as slope and curvature factors, as

they determine the slope (or term spread Rt(�) � rt) of the nominal term structure curve and its changes,

respectively. It is interesting to note at this point that principal component factors pcit do not correspond

one-to-one to state variables xit, underlying our GDTSM, for all i. This can be justi�ed from interest rates

relationship (15), which imply that Rt(�) and, hence, pcit constitute linear transformations of xit, for all i.

It can be also con�rmed later on by the estimates of xit, obtained by �tting our GDTSM into our data.

The results of Table 2 indicate that the �rst two principal component factors pc1t and pc2t are very

highly correlated with observed variables z1t and z2t, namely Rt(60) and Rt(60) � rt, respectively. Thus,

they can capture most of the time-variation of pc1t and pc2t. These results indicate that z1t and z2t should

be employed as the right choice of interest rates variables (instruments) in obtaining estimates of unobserved

state variables xit from our data, exploiting interest rates pricing relationship (15) and applying our extension

of P-S methodology, described before.
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Table 2: Summary statistics of principal component factors pcit
pc1t pc2t pc3t

Mean 0.00 0.00 0.00
Variance 152.14 2.28 0.25
Min -22.87 -3.07 -0.52
Max 21.92 5.38 1.70

Correlation Coe¢ cients
z1t 0.97 0.23 0.07
z2t -0.80 0.70 0.04

Notes: The table presents summary statistics of principal component factors pcit. Max stands for the maxi-

mum value of pcit, while Min. for the minimum. Variables z1t and z2t are de�ned as follows: z1t� Rt(60) and

z2t� Rt(60)� rt, where rt is the one-month interest rate.

3.1.2 Unit root tests

To test for a unit root in the level of nominal interest rates Rt(�), we carry out a second generation ADF

unit root test, known as e¢ cient ADF (E-ADF) test (see, e.g., Elliot, Rothenberg and Stock (1996) and Ng

and Perron (2001)). This test is designed to have maximum power against stationary alternatives to unit

root hypothesis which are local to unity. Thus, it can improve the power performance of the standard ADF

statistic, often used in practice to test for a unit root in Rt(�):

The values of E-ADF unit root test statistic are reported in Table 3. This is done for interest rates Rt(�),

with maturity intervals � ={1, 3, 6, 12, 24, 36, 48, 60} months. Note that, in addition to E-ADF, the table

also presents values of PT unit root test statistic, suggested by Elliott et al. (1996) as alternative to E-ADF.

To capture a possible linear deterministic trend in the levels of Rt(�), occurred during our sample, both

E-ADF and PT statistics assume that the vector of deterministic components Dt employed to detrended

series Rt(�) contains also a deterministic trend.

Table 3: E¢ cient unit root tests for interest rates Rt(�)

� : 1 3 6 12 24 36 48 60
� 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
E-ADF -2.13 -2.12 -2.10 -2.26 -2.21 -2.11 -2.09 -2.08
PT 4.95* 5.04* 5.19* 3.53** 3.84** 4.69* 5.13* 5.11*

Notes: The table presents unit root tests for interest rates Rt(�), across di¤erent maturity intervals � . � denotes

the autoregressive coe¢ cient of the auxiliary regression, employed to carry out the tests. Standard errors are in

parentheses. E-ADF and PT are the e¢ cient unit root test statistics suggested by Elliott et al. (1996). Critical

values of these test statistics are provided by Elliott et al. (1996). (*) and (**) mean signi�cance at 5% and 1%

levels, respectively.
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The results of Table 3 clearly indicate that, despite the fact that the values of the autoregressive coe¢ -

cients � of the auxiliary regressions employed to carry out the tests are found to be very close to unity, the

unit root hypothesis can not be rejected against its stationary alternative, for all Rt(�) considered. This is

true at 5%, or 1% signi�cance levels. The estimates of the autoregressive coe¢ cient � reported in the table

indicate that interest rates Rt(�) exhibit a very fast mean reversion towards their long-run mean, especially

those of shorter maturity intervals (i.e., 1; 3 and 6 months). These results indicate that Rt(�) constitute

stationary series. Thus, standard asymptotic theory can be applied to conduct inference on the parameters

of our GDTSM, presented in Section 2.

3.2 Econometric speci�cation and estimation of the GDTSM

To estimate the GDTSM presented in Section2, we make the following assumptions, also made in the

literature (see introduction). First, given the results of our PC analysis, we assume that the number of

state variables xit underlying our model is K = 3. Second, we assume that the �rst two of these two state

variables, i.e., x1t and x2t, jointly span nominal interest rates Rt(�), for all � , and real consumption growth

rate, de�ned as �ct+1 � log(Ct+1=Ct). These two factors are collected in the 2-dimension column vector

X�
t = (x1t; x2t)

0. As in Ang and Piazzesi (2003) and Diebold et al. (2006), the third state variable x3t

will be taken to be in�ation rate �t, which is an observed variable. Thus, the vector of state variables

Xt is speci�ed as follows: Xt � (X�
t ; �t)

0. This speci�cation of Xt allows us to capture any feedback

and/or contemporaneous e¤ects between the vector of unobserved variables X�
t = (x1t,x2t)

0, determining

real consumption growth, and in�ation rate �t. It can thus provide short-run forecasts of future in�ation

rate �t, without assuming othogonality between real and nominal variables. Finally, we assume that the

loading coe¢ cients of x1t and x2t on real and nominal short-term interest rates r�t and rt are the same, for

the �rst two state variables. That is, we have ��11 = �11 and �
�
12 = �12, while �13 is the loading coe¢ cient of

the in�ation factor �t.

The system of equations employed to estimate the GDTSM is based on the following relationships of

Section 2: (1), (6), (7), (15) and (18). Below, we write these relationships in regression form as follows:

�Xt+1 = const+ (�� I)Xt + !t+1 (25)

�Rt+1(�) = const+D(�)0Et(�Xt+1) + et+1(�) (26)

�ct+1 = const+  1(�)
0X�

t + �t+1, and (27)

13



hprt+1(�) = const+ �(�)0Xt + &t+1(�), (28)

where I is the identity matrix of dimension (3� 3),

�Xt+1 �

24 �x1t+1
�x2t+1
��t+1

35 and � �

24 �11 �12 �13
�21 �22 �23
�31 �32 �33

35 ,
with diagonal elements de�ned in terms of continuous-time mean-reversion parameters as �ii = e�ki�t, for

all i, and !t+1, et+1(�), �t+1 and &t+1(�) constitute scalars (or a vector in case of !t+1) of error terms.

The above system, given by equations (25)-(28), consists of four di¤erent sets of simultaneous regressions.

The �rst set, which captures the dynamics of vector of state variables �Xt+1 (see (25)), assumes that the

matrix of autoregressive coe¢ cients � of Xt is not diagonal. This allows for possible feedback e¤ects between

all variables of vector Xt. In the estimation, the elements of the vector of error terms !t+1 are also allowed

to be correlated to each other. The above speci�cation of vector �Xt also preserves the structure of in�ation

rate relationship (5), assumed by our GDTSM.

The second set of regressions of the above system (see 26) corresponds to nominal interest rates relation-

ship (15), augmented with error terms et+1(�). These errors can be taken to re�ect possible measurement

errors of interest rates Rt(�) in relationship (15). These errors may be quite substantial for long-term dis-

count interest rates (i.e., for � > 12 months), as these rates are approximated by �tting spline functions

(or by applying dynamic programming methods) to non zero-coupon bond prices with very long maturity

intervals, which are less liquid assets. Note that regression (26) is given in �rst-di¤erences of its variables,

�Rt(�). This is done in order to directly accommodate estimates of the expected values of their independent

variables (i.e., Et(�Xt+1)). The latter are obtained by simultaneously estimating all sets of regressions of

the system. Note that, for � = 1 month, (26) gives relationship (11), for the short-term nominal interest

rate rt.

Finally, the third and fourth set of regressions of the system (i.e., equations (27) and (28)), correspond to

real consumption and expected excess returns relationships of the GDTSM, given by equations (7) and (18),

respectively. The speci�cation of consumption growth rate regression (27) assumes that real consumption Ct

is determined by the two unobserved factors x1t and x2t. This re�ects upon evidence that real consumption

and/or output growth depends on two term structure of interest rates factors (i.e., short-term rate rt and

spread Rt(�) � rt).11 As argued in Section 2, the inclusion of the set of excess holding period returns

regressions (28) into the system will help to better identify from our data price of risk parameters �1;ii of

11See, for instance, Harvey (1988), Berardi and Torous (2005), and Argyropoulos and Tzavalis (2012).
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risk pricing functions �it, for all i.

To estimate system of equations (25)-(28), we will employ the Generalized Method of Moments (GMM)

(see Hansen (1982)). This method can provide asymptotically e¢ cient estimates of the parameters of the

system which are robust to possible heteroscedasticity and/or serial correlation of errors !t+1, et+1(�); �t+1

and &t+1(�). In this estimation procedure, we will impose the no-arbitrage conditions implied by equation

(17) on the slope coe¢ cients of the sets of regressions (26), (27) and (28), i.e., on elements of matrix D(�),

and vectors  1(�) and �(�). These constitute a set of cross-section restrictions on the parameters of the

system which can be tested by our data based on Sargan�s overidentifying restrictions test statistic.

As noted before, to obtain estimates of the vector of unobserved state variables x1t and x2t from our

data, by inverting pricing relationship (15), we will rely on estimates of interest rate variables z1t � Rt(60)

and z2t � Rt(60)�rt. These will be obtained by regressing them on principal component factors pcit. These

regressions will be estimated, simultaneously, with our system of equations (25)-(28). By construction, the

above estimates of variables z1t and z2t will be orthogonal to any measurement errors inherent in them, as

the latter are diversi�ed away in principal component factors pcit.

3.2.1 Estimation results

GMM estimates of the key parameters of the system of equations (25)-(28) of our GDTSM, namely loading

coe¢ cients of state variables xit on short-term interest rate rt, �1i, mean reversion and price of risk parameters

kii and �1;ii, for all i, the elements of matrix � and the correlation matrix of the residuals of stochastic

processes of xit (see 25), denoted as !̂it+1, are given in Table 4. Note that, in brackets, next to the diagonal

estimates of matrix �, the table reports values of the mean reversion parameters kii of xit, for all i, based on

relationship �ii = e�ki�t. The above all estimates are obtained using a set of interest rates Rt(�) and excess

holding period returns hprt(�), with maturity intervals � ={3,6,9,24,36} months. As instruments, we have

used lagged values of the ten year (120 months) nominal interest rate, the spread between the two year (24

months) and one-month nominal interest rates, and in�ation rate �t (see Table 4). In addition to the above

estimates, the table also presents estimates of Sargan�s overidentifying restrictions test statistics, denoted as

J .
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Table 4: GMM estimates of system (25)-(28)

�Xt+1 = const+�Xt + !t+1,
�Rt+1(�) = const+D(�)0Et(�Xt+1) + et+1(�),
�ct+1 = const+  1(�)

0X�
t + �t+1

hprt+1(�) = const+ �(�)0Xt + &t+1(�), where  1(�) = (I � e�k
0� )(k0)�1��1,

kQ = k + �1, D(�) = (I � e�k
Q0� )(kQ0)�1�1 and �(�)0 = �D(�)0�1.

x1t x2t �t
�1i 1.46 -1.05 0.002

(0.003) (0.002) (0.0004)

�1i -0.01 [k11 =0.13] 0.001 -0.0003
(0.003) (0.0001) (0.0008)

�2i 0.001 -0.03 [k22 =0.35] -0.0005
(0.0001) (0.006) (0.001)

�3i 0.12 -0.33 -0.18 [k33 =2.50]
(0.05) (0.03) (0.06)

�1;ii -0.009 -0.05 -0.86
(0.001) (0.003) (0.40)

Variance-covariance matrix of residuals !̂it+1b!1t+1 b!2t+1 b!3t+1b!1t+1 0.38 0.93 -0.10b!2t+1 0.72 -0.08b!3t+1 0.61
J = 118:84 (p-value = 0:11)
Instruments: constant, Rt�h(120) for h = f1; 2g;Rt(24)� rt; �t�h for h = f1; 2; 3; 4g

Notes: The table presents GMM estimates of parameters of the system of equations (25)-(28). Heteroscedasticity

and autocorrelation consistent (Newey-West) standard errors are shown in parentheses. J is Sargan�s overidentifying

restriction test. In the estimation, we impose the following restrictions on the slope coe¢ cients of the loading

coe¢ cients of state variables xit on �Rt+1(�), �ct+1 and hprt+1(�):  1(�) = (I � e
�k0�

)(k
0
)
�1
��1, k

Q = k + �1,

D(�) = (I � e�k
Q0�
)(k

Q0
)
�1
�1 and �(�)

0
= �D(�)0�1, implied by the following structural equations (15), (7) and

(18) of our GDTSM, respectively. ��1i are assumed equal to �1i, for i = {1,2}.

The �rst conclusion that can be drawn from the results of the table is that our GDTSM speci�cation is

consistent with the data. This can be justi�ed by the value of J statistic reported in the table, indicating

that the cross-section restrictions imposed on the matrix and vectors of coe¢ cients of the system D(�),

�(�) and  1(�), respectively, can not be rejected at 1%, or 5%, probability levels. The results of the table

indicate that estimates of mean-reversion and price of risk parameters kii and �1;ii are signi�cant at 5%

level, for all i. The signi�cance of the estimates of �1;ii means that the risks associated with variation in all

state variables xit (including in�ation rate) are priced in the market. The negative sign of �1;ii, for all i, is

consistent with the risk averse behavior of bond market investors. The latter decrease the values of mean

reversion parameters kii under the risk neutral measure Q, collected in vector kQ. The reported estimates of
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kii indicate that, among the three state variables xit, the �rst two (i.e. x1t and x2t), spanning both the real

and nominal term structure of interest rates, as well as real consumption growth are very persistent, given

that kii have values very close to zero. This does not happen with the estimates of kii for in�ation rate �t.

These results imply that shocks in state variables x1t and x2t will have more persistent e¤ects on nominal

term structure of interest rates than in�ation shocks.

Another interesting conclusion that can be drawn from the results of the table is that there signi�cant

feedback e¤ects from state variables x1t and x2t on future in�ation rate �t+1, but not inversely. These results

can be justi�ed by the estimates of the elements of matrix � and their standard errors, reported in the table.

These show that the estimates of autoregressive coe¢ cients �31 and �32, capturing feedback e¤ects of state

variables x1t and x2t on �t+1, are di¤erent than zero at 5% level. On the other hand, the estimates of �13

and �23, capturing feedback e¤ects of �t on x1t+1 and x2t+1, are not di¤erent than zero. Taking these results

together with those of the estimates of the correlation coe¢ cients among residual terms !̂it+1, for all i, which

show very little (almost zero) contemporaneous correlation between in�ation rate �t+1 and state variables

x1t+1 and x2t+1 shocks, one can conclude that the direction of causality between these three variables is

from x1t and x2t on �t, and not inversely. This result enables us to safely assume that residuals !̂it+1, for

i = 3, constitute in�ation rate shocks. The e¤ects of these shocks on the in�ation risk premium e¤ects will

be investigated later on, in Subsection 3.2.3.

The very slow mean reversion of state variables x1t and x2t, noted above, can be also con�rmed by the

inspection of the estimates of them obtained through the estimation of our GDTSM. These are graphically

presented in Figure 1. These estimates are presented vis-a-vis those of the �rst two principal component

factors pc1t and pc2t, obtained by the PC analysis of Subsection 3.1.1. As was expected, xit are closely

correlated with pcit, for i = f1; 2g, but they do not have one-to-one correspondence. These results imply

that employing principal component factors to proxy state variables x1t and x2t may not correctly capture

the latter. The correlation coe¢ cients between pcit and xit, for all i, including in�ation rate �t, are reported

in Table 5. As said before, the close correlation between xit and pcit can be attributed to the fact that pcit

constitute linear transformations of x1t and x2t. They imply that employing principal component factors to

proxy state variables x1t and x2t may not correctly capture the latter. The results of Table 5 also indicate

that there is little correlation between in�ation rate and state variables xit, or principal components factors

pcit, which is consistent with the results of Table 4.
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Table 5: Correlation coe¢ cients among pcit and xit
pc1t pc2t pc3t x1t x2t �t

pc1t 1.00 0.00 0.00 0.88 -0.46 0.10
pc2t 1.00 0.00 0.38 0.92 -0.21
pc3t 1.00 0.00 0.00 0.02
x1t 1.00 0.63 -0.15
x2t 1.00 -0.23
�t 1.00

Notes: The table presents correlation coe¢ cients between pcit and xit, for all i. Note that state variable x3t is

also de�ned as x3t � �t.

Figure 1. Estimates of state variables xit and principal component factors
pcit, for i = f1; 2g.

3.2.2 Comparison to market estimates of in�ation expectations and real interest rates

To see how closely real interest rates R�t (�) and in�ation expectations (denoted as �
e
t (�)) implied by our

GDTSM model are to those reported in the market, in Figures 2 and 3 we report estimates of them, over our

sample. Figures 2A and 2B compare the estimates of R�t (�) obtained by our model to those based on survey

data and in�ation indexed bonds, respectively. In particular, Figure 2A also presents values of R�t (�) taken

from the Cleveland fed survey (see also Haubrich et al. (2012)), which are available for � = 12 months.12

12http://www.clevelandfed.org/research/data/in�ation_expectations
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Figure 2B presents values of R�t (�) implied by the 5-year zero coupon TIPS rate. These are taken from

Gürkaynak, Sack and Wright (2010).13 . The following table presents values of the correlation coe¢ cients

between the estimates of our model for R�t (�) and those of the market, described above, denoted as R
�;M
t (�).

Note that R�Mt (�).are not measured net of risk premium e¤ects, as R�t (�) in our model.

Table 6A: Values of correlation coe¢ cients Corr(R�;Mt (�);R�t (�))

� (in months) 1 12 60
Corr(R�;Mt (�);R�t (�)) 0.77 0.76 0.70

Notes: The table presents values of the correlation coe¢ cient between our model estimates of real rates R�t (�)

and those of the market, denoted as R�;Mt (�), for di¤erent maturity intervals � .

The results of Figures 2A-2B and Table 6A clearly indicate that our estimates of real interest rates

R�t (�) are very close to those implied by the survey and TIPS�market term structure data. The correlation

coe¢ cients between our model estimates of R�t (�) and the market ones, R
�M
t (�), are found to be 0.76 and

0.70, respectively. The biggest deviations between series R�t (�) and R
�M
t (�) are observed during the period

of recent �nancial crisis, i.e., 2008-2009. This can be obviously attributed to the e¤ects of the recent �nancial

crisis on R�Mt (�). Fears of credit and liquidity risks, triggered by this �nancial crisis, may have driven the

yields of TIPS up, given that these are less liquid assets than nominal bonds.

Figure 2A. Survey based values real interest rate R�t (�), for 12 months,
against estimates of it obtained by the estimates of our GDTSM.

13http://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html
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Figure 2B. TIPS implied values of real interest rate R�t (�), for 60 months,
against estimates of it based on the estimates of our GDTSM.

Similar conclusions to the above can be drawn for the in�ation expectations obtained by our model over

� -periods ahead, �et (�), based on relationship (6). As Figure 3 shows, these are very close to those based on

the Cleveland fed survey data denoted as �e;Mt (�), for � = 36 months.14 Values of the correlation coe¢ cients

between �et (�) and �
e;M
t (�), for di¤erent maturity intervals � , are given in Table 6B, below. These values

are very close to unity.

Table 6B: Values of correlation coe¢ cients Corr
�
�e;Mt (�);�et (�)

�
� (in months) 12 36 60

Corr
�
�e;Mt (�);�et (�)

�
0.92 0.95 0.96

Notes: The table presents values of the correlation coe¢ cient between in�ation expectations obtained by our

model (denoted as �et (�)) and those based on the Cleveland fed survey data (denoted as �
e;M
t (�)), for di¤erent

maturity intervals � .

14As real interest rates, note that the values of expected in�ation implied by the TIPS data are not net of in�ation risk

premia e¤ects. These are calculated as BEI(�) � Rt(�)�R�t (�), which equals to �et (�) + }t(�). See Subsection 2.2.
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Figure 3: In�ation expectations based on survey data for 36 months ahead
against those obtained by the estimates of the GDTSM.

3.2.3 Estimates of in�ation risk premium e¤ects

In this section, we estimate the in�ation risk premia e¤ects }t(�), based on our GDTSM estimates, and

investigate some of their key features. Recall that }t(�) can be calculated from our GDTSM as follows:

}t(�) = (1=�) [A(�) +D(�)
0Xt]� (1=�) [a(�) + d(�)0Xt]� (1=�)[g0(�) + g1(�)0Xt],

see equation (24). Figure 4 presents estimates of }t(�) based on our model versus those implied by survey

based Cleveland fed real yields data, denoted as }Mt (�). As real yields (or in�ation expectations) implied

by TIPS or Cleveland fed data are not net of risk premium e¤ects, to obtain estimates of }Mt (�) based on

market data we have relied on estimates of in�ation expectations also based on Cleveland fed survey data

(see fn 14). Values of the correlation coe¢ cients between }Mt (�) and }t(�), together with some descriptive

statistics of them are reported in Table 7.15

The results of Table 7 and Figure 4 indicate that our model estimates of }t(�) are closely related to those

implied by the TIPS�yields. The correlation coe¢ cients between these two alternative measures of }t(�)

vary between 0.65 and 0.67 values. Both of the above sets of estimates of }t(�) vary between negative and

15Note that the table does not present values of correlation coe¢ cients Corr(}Mt (�);}t(�)) for the set of short-term maturities

� = f3,6g, since TIPS�are less liquid for such maturity intervals.
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positive values. They tend to take negative values for most periods of the sample and, especially, during

the recent �nancial crisis. This can be also con�rmed by the mean values of }t(�), reported in the table.

From relationship (22), it can be seen that a negative value of }t(�) means a positive value of the covariance

between marginal utility ratio mt+�=mt and inverted price level change Pt=Pt+� , which is consistent with

the consumption smoothing attitude of investors. It also implies that

nominal interest rates Rt(�) are less than the sum of real rates R�t (�) and expected future in�ation rates

�et (�), predicted by the Fisher equation. The latter means that investors would prefer to hold nominal bonds

rather than in�ation-indexed bonds. This may be also attributed to the fact that the latter are less liquid

assets.

Figure 4: In�ation risk premia e¤ects; for � = 36 months; implied by the
estimates of our GTSDM and Cleveland Fed survey on yields and in�ation

expectation.

Table 7: Descriptive statistics of risk premium e¤ects }t(�)

� (in months) 3 6 12 36 60
Mean -1.53 -1.51 -1.47 -1.31 -1.17
St.Dev. 1.32 1.14 0.94 0.71 0.60

Corr(}Mt (�);}t(�)) - - 0.65 0.68 0.67

Notes: The table presents descriptive statistics, i.e., the mean and standard deviation (St.Dev), of risk premium

e¤ects }t(�), as well as values of correlation coe¢ cients between estimates of the risk premium e¤ects implied by

our GDTSM and those based on market data (TIPS or Cleveland fed survey based yields denoted as }Mt (�)), for

di¤erent maturity intervals � .

Another interesting conclusion that can be drawn from the results of Table 7 is that both the mean and
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volatility (standard deviation) of in�ation risk premium e¤ects }t(�) decline with maturity interval � . This

is also consistent with evidence provided by Grishchenko and Huang (2012), based on market and survey

data. As can be seen from the closed-form solution of }t(�), given by equation (24), the decrease of the

mean and volatility values of }t(�) with � can be attributed to the fact that state variables xit a¤ecting

}t(�) are o¤set to each other and they are scaled by maturity interval � . It can be also attributed to the fact

that in�ation shocks, which a¤ect directly }t(�), have a lower degree of persistency on the level of in�ation

rate �t (or the other two state variables), as is implied by the estimates of the mean reversion parameters

reported in Table 4. The latter can be more clearly seen by the graphs of impulse response functions (IRFs)

of the e¤ects of a 1% positive in�ation shock on }t(�), presented in Figure 5. These IRFs are calculated

based on the following relationship:

}t(�) = G(�)0Xt; where Xt = �Xt�1 + !t;

G(�) is a (3 � 1)-dimension vector de�ned as G(�) = (1=�)(g11(�); g12(�); (g13(�) � D�(�))�(see equation

(24)). In particular, Figure 5 presents IRFs of a 1% positive in�ation shock on }t(�), for maturity intervals

of � = f12; 36; 60g months.

Figure 5. Impulse response functions (IRFs) of in�ation risk premium e¤ects
}t(�) to 1% positive in�ation shocks.

To calculate these IRFs, we assume that in�ation rate �t is uniquely determined by its own (in�ation)

shocks. This can be empirically justi�ed by the estimates of the elements of the variance-covariance matrix
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of residuals !̂it+1, for i = f1; 2; 3g, reported in Table 4. These imply that the degree of correlation between

the shocks of state variables x1t and x2t, and that of in�ation is very close to zero. Inspection of the IRFs,

presented in Figure 5, con�rm our arguments about the e¤ects of in�ation shocks on }t(�) across di¤erent

maturity intervals � , made above. They clearly indicate that these e¤ects are positive, for all � . They are

stronger at shorter maturity intervals � (e.g., � = 12), whereas they decay faster for longer � (i,.e., � = 60).

3.3 Forecasting in�ation from the term structure

Having obtained estimates of risk premium e¤ects }t(�) and real interest rates R
�
t (�) based on our GDTSM,

in this section we examine if time variation of these two variables can explain the failures of the nominal

spread Rt(�)� rt (or Rt(�)�Rt(s); for � > s), to provide forecasts of future in�ation which are consistent

with the predictions of the rational expectations hypothesis of the term structure (REHTS). To this end,

the following regression model has been employed in the literature:

�t(�)� �t(s) = a�;s + b�;s(Rt(�)�Rt(s)) + "t(� ; s), (29)

(see, e.g., Mishkin (1990)), where �t(�)� �t(s) is the change of in�ation rates between future periods t+ �

and t+ s. If real interest rates R�t (�) and risk premium e¤ects }t(�) are constant, then the REHTS predicts

that ��;s = 1, for all � 6= s.

Table 8 presents GMM estimates of the slope coe¢ cients of regression model (29), for di¤erent � and s.

In the estimation procedure, as instrument we employ lagged values of nominal and real spreads, as well as

a proxy of in�ation risk premium e¤ects based on the Cleveland fed survey (see the notes of the table). By

employing instrumental variables, GMM estimation procedure may mitigate the e¤ects of simultaneity bias

between Rt(�)�Rt(s) and "t(� ; s), due to the omission of time-varying real interest rates and risk premium

e¤ects from the RHS of (29), on the estimates of coe¢ cients a�;s and b�;s.

The results of the table are consistent with those of Mishkin (1990). They show that the nominal term

spread Rt(�) � Rt(s) contains information about future in�ation rate changes only at the long-end of the

term structure of nominal interest rates, i.e., for pairs of maturity intervals like (� ; s) = f(36; 12); (60; 12)g.

For the pairs of maturity intervals (� ; s) = f(12; 3); (36; 3)g, which considers short-term forecasting horizons,

regression model (29) fails to predict the future changes of in�ation rates �t(�) � �t(s). In this case, the

estimates of slope coe¢ cient b�;s are far away from unity. Note that, for (� ; s) = f(12; 3)g, they take negative

values.
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Table 8: GMM estimates of in�ation forecasting equation (29) adjusted for time-varying real interest
rates e¤ects

Model: �t(�)� �t(s) = a�;s + b�;s(Rt(�)�Rt(s)) + "t(� ; s)

Maturity intervals (� ; s) a�;s b�;s J-(p-value)
(12,3) 0.24 -1.86 0.97

(0.40) (1.80)

(36,3) 0.01 0.17 0.50
(0.40) (0.31)

(36,12) -0.20 0.88 0.11
(0.25) (0.55)

(60,12) -0.36 0.67 0.30
(0.23) (0.30)

Notes: The table presents GMM estimates of in�ation forecasting regression model (29). Heteroscedasticity

and autocorrelation consistent (Newey-West) standard errors are shown in parentheses. J -(p-value) gives the p-

value of Sargan�s overidentifying restriction test with 11 degrees of freedom. In the GMM estimation procedure,

we employ as instruments the following variables: �1t�i = Rt(36)�Rt(3); �2t�i = R�;Mt (36)�R�;Mt (1); �2t�i =

}Mt (36)� }
M
t (3); for i= 1; 2; 3; 4:

To examine if the above puzzling behavior of term spread Rt(�) � Rt(s) can be attributed to the time

variation of in�ation risk premium e¤ects }t(�) and/or real term interest rates R�t (�), next we have estimated

the following version of model (29), adjusting for these two components of nominal rates:

�t(�)� �t(s) = c�;s + b�;s(Rt(�)�Rt(s)� �t(� ; s)) + ut(� ; s); (30)

where

�t(� ; s) = (R
�
t (�)�R�t (s))� (}t(�)� }t(s))

captures the in�ation risk premia and real term structure e¤ects, jointly. This regression model is based

on relationship (23)). Under the REHTS, it implies that b�;s = 1. GMM estimates of the above regression

model is given in Tables 9A and 9B. Table 9A presents estimates of (30), where nominal term spread

Rt(�) � Rt(s) is adjusted only for time-varying real interest rates e¤ects, i.e., �t(� ; s) � R�t (�) � R�t (s).

Table 9B adjusts Rt(�) � Rt(s) for both real interest rates and in�ation risk premia e¤ects, i.e., �t(� ; s) �

(R�t (�)�R�t (s))� (}t(�)� }t(s)).
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Table 9A: GMM estimates of in�ation forecasting regression (30) adjusted for time-varying real interest
rates and risk premium e¤ects

Model: �t(�)� �t(s) = c�;s + b�;s(Rt(�)�Rt(s)� �t(� ; s)) + ut(� ; s) where �t(� ; s) � (R�t (�)�R�t (s))

Maturity intervals (� ; s) a�;s b�;s J-(p-value)
(12,3) -0.50 1.40 0.92

(0.08) (0.52)

(36,3) 0.15 0.45 0.60
(0.29) (0.22)

(36,12) 0.23 0.22 0.99
(0.34) (0.80)

(60,12) 0.43 0.85 0.68
(0.26) (0.09)

Notes: The table presents GMM estimates of in�ation forecasting regression (30), adjusted for real interest rates

e¤ects R�t (�)�R
�
t (s). Heteroscedasticity and autocorrelation consistent (Newey-West) standard errors are shown

in parentheses. J -(p-value) gives the p-value of Sargan�s overidentifying restriction test with 11 degrees of freedom.

In the GMM estimation procedure, we employ as instruments the following variables: �1t�i = Rt(36)�Rt(3);
�2t�i = R�;Mt (36)�R�;Mt (1); �2t�i = }Mt (36)� }

M
t (3); for i= 1; 2; 3; 4:

The results of Tables 9A and 9B clearly indicate that adjusting term spread Rt(�) � Rt(s) both for

time-varying real term structure and in�ation risk premium e¤ects can explain its failure to forecast future

changes of in�ation rates �t(�) � �t(s), over short-term horizons. The estimates of slope coe¢ cients b�;s

of regression model (30), allowing for time-varying real term structure and in�ation risk premium e¤ects,

become close to unity, which is consistent with the predictions of the REHTS. As the analysis of our previous

sections has shown, the variation of these two e¤ects cease with maturity interval � , which can explain the

success of term spread Rt(�)� Rt(s) to forecast future in�ation rate changes �t(�)� �t(s) at the long-end

of the term structure (see Table 8). Finally, note that support for regression model (30) can be obtained by

the p-values of Sargan�s overidentifying restrictions tests, denoted as J , reported in the tables. These can

not reject the orthogonality conditions (overidentifying restrictions) of the model by the data.
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Table 9B: GMM estimates of in�ation forecasting equations (30)

Model: �t(�)� �t(s) = c�;s + b�;s(Rt(�)�Rt(s)� �t(� ; s)) + ut(� ; s),
where �t(� ; s) � (R�t (m)�R�t (n))� (}t(m)� }t(n))

Maturity intervals (� ; s) a�;s b�;s J-(p-value)
(12,3) -0.22 0.72 0.98

(0.15) (0.35)

(36,3) 0.35 0.81 0.68
(0.19) (0.18)

(36,12) -0.42 0.83 0.93
(0.13) (0.14)

(60,12) 0.66 0.80 0.85
(0.28) (0.16)

Notes: The table presents GMM estimates of in�ation forecasting regression (30), adjusted for real interest

rates e¤ects R�t (�)�R
�
t (s). Heteroscedasticity and autocorrelation consistent (Newey-West) standard errors are

shown in parentheses. J-(p-value) gives the p-value of Sargan�s overidentifying restriction test with 11 degrees of

freedom, we employ as instruments the following variables: �1t�i = Rt(36)�Rt(3); �2t�i = R�;Mt (36)�R�;Mt (1);

�2t�i = }Mt (36)� }
M
t (3); for i= f1; 2; 3; 4g:

4 Conclusions

This paper has suggested a Gaussian dynamic term structure model (GDTSM) with the aim of examining

how important the in�ation risk premium and/or real interest rates e¤ects are on predicting future changes

in in�ation from the nominal term structure of interest rates. The model enables us to retrieve from nominal

interest rates, real consumption growth and in�ation rates, estimates of real interest rates and in�ation

expectations which are net of in�ation risk premium e¤ects. In�ation-indexed bonds, employed for this

purpose, provide biased estimates of real interest rates and in�ation expectations, which depend on in�ation

risk premium e¤ects. Furthermore, these bonds are illiquid assets over short-term horizons.

The paper provides a number of interesting �ndings, which can be proved very useful in forecasting future

in�ation rates and/or retreiving real interest rates from the term structure of interest rates, in practice. First,

it shows that the model is consistent with the data and, thus, can e¢ ciently describe the dynamics of nominal

and real interest rates, as well as of in�ation rates observed in reality. The real interest rates and in�ation

expectations retrieved by the model are close to those implied by survey data and in�ation-indexed bonds.

The latter are often provided over longer horizons. Second, the in�ation risk premium estimated by our
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model is found to be negative for some intervals of our sample and very volatile, especially over term-term

horizons. This means that investors require less compensation for holding nominal bonds, compared to real

(in�ation-indexed) ones. This attitude of investors may be due to the fact that in�ation-indexed bonds are

less liquid assets. Third, real interest rates are also volatility over short-term maturity intervals. These

together with in�ation risk premium e¤ects can explain the failures of the nominal term spread to forecast

future in�ation rates over short-term horizons.
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